BD37544FS-E2 [ROHM]

Sound Processor with Built-in 3-band Equalizer;
BD37544FS-E2
型号: BD37544FS-E2
厂家: ROHM    ROHM
描述:

Sound Processor with Built-in 3-band Equalizer

信息通信管理 光电二极管 商用集成电路
文件: 总41页 (文件大小:4668K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sound Processor with Built-in 3-band Equalizer  
BD37544FS  
General Description  
Key Specifications  
BD37544FS is a sound processor with built-in 3-band  
equalizer for car audio. The functions are stereo input  
selector (which can switch single and GND isolation),  
input-gain control, main volume, super bass, 5ch fader  
volume, LPF/HPF for subwoofer, and mixing input.  
Moreover, “Advanced switch circuit”, which is an original  
ROHM technology, can reduce various switching noise  
(ex. No-signal, low frequency like 20Hz & large signal  
inputs). Also, “Advanced switch” makes control of  
microcomputer easier, and can construct a high quality  
car audio system.  
Power Supply Voltage Range:  
7.0V to 9.5V  
38mA (Typ)  
Circuit Current (No Signal):  
Total Harmonic Distortion:  
THD+N1  
0.001% (Typ)  
0.002% (Typ)  
2.3Vrms(Typ)  
-100dB(Typ)  
THD+N2  
Maximum Input Voltage:  
Cross-talk Between Selectors:  
Volume Control Range:  
Output Noise Voltage:  
VNO1  
+15 dB to -79dB  
3.8µVrms(Typ)  
4.8µVrms(Typ)  
1.8µVrms(Typ)  
-40°C to +85°C  
VNO2  
Residual Output Noise Voltage:  
Operating Temperature Range:  
Features  
Reduced switching noise of input gain control, mute,  
main volume, fader volume, bass, middle, treble,  
super bass, mixing by using advanced switch circuit.  
Built-in differential input selector that can make  
various combination of single-ended / differential  
input.  
Package  
W(Typ) x D(Typ) x H(Max)  
Built-in ground isolation amplifier inputs, which is  
ideal for external stereo input.  
Built-in input gain controller reduces switching noise  
for volume of a portable audio input.  
Decreased number of external components due to  
built-in 3-band equalizer filter, LPF for subwoofer,  
and HPF. It is possible to control Q, GV, fO of 3-band  
equalizer and fC of LPF/HPF through I2C BUS  
control.  
SSOP-A32  
13.60 mm x 7.80mm x 2.01mm  
It is possible to adjust the gain of the bass, middle,  
and treble up to ±20dB with 1 dB step gain  
adjustment.  
It is equipped with output terminals for Subwoofer.  
Moreover, the stereo signal output of the front and  
rear can also be chosen by the I2C BUS control.  
Built-in mixing input and mixing attenuator.  
Energy-saving design resulting in low-current  
consumption is achieved by utilizing the Bi-CMOS  
process. It has the advantage in quality over scaling  
down the power heat control of the internal  
regulators.  
.
Input terminals and output terminals are organized  
and separately laid out to keep the signal flow in one  
direction which results in simpler and smaller PCB  
layout.  
It is possible to control the I2C BUS by 3.3V / 5V.  
.
Applications  
It is optimal for car audio systems. It can also be used for  
audio equipment of mini Compo, micro Compo, TV, etc.  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
1/37  
TSZ22111 • 14 • 001  
BD37544FS  
Typical Application Circuit  
BD37544FS  
単位  
R : [Ω]  
C : [F]  
Pin Configuration  
TOP VIEW  
32  
31  
FIL  
A1  
A2  
1
2
GND  
B1  
B2  
3
4
30 SDA  
29 SCL  
28 VCC  
C1  
C2  
5
6
27  
26  
25  
OUTF1  
OUTF2  
OUTR1  
DP1  
DN  
7
8
24  
23  
OUTR2  
OUTS1  
DP2  
9
EP1 10  
EN 11  
22  
21  
OUTS2  
N.C.  
EP2 12  
MIN  
13  
14  
20 SBC2  
19 SBA2  
18 SBB2  
17 SBBIAS  
SBC1  
SBA1 15  
SBB1 16  
Pin Descriptions  
Pin  
Name  
Pin No.  
Pin Name  
Description  
Pin No.  
Description  
SuperBass bias terminal  
SuperBass setting terminal of 2ch  
SuperBass setting terminal of 2ch  
SuperBass setting terminal of 2ch  
No connection  
Subwoofer output terminal of 2ch  
Subwoofer output terminal of 1ch  
Rear output terminal of 2ch  
Rear output terminal of 1ch  
Front output terminal of 2ch  
Front output terminal of 1ch  
Power supply terminal  
I2C Communication clock terminal  
I2C Communication data terminal  
GND terminal  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
A1  
A2  
B1  
B2  
C1  
C2  
DP1  
DN  
DP2  
EP1  
EN  
EP2  
MIN  
SBC1  
SBA1  
A input terminal of 1ch  
A input terminal of 2ch  
B input terminal of 1ch  
B input terminal of 2ch  
C input terminal of 1ch  
C input terminal of 2ch  
D positive input terminal of 1ch  
D negative input terminal  
D positive input terminal of 2ch  
E positive input terminal of 1ch  
E negative input terminal  
E positive input terminal of 2ch  
Mixing input terminal  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
SBBIAS  
SBB2  
SBA2  
SBC2  
N.C.  
OUTS2  
OUTS1  
OUTR2  
OUTR1  
OUTF2  
OUTF1  
VCC  
SCL  
SDA  
GND  
SuperBass setting terminal of 1ch  
SuperBass setting terminal of 1ch  
16  
SBB1  
SuperBass setting terminal of 1ch  
32  
FIL  
VCC/2 terminal  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
2/37  
TSZ2211115001  
BD37544FS  
Block Diagram  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
I2C BUS  
LOGIC  
GND  
VCC/2  
VCC/2  
Fader  
Gain:+15dB to -79dB/1dB step  
no pop noise  
LPF  
fc=55/85/120/160Hz  
HPF  
fc=55/85/120/160Hz  
ATT  
Gain: +7dB to -79dB/1dB step  
no pop noise  
Super Bass  
no pop noise  
3 Band P-EQ (Tone control)  
LPF  
HPF  
Gain: +20dB to -20dB/1dB step  
no pop noise  
Bassf0=60/80/100/120Hz  
Q=0.5/1.0/1.5/2.0  
Meddle:f0=500/1k/1.5k/2.5kHz  
Q=0.75/1/1.25/1.5  
Super Bass  
Treblef0=7.5k/10k/12.5k/15kHz  
Q=0.75/1.25  
Volume  
Gain: +15dB to -79dB/1dB step  
