BD3378MUV-M [ROHM]

BD3378MUV-M是22通道的开关输入监测LSI。其作用是监测各通道所连接的机械开关的状态变化、使MCU产生中断。使用串行接口读取中断因素并写入内部寄存器。22通道的开关输入分为VPUB、VPUA两种电源系统,可按电池系统和电源控制系统分类使用。动作模式备有常规模式和睡眠模式两种。各模式可通过设定寄存器,使用开关端子连续监测设定和间歇监测设定。使用间歇监测设定时是以固定周期监测开关状态变化,可降低功耗。而且,通过使用各种电源系统时序动作和全部开关统一时序动作设定,还能实现低噪声动作。;
BD3378MUV-M
型号: BD3378MUV-M
厂家: ROHM    ROHM
描述:

BD3378MUV-M是22通道的开关输入监测LSI。其作用是监测各通道所连接的机械开关的状态变化、使MCU产生中断。使用串行接口读取中断因素并写入内部寄存器。22通道的开关输入分为VPUB、VPUA两种电源系统,可按电池系统和电源控制系统分类使用。动作模式备有常规模式和睡眠模式两种。各模式可通过设定寄存器,使用开关端子连续监测设定和间歇监测设定。使用间歇监测设定时是以固定周期监测开关状态变化,可降低功耗。而且,通过使用各种电源系统时序动作和全部开关统一时序动作设定,还能实现低噪声动作。

机械 电池 开关
文件: 总75页 (文件大小:4197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Multiple Input Switch Monitor LSI for  
Automotive  
BD3378MUV-M  
General Description  
Features  
BD3378MUV-M is a 22-channel Multiple Input Switch  
Monitor IC that detects the opening and closing of  
mechanical switches. Once it senses a change in the  
status of a switch, it sends an interrupt signal to the MCU  
via a serial peripheral interface (SPI).  
The 22 switch inputs have two types of power supply,  
VPUB and VPUA. The VPUB and the VPUA power  
supplies can either be from a battery or from another  
power supply system. VPUB is the supply for the INB  
inputs while VPUA is for the INZ and INA inputs.  
BD3378MUV-M has two modes of operation, Normal and  
Sleep. In both modes, the internal registers can be set to  
make the device perform either intermittent or continuous  
monitoring of the switches.  
In intermittent monitoring, the switch status is monitored  
at regular time intervals, allowing the IC to operate with  
low power consumption. Also, operation with reduced  
noise can be achieved by enabling uniform sequential  
monitoring of all switches or sequential monitoring by  
power supply system.  
AEC-Q100 Qualified(Note 1)  
Uses 3.3V/5.0V SPI Protocol in Communicating with the  
MCU  
Serial Communication Error Checking through 8bit-CRC  
Thermal Shutdown Protection (TSD)  
Power on Reset (POR)  
Selectable Source/Sink Current Levels through Register  
Settings  
Wetting Current Timer Capability  
8 Source or Sink Input Pins (VPUA)  
14 Source Input Pins  
Separable Power Supply  
VPUA: 16ch (INA&INZ), VPUB: 6ch (INB)  
Interrupt Notification upon Switch Status Change  
1 Time to 6 Times Matched LPF that Eliminates Input  
Pin Noise  
Low Current Consumption (Intermittent Monitoring)  
Status Display of Selected Pin at DMUX Pin  
(Note 1) Grade 1.  
Package  
VQFN48MCV070  
W(Typ) x D(Typ) x H(Max)  
7.00mm x 7.00mm x 1.00mm  
Application  
Body Control Module  
(48 pin QFN)  
Key Specifications  
Fully Operational Voltage Range:  
Input Voltage on Switch Pin:  
Selectable Wetting Current (Min):  
6.0V to 28.0V  
-14V to +40V  
1mA, 3mA, 5mA, 10mA, 15mA  
Low-voltage Operating Range:  
3.9V to 6.0V  
Typical Application Circuit  
DCDC  
VOUT1  
+B  
VPUA/VPUB  
VPUA/VPUB  
VIN  
BD3378MUV-M  
+B'  
INZ0  
VPUB  
VPUA/+B'  
VPUA  
VPUA  
INZ7  
VOUT2  
ENABLE  
WAKEB  
INTB  
MCU  
WATCHDOG  
RESET  
INA0  
INA7  
INTB  
SI  
SI  
SCLK  
CSB  
VIN  
SCLK  
CS  
INB0  
INB5  
SO  
SO  
IO  
DMUX  
REF5  
LVDD  
AVDD  
VDDI  
TEST  
GND  
Figure 1. Typical Application Circuit  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 14 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
1/72  
BD3378MUV-M  
Pin Configuration  
36 35 34 33 32 31 30 29 28 27 26 25  
EXP-PAD  
EXP-PAD  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
N.C.  
VPUA  
VPUA  
INZ0  
INZ1  
INZ2  
INZ3  
INZ4  
INZ5  
GND  
INB5  
INB4  
INB3  
INB2  
INB1  
INB0  
N.C.  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
EXP-PAD  
AVDD  
INZ6  
INZ7  
REF5  
LVDD  
N.C.  
WAKEB  
EXP-PAD  
EXP-PAD  
1
2
3
4
5
6
7
8
9
10 11 12  
Figure 2. Pin Configuration (Top View)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/72  
TSZ22111 15 001  
BD3378MUV-M  
Pin Description  
Table 1. Pin Description (1)  
Description  
Equivalent  
Circuit  
Pin  
No.  
Pin  
Name  
Function  
Diagram  
(Note 2)  
1
2
GND  
INTB  
Ground  
Output  
Ground pin  
Open-drain interrupt output pin to the MCU  
(with an internal pull-up resistor)  
--  
C
3
4
5
6
N.C.  
VDDI  
N.C.  
SO  
--  
Input  
--  
No connection  
--  
--  
--  
H
Power supply pin for CSB, SI, SCLK, SO, INTB and DMUX  
No connection  
SPI data output pin to the MCU  
Output  
SPI control data input pin from the MCU  
(with an internal pull-down resistor)  
SPI control clock input pin from the MCU  
(with an internal pull-down resistor)  
SPI control chip select input pin from the MCU  
(with internal pull-up current source)  
Digital multiplexer for switch input output pin  
Test mode control pin(Note 3) (with an internal pull-down resistor)  
Ground pin  
7
8
9
SI  
Input  
Input  
Input  
A
A
B
SCLK  
CSB  
10  
11  
12  
13  
14  
15  
16  
17  
DMUX  
TEST  
GND  
Output  
Input  
Ground  
--  
Input  
Output  
Input  
--  
G
J
--  
--  
--  
I
N.C.  
No connection  
LVDD  
REF5  
AVDD  
N.C.  
Power supply input pin for the logic block(Note 4)  
5V power supply output pin(Note 4)  
Power supply input pin for the analog block(Note 4)  
No connection  
--  
--  
Switch input pin 0 under VPUB power supply system  
(with an internal pull-up current source)  
Switch input pin 1 under VPUB power supply system  
(with an internal pull-up current source)  
Switch input pin 2 under VPUB power supply system  
(with an internal pull-up current source)  
Switch input pin 3 under VPUB power supply system  
(with an internal pull-up current source)  
Switch input pin 4 under VPUB power supply system  
(with an internal pull-up current source)  
Switch input pin 5 under VPUB power supply system  
(with an internal pull-up current source)  
Ground pin  
18  
19  
20  
21  
22  
INB0  
INB1  
INB2  
INB3  
INB4  
Input  
Input  
Input  
Input  
Input  
F
F
F
F
F
23  
24  
INB5  
GND  
Input  
F
--  
Ground  
(Note 2) Ref. Page 66 and Page 67 IO Equivalent Circuit.  
(Note 3) Short TEST pin to ground when mounted.  
(Note 4) Short REF5 pin to AVDD pin and LVDD pin, and connect a 4.7µF capacitor between it and ground. Do not use it as voltage source to another IC.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/72  
TSZ22111 15 001  
BD3378MUV-M  
Pin Description - continued  
Table 2. Pin Description (2)  
Description  
Equivalent  
Circuit  
Pin  
No.  
Pin  
Name  
Function  
Diagram  
(Note 2)  
25  
26  
27  
N.C.  
VPUB  
VPUB  
--  
Input  
Input  
No connection  
--  
--  
--  
Power supply input pin for the main system and INB switches  
Power supply input pin for the main system and INB switches  
Switch input pin 0 under VPUA power supply system  
(with an internal pull-up current source)  
Switch input pin 1 under VPUA power supply system  
(with an internal pull-up current source)  
Switch input pin 2 under VPUA power supply system  
(with an internal pull-up current source)  
Switch input pin 3 under VPUA power supply system  
(with an internal pull-up current source)  
Switch input pin 4 under VPUA power supply system  
(with an internal pull-up current source)  
Switch input pin 5 under VPUA power supply system  
(with an internal pull-up current source)  
Switch input pin 6 under VPUA power supply system  
(with an internal pull-up current source)  
Switch input pin 7 under VPUA power supply system  
(with an internal pull-up current source)  
28  
29  
30  
31  
32  
33  
34  
35  
INA0  
INA1  
INA2  
INA3  
INA4  
INA5  
INA6  
INA7  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
F
F
F
F
F
F
F
F
36  
37  
38  
39  
GND  
N.C.  