3 Band P-EQ  
(Tone control)  
no pop noise  
Input Gain  
Volume/Mute  
Input Gain  
Gain: +20dB to -0dB/1dB step  
no pop noise  
Input selector (3 single-end and 2 stereo ISO)  
BufferdGND  
ISO amp  
BufferdGND  
ISO amp  
BufferdGND  
ISO amp  
BufferdGND  
ISO amp  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
3/37  
TSZ2211115001  
BD37544FS  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Power Supply Voltage  
Input Voltage  
Symbol  
VCC  
Rating  
10.0  
Unit  
V
VIN  
V
VCC+0.3 to GND-0.3  
0.95 (Note 1)  
Power Dissipation  
Storage Temperature  
(Note 1) When mounted on the standard board (70 x 70 x 1.6 mm3), derate by 7.6mW/°C for Ta above 25°C.  
Thermal resistance θja = 131.6(°C/W)  
Pd  
W
°C  
Tstg  
-55 to +150  
Material : A FR4 grass epoxy board(3% or less of copper foil area)  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
Recommended Operating Conditions  
Parameter  
Power Supply Voltage  
Temperature  
Symbol  
VCC  
Min  
7.0  
-40  
Typ  
Max  
9.5  
Unit  
V
Topr  
+85  
°C  
Electrical Characteristics  
(Unless specified, Ta=25°C, VCC=8.5V, f=1kHz, VIN=1Vrms, Rg=600Ω, RL=10kΩ, A1 input, Input gain 0dB, Mute OFF,  
Volume 0dB, Tone control 0dB, Loudness 0dB, LPF OFF, HPF OFF, Mixing OFF, Fader 0dB)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
38  
0
Max  
48  
Circuit Current (No Signal)  
Voltage Gain  
IQ  
mA  
dB  
dB  
No signal  
GV  
CB  
-1.5  
-1.5  
+1.5  
+1.5  
GV=20log(VOUT/VIN)  
CB = GV1-GV2  
Channel Balance  
0
TotalHarmonic Distortion1  
(FRONT,REAR)  
TotalHarmonic Distortion2  
(SUBWOOFER)  
Output Noise Voltage 1  
(FRONT,REAR) *  
Output Noise Voltage 2  
(SUBWOOFER) *  
VOUT=1Vrms  
BW=400Hz-30KHz  
VOUT=1Vrms  
BW=400Hz-30KHz  
Rg = 0Ω  
BW = IHF-A  
Rg = 0Ω  
BW = IHF-A  
Fader = -dB  
Rg = 0Ω  
BW = IHF-A  
Rg = 0Ω  
CTC=20log(VOUT/VIN)  
BW = IHF-A  
f=1kHz  
VRR=100mVrms  
RR=20log(VCC IN/VOUT  
THD+N1  
THD+N2  
VNO1  
0.001  
0.002  
3.8  
0.05  
0.05  
15  
μVrms  
μVrms  
VNO2  
4.8  
15  
Residual Output Noise Voltage*  
Cross-talk Between Channels *  
Ripple Rejection  
VNOR  
CTC  
RR  
1.8  
-100  
-70  
10  
-90  
-40  
μVrms  
dB  
dB  
)
Input Impedance(A, B,C)  
Input Impedance(D, E)  
RIN_S  
RIN_D  
70  
100  
250  
130  
325  
kΩ  
kΩ  
175  
VIM at THD+N(VOUT)=1  
BW=400Hz-30KHz  
Rg = 0Ω  
CTS=20log(VOUT/VIN)  
BW = IHF-A  
Maximum Input Voltage  
VIM  
2.1  
2.3  
Vrms  
dB  
Cross-talk Between Selectors *  
CTS  
-100  
-90  
XP1 and XN input  
XP2 and XN input  
CMRR=20log(VIN/VOUT  
Common  
Ratio*  
Mode  
Rejection  
CMRR  
50  
65  
dB  
)
BW = IHF-A,[*X…D,E]  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
4/37  
TSZ2211115001  
BD37544FS  
Electrical Characteristics - continued  
Limit  
Typ  
Parameter  
Symbol  
GIN_MIN  
Unit  
dB  
Conditions  
Input gain 0dB  
Min  
-2  
Max  
+2  
Minimum Input Gain  
0
VIN=100mVrms  
GIN=20log(VOUT/VIN)  
Input gain 20dB  
VIN=100mVrms  
Maximum Input Gain  
Gain Set Error  
GIN_MAX  
GIN_ERR  
GMUTE  
18  
-2  
20  
0
22  
+2  
dB  
dB  
dB  
GIN=20log(VOUT/VIN)  
GAIN=+20dB to +1dB  
Mute ON  
GMUTE=20log(VOUT/VIN)  
BW = IHF-A  
Mute Attenuation *  
-105  
-85  
Volume = 15dB  
VIN=100mVrms  
GV=20log(VOUT/VIN)  
Volume = -dB  
GV=20log(V VOUT/VIN)  
BW = IHF-A  
Maximum Gain  
GV_MAX  
13  
15  
17  
dB  
dB  
Maximum Attenuation *  
GV_MIN  
-100  
-85  
GV_ERR1  
GV_ERR2  
GV_ERR3  
-2  
-3  
-4  
0
0
0
+2  
+3  
+4  
dB  
dB  
dB  
Attenuation Set Error 1  
Attenuation Set Error 2  
Attenuation Set Error 3  
GAIN & ATT=+15dB to -15dB  
ATT=-16dB to -47dB  
ATT=-48dB to -79dB  
Gain=+20dB f=100Hz  
VIN=100mVrms  
Maximum Boost Gain  
GB_BST  
18  
20  
22  
dB  
GB=20log (VOUT/VIN)  
Gain=-20dB f=100Hz  
VIN=2Vrms  
GB=20log (VOUT/VIN)  
Gain=-20dB to +20dB  
f=100Hz  
Maximum Cut Gain  
Gain Set Error  
GB_CUT  
GB_ERR  
GM_BST  
-22  
-2  
-20  
0
-18  
+2  
22  
dB  
dB  
dB  
Gain=+20dB f=1kHz  
VIN=100mVrms  
Maximum Boost Gain  
18  
20  
GM=20log (VOUT/VIN)  
Gain=-20dB f=1kHz  
VIN=2Vrms  
Maximum Cut Gain  
Gain Set Error  
GM_CUT  
GM_ERR  
GT_BST  
-22  
-2  
-20  
0
-18  
+2  
22  
dB  
dB  
dB  
GM=20log (VOUT/VIN)  
Gain=-20dB to +20dB f=1kHz  
Gain=+20dB f=10kHz  
VIN=100mVrms  
Maximum Boost Gain  
18  
20  
GT=20log (VOUT/VIN)  
Gain=-20dB f=10kHz  
VIN=2Vrms  
Maximum Cut Gain  
-22  
-20  
-18  
dB  
GT_CUT  
GT=20log (VOUT/VIN)  
Gain=-20dB to +20dB  
f=10kHz  
Gain Set Error  
GT_ERR  
RIN_M  
VIM_M  
-2  
19  
2.0  
0
+2  
35  
dB  
kΩ  
27  
2.2  
Input Impedance  
Maximum Input Voltage  
VIM at THD+N(VOUT)=1%  
BW=400Hz-30KHz  
MIX=OFF  
Vrms  
Maximum Attenuation *  
Maximum Gain  
GMX_MIN  
GMX_MAX  
-100  
7
-85  
9
dB  
dB  
GMX=20log(VOUT/VIN)  
BW=INF-A  
ATT=+7dB  
5
GMX=20log(VOUT/VIN)  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
5/37  
TSZ2211115001  
BD37544FS  
Electrical Characteristics - continued  
Limit  
Typ  
Parameter  
Symbol  
GF_BST  
GF_MIN  
Unit  
dB  
Conditions  
Fader=15dB  
VIN=100mVrms  
GF=20log(VOUT/VIN)  
Fader = -dB  
Min  
13  
Max  
17  
Maximum Boost Gain  
Maximum Attenuation *  
15  
-100  
-90  
dB  
GF=20log(VOUT/VIN)  
BW = IHF-A  
Gain Set Error  
GF_ERR  
GF_ERR1  
GF_ERR2  
GF_ERR3  
ROUT  
-2  
-2  
-3  
-4  
0
0
+2  
+2  
+3  
+4  
50  
dB  
dB  
dB  
dB  
Ω
GAIN=+1dB to +15dB  
ATT=-1dB to -15dB  
ATT=-16dB to -47dB  
ATT=-48dB to -79dB  
VIN =100mVrms  
Attenuation Set Error 1  
Attenuation Set Error 2  
Attenuation Set Error 3  
Output Impedance  
0
0
THD+N=1%  
BW=400Hz-30KHz  
Maximum OutputVoltage  
VOM  
2
2.2  
Vrms  
VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for * measurement.  
Phase between input / output is same.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
6/37  
TSZ2211115001  
BD37544FS  
Typical Performance Curves  
10  
1
10  
50  
40  
30  
20  
10  
0
10kHz  
1kHz  
1
100Hz  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.001 0.01  
0.1  
1
10  
0
2
4
6
8
10  
Power Supply Voltage : VCC [V]  
Output Voltage : VOUT [Vrms]  
Figure 2. Total Harmonic Distortion vs Output Voltage  
Figure 1. Circuit Current (No Signal) vs Power Supply  
Voltage  
5
25  
BASS GAIN : -20dB to +20dB  
/1dB step  
fO : 60Hz Q : 0.5  
20  
4
3
15  
2
10  
5
Gain=0dB  
1
0
0
-1  
-2  
-3  
-4  
-5  
-5  
-10  
-15  
-20  
-25  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency [Hz]  
Figure 3. Gain vs Frequency  
Figure 4. Bass Gain vs Frequency  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
7/37  
TSZ2211115001  
BD37544FS  
Typical Performance Curves continued  
25  
25  
20  
15  
10  
5
fO : 60/80/100/120Hz  
Q : 0.5/1/1.5/2  
BASS GAIN : ±20dB  
fO : 60Hz  
BASS GAIN : ±20dB  
Q : 0.5  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Figure 5. Bass fo vs Frequency  
Figure 6. Bass Q vs Frequency  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
MIDDLE GAIN :  
-20dB to +20dB /1dB  
step  
fO : 500/1k/1.5k/2.5kHz  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
fO : 500Hz  
Q : 0.75  
MIDDLE GAIN :  
±20dB  
Q : 0.75  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Figure 7. Middle Gain vs Frequency  
Figure 8. Middle fo vs Frequency  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
8/37  
TSZ2211115001  
BD37544FS  
Typical Performance Curves continued  
25  
25  
20  
15  
10  
5
Q : 0.75/1/1.25/1.5  
TREBLE GAIN:-20dB to +20dB  
/1dB step  
fO : 7.5kHz Q : 0.75  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
MIDDLE GAIN :  
±20dB  
fO : 500Hz  
-20  
-25  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Figure 10. Treble Gain vs Frequency  
Figure 9. Middle Q vs Frequency  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Q : 0.75/1.25  
TREBLE GAIN : ±20dB  
fO : 7.5kHz  
fO : 7.5k/10k/12.5k/15kHz  
TREBLE GAIN : ±20dB  
Q : 0.75  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Figure 12. Treble Q vs Frequency  
Figure 11. Treble fo vs Frequency  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
9/37  
TSZ2211115001  
BD37544FS  
Typical Performance Curves continued  
1000  
1000  
100  
10  
DIN-Audio  
IHF-A  
Din-Audio  
IHF-A  
100  
10  
1
1
-80 -70 -60 -50 -40 -30 -20 -10  
ai  
0
10 20  
-20 -15 -10 -5 0 5 10 15 20  
Bass Gain[dB]
Vo me G n [dB]  
lu
Figure 13. Output Noise vs Volume Gain  
Figure 14. Output Noise vs Bass Gain  
1000  
100  
10  
1000  
100  
10  
DIN-Audio  
IHF-A  
DIN-Audio  
IHF-A  
1
1
-20 -15 -10 -5  
0
5
10 15 20  
-20 -15 -10 -5 0 5 10 15 20  
Treble Gain [dB]  
M dle Gain[dB]  
id
Figure 16. Output Noise vs Treble Gain  
Figure 15. Output Noise vs Middle Gain  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
10/37  
TSZ2211115001  
BD37544FS  
Typical Performance Curves continued  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
10  
100  
1k  
10k  
100k  
100  
1000  
10000  
100000  
Frequency [Hz]  
RLOAD [ohm]  
Figure 17. CMRR vs Frequency  
Figure 18. Output Voltage vs RLOAD  
Figure 20. Advanced Switch 2  
Figure 19. Advanced Switch 1  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
11/37  
TSZ2211115001  
BD37544FS  
Timing Chart  
CONTROL SIGNAL SPECIFICATION  
(1) Electrical Specifications and Timing for Bus Lines and I/O Stages  
SDA  
tBUF  
tHD;STAT  
tF  
tSP  
tR  
tLOW  
SCL  
tSU;STOT  
Sr  
tSU;STAT  
tHD;STA  
tSU;DAT  
tHD;DAT  
tHIGH  
S
P
P
Figure 21. I2C-bus Signal Timing Diagram  
Table 1 Characteristics of the SDA and SCL bus lines for I2C-bus devices (Ta=25°C, VCC=8.5V)  
Fast-modeI2C-bus  
Parameter  
Symbol  
Unit  
Min  
0
1.3  
Max  
400  
kHz  
1
2
SCL clock frequency  
fSCL  
tBUF  
Bus free time between a STOP and START condition  
Hold time (repeated) START condition. After this period, the first clock  
pulse is generated  
μS  
3
tHD;STA  
0.6  
μS  
4
5
6
7
8
9
LOW period of the SCL clock  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
Data hold time:  
Data set-up time  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
1.3  
0.6  
0.6  
μS  
μS  
μS  
μS  
ns  
0.06 (Note)  
120  
0.6  
Set-up time for STOP condition  
μS  
All values refer to VIH Min and VIL Max Levels (see Table 2).  
(Note) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH Min of the SCL signal) in order to bridge the  
undefined region of the falling edge of SCL.  
For 7(tHD;DAT), 8(tSU;DAT), make the setup in which the margin is full.  
Table 2 Characteristics of the SDA and SCL I/O stages for I2C-bus devices  
Fast-modedevices  
Parameter  
Symbol  
Unit  
Min  
-0.3  
2.3  
0
Max  
+1  
5
10 LOW level input voltage:  
11 HIGH level input voltage:  
VIL  
VIH  
tSP  
V
V
ns  
V
Pulse width of spikes which must be suppressed by the input filter.  
12  
50  
13 LOW level output voltage: at 3mA sink current  
14 Input current each I/O pin with an input voltage between 0.4V and 4.5V.  
VOL1  
II  
0
0.4  
+10  
-10  
μA  
tHD;STA  
:2µs  
tSU;DAT  
:1µs  
tHD;DAT  
:1µs  
tSU;STO  
:2µs  
SCL  
tBUF  
:4µs  
LOW
t
:3µs  
tHIGH  
:1µs  
SDA  
SCL clock frequency : 250kHz  
Figure 22. A Command Timing Example in the I2C Data Transmission  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
12/37  
TSZ2211115001  
BD37544FS  
(2) I2C BUS FORMAT  
MSB  
Slave Address  
8bit  
LSB  
MSB  
Select Address  