VPUA  
VPUA  
Ground  
-
Input  
Input  
Ground pin  
No connection  
--  
--  
--  
--  
Power supply input pin for INA and INZ switches  
Power supply input pin for INA and INZ switches  
Switch input pin 0 under VPUA power supply system  
(with an internal pull-up/down current source)  
Switch input pin 1 under VPUA power supply system  
(with an internal pull-up/down current source)  
Switch input pin 2under VPUA power supply system  
(with an internal pull-up/down current source)  
Switch input pin 3 under VPUA power supply system  
(with an internal pull-up/down current source)  
Switch input pin 4 under VPUA power supply system  
(with an internal pull-up/down current source)  
Switch input pin 5 under VPUA power supply system  
(with an internal pull-up/down current source)  
Switch input pin 6 under VPUA power supply system  
(with an internal pull-up/down current source)  
Switch input pin 7 under VPUA power supply system  
(with an internal pull-up/down current source)  
Open-drain output pin to monitor the mode of operation(Note 5)  
The EXP-PAD of the center of product connect to ground.  
The EXP-PADs on the center and corner of the product are shorted inside  
the package.  
40  
41  
42  
43  
44  
45  
46  
INZ0  
INZ1  
INZ2  
INZ3  
INZ4  
INZ5  
INZ6  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
E
E
E
E
E
E
E
47  
48  
INZ7  
Input  
E
D
WAKEB  
Output  
--  
EXP-PAD  
Exposed PAD  
--  
(Note 2) Ref. Page 66 and Page 67 IO Equivalent Circuit.  
(Note 5) In the application circuit, WAKEB should be pulled-up by an external resistor.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/72  
TSZ22111 15 001  
BD3378MUV-M  
Block Diagram  
VPUA  
VPUB  
VPUA  
AVDD  
VPUA  
AVDD  
1mA/3mA/5mA/10mA  
/15mA(Min)  
Internal  
Supply  
VREF5  
Oscillator  
AVDD  
INZ0  
|
INZ7  
+
AVDD  
REF5  
LVDD  
To Logic  
Comparator  
-
3V/4V  
AVDD  
Thermal  
Shutdown  
Power On  
Reset  
1mA/3mA/5mA/10mA  
/15mA(Min)  
VDDI  
x8  
LVDD  
VDDI  
Logic Block  
DMUX Control  
WAKEB Control  
INTB Control  
VPUA  
AVDD  
DMUX  
VPUA  
1mA/3mA/5mA/10mA  
/15mA(Min)  
WAKEB  
AVDD  
INA0  
|
INA7  
+
-
AVDD  
3V/4V  
To Logic  
Comparator  
VDDI  
x8  
INTB  
VPUB  
AVDD  
Input  
Digital Filter  
VPUB  
1mA/3mA/5mA/10mA  
/15mA(Min)  
VDDI  
Interval  
Timer  
40μA  
AVDD  
INB0  
|
INB5  
+
AVDD  
Serial Interface  
and  
To Logic  
Comparator  
CSB  
SCLK  
-
3V/4V  
Registers  
SI  
x6  
VDDI  
SO  
TEST  
GND  
Figure 3. Block Diagram  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/72  
TSZ22111 15 001  
BD3378MUV-M  
Absolute Maximum Ratings  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Supply Voltage  
Input Voltage  
Ratings  
Unit  
V
VVPUA,VVPUB  
-0.3 to +40.0  
-0.3 to +7.0  
-14 to +40  
-0.3 to +7.0  
-0.3 to +40.0  
-0.3 to +7.0  
10  
VVDDI,VAVDD,VLVDD  
(Note 6)  
VINX  
V
VCSB,VSLCK,VSI,VTEST  
VWAKEB  
VDMUX,VINTB,VREF5,VSO  
Output Voltage  
V
Input Current at Pin  
Maximum Junction Temperature  
Storage Temperature  
IWAKEB  
Tj  
Tstg  
mA  
°C  
°C  
150  
-55 to +150  
(Note 6) INX(INB0 to INB5,INA0 to INA7,INZ0 to INZ7).  
Caution1:Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an  
open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a  
fuse, in case the IC is operated over the absolute maximum ratings.  
Caution2:Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design PCB boards with thermal resistance  
taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/72  
TSZ22111 15 001  
BD3378MUV-M  
Thermal Resistance(Note 7)  
Table 4. Thermal Resistance  
Symbol  
Thermal Resistance (Typ)  
Parameter  
Unit  
1s(Note 9)  
2s2p(Note 10)  
VQFN48MCV070  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 8)  
θJA  
83.3  
8
24.5  
5
°C/W  
°C/W  
ΨJT  
(Note 7) Based on JESD51-2A(Still-Air)  
(Note 8) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 9) Using a PCB board based on JESD51-3 (Table 5).  
(Note 10) Using a PCB board based on JESD51-5,7 (Table 6).  
Table 5. 1s  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
70µm  
Footprints and Traces  
Table 6. 2s2p  
Board Size  
Thermal Via(Note 11)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Pitch  
Diameter  
4 Layers  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
1.20mm  
Φ0.30mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70µm  
Copper Pattern  
Thickness  
35µm  
Copper Pattern  
Thickness  
70µm  
Footprints and Traces  
74.2mm x 74.2mm  
74.2mm x 74.2mm  
(Note 11) This thermal via connects with the copper pattern of all layers.  
Recommended Operating Conditions  
Table 7. Recommended Operating Conditions  
Ratings  
Parameter  
Symbol  
Min  
Unit  
Max  
Operating Temperature  
Topr  
VVPUX  
VVDDI  
CREF  
-40  
6.0  
+125  
°C  
V
VPUA/VPUB Supply Voltage  
VDDI Supply Voltage  
28.0  
5.25  
--  
3.10  
4.7  
V
Capacitance for REF5(Note 12)  
µF  
(Note 12) Recommend a ceramic capacitance. Please consider variation of capacitance.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/72  
TSZ22111 15 001  
BD3378MUV-M  
Electrical Characteristics  
Spec conditions: 6.0V≤VPUA/VPUB≤28.0V, 3.10V≤VDDI≤5.25V, -40°C≤Topr+125°C  
VPUA/VPUB/INZ/INA/INB pin: resistors and capacitors are not connected  
REF5 pin: 4.7µF  
Unless otherwise specified, the typical condition is VPUA/VPUB=13V, VDDI=5.00V, Topr=25°C.  
Table 8. Electrical Characteristics  
Parameter  
VPUA/VPUB Supply Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
V
Low-voltage Operating Range(Note 13)  
Fully Operational Voltage Range  
High-voltage Operating Range(Note 14)  
POR(Power on Reset) Activation Voltage(Note 15)  
POR(Power on Reset) Deactivation Voltage(Note 15)  
VPUA/VPUB Operating Current  
Continuous Monitoring  
VVPUX(QFL)  
VVPUX(FO)  
VVPUX(QFH)  
VPOR(LOW)  
VPOR(HIGH)  
3.9  
6.0  
28.0  
3.9  
--  
--  
--  
4.2  
4.3  
6.0  
28.0  
40.0  
4.5  
V
V
4.0  
4.6  
IVPUX(OFF)  
--  
--  
--  
600  
100  
µA  
Current source is invalid, Hi-ZStatus  
VPUA/VPUB Average Operating Current  
Intermittent Monitoring  
Monitoring Period=50ms, Strobe Time=125µs  
Source/Sink Current Setting=1mA  
VDDI Operating Current  
IVPUX(SS)  
75  
µA  
IVDDI  
--  
5
10  
µA  
V
INTB=H, CSB=H”  
REF5 Output Voltage  
VREF5  
4.75  
5.00  
5.25  
(Note 13) Electrical characteristics are not guaranteed though functions are operating. POR is active between 3.9V and 4.5V.  
(Note 14) Electrical characteristics are not guaranteed though functions are operating.  
(Note 15) The POR circuit monitors the REF5 voltage.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/72  
TSZ22111 15 001  
BD3378MUV-M  
Electrical Characteristics - continued  
Table 9. Electrical Characteristics (Switch Input)  
Parameter  
Symbol  
ISOURCE1  
ISINK1  
Min  
1.0  
1.0  
3.0  
3.0  
5.0  
5.0  
Typ  
1.4  
1.4  
4.2  
4.2  
7.0  
7.0  
Max  
1.8  
1.8  
5.4  
5.4  
9.0  
9.0  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Source Current 1 (internal pull-up current source)  
0V external supply, VPUA/VPUB system  
(1mA setting)  
Sink Current 1 (internal pull-down current source)  
8V external supply, VPUA system (1mA setting)  
Source Current 2 (internal pull-up current source)  
0V external supply, VPUA/VPUB system  
(3mA setting)  
Sink Current 2 (internal pull-down current source)  
8V external supply, VPUA system (3mA setting)  
Source Current 3 (internal pull-up current source)  
0V external supply, VPUA/VPUB system  
(5mA setting)  
Sink Current 3 (internal pull-down current source)  
8V external supply, VPUA system (5mA setting)  
Source Current 4 (internal pull-up current source)  
0V external supply, VPUA/VPUB system  
(10mA setting)  
ISOURCE3  
ISINK3  
ISOURCE5  
ISINK5  
ISOURCE10  
mA  
mA  
mA  
VPUA/VPUB=6.0V to 8.0V  
VPUA/VPUB=8.0V to 28.0V  
5.0  
10.0  
14.0  
14.0  
18.0  
18.0  
Sink Current 4 (internal pull-down current source)  
8V external supply, VPUA system (10mA setting)  
Source Current 5 (internal pull-up current source)  
0V external supply, VPUA/VPUB system  
(15mA setting)  
ISINK10  
10.0  
14.0  
18.0  
ISOURCE15  
VPUA/VPUB=6.0V to 8.0V  
VPUA/VPUB=8.0V to 28.0V  
5.0  
15.0  
21.0  
21.0  
27.0  
27.0  
Sink Current 5 (internal pull-down current source)  
8V external supply, VPUA system (15mA setting)  
Low to High Switch Detection Threshold Voltage  
(3.0V setting)  
High to Low Switch Detection Threshold Voltage  
(3.0V setting)  
ISINK15  
15.0  
2.7  
21.0  
3.0  
27.0  
3.3  
mA  
V
VTH3(HIGH)  
VTH3(LOW)  
VTH4(HIGH)  
2.6  
2.9  
3.2  
V
Low to High Switch Detection Threshold Voltage  
(4.0V setting)  
3.7  
3.6  
4.0  
3.9  
4.3  
4.2  
V
V
VPUA/VPUB=7.0V to 28.0V(Note 16)  
High to Low Switch Detection Threshold Voltage  
(4.0V setting)  
VTH4(LOW)  
VPUA/VPUB=7.0V to 28.0V(Note 16)  
(Note 16) Electrical characteristics are not guaranteed between 6.0V≤VVPUX<7.0V.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/72  
TSZ22111 15 001  
BD3378MUV-M  
Electrical Characteristics - continued  
Table 10. Electrical Characteristics (Static Electrical Characteristics)  
Parameter  
Symbol  
VINLOGIC  
ICSB(HIGH)  
Min  
0.8  
-10  
Typ  
--  
Max  
2.2  
Unit  
V
Serial Interface Threshold Voltage(Note 17)  
CSB Input Current  
--  
+10  
µA  
CSB=VDDI  
CSB Pull-up Current  
CSB=0V  
SI, SCLK Pull-down Resistor  
SI, SCLK Input Current  
SI, SCLK=0V  
ICSB(LOW)  
RSI, RSCLK  
30  
50  
40  
100  
--  
85  
µA  
kΩ  
µA  
150  
+10  
ISI(LOW), ISCLK(LOW)  
-10  
SO “H” Level Output Voltage  
ISOURCE=200µA  
SO “L” Level Output Voltage  
ISINK=1.6mA  
SO(Set to “Hi-Z”) Input Current  
0V to VDDI  
DMUX “H” Level Output Voltage  
ISOURCE=200µA  
VSO(HIGH)  
VSO(LOW)  
ISO(TRI)  
VVDDI-0.8  
--  
--  
--  
--  
--  
VVDDI  
0.4  
V
V
-10  
+10  
µA  
V
VDMUX(HIGH)  
VVDDI-0.8  
VVDDI  
DMUX “L” Level Output Voltage  
ISINK=1.6mA  
VDMUX(LOW)  
IINTB(PU)  
--  
15  
--  
53  
--  
0.4  
85  
V
µA  
V
INTB Internal Pull-up Current(Note 16)  
INTB “H” Level Output Voltage  
INTB=OPEN  
VINTB(HIGH)  
VVDDI-0.5  
VVDDI  
INTB “L” Level Output Voltage  
ISINK=1.0mA  
WAKEB “L” Level Output Voltage  
ISINK=1.0mA  
WAKEB (Set to “Hi-Z”) Input Current  
0V to VPUB  
VINTB(LOW)  
VWAKEB(LOW)  
IWAKEB(TRI)  
--  
--  
0.2  
0.2  
--  
0.4  
0.4  
V
V
-10  
+10  
µA  
(Note 17) Applicable to SCLK, SI, CSB.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
10/72  
BD3378MUV-M  
Electrical Characteristics - continued  
Table 11. Electrical Characteristics (Dynamic Electrical Characteristics)  
Parameter  
Symbol  
Min  
Typ  
Max  
22  
Unit  
ms  
Wetting Current Timer  
Counting starts after n-times detection of matched  
LPF  
tWCT  
13  
--  
Interrupt Delay Time 1  
Time from switch status change to INTB output  
change in continuous monitoring  
Interrupt Delay Time 2  
Time from switch status change to INTB output  
change in intermittent monitoring  
n: Setting time of LPF matched n times  
tINTB_DLY1  
--  
--  
--  
--  
1
ms  
ms  
[Monitor  
cycle] x  
n+1  
tINTB_DLY2  
Interrupt Clear Time  
Time from CSB rising edge to INTB output change  
Command Set Time  
Time from CSB rising edge to setting of register  
Transition Time to Normal mode  
tINTB_CLR  
tREG_EN  
tWAKEB_DLY1  
tWAKEB_DLY2  
--  
--  
--  
--  
--  
--  
--  
--  
150  
150  
1
µs  
µs  
ms  
ms  
Time from CSB rising edge to WAKEB output change  
Transition Time to Sleep mode  
1
Time from CSB rising edge to WAKEB output change  
Switch Strobe Time (93.75µs setting)(Note 18)  
Switch Strobe Time (125µs setting)(Note 18)  
Switch Strobe Time (187.5µs setting)(Note 18)  
Switch Strobe Time (250µs setting)(Note 18)  
Source/Sink Current Rise Time  
tSCAN_94  
tSCAN_125  
tSCAN_188  
tSCAN_250  
84.375  
112.5  
168.75  
225  
93.750  
125.0  
187.50  
250  
103.125  
137.5  
206.25  
275  
µs  
µs  
µs  
µs  
FSQ=“0”, FSQZ/A/B=“0”, 10mA setting  
Load resistance 100Ω  
tSR_R  
--  
20(Note 19)  
--  
µs  
Source/Sink Current Fall Time  
FSQ=“0”, FSQZ/A/B=“0”, 10mA setting  
Load resistance 100Ω  
Internal Clock Accuracy  
(Note 18) “H” width of internal signal (Ref. Page 13 Figure 6).  
tSR_F  
--  
15(Note 19)  
--  
--  
µs  
%
tTIMER  
-10  
+10  
(Note 19) Reference value.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
11/72  
BD3378MUV-M  
Electrical Characteristics continued  
Table 12. Electrical Characteristics (Digital Interface Characteristics)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCLK Frequency  
fSCLK  
tLEAD  
tLAG  
tSI(SU)  
tSI(HOLD)  
tR(SI)  
--  
100  
50  
16  
20  
--  
--  
--  
--  
75  
75  
--  
--  
--  
--  
4.4  
1000  
500  
--  
--  
--  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup Time from CSB Fall to SCLK Rise  
Setup Time from SCLK Fall to CSB Rise  
Setup Time from SI to SCLK Fall  
Hold Time from SCLK Fall to SI  
SI, CSB, SCLK Rise Time  
--  
5.0(Note 20)  
SI, CSB, SCLK Fall Time  
tF(SI)  
5.0(Note 20)  
--  
Time from CSB Fall to SO Output Low Impedance  
Time from CSB Rise to SO Output High Impedance  
SCLK HLevel Width  
tSO(EN)  
tSO(DIS)  
tSCLKH  
tSCLKL  
--  
--  
--  
--  
55  
55  
--  
SCLK LLevel Width  
--  
Time from SCLK Rise to Stable SO Data Output  
SO CL=20pF  
CSB “H” Level Time  
(Note 20) Reference value.  
tVALID  
tCSBH  
--  
25  
--  
55  
--  
ns  
µs  
150  
Timing Chart  
·Serial Access Timing  
CSB  
0.2VVDDI  
tF(SI)  
tR(SI)  
tLAG  
tLEAD  
0.7VVDDI  
SCLK  
SI  
0.2VVDDI  
tSI(SU)  
tSI(HOLD)  
tSCLKH tSCLKL  
0.7VVDDI  
0.2VVDDI  
MSB  
tVALID  
tSO(DIS)  
tSO(EN)  
Hi-Z  
0.7VVDDI  
0.2VVDDI  
Hi-Z  
SO  
MSB  
LSB  
Figure 4. Serial Access Timing  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/72  
TSZ22111 15 001  
BD3378MUV-M  
Timing Chart - continued  
·Power Supply Rising/Falling Sequence  
POR Clear  
POR  
VPOR(LOW)  
8V  
VPUB  
VPOR(HIGH)  
REF5  
0V  
AVDD/LVDD  
(Supplied REF5)  
VDDI  
CSB  
0V  
Current Source  
Activation  
Command  
Null Command  
L
tINTB_CLR  
tREG_EN  
tINTB_CLR  
tREG_EN  
Switch-OFF  
External Switch  
Switch-ON  
Internal Reference  
Current Source  
0mA  
L
ISOURCE/ISINK  
INTB  
Undefined  
tINTB_DLY1  
Figure 5. Power Supply Rising/Falling Sequence  
·Source/Sink Current Rise and Fall Time  
(Internal signal)  
Strobing time  
tSCAN_94,tSCAN_125,tSCAN_188,tSCAN_250  
Output Current  
OFF  
OFF  
ON  
80%  
tSR_R  
80%  
tSR_F  
(External signal)  
ISOURCE/ISINK  
20%  
INB,INA,INZ  
20%  
Current waveform  
Scan point  
Figure 6. Intermittent Monitoring Enabled (FSQ=0, FSQZ/A/B=0), Source/Sink Current Rise and Fall Time  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/72  
TSZ22111 15 001  
BD3378MUV-M  
Basic Operation  
[Basic Operation 1] Detection of Switch Status Change (Continuous Monitoring)  
Upon detection of a change in switch status, interrupt (INTB=“H”→“L”) occurs and the IC requests serial communication with  
the MCU.  
< Example of Recommended Operation Sequence >  
Normal mode  
1ms or less  
1ms or less  
Initial interrupt status (INTB=L)  
Interrupt occurs  
Interrupt occurs  
Interrupt occurs  
INTB  
Source/Sink current source  
Valid setting command  
Null  
command  
Null  
command  
Null  
command  
CSB  
SO  
Valid setting)  
Sw itch status output  
Sw itch status output  
Switch-ON  
Sw itch status output  
Switch-OFF  
Indefinite  
External switch  
Switch-OFF  
Internal reference  
current source  
Switch  
pin current  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)(8)  
(9)  
(10)  
(11)  
(12)(13) (14)  
(15)  
(16)  
(17)  
Figure 7. Basic Operation 1  
(1) After power is turned on, interrupt (INTB=“L”) occurs.  