8bit  
LSB  
MSB  
LSB  
S
1bit  
A
1bit  
A
1bit  
Data  
8bit  
A
P
1bit 1bit  
S
= Start condition (Recognition of start bit)  
Slave Address = Recognition of slave address. The first 7 bits correspond to the slave address.  
The least significant bit is Lwhich corresponds to write mode.  
A
= ACKNOWLEDGE bit (Recognition of acknowledgement)  
Select Address = Select address corresponding to volume, bass or treble.  
Data  
P
= Data on every volume and tone.  
= Stop condition (Recognition of stop bit)  
(3) I2C BUS Interface Protocol  
(a) Basic Format  
S
Slave Address  
MSB LSB  
A
Select Address  
MSB LSB  
A
Data  
MSB LSB  
A
P
(b) Automatic Increment (Select Address increases (+1) according to the number of data.)  
S
Slave Address  
MSB LSB  
(Example)  
A
Select Address  
A
Data1  
LSB  
A
Data2  
MSB  
A
DataN  
MSB  
A
P
・・・・  
MSB LSB MSB  
LSB  
LSB  
Data1 shall be set as data of address specified by Select Address.  
Data2 shall be set as data of address specified by Select Address +1.  
DataN shall be set as data of address specified by Select Address +N-1.  
(c) Configuration Unavailable for Transmission (In this case, only Select Address1 is set.)  
Slave Address Select Address1 Data Select Address 2 Data  
MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB  
S
A
A
A
A
A
P
(Note) If any data is transmitted as Select Address 2 next to data, it is recognized  
as data, not as Select Address 2.  
(4) Slave Address  
MSB  
A6  
1
LSB  
R/W  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
80H  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
13/37  
TSZ2211115001  
BD37544FS  
(5) Select Address & Data  
Select  
Address  
(hex)  
Items  
D7  
D6  
0
D5  
D4  
D3  
0
D2  
1
D1  
D0  
Advanced switch time of  
Input Gain/Volume  
Tone/Fader/Super Bass  
Mixing  
Advanced  
switch  
ON/OFF  
Advanced switch time  
of Mute  
Initial setup 1  
01  
LPF  
Phase  
Front HPF Rear HPF  
Pass  
Subwoofer Output  
Select  
Initial setup 2  
Initial setup 3  
Input Selector  
Input gain  
02  
03  
05  
06  
0
0
Subwoofer LPF fC  
Front / Rear HPF fC  
0
1
0
Pass  
Full-diff  
Type  
Mute  
0
0
0
Input selector  
Input Gain  
0
ON/OFF  
Volume gain  
Fader 1ch Front  
Fader 2ch Front  
Fader 1ch Rear  
Fader 2ch Rear  
Fader Subwoofer  
Mixing  
Bass setup  
Middle setup  
Treble setup  
20  
28  
29  
2A  
2B  
2C  
30  
41  
44  
47  
Volume Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Mixing Gain / Attenuation  
0
0
0
0
0
0
Bass fO  
0
0
0
0
0
0
Bass Q  
Middle Q  
Middle fO  
Treble fO  
0
Treble Q  
Bass  
Boost/  
Cut  
Middle  
Boost/  
Cut  
Treble  
Boost/  
Cut  
Bass gain  
Middle gain  
Treble gain  
51  
54  
57  
0
0
0
0
0
0
Bass Gain  
Middle Gain  
Treble Gain  
Super Bass Gain  
System Reset  
75  
FE  
0
1
0
0
0
0
Super Bass Gain  
0
0
0
0
1
Advanced switch  
Note  
1. The Advanced Switch works in the latch part while changing from one function to another.  
2. Upon continuous data transfer, the Select Address rolls over because of the automatic increment function, as  
shown below.  
01020305062028292A2B2C  
3041444751545775  
.
3. Advanced switch is not used for the function of input selector and subwoofer output select, etc. Therefore, please  
apply mute on the side when changing these settings.  
4. When using mute function of this IC at the time of changing input selector, please switch mute ON/OFF for waiting  
advanced-mute time.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
14/37  
TSZ2211115001  
BD37544FS  
Select address 01 (hex)  
Time  
D7  
D6  
0
D5  
D4  
D3  
0
D2  
1
D1  
0
0
1
1
D0  
0
1
0
1
0.6msec  
1.0msec  
1.4msec  
3.2msec  
Advanced switch time  
of Input gain/Volume  
Tone/Fader/Super  
Bass/Mixing  
Advanced  
Switch  
ON/OFF  
MSB  
gain/Volume/Tone/Fader/  
Super Bass/Mixing  
LSB  
Time  
D7  
D6  
0
D5  
0
0
1
1
D4  
0
1
0
1
D3  
D2  
D1  
D0  
4.7 msec  
7.1 msec  
11.2 msec  
14.4 msec  
Advanced  
Switch  
ON/OFF  
Advanced switch  
Time of Mute  
0
1
Mode  
D7  
0
D6  
0
D5  
D4  
D3  
0
D2  
1
D1  
D0  
Advanced switch time  
of Input gain/Volume  
Tone/Fader/Super  
Bass/Mixing  
OFF  
ON  
Advanced switch  
Time of Mute  
1
Select address 02(hex)  
fC  
C
D7  
D6  
0
D5  
D4  
D3  
0
D2  
0
0
0
0
D1  
0
0
1
1
0
D0  
0
1
0
1
OFF  
55Hz  
85Hz  
LPF  
Phase  
Subwoofer Output  
Select  
120Hz  
160Hz  
Prohibition  
1
0
Other setting  
Mode  
D7  
D6  
0
D5  
0
0
1
1
D4  
0
1
0
1
D3  
0
D2  
D2  
D1  
D0  
D0  
LPF  
Front  
Rear  
LPF  
Phase  
Subwoofer LPF fC  
Prohibition  
Phase  
D7  
0
D6  
0
D5  
D4  
D3  
0
D1  
0°  
Subwoofer output  
select  
Subwoofer LPF fC  
180°  
1
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
15/37  
TSZ2211115001  
BD37544FS  
Select address 03(hex)  
C
Mode  
D7  
D6  
D5  
0
D4  
D3  
0
D2  
D1  
1
D0  
0
55Hz  
85Hz  
0
0
0
1
Front  
HPF  
Pass  
Rear  
HPF  
Pass  
0
120Hz  
1
1
0
160Hz  
0
1
0
Prohibition  
Other setting  
Mode  
D7  
D6  
0
D5  
D5  
D4  
D3  
D3  
D2  
0
D1  
1
D0  
0
Front  
HPF  
Pass  
pass  
Front/Rear HPF fC  
NOT pass  
1
Mode  
D7  
0
D6  
D4  
D2  
0
D1  
1
D0  
0
Rear  
HPF  
Pass  
pass  
Front/Rear HPF fC  
NOT pass  
1
Select address 05(hex)  
Mode  
OUTF1  
A1  
OUTF2  
A2  
B2  
C2  
DP2  
EP2  
B1  
C2  
DP2  
EP2  
D7  
D6  
D5  
D4  
0
0
0
0
0
0
1
0
D3  
0
0
0
0
0
1
0
0
D2  
0
0
0
0
1
1
0
1
D1  
0
0
1
1
0
1
0
1
D0  
A
B
0
1
0
1
0
1
0
0
1
1
B1  
C
C1  
D single  
E single  
A diff  
C diff  
D diff  
E diff  
DP1  
EP1  
A1  
B2  
DP1  
EP1  
Full-  
diff bias  
type  
0
0
select  
0
0
0
1
1
0
1
0
Input SHORT  
Prohibition  