(2) By serial communication, the switch status is obtained by the MCU at CSB falling edge.  
(3) Since the current source is OFF, the switch pin is “Hi-Z”, and the output of SO is undefined.  
(4) Internal reference current source is activated.  
(5) Switch status is output by SO.  
(6) Interrupt is cleared (INTB=“L”→“H”) by CSB rising edge and prepares for switch change.  
(7) Switch change occurs (OFFON) and IC detects switch status change.  
(8) Interrupt (INTB=“H”→“L”) is notified to MCU, and serial communication is requested.  
(9) By serial communication, switch status is obtained by the MCU at CSB falling edge.  
(10) Switch status is output by SO.  
(11) Interrupt is cleared (INTB=“L”→“H”) by CSB rising edge and prepares for switch change.  
(12) Switch change occurs (ONOFF) and IC detects switch status change.  
(13) Interrupt (INTB=“H”→“L”) is notified to MCU, and serial communication is requested.  
(14) By serial communication, the switch status is obtained by the MCU at CSB falling edge.  
(15) Switch status is output by SO.  
(16) Interrupt is cleared (INTB=“L”→“H”) by CSB rising edge and prepares for switch change.  
(17) Power is turned off.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
14/72  
BD3378MUV-M  
Basic Operation - continued  
[Basic Operation 2] Detection of Switch Status Change (Intermittent Monitoring)  
When Intermittent Monitoring is enabled, switch status is monitored by periodically turning the current source on and off.  
Intermittent monitoring allows low power consumption.  
< Example of Recommended Operation Sequence >  
Normal mode  
1ms or less  
1ms or less  
Initial interrupt status (INTB=L)  
Interrupt occurs  
INTB  
Interrupt occurs  
Interrupt occurs  
Null command  
Sw itch status output  
Switch-OFF  
Interrupt occurs  
Normal mode  
Sink/Source current source  
Valid setting command  
(Valid setting)  
Null command  
Sw itch status output  
Switch-ON  
Null command  
Setting command  
(Intermittent monitor setting)  
CSB  
SO  
Sw itch status output  
Indefinite  
Indefinite  
External switch  
Switch-OFF  
Internal reference  
current source  
Switch  
pin current  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)(8) (9)  
(10)  
(11)(12)(13)(14)(15)  
(16)  
(17)  
(18)  
Figure 8. Basic Operation 2  
(1) After power is turned on, interrupt (INTB=“L”) occurs.  
(2) By serial communication, the switch status is obtained by the MCU at CSB falling edge.  
(3) Since the current source is OFF, the switch pin is “Hi-Z”, and the output of SO is undefined.  
(4) Interrupt is cleared (INTB=“L”→“H”) by CSB rising edge and prepares for switch change.  
(5) By serial communication, switch status is obtained by the MCU at CSB falling edge.  
(6) Since the current source is OFF, the switch pin is “Hi-Z”, and the output of SO is undefined.  
(7) IC gets the switch status when the current source is ON.  
(8) Interrupt (INTB=“H”→“L”) is notified to MCU, and serial communication is requested.  
(9) By serial communication, switch status is obtained by the MCU at CSB falling edge.  
(10) Switch status is output by SO.  
(11) Switch change occurs (OFFON).  
(12) Interrupt is cleared (INTB=“L”→“H”) by CSB rising edge and prepares for switch change.  
(13) IC detects switch status change.  
(14) Interrupt (INTB=“H”→“L”) is notified to MCU, and serial communication is requested.  
(15) By serial communication, switch status is obtained by the MCU at CSB falling edge.  
(16) Switch status is output by SO.  
(17) Interrupt is cleared (INTB=“L”→“H”) by CSB rising edge and prepares for switch change.  
(18) Power is turned off.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
15/72  
BD3378MUV-M  
Basic Operation - continued  
[Basic Operation 3] Sleep Mode Operation (Manual Transition)  
When MDC register of Monitor Mode Transition Command is set to “1”, mode is changed to sleep.  
When MDC register of Monitor Mode Transition Command is set to 0, mode is changed to normal.  
During sleep mode, WAKEB is in “Hi-Z” state and its voltage level is the level of the external pull-up.  
< Example of Recommended Operation Sequence >  
Normal mode  
Sleep mode  
Normal mode  
Interrupt occurs  
INTB  
1ms or less  
1ms or less  
Sleep mode  
WAKEB  
Monitor mode  
Monitor mode  
Transition command  
Transition command  
(Sleep setting)  
(Normal setting)  
CSB  
SO  
Switch status output  
Switch status output  
Switch-OFF  
Switch-ON  
External switch  
Internal reference  
current source  
Switch  
pin current  
(1)  
(2)  
(3)  
(4) (5)  
(6)  
(7)  
Figure 9. Basic Operation 3  
(1) Monitor mode transition command (sleep mode setting) is received from MCU.  
(2) Transition to sleep mode.  
(3) Switch change occurs (OFFON).  
(4) IC detects switch status change.  
(5) IC informs MCU the interrupt (INTB=“H”→“L”) and serial communication is requested.  
(6) Monitor mode transition command (normal mode setting) is received from MCU.  
(7) Transition to normal mode.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/72  
TSZ22111 15 001  
BD3378MUV-M  
Basic Operation - continued  
[Basic Operation 4] Sleep Mode Operation (Automatic Transition to Normal Mode)  
Automatic transition from sleep mode to normal mode when a switch status changes is possible when the automatic mode  
transition setting is enabled.  
During sleep mode, WAKEB is in “Hi-Z” state and its voltage level is the level of the external pull-up.  
< Example of Recommended Operation Sequence >  
Normal mode  
Sleep mode  
Normal mode  
Interrupt occurs  
INTB  
1ms or less  
1ms or less  
Sleep mode  
WAKEB  
Automatic mode transition  
Valid setting command  
Monitor mode  
Transition command  
(Valid transition)  
(Sleep setting)  
CSB  
SO  
Switch status output  
Switch status output  
Switch-OFF  
Switch-ON  
External switch  
Internal reference  
current source  
Switch  
pin current  
(1)  
(2)  
(3)  
(4)  
(5)(6)  
Figure 10. Basic Operation 4  
(1) Automatic transition of mode is enable.  
(2) Monitor mode transition command (sleep mode setting) is received from MCU.  
(3) Transition to sleep mode.  
(4) Switch change occurs (OFFON).  
(5) IC detects switch status change.  
(6) IC informs the interrupt to MCU with INTB(“H”→“L) and changes to normal mode automatically.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
17/72  
BD3378MUV-M  
Description of Functions  
1. Power on Reset (POR)  
Upon the application of an external voltage to VPUB, REF5 output is generated by the LDO(VREF5) inside the IC.  
When REF5 ≤ 4.2(Typ), POR is activated.  
When REF5 ≥ 4.3(Typ), POR is deactivated.  
2. Serial Interface  
Communication between IC and the MCU uses pins chip select bar input (CSB), serial clock input (SCLK), serial data input  
(SI), and serial data output (SO).  
CSB is internally pulled-up to VDDI. When CSB status is “0”, SCLK and SI inputs are valid, and it is possible to read data  
from SO. When CSB status is “1”, SCLK and SI inputs are invalid, and SO status is Hi-Z.  
·Communication Frame  
The transmitted frame by the MCU is a 40bit structure composed of the transmission and reception discrimination (2bit), the  
address (6bit), the data (24bit), and the CRC (8bit). The transmission and reception discrimination (2bit) is intended to  
differentiate between the transmitted and the received frame. The command (6bit) sets various settings such as the “valid  
interrupt setting command”. The CRC (8bit) outputs the result of a 39bit to 8bit CRC calculation. If a CRC error occurs, either  
when the structure of the frame is not 40bit or when the transmission and reception discrimination bit is an error (the 33bit of  
the SO frame is “H”), communication error is output and data is not recognized. As for writing, SI data is latched by internal  
shift register at timing of SCLK falling.  
Table 13. Serial Data Input (SI)  
Communication frame  
SI input bit  
39  
0
38  
1
37  
36  
Register address  
address  
35  
34  
33  
32  
31  
30  
14  
29  
13  
28  
27  
26  
10  
25  
9
24  
8
Setting data  
23  
22  
21  
20  
19  
18  
17  
16  
15  
12  
11  
7 to 0  
CRC  
Setting data  
The received frame by the MCU has two types of bit alignment, switch status outputand “register value output”.  
The switch status output bit alignment is a 40bit structure composed of transmission and reception discrimination (2bit), a  
fixed value (1bit), interrupt factor output (5bit), another fixed value (1bit), mode status output (1bit), switch status output  
(22bit), and CRC (8bit).  
Transmission and reception discrimination (2bit) is intended to discriminate transmit and receive frame. The interrupt factor  
is discussed on Page 19. When an interrupt factor occurs, the corresponding bit becomes “1”. Mode status (1bit) is “0” when  
set to normal mode, and it is “1” when set to sleep mode. Switch status output (22bit) is “1” when external switch is ON, and it  
is “0” when external switch is OFF. The CRC (8bit) outputs the result of a 39 bit to 8 bit CRC calculation.  
The switch status is latched to the timing of CSB falling edge. Then, in order of interrupt factor output, mode status and  
switch status output are output from SO by SCLK rising.  
Table 14. Serial Data Output (SO-Switch Status Output)  
Output frame  
SO output bit  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
8
1
0
0
Interrupt factor output  
0
Mode  
Switch INB5-0 status output  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
7 to 0  
CRC  
Switch INA7 to 0 status output  
Switch INZ7 to 0 status output  
The register value output bit alignment is a 40bit structure composed of transmission and reception discrimination (2bit), a  
fixed value (1bit), interrupt factor output (5bit), register value output (24bit), and CRC (8bit).  
The data is output by SO at SCLK's rising edge after the CSB falling edge of the command following the register value output  
command.  
The bit alignment of the register value output is shown on Table 37. The sequence of register value output is shown in Figure  
11 and Figure 12.  
Table 15. Serial Data Output (SO-Register Value Output)  
Output frame  
SO output bit  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
9
24  
8
1
0
0
Interrupt factor output  
Register value output  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
7 to 0  
CRC  
Register value output  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/72  
TSZ22111 15 001  
BD3378MUV-M  
2. Serial Interface - continued  
The register value output command (Table 36 RIER to RMDR) is used to read-back the register value written by register write  
command (Table 36 IER to MDR).  
Figure 11 describes the single read-back sequence. Figure 12 describes the continuous read-back sequence.  
<Single Read-back Sequence Recommended Sequence>  
CSB  
(2)  
(1)  
SI  
Read Command  
Null Command  
Switch Status  
Output  
Register Value  
Output  
SO  
Figure 11. Single Read-back Sequence  
(1) Send the register value output command.  
The switch status is output by SO.  
(2) Read the register value by sending the Null command.  
The result of the register value output command (1) is output by SO.  
<Continuous Sequential Read-back Sequence Recommended Sequence>  
CSB  
(1)  
(2)  
(3)  
(4)  
SI  
Read Command  
Read Command  
Read Command  
Null Command  
Switch Status  
Output  
Register Value  
Output  
Register Value  
Output  
Register Value  
Output  
SO  
Figure 12. Continuous Read-back Sequence  
(1) Send the register value output command.  
The switch status is output by SO.  
(2) Send the register value output command following (1). (The address of the register value output command does  
not need to be the next address.)  
(3) Send the register value output command repeatedly as needed.  
The SO output at each command is the result of the previous register value output command.  
(4) Send the Null command in the end.  
The register value of the previous register output command is output by SO.  
3. Switch Status Output  
Switch status can be sent through SO output.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
19/72  
BD3378MUV-M  
Description of Functions continued  
4. Interrupt (INTB operation)  
There are five interrupt factors that cause the INTB pin to output “L”. The type of interrupt factor that occurred can be  
checked in the SO output when CSB is “L”.  
INTB output will return to “H” once the interrupt factor is cleared by the rising edge of CSB. The INTB pin is an open-drain  
output that is internally pulled-up to VDDI.  
·Interrupt Factors  
The interrupt factors are shown below:  
Interrupt Factor  
Interrupt flag (SO output)  
SO output bit [36]:  
SO output bit [35]:  
SO output bit [34]:  
SO output bit [33]:  
Flag name  
“test_flg”  
“them_flg”  
“rst_flg”  
(1) Test Detection  
(2) Thermal Shutdown Detection  
(3) Reset Detection  
(4) Communication Error Detection  
“err_flg”  
(CRC error, 40bit frame error, or transmission and reception discrimination error)  
(5) Switch Status Change Detection  
SO output bit [32]:  
“sw_flg”  
(1) Test Detection  
The IC generates an interrupt after a transition to test mode. The TEST pin should always be connected to  
ground.  
(2) Thermal Shutdown Detection  
Interrupt occurs when the thermal shutdown circuit detects a temperature higher than the allowable junction  
temperature inside IC.  
(3) Reset Detection  
Interrupt occurs after the activation of Power on Reset (POR) or the transmission of the reset command. Upon  
POR activation, the SO output interrupt flag “rst_flg” is reflected instantly. With reset command transmission,  
“rst_flg” is reflected on the next command transmission.  
(4) Communication Error Detection  
Interrupt occurs due to either a CRC error, a 40bit frame error, or a command transmission error. The interrupt  
flag “err_flg” is triggered by the following:  
CRC error  
40bit frame error  
:when there is a Cyclic Redundancy Check error  
:when the command received is not 40bit  
Transmit and receive determination error :when the first two bits of the command received is not  
[39:38]=“01”  
(5) Switch Status Change Detection  
Interrupt occurs when switch status changes (switch-ONOFF or switch-OFFON).  
·Clearing of INTB Output and Interrupt Factor  
The INTB “L” output and the interrupt factor are both cleared by the CSB rising edge during command transmission. In case  
a new interrupt factor occurs during command transmission, the interrupt factor is not cleared. The new interrupt factor is  
reflected on the next command transmission.  
The interrupt factor is not cleared by the register readout that follows the register value output command.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/72  
TSZ22111 15 001  
BD3378MUV-M  
Description of Functions - continued  
5. Operating Modes  
IC has two types of operating mode, the normal and the sleep mode. Transition between the two modes can be done by  
sending the correct “Monitor Mode Transition Command”. The current mode of operation can be checked through the  
WAKEB and the SO pin outputs.  
Monitor Mode Transition register address (0x4F):Bit [31]: 0=Normal mode, 1=Sleep mode  
·Normal Mode  
Normal mode operation can be set to continuous monitoring, wherein the switch status is checked by a continuously ON  
current source, or to intermittent monitoring, wherein the switch status is checked by a regularly ON/OFF current source.  
The period of intermittent monitoring(Note 21) can be set according to power supply system while strobe time(Note 22) is common  
for all switch pins.  
At normal mode, WAKEB is “L” and the 30bit of the SO output is “0”.  
·Sleep Mode  
Sleep mode operation, like in normal mode, can be set to continuous monitoring or intermittent monitoring.  
The monitoring period(Note 21) of intermittent monitoring can be set according to power supply system.  
The strobe time(Note 22) is common for all switch pins and both modes.  
The difference with normal mode is that, from sleep mode, it is possible to change to normal mode automatically when  
interrupt occurs. (Automatic mode transition function)  
At sleep mode, WAKEB is in “Hi-Z” state and its voltage level is the level of the external pull-up. The 30bit of SO output is “1”  
at sleep mode.  
(Note 21) Ref. Monitor period (Figure 13).  
(Note 22) Ref. Strobe time (Figure 13).  
Current  
Monitor Period  
Strobe time  
Curernt  
Source  
ON  
Curernt  
Source  
ON  
Current  
source  
OFF  
Current  
Source  
OFF  
Time  
Figure 13. Intermittent Monitoring  
6. Automatic Mode Transition Function  
By sending the “Automatic Mode Transition Command” through setting the MIR register (0x4E) to “1”, automatic transition  
from sleep to normal mode is possible. The conditions for a change in mode from sleep to normal to occur for both enabled  
and disabled “Automatic Mode Transition Function” are shown below:  
·Conditions for Sleep to Normal Mode Transition ( “Automatic Mode Transition Function” is enabled):  
1. Normal mode transition command is sent  
2. POR occurs or reset command sent (Initialization)  
3. A switch status changes (The “Switch Change Interrupt Setting” should be enabled)  
·Conditions for Sleep to Normal Mode Transition ( “Automatic Mode Transition Function” is disabled):  
1. Normal mode transition command is sent  
2. POR occurs or reset command sent (Initialization)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/72  
TSZ22111 15 001  
21.Nov.2018 Rev.002  
BD3378MUV-M  
6. Automatic Mode Transition Function - continued  
[Extension Function1: Intermittent Monitoring at the Same Time (with Current Slope)]  
In intermittent monitoring, it is possible to detect the status of the all switches at the same time. When all inputs are set to  
detect the switch status by intermittent monitoring, the wetting current has a rising and falling slope.  
(only when all comparators are enabled with Comparator Operation Control Command).  
Normal Mode Setting Register (0x4B)  
Sleep Mode Setting Register (0x4C)  
: 31bit to 28bit is 0000” and intermittent monitoring setting  
: 31bit to 28bit is “0000” and intermittent monitoring setting  
Strobe time [μs]  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Internal reference  
current source  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
2.5ms  
2.5ms  
INZ0-7  
INA0-7  
INB0-5  
5ms  
10ms  
Monitor periodSet to FITZ=2.5ms, FITA=5ms, FITB=10ms  
Figure 14. Intermittent Monitoring at the Same Time Example  
[Extension Function 2: Sequential Monitoring by Power Supply System]  
In this type of sequential monitoring, the status of the switches within a power supply system is monitored one at a time. This  
type has no slope. Since no two or more current sources in a power supply system are ON at the same time, radiation noise  
is reduced.  
Strobe time[μs] x 8  
Internal reference  
current source  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
INZ0  
INZ1  
INZ2  
: _  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
INZ7  
2.5ms  
ON  
OFF  
OFF  
OFF  
INA0  
INA1  
INA2  
: _  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
ON  
ON  
OFF  
OFF  
ON  
INA7  
5ms  
OFF  
OFF  
INB0  
INB1  
INB2  
: _  
ON  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
INB5  
10ms  
Monitor periodSet to FITZ=2.5ms, FITA=5ms, FITB=10ms  
Figure 15. Sequential Monitoring by Power Supply System Example  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/72  
TSZ22111 15 001  
BD3378MUV-M  
6. Automatic Mode Transition Function - continued  
[Extension Function 3: Sequential Monitoring of All Switch Pins]  
In this type of sequential monitoring, the status of all switches is monitored one at a time.  
Since no two or more current sources are ON at the same time, radiation noise is reduced. This type has no slope.  
The monitoring period for all switches increases by four times the monitoring period set for the INZ channels as shown in  
Figure 16. Uniform sequential monitoring and sequential monitoring by power supply should not be enabled at the same time.  
In case the two sequential monitoring methods are activated simultaneously, the method which prevails is uniform sequential  
monitoring.  