Other setting  
Input SHORT : The input impedance of each input terminal is lowered from 100kΩ(Typ) to 6 kΩ(Typ).  
(For quick charge of coupling capacitor)  
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
16/37  
TSZ2211115001  
BD37544FS  
Select address 05(hex)  
Mode  
D7  
0
1
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
Negative Input  
Bias  
Input Selector  
EP1  
10  
1ch  
1ch signal input  
Negative input type  
1ch  
EN1  
11  
Differential  
For Ground isolation type.  
EN2  
12  
2ch  
2ch  
2ch signal input  
EP2  
13  
Differential  
Bias type  
EP1  
10  
For differential amplifier type  
1ch  
Differential  
1ch  
1ch signal input  
EN1  
11  
EN2  
12  
2ch  
EP2  
13  
Differential  
2ch  
2ch signal input  
Select address 06 (hex)  
Gain  
D7  
D6  
D5  
D4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
16dB  
17dB  
18dB  
19dB  
20dB  
Mute  
ON/OFF  
0
0
Prohibition  
1
1
1
1
1
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
17/37  
TSZ2211115001  
BD37544FS  
Select address 06 (hex)  
Mode  
D7  
0
1
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
OFF  
ON  
Input Gain  
Select address 20, 28, 29, 2A, 2B, 2C (hex)  
Gain & ATT  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
0
0
0
0
0
0
0
1
Prohibition  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
15dB  
14dB  
13dB  
-77dB  
-78dB  
-79dB  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
0
1
0
1
0
Prohibition  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
-dB  
Select address 30(hex)  
Gain & ATT  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
0
0
0
0
0
0
0
1
Prohibition  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
7dB  
6dB  
5dB  
-77dB  
-78dB  
-79dB  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
0
1
0
1
0
Prohibition  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
MIX OFF  
(Note) See the precaution on P30 together, too.  
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
18/37  
TSZ2211115001  
BD37544FS  
Select address 41(hex)  
Q factor  
D7  
0
D6  
0
D5  
D4  
D3  
0
D2  
0
D1  
0
0
1
1
D0  
0
1
0
1
0.5  
1.0  
1.5  
2.0  
Bass fO  
O
fO  
D7  
0
D6  
0
D5  
0
0
1
1
D4  
0
1
0
1
D3  
0
D2  
0
D1  
D0  
60Hz  
80Hz  
100Hz  
120Hz  
Bass  
Q factor  
Select address 44(hex)  
Q factor  
D7  
0
D6  
0
D5  
D4  
D3  
0
D2  
0
D1  
0
0
1
1
D0  
0
1
0
1
0.75  
1.0  
1.25  
1.5  
Middle fO  
O
fO  
D7  
0
D6  
0
D5  
0
0
1
1
D4  
0
1
0
1
D3  
0
D2  
0
D1  
D0  
500Hz  
1kHz  
1.5kHz  
2.5kHz  
Middle  
Q factor  
Select address 47 (hex)  
Q factor  
D7  
0
D6  
0
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
1
0.75  
1.25  
Treble fO  
O
fO  
D7  
0
D6  
0
D5  
0
0
1
1
D4  
0
1
0
1
D3  
0
D2  
0
D1  
0
D0  
7.5kHz  
10kHz  
12.5kHz  
15kHz  
Treble  
Q factor  
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
19/37  
TSZ2211115001  
BD37544FS  
Select address 51, 54, 57 (hex)  
Gain  
D7  
D6  
D5  
D4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
16dB  
17dB  
18dB  
19dB  
20dB  
Bass/  
Middle/  
Treble  
Boost  
/cut  
0
0
1
1
1
1
1
1
1
1
0
1
Prohibition  
Mode  
D7  
0
1
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
Boost  
Cut  
Bass/Middle/Treble Gain  
: Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
20/37  
TSZ2211115001  
BD37544FS  
Select address 75 (hex)  
Gain  
D7  
D6  
D5  
D4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
16dB  
17dB  
18dB  
19dB  
20dB  
0
0
0
Prohibition  
1
1
1
1
1
(Note) About Super Bass, the above Gain is for in indication purposes. Actual Gain (=20log (VOUT/VIN)) is different.  
Refer to P31 to P34 for the details.  
: Initial condition  
(6) About Power ON Reset  
Built-in IC initialization is made during power ON of the supply voltage. Please send initial data to all  
addresses at supply voltage on. And please turn ON mute until this initial data is sent.  
Limit  
Parameter  
Symbol  
tRISE  
Unit  
Conditions  
Min  
33  
Typ  
Max  
Rise Time of VCC  
µsec  
VCC rise time from 0V to 5V  
VCC Voltage of  
Release Power ON  
Reset  
VPOR  
4.1  
V
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
21/37  
TSZ2211115001  
BD37544FS  
Application Information  
1. Function and Specifications  
Function  
Specifications  
Stereo input  
Single-End/Differential  
(Possible to set the number of single-end/ differential as follows )  
Single-End  
Differential  
Input selector  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
0
1
3
4
5
4
3
2
1
0
Table.1 Combination of input selector  
+20dB to 0dB (1dB step)  
Input gain  
Mute  
Possible to use “Advanced switch” for prevention of switching noise.  
Possible to use “Advanced switch” for prevention of switching noise.  
+15dB to -79dB (1dB step), -∞dB  
Volume  
Possible to use “Advanced switch” for prevention of switching noise.  
+20dB to -20dB (1dB step)  
Q=0.5, 1, 1.5, 2  
Bass  
fO=60, 80, 100, 120Hz  
Possible to use “Advanced switch” for prevention of switching noise.  
+20dB to -20dB (1dB step)  
Q=0.75, 1, 1.25, 1.5  
Middle  
fO=500, 1k, 1.5k 2.5kHz  
Possible to use “Advanced switch” for prevention of switching noise.  
+20dB to -20dB (1dB step)  
Q=0.75, 1.25  
Treble  
Fader  
fO=7.5k, 10k, 12.5k, 15kHz  
Possible to use “Advanced switch” for prevention of switching noise.  
+15dB to -79dB(1dB step), -∞dB  
Possible to use “Advanced switch” for prevention of switching noise.  
fC=55/85/120/160Hz, pass  
LPF  
HPF  
Phase shift (0°/180°)  
fC=55/85/120/160Hz, pass  
Monaural input  
Mixing  
+7dBdB to -79dB (1dB step), -∞dB  
Possible to use “Advanced switch” for prevention of switching noise.  