Strobe time[μs] x 8  
Internal reference  
current source  
ON  
ON  
ON  
OFF  
ON  
OFF  
INZ0  
INZ1  
INZ2  
: _  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
INZ7  
FITZ setting value x 4  
ON  
ON  
OFF  
INA0  
INA1  
INA2  
: _  
OFF  
ON  
OFF  
ON  
OFF  
INA7  
ON  
OFF  
INB0  
INB1  
INB2  
: _  
ON  
OFF  
ON  
OFF  
ON  
OFF  
INB5  
Monitor periodSet to FITZ=2.5ms, FITA=5ms, FITB=10ms  
Figure 16. Sequential Monitoring of All Switches Pins Example  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/72  
TSZ22111 15 001  
BD3378MUV-M  
Description of Functions - continued  
7. WAKEB Pin  
WAKEB is an open drain output pin.  
In normal mode, its output is “L”. In sleep mode, its output is “Hi-Z” and its voltage level is the level of the external pull-up.  
8. Source/Sink Current Source for Switch Pin  
There are three types of switch pin inputs with internal current source: INZ, INA, and INB. The current level can be set for  
each switch pin.  
·Current Source of INZ System (INZ0 to INZ7)  
This current source is used to source or sink current to the external switch. The wetting current can be interchanged between  
pull-up and pull-down. VPUA is the power supply for the pull-up current source.  
·Current Source of INA System (INA0 to INA7)  
This current source is used to source current to the external switch. VPUA is the power supply.  
·Current Source of INB System (INB0 to INB5)  
This current source is used to source current to the external switch. VPUB is the power supply.  
The current source settings can be fixed by INZ current source/sink selection command, the current source setting command,  
and the holding current/wetting current value setting command.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
24/72  
TSZ22111 15 001  
21.Nov.2018 Rev.002  
BD3378MUV-M  
Description of Functions - continued  
9. Wetting Current Timer  
The wetting current timer is 13ms to 22ms. This function can be enabled individually for each switch pin. The timer starts  
after the switch has been detected as ON. After the 13ms to 22ms timer is finished, the wetting current (10mA/15mA) is  
switched to holding current (1mA/3mA/5mA). The timer is reset after the switch is turned OFF.  
[Function operation1] Wetting Current Timer (Continuous Operation)  
Interrupt occurs  
Interrupt occurs  
Command  
Interrupt occurs  
INTB  
Command  
CSB  
SO  
Switch status output  
Switch status output  
External switch  
Switch-OFF  
Switch-ON  
Switch-OFF  
Switch-ON  
Current  
Status  
Holding  
current  
Holding  
current  
Wetting current  
Wetting current  
Current  
Switch  
pin current  
tWCT (13ms to 22ms)  
tWCT (13ms to 22ms)  
(1)  
(2)  
(3)  
(4)  
(5)  
Figure 17. Wetting Current Timer (Continuous Operation)  
(1) Switch change occurs (OFFON), IC detects switch status change.  
(2) When ON state of the switch continues for more than 13ms to 22ms, the holding current is output.  
(3) Switch change occurs (ONOFF).  
(4) Switch change occurs (OFFON), IC detects switch status change.  
(5) When ON state of the switch continues for more than 13ms to 22ms, the holding current is output.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
25/72  
BD3378MUV-M  
9. Wetting Current Timer - continued  
[Function operation2] Wetting Current Timer (Intermittent Monitoring)  
Interrupt occurs  
Command  
Interrupt occurs  
Command  
Interrupt occurs  
INTB  
CSB  
SO  
Switch status output  
Switch status output  
Switch-ON  
Switch-OFF  
Switch-ON  
External switch  
Current  
Status  
Holding  
current  
Holding  
current  
Wetting current  
Wetting current  
Current  
Switch  
pin current  
tWCT (13ms to 22ms)  
tWCT (13ms to 22ms)  
(Note 23)  
(Note 23)  
(1) (2)  
(3)  
(4) (5)  
(6) (7)  
(8)  
Figure 18. Wetting Current Timer (Intermittent Monitoring)  
(1) Switch change occurs (OFFON).  
(2) IC detects switch status change.  
(3) When ON state of the switch continues for more than 13ms to 22ms, the holding current is output.  
(4) Switch change occurs (ONOFF).  
(5) IC detects switch status change, switch current is switched from holding current to wetting current.  
(6) Switch change occurs (OFFON).  
(7) IC detects switch status change.  
(8) When ON state of the switch continues for more than 13ms to 22ms, the holding current is output.  
(Note 23) At switch-OFF situation. IC doesnt apply current.  
This waveform indicates the timing of monitoring period.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
26/72  
BD3378MUV-M  
Description of Functions - continued  
10. n-Times Matched Filter  
All switch inputs have built-in “1 time to 6 times matched filters”. This function can filter the ON/OFF switch status judgment  
made by the internal comparator. The filter function can be enabled for each power supply system. If the register has been  
updated during the counting of the filter, the counting is not reset.  
If the monitoring method is continuous monitoring, the switch state is filtered n times (n: 1 to 6) multiplied by the period of the  
internal oscillator (32 kHz).  
If the monitoring method is intermittent monitoring, the switch state is filtered n times (n: 1 to 6) multiplied by the monitoring  
period.  
Set to full-time monitor : Sampling period is internal oscillator period31.25μs (Typ)  
External  
switch  
OFF  
ON  
1st  
2nd  
3rd  
Current  
source  
ON  
ON/OFF  
Internal Oscillator period  
Sampling  
clock  
Internal  
OSC  
Filter  
matched  
3 times output  
OFF  
1st  
ON  
Status  
transition  
2nd  
3rd  
Reflected  
Time from Monitoring to End of Filtering:  
{Monitoring Period x (Filter Number of Times -1) + Period of Internal Oscillator}  
to {Monitoring Period x (Filter Number of Times) + Period of Internal Oscillator}  
Figure 19. 3 Times Matched Filter Operation on Continuous Monitoring  
Set to intermittent monitor : Sampling monitor period is common with monitor period.  
External  
switch  
OFF  
ON  
1st  
2nd  
3rd  
Current  
source  
ON/OFF  
Monitor period  
Sampling  
clock  
Internal  
OSC  
Filter  
matched  
3 times output  
Internal OSC1clock  
ON  
OFF  
1st  
3rd  
Reflected  
Status  
transition  
2nd  
Time from Monitoring to End of Filtering:  
{Monitoring Period x (Filter Number of Times -1) + Period of Internal Oscillator}  
to {Monitoring Period x (Filter Number of Times) + Period of Internal Oscillator}  
Figure 20. 3 Times Matched Filter Operation on Intermittent Monitoring  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
27/72  
TSZ22111 15 001  
BD3378MUV-M  
Description of Functions - continued  
11. Digital Multiplexer Output (DMUX)  
The status of the selected switch input is reflected by the DMUX pin. DMUX takes the output of the comparator on a timing  
determined by the monitoring method. When no switch is selected, the output of DMUX is “L”.  
Only one switch pin at a time can be selected to be reflected by DMUX.  
12. Input Threshold Voltage of Switch Pin  
The switch input threshold voltage is a fraction of the AVDD voltage. It can be set to 3.0V or to 4.0V.  
·3.0V Setting:VTH3=AVDDx0.6 ( 6.0V≤VVPUX≤28.0V )  
·4.0V Setting:VTH4=AVDDx0.8 ( 7.0V≤ VVPUX≤28.0V )  
Table 16. Relationship between the Switch Input Threshold Voltage and the SO Output  
Input type  
INZ  
Source or Sink  
Source  
Source  
Sink  
Input Voltage  
INZ<Threshold  
INZ>Threshold  
INZ<Threshold  
INZ>Threshold  
INA,INB<Threshold  
INA,INB>Threshold  
Comparator output  
SO serial interface bit  
0
1
0
1
0
1
H
L
L
Sink  
H
H
L
N/A  
INA,INB  
N/A  
13. Over-temperature Protection Circuit  
When the junction temperature of the IC becomes higher than the thermal limit 160°C (Typ), interrupt (INTB=“L”) occurs and  
the source/sink current through the switch pins is switched to 1mA (Min). The MCU is notified by the SO over-temperature  
detection flag (them_flg) changing to “1” that an irregularity in temperature has occurred. When the junction temperature of  
the IC has fallen below 140°C (Typ), interrupt is cleared on the next command transmission and the wetting current level  
returns to what was set on the registers.  
Notice: The over-temperature detection value, 155°C (Typ) to 175°C (Typ), and the hysteresis temperature, 10°C (Typ) to  
30°C (Typ), were not tested in shipment test. Also, the over-temperature protection circuit operates beyond the absolute  
maximum temperature ratings so the IC should not be used in a system where activation of the said protection function is  
expected.  
14. Cyclic Redundancy Check (CRC)  
The 7bit to 0bit of both the transmitted and received communication frame of the IC is the cyclic redundancy check (CRC),  
which is responsible for the detection of a data communication error.  
If the IC received a CRC error, asserts interrupt (INTB=“L”) and error flag (“err_flg”) to SO output. SO output becomes “H” on  
the next communication to notify the MCU of the error. A command that has a CRC error is not a valid command.  
The CRC generation polynomial is  
8 + 푋5 + 푋4 + 1.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
28/72  
TSZ22111 15 001  
21.Nov.2018 Rev.002  
BD3378MUV-M  
Command Description  
Each Command has two types of functions. One is to write a value to a register. The other is to read back the register value  
which was written by the write command. The function to be used is set by the 37bit of each command. (The Null and Reset  
commands don’t include the register value output command because they don’t write in the registers.)  
In the command descriptions below, the write command is for writing a value to a register and the read command is for  
reading back a register value.  
1. Null Command  
This command is a read only command that allows the user to monitor interrupt and switch status.  
Table 17. Null Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
0
36  
0
35  
0
34  
0
33  
0
32  
0
31  
x
30  
x
29  
x
28  
x
27  
x
26  
x
25  
x
24  
x
Null Command (Read Only)  
IRC  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
2. Interrupt Notification of Switch Change Setting Command  
This command allows the user to configure interrupt sources for the INTB pin.  
Specifically, this command allows the user to individually configure which switches trigger an interrupt on INTB by enabling  
or disabling the IEBn, IEAn, and IEZn setting bits shown below.  
The SO output will return the switch status depending on the settings stored at the next CSB falling edge.  
Table 18. Interrupt Notification of Switch Change Setting Command  
Register address  
Setting data  
28 27  
IEB5 IEB4 IEB3 IEB2 IEB1 IEB0  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
0
34  
0
33  
0
32  
1
31  
x
30  
x
29  
26  
25  
24  
Interrupt Notification of Switch Change Setting  
IER  
W/R  
Setting data  
16 15  
CRC  
7 to 0  
CRC  
23  
22  
21  
20  
19  
18  
17  
14  
13  
12  
11  
10  
9
8
IEA7 IEA6 IEA5 IEA4 IEA3 IEA2 IEA1 IEA0 IEZ7 IEZ6 IEZ5 IEZ4 IEZ3 IEZ2 IEZ1 IEZ0  
IEB[5:0] [Default: 1]  
IEA[7:0] [Default: 1]  
IEZ[7:0] [Default: 1]  
W/R  
Interrupt Notification of Switch Status Change for INB System  
0: Disabled  
Interrupt Notification of Switch Status Change for INA System  
0: Disabled 1: Enabled  
Interrupt Notification of Switch Status Change for INZ System  
0: Disabled 1: Enabled  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
1: Enabled  
3. Comparator Operation Control Command  
This command allows the user to individually enable or disable the switch pin comparator for each switch input.  
When a switch input’s comparator is disabled through this register, both the corresponding settings available for that switch  
input within the “Interrupt Notification of Switch Change Setting Command” and the “Source/Sink Current Setting Command”  
are invalid.  
When the comparator is active, the switch status output does not depend on whether the wetting current is set to source or  
sink. The switch status output is “1” when the switch is ON and “0” when the switch is OFF.  
When the comparator is set to disabled, the switch status is undefined.  
Table 19. Comparator Operation Control Command  
Register address  
Setting data  
28 27  
CMB5 CMB4 CMB3 CMB2 CMB1 CMB0  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
0
34  
0
33  
1
32  
0
31  
x
30  
x
29  
26  
25  
24  
Comparator Operation Control  
CMR  
W/R  
Setting data  
16 15  
CRC  
7 to 0  
CRC  
23  
22  
21  
20  
19  
18  
17  
14  
13  
12  
11  
10  
9
8
CMA7 CMA6 CMA5 CMA4 CMA3 CMA2 CMA1 CMA0 CMZ7 CMZ6 CMZ5 CMZ4 CMZ3 CMZ2 CMZ1 CMZ0  
CMB[5:0] [Default: 1]  
Comparator Operation for INB System  
0: Disabled  
Comparator Operation for INA System  
0: Disabled 1: Enabled  
Comparator Operation for INZ System  
0: Disabled 1: Enabled  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
1: Enabled  
CMA[7:0] [Default: 1]  
CMZ[7:0] [Default: 1]  
W/R  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
29/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
4. Comparator Threshold Selection Command  
This command allows the user to set the comparator threshold of the switch pins.  
Switch detection threshold selection is available for each power supply system (See CTB, CTA, CTZ settings shown below).  
Table 20. Comparator Threshold Selection Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
0
34  
0
33  
1
32  
1
31  
30  
29  
28  
x
27  
x
26  
x
25  
x
24  
x
Comparator Threshold Selection  
CTR  
W/R  
CTB CTA CTZ  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
CTB [Default: 0]  
CTA [Default: 0]  
CTZ [Default: 0]  
W/R  
Comparator Threshold for INB System  
0: 3.0V 1: 4.0V  
Comparator Threshold for INA System  
0: 3.0V 1: 4.0V  
Comparator Threshold for INZ System  
0: 3.0V 1: 4.0V  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
5. INZ Current Source/Sink Selection Command  
This command allows the user to select the current configuration, whether source (internal pull-up current source) or sink  
(internal pull-down current source), through the INZ input switch pins.  
Table 21. INZ Current Source/Sink Selection Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
0
34  
1
33  
0
32  
0
31  
x
30  
x
29  
x
28  
x
27  
x
26  
x
25  
x
24  
x
INZ Current Source/Sink Selection  
PUDR  
W/R  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
14  
13  
12  
11  
10  
9
8
PUD7 PUD6 PUD5 PUD4 PUD3 PUD2 PUD1 PUD0  
PUD[7:0] [Default: 0]  
W/R  
Source or Sink Selection for INZ System  
0: Source (internal pull-up current source)  
1: Sink (internal pull-down current source)  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
6. Current Source Activation Command  
This command allows the user to enable or disable the wetting current sources at the switch input pins. The current sources  
can be set to ON or OFF per power supply system.  
The output current level is determined by the “Holding Current / Wetting Current Value Setting Command” discussed in  
section 7 below.  
If an external current source is used, the comparator should be enabled (see section 3 above) and the internal current  
source should be disabled using this register.  
Table 22. Current Source Activation Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
0
34  
1
33  
0
32  
1
31  
30  
29  
28  
x
27  
x
26  
x
25  
x
24  
x
Current Source Activation  
CER  
W/R  
CEB CEA CEZ  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
CEB [Default: 0]  
CEA [Default: 0]  
CEZ [Default: 0]  
W/R  
Current Sources of INB System  
0: OFF 1: ON  
Current Sources of INA System  
0: OFF 1: ON  
Current Source of INZ System  
0: OFF 1: ON  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
30/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
7. Holding Current / Wetting Current Level Selection Command  
This command allows the user to select the output level of each current source. This command also has arguments to set  
both the holding and the wetting current.  
The holding current can be set to 1mA, 3mA, or 5mA.  
The wetting current can be set to OFF (Hi-Z), 1mA, 3mA, 5mA (set to holding current), 10mA, or 15mA.  
Unlike holding current, wetting current output levels can be set individually for each switch pin.  
Table 23. Holding Current / Wetting Current Level Selection Command (LSB)  
Register address  
Setting data  
28 27  
LCB5 LCB4 LCB3 LCB2 LCB1 LCB0  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
0
34  
1
33  
1
32  
0
31  
30  
29  
26  
25  
24  
Holding Current / Wetting Current Level Selection (LSB)  
CRH1 CRH0  
LCR  
W/R  
Setting data  
16 15  
CRC  
7 to 0  
CRC  
23  
22  
21  
20  
19  
18  
17  
14  
13  
12  
11  
10  
9
8
LCA7 LCA6 LCA5 LCA4 LCA3 LCA2 LCA1 LCA0 LCZ7 LCZ6 LCZ5 LCZ4 LCZ3 LCZ2 LCZ1 LCZ0  
Table 24. Holding Current / Wetting Current Level Selection Command (MSB)  
Register address  
Setting data  
28 27  
MCB5 MCB4 MCB3 MCB2 MCB1 MCB0  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
0
34  
1
33  
1
32  
1
31  
x
30  
x
29  
26  
25  
24  
Holding Current / Wetting Current Level Selection (MSB)  
MCR  
W/R  
Setting data  
16 15  
CRC  
7 to 0  
CRC  
23  
22  
21  
20  
19  
18  
17  
14  
13  
12  
11  
10  
9
8
MCA7 MCA6 MCA5 MCA4 MCA3 MCA2 MCA1 MCA0 MCZ7 MCZ6 MCZ5 MCZ4 MCZ3 MCZ2 MCZ1 MCZ0  
CRH [1:0] [Default: 00]  
{MCB[5:0], LCB[5:0]} [Default: 01]  
{MCA[7:0], LCA[7:0]} [Default: 01]  
{MCZ[7:0], LCZ[7:0]} [Default: 01]  
W/R  
Holding Current Value  
00: 1mA  
10: 5mA  
01: 3mA  
11: 1mA  
Wetting Current Value for INB System  
00: Invalid(Hi-Z)  
10: 10mA  
01: 1mA/3mA/5mA(Holding Current Value)  
11: 15mA  
Wetting Current Value for INA System  
00: Invalid(Hi-Z)  
10: 10mA  
01: 1mA/3mA/5mA(Holding Current Value)  
11: 15mA  
Wetting Current Value for INZ System  
00: Invalid(Hi-Z)  
10: 10mA  
01: 1mA/3mA/5mA(Holding Current Value)  
11: 15mA  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
8. Wetting Current Operation Control Command  
This command allows the user to enable or disable the “wetting current timer”.  
This “wetting current timer” counts 13ms to 22ms after the switch has been closed and the wetting current changes to  
holding current (1mA/3mA/5mA). The timer is reset when the switch is turned off.  
If the wetting current level is the same as the holding current level, the timer does not operate.  
The wetting current timer can be enabled or disabled individually for each switch pin.  