+20dB to 0dB (1dB step)  
Super Bass  
Possible to use “Advanced switch” for prevention of switching noise.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
22/37  
TSZ2211115001  
BD37544FS  
2. Volume / Fader Volume / Mixing ATT Attenuation Data  
(dB)  
(dB)  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
+15  
+14  
+13  
+12  
+11  
+10  
+9  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
-1  
-2  
-3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
-33  
-34  
-35  
-36  
-37  
-38  
-39  
-40  
-41  
-42  
-43  
-44  
-45  
-46  
-47  
-48  
-49  
-50  
-51  
-52  
-53  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
-62  
-63  
-64  
-65  
-66  
-67  
-68  
-69  
-70  
-71  
-72  
-73  
-74  
-75  
-76  
-77  
-78  
-79  
-∞  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-31  
-32  
Adjustable range of mixing ATT is +7dB to -∞dB.  
Initial condition  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
23/37  
TSZ2211115001  
BD37544FS  
3. Application Circuit  
FIL  
GND  
SDA  
SCL  
29  
VCC  
28  
OUTF1 OUTF2 OUTR1 OUTR2 OUTS1 OUTS2  
0.1μ  
10μ  
10μ  
10μ  
10μ  
10μ  
10μ  
10μ  
10μ  
32  
31  
30  
27  
26  
25  
24  
23  
22  
20  
19  
18  
17  
21  
I2C BUS  
LOGIC  
GND  
VCC/2  
VCC/2  
Fader  
Fader  
Gain:+15dB to -79dB/1dB step  
no pop noise  
LPF  
fc=55/85/120/160Hz  
HPF  
fc=55/85/120/160Hz  
ATT  
Gain: +7dB to -79dB/1dB step  
no pop noise  
Super Bass  
no pop noise  
3 Band P-EQ (Tone control)  
Gain: +20dB to -20dB/1dB step  
LPF  
HPF  
no pop noise  
Bassf0=60/80/100/120Hz  
Q=0.5/1.0/1.5/2.0  
Meddle:f0=500/1k/1.5k/2.5kHz  
Q=0.75/1/1.25/1.5  
Super Bass  
Treblef0=7.5k/10k/12.5k/15kHz  
Q=0.75/1.25  
Volume  
Gain: +15dB to -79dB/1dB step  
3 Band P-EQ  
(Tone control)  
no pop noise  
Input Gain  
Gain: +20dB to -0dB/1dB step  
no pop noise  
Volume/Mute  
Input Gain  
Input selector (3 single-end and 2 stereo ISO)  
BufferdGND  
ISO amp  
BufferdGND  
ISO amp  
BufferdGND  
ISO amp  
BufferdGND  
ISO amp  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
2.2μ  
2.2μ  
10μ  
2.2μ  
2.2μ  
2.2μ  
2.2μ  
2.2μ  
2.2μ  
2.2μ  
10μ  
2.2μ  
2.2μ  
MIN  
Single2  
Single3  
Single1  
GND Isolation1 or  
Single4  
GND Isolation2 or  
Single5  
GND Isolation3  
GND Isolation4  
1 to 3  
About single input it is possible to change from single input to GND  
About GND Isolation1 and GND Isolation2, it is possible to change from  
4 to 5.  
Isolation input 3,4.  
differential input to single input
Unit  
R : [Ω]  
C : [F]  
Figure 23. BD37544FS  
Notes on wiring  
Please connect the decoupling capacitor of the power supply in the shortest possible distance to GND.  
GND lines should be one-point connected.  
Wiring pattern of Digital should be away from that of Analog unit and cross-talk should not be acceptable.  
SCL and SDA lines of I2C BUS should not be parallel if possible.  
The lines should be shielded, if they are adjacent to each other.  
Analog input lines should not be parallel if possible. The lines should be shielded, if they are adjacent.  
Please short Pins 15-16, and Pins 18-19 if the Super Bass is not used.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
24/37  
TSZ2211115001  
BD37544FS  
Power Dissipation  
About the thermal design of the IC  
Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum  
ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two  
standpoints of immediate damage and long-term reliability of operation.  
Reference data  
SSOP-A32  
1.5  
measurement Condition : ROHM Standard board  
board Size : 70 x 70 x 1.6(mm3)  
material : A FR4 grass epoxy board  
(3% or less of copper foil area)  
0.95W  
1.0  
θja = 131.6°C/W  
0.5  
0.0  
85  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta (°C)  
Figure 24. Temperature Derating Curve  
(Note) Values are actual measurements and are not guaranteed.  
Power dissipation values vary according to the board on which the IC is mounted.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
25/37  
TSZ2211115001  
BD37544FS  
I/O Equivalent Circuits  
Terminal  
No.  
Terminal  
Name  
Terminal  
Voltage  
Equivalent Circuit  
Terminal Description  
A terminal for signal input.  
VCC  
The input impedance is 100kΩ(Typ).  
1
2
3
4
5
6
A1  
A2  
B1  
B2  
C1  
C2  
4.25  
100KΩ  
GND  
VCC  
Input terminal available to ingle/Differential  
mode.  
7
8
DP1  
DN  
The input impedance is 250kΩ(Typ).  
9
DP2  
EP1  
EN  
4.25  
10  
11  
12  
250KΩ  
EP2  
GND  
VCC  
An input terminal for Super Bass  
16  
18  
SBB1  
SBB2  
GND  
A terminal for Super Bass and fader,  
Subwoofer output.  
15  
17  
19  
22  
23  
24  
25  
26  
27  
SBA1  
SBBIAS  
SBA2  
VCC  
OUTS2  
OUTS1  
OUTR2  
OUTR1  
OUTF2  
OUTF1  
4.25  
GND  
VCC  
An output terminal for Super Bass.  
14  
20  
SBC1  
SBC2  
4.25  
3KΩ  
GND  
Values in the pin explanation and input/output equivalent circuit are reference values only and are not guaranteed.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
26/37  
TSZ2211115001  
BD37544FS  
I/O Equivalent Circuits continued  
Terminal  
No.  
Terminal  
Name  
Terminal  
Voltage  
Equivalent Circuit  
Terminal Description  
Power supply terminal.  
28  
VCC  
8.5  
A terminal for clock input of I2C BUS  
communication.  
VCC  
29  
SCL  
1.65V  
GND  
VCC  
A terminal for data input of I2C BUS  
communication.  
30  
31  
32  
SDA  
GND  
FIL  
1.65  
GND  
Ground terminal.  
0
1/2 VCC terminal.  
VCC  
Voltage for reference bias of analog signal  
system. The simple precharge circuit and  
simple discharge circuit for an external  
capacitor are built in.  
50k  
50k  
4.25  
GND  
VCC  
A terminal for signal input.  
The input impedance is 27kΩ(typ).  
13  
MIN  
4.25  
27KΩ  
GND  
Values in the pin explanation and input/output equivalent circuit are reference values only and are not guaranteed.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
27/37  
TSZ2211115001  
BD37544FS  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
28/37  
TSZ2211115001  
BD37544FS  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 25. Example of monolithic IC structure  
13. About Signal Input  
(a) About Input Coupling Capacitor Constant Value  
The constant value of input coupling capacitor C(F) is decided with respect to the input impedance RIN(Ω) at  
the input signal terminal of the IC. The first HPF characteristic of RC is composed.  
GdB〕  
C
F
〕  
0
RIN  
Ω〕  
A(f)  
SH  
fHz〕  
INPUT  
2
2fCRIN  
A
f   
2
12fCRIN  
(b) About the Input Selector SHORT  
SHORT mode is the command which makes switch SSH =ON of input selector part so that the input impedance  
RIN of all terminals becomes small. Switch SSH is OFF when SHORT command is not selected.  
The constant time brought about by the small resistance inside and the capacitor outside the LSI becomes  
small when this command is used. The charge time of the capacitor becomes short. Since SHORT mode turns  
ON the switch of SSH and makes it low impedance, please use it at no signal condition.  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
29/37  
16.Dec.2015 Rev.001  
TSZ2211115001  
BD37544FS  
Operational Notes continued  
14. About MIX  
(1) About Specification of Fader -∞ at MIX ON.  
Mix_signal is added to Main_signal after Fader_Gain(+15dB to -79dB) like the figure. When Fader is set at -,  
the signal after a MIX signal is added is done with MUTE because the -circuit of Fader is in the step after  
the addition circuit.  
+15dB to -79dB  
+7dB to -79dB  
Figure 26. About Front Fader and MIX  
(2) About Advanced Switching of MIX_Gain/ATT  
When advanced switching of MIX_Gain/ATT works, MIX goes a switching movement that it passes through the  
state of MIX_OFF like in B figure below (from current settingof MIX_Gain/ATT to MIX_OFF to a target setting of  
MIX_Gain/ATT).  
A
B
Fader_Gain/ATT 0dB to -6dB  
advanced switching  
MIX_Gain/ATT 0dB to -6dB  
advanced switching  
Figure 27. Advanced Switching Movement when MIX_Gain/ATT is Changed  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
30/37  
TSZ2211115001  
BD37544FS  
Operational Notes continued  
15. About Super Bass Circuit  
The (the following Super Bass) which strengthens a low band like the graph below a can be realized by composing  
an external circuit with the pin 14 to 20 as shown in Figure 28.  
R2  
R2  
C1  
C2  
C2  
C1  
Figure 28. Super Bass circuit  
Figure 29. Super Bass Gain vs Frequency  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
31/37  
TSZ2211115001  
BD37544FS  
(a) Gain Step Width becomes a Logarithm  
When a setup of Gain is made 0,1,2,3,5,7,11,20dB, it becomes the following (bottom right) character.  
(C1=0.047µF, C2=0.1µF, R1=3kΩ, R2=560kΩ)  
Expansion  
0dB to 20dB  
Figure 30. About Gain step of Super Bass  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
32/37  
TSZ2211115001  
BD37544FS  
(b) You must take level diagram into consideration so that output may not do a clip  
Example (C1=0.047µF, C2=0.1µF, R2=560kohm, VCC=8.5V)  
To prevent output clipping due to amplification when Super Bass is used, adjust the level diagram with  
volume until the Tone output level becomes less than 0.2Vrms.  
C2  
R2  
R2  
C1  
C2  
C1  
Please adjust so that the maximum level of the Tone output becomes less than 0.2Vrms. (at VCC=8.5V)  
Figure 31. Super Bass Level Diagram  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
33/37  
TSZ2211115001  
BD37544FS  
(c) About fO and Gain of Super Bass  
fO and Gain of Super Bass deviates due to the deviation of the value of C1, C2, R2 (Components with the  
outside),  
R1 (the resistance built in IC).  
ExampleSuper Bass Gain frequency characteristic at Dispersion condition of C1,C2,R2±5%, R1±30%  
(C1=0.047µF, C2=0.1µF, R1=3kohm, R2=560kohm, Super Bass Gain=20dB)  
Dispersion of fo: About ±20%  
Dispersion of Gain: About ±2dB  
Figure 32. Dispersion of fo and Gain of Super Bass  
(d) How to Deal with Pins of Super Bass when not used  
Short Pins 15 to 16, Pins 18 to 19 as shown in Figure 33 when the Super Bass function is not used.  
Short Pin 15 to 16, Pin 18 to 19  
Figure 33. How to Deal with Pins of Super Bass when not used  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
34/37  
16.Dec.2015 Rev.001  
TSZ2211115001  
BD37544FS  
Ordering Information  
B D  
3
7
5
4
4
F
S
-
E 2  
Part Number  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
FS: SSOP-A32  
Marking Diagram  
SSOP-A32 (TOP VIEW)  
Part Number Marking  
LOT Number  
BD35744FS  
1PIN MARK  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
35/37  
TSZ2211115001  
BD37544FS  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-A32  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
36/37  
TSZ2211115001  
BD37544FS  
Revision History  
Date  
Revision  
001  
Changes  
16.Dec.2015  
New Release  
www.rohm.com  
TSZ02201-0C2C0E100590-1-2  
16.Dec.2015 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
37/37  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BD37544FS - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BD37544FS  
SSOP-A32  
2000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2000  
Taping  
inquiry  
Yes  

相关型号:

BD37544FS_15

Sound Processor with Built-in 3-band Equalizer
ROHM

BD37545FS

Silicon Monolithic Integrated Circuit
ROHM

BD37545FS-E2

Audio Control IC, BICMOS, PDSO32
ROHM

BD3756

Power Bipolar Transistor, 2A I(C), 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-126, Plastic/Epoxy, 3 Pin
FAIRCHILD

BD3756STU

Power Bipolar Transistor, 2A I(C), 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-126, Plastic/Epoxy, 3 Pin,
FAIRCHILD

BD376

Medium Power Linear and Switching Applications
FAIRCHILD

BD376

isc Silicon PNP Power Transistors
ISC

BD376

Power Bipolar Transistor, 2A I(C), 45V V(BR)CEO, 1-Element, PNP, Silicon, TO-126, Plastic/Epoxy, 3 Pin
SAMSUNG

BD376-10

Transistor
ISC

BD376-10

Power Bipolar Transistor, 2A I(C), 45V V(BR)CEO, 1-Element, PNP, Silicon, TO-126, Plastic/Epoxy, 3 Pin
SAMSUNG

BD376-10

TRANSISTOR,BJT,PNP,45V V(BR)CEO,2A I(C),TO-126
NSC

BD376-16

2 A, 45 V, PNP, Si, POWER TRANSISTOR, TO-126
FAIRCHILD