Table 25. Wetting Current Operation Control Command  
Register address  
Setting data  
28 27  
WTB5 WTB4 WTB3 WTB2 WTB1 WTB0  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
0
33  
0
32  
0
31  
x
30  
x
29  
26  
25  
24  
Wetting Current Operation Control  
WTR  
W/R  
Setting data  
16 15  
CRC  
7 to 0  
CRC  
23  
22  
21  
20  
19  
18  
17  
14  
13  
12  
11  
10  
9
8
WTA7 WTA6 WTA5 WTA4 WTA3 WTA2 WTA1 WTA0 WTZ7 WTZ6 WTZ5 WTZ4 WTZ3 WTZ2 WTZ1 WTZ0  
WTB[5:0] [Default: 0]  
WTA[7:0] [Default: 0]  
WTZ[7:0] [Default: 0]  
W/R  
Wetting Current Timer for INB System  
0: Disabled  
Wetting Current Timer for INA System  
0: Disabled 1: Enabled  
Wetting Current Timer for INZ System  
0: Disabled 1: Enabled  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
1: Enabled  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
31/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
9. n-Times Matched Filter Activation Control Command  
This command allows the user to enable or disable the n-times matched LPF.  
If this function is enabled, the switch output is updated only after the comparator output has been sampled “n” times (where n  
= 1 to 6) and if all sampled comparator outputs match.  
This command allows for each switch pin groups to be enabled or disabled.  
Table 26. n-Times Matched Filter Activation Control Command  
Register address  
Setting data  
28 27  
DFB2 DFB1 DFB0 DFA2 DFA1 DFA0 DFZ2 DFZ1  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
0
33  
0
32  
1
31  
30  
29  
26  
25  
24  
n-Times Matched Filter Activation Control DFR  
DFB [2:0] [Default: 000]  
DFA [2:0] [Default: 000]  
DFZ [2:0] [Default: 000]  
W/R  
W/R  
Setting data  
CRC  
7 to 0  
CRC  
23  
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
DFZ0  
n-Times Matched LPF Settings for INB System  
000: Disabled (1 time)  
010: 3 times  
100: 5 times  
001: 2 times  
011: 4 times  
101: 6 times  
110: Disabled (1 time)  
111: Disabled (1 time)  
n-Times Matched LPF Settings for INA System  
000: Disabled (1 time)  
010: 3 times  
100: 5 times  
001: 2 times  
011: 4 times  
101: 6 times  
111: Disabled (1 time)  
110: Disabled (1 time)  
n-Times Matched LPF Settings for INZ System  
000: Disabled (1 time)  
010: 3 times  
100: 5 times  
001: 2 times  
011: 4 times  
101: 6 times  
111: Disabled (1 time)  
110: Disabled (1 time)  
Register Write/Read Setting  
0: Write  
1: Read (Setting datais not applicable)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
32/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
10. DMUX Setting Command  
This command allows the user to enable/disable and configure selected switch output on the DMUX pin.  
The result of the chosen switch pin’s comparator is taken and output to DMUX using timing that depends on the monitoring  
method used.  
Any switch input pin can be connected to this DMUX pin by adjusting the DMX0 to DMX4 bits shown below.  
Table 27. DMUX Setting Command  
Register address  
Setting data  
28 27  
DMX4 DMX3 DMX2 DMX1 DMX0  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
0
33  
1
32  
0
31  
30  
29  
26  
x
25  
x
24  
x
DMUXSetting  
DMR  
W/R  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
Table 28. DMUX Channel Selection  
Selected Channel  
31bit to 27bit  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
Disabled (Output is “L”)  
INZ0  
INZ1  
INZ2  
INZ3  
INZ4  
INZ5  
INZ6  
INZ7  
INA0  
INA1  
INA2  
INA3  
INA4  
INA5  
INA6  
INA7  
INB0  
INB1  
INB2  
INB3  
INB4  
INB5  
10111 to 11111  
Disabled (Output is “L”)  
DMX [4:0] [Default: 00000]  
W/R  
DMUX Pin Setting  
00000: Disabled (DMUX output is “L”)  
00001 to 10110: Selected Channel  
10110 to 11111: Disabled (DMUX output is “L”)  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
33/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
11. Normal Mode Setting Command  
This command allows the user to set the monitoring period, strobe time, and monitoring method of normal mode.  
The normal mode is set after power on reset or by “Monitor Mode Transition Command”.  
The monitoring period can be set individually per power supply system but the strobe time is common to all switch pins.  
The monitoring method can be set continuous monitoring, intermittent monitoring at the same time, sequential monitoring by  
power supply system and sequential monitoring of all switch pins.  
·Continuous Monitoring:  
IC monitors switch status continuously.  
Refer to the “[Basic Operation 1] Detection of switch status change (Continuous Monitoring)” section for additional details.  
·Intermittent Monitoring at the Same Time:  
IC monitors switch status per power supply system at the same time.  
Refer to the [Extension Function1: Intermittent Monitoring at the Same Time (with Current Slope)]section for additional  
details.  
·Sequential Monitoring by Power Supply System:  
IC monitors switch status per switch by turns on power supply system.  
Refer to the [Extension Function 2: Sequential Monitoring by Power Supply System]section for additional details.  
·Sequential Monitoring of All Switch Pins:  
IC monitors switch status per switch by turns.  
Refer to the [Extension Function 3: Sequential Monitoring of All Switch Pins]section for additional details.  
If both sequential and continuous monitoring are enabled at the same time, continuous monitoring will be the one  
implemented.  
If both sequential monitoring by power supply system and sequential monitoring of all switch pins are enabled at the same  
time, sequential monitoring of all switch pins will be the one implemented.  
Table 29. Normal Mode Setting Command  
Register address  
Setting data  
28 27  
FSQ FSQB FSQA FSQZ FITB2 FITB1 FITB0 FITA2  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
0
33  
1
32  
1
31  
30  
29  
26  
25  
24  
Normal Mode Setting  
FMR  
W/R  
Setting data  
16 15  
CRC  
7 to 0  
CRC  
23  
22  
21  
20  
19  
18  
17  
14  
13  
x
12  
x
11  
x
10  
x
9
x
8
x
FITA1 FITA0 FITZ2 FITZ1 FITZ0 SVW1 SVW0 FITB3 FITA3 FITZ3  
FSQ [Default: 0]  
Sequential Monitoring of All Switch Pins  
0: Disabled 1: Enabled  
FSQB [Default: 0]  
FSQA [Default: 0]  
FSQZ [Default: 0]  
Sequential Monitoring by Power Supply System for INB System  
0: Disabled 1: Enabled  
Sequential Monitoring by Power Supply System for INA System  
0: Disabled 1: Enabled  
Sequential Monitoring by Power Supply System for INZ System  
0: Disabled 1: Enabled  
FIT*[3:0] (*: B, A, Z) [Default: 0000]  
Monitoring Period for Normal Mode  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
: Continuous Monitoring  
: 2.5ms  
: 5ms  
: 10ms  
: 20ms  
: 30ms  
: 40ms  
: 50ms  
: 100ms  
1001 to 1111 : Setting prohibited  
SVW [1:0] [Default: 01]  
W/R  
Strobe Time  
00: 93.75µs  
10: 187.5µs  
01: 125µs  
11: 250µs  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
34/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
12. Sleep Mode Setting Command  
This command allows the user to set the monitoring period and monitoring method of sleep mode.  
The sleep mode is set by “Monitor Mode Transition Command”.  
The strobe time of sleep mode is the same as the normal mode.  
About the monitoring period and monitoring method, refer to the “Normal Mode Setting Command” discussed in section 11  
below.  
Table 30. Sleep Mode Setting Command  
Register address  
Setting data  
28 27  
SSQ SSQB SSQA SSQZ SITB2 SITB1 SITB0 SITA2  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
1
33  
0
32  
0
31  
30  
29  
26  
25  
24  
Sleep Mode Setting  
SMR  
W/R  
Setting data  
16 15  
SITB3 SITA3 SITZ3  
CRC  
7 to 0  
CRC  
23  
22  
21  
20  
19  
18  
x
17  
x
14  
13  
x
12  
x
11  
x
10  
x
9
x
8
x
SITA1 SITA0 SITZ2 SITZ1 SITZ0  
SSQ [Default: 0]  
SSQB [Default: 0]  
SSQA [Default: 0]  
SSQZ [Default: 0]  
Sequential Monitoring of All Switch Pins  
0: Disabled 1: Enabled  
Sequential Monitoring by Power Supply System for INB System  
0: Disabled 1: Enabled  
Sequential Monitoring by Power Supply System for INA System  
0: Disabled 1: Enabled  
Sequential Monitoring by Power Supply System for INZ System  
0: Disabled 1: Enabled  
SIT*[3:0] (*: B, A, Z) [Default: 0111]  
Monitoring Period for Sleep Mode  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
: Continuous Monitoring  
: 2.5ms  
: 5ms  
: 10ms  
: 20ms  
: 30ms  
: 40ms  
: 50ms  
: 100ms  
1001 to 1111 : Setting prohibited  
W/R  
Register Write/Read Setting  
0: Write  
1: Read (Setting datais not applicable)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
35/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
13. Detection Edge Selection Command  
This command allows the user to configure interrupt trigger of switches for the INTB pin.  
The interrupt trigger can be set to only the falling edge(Note 24) or both the rising and falling edges of the switch input voltage  
per power supply system.  
If only the falling edge is selected, the INTB pin not changes by the rising edges of switch input voltage.  
(Note 24) If the INZ current “Source Settingis enabled, the falling edge of the switch input pin is seen when the external switch is turned on. If the INZ current  
“Sink Settingis enabled, the falling edge is seen when the external switch is turned off.  
Table 31. Detection Edge Selection Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
1
33  
0
32  
1
31  
30  
29  
28  
x
27  
x
26  
x
25  
x
24  
x
Detection Edge Selection  
ISR  
W/R  
ISB  
ISA  
ISZ  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
ISB [Default: 1]  
ISA [Default: 1]  
ISZ [Default: 1]  
Switch Edge where Interrupt Occurs for INB System  
0: Only Falling Edge 1: Both Edges  
Switch Edge where Interrupt Occurs for INA System  
0: Only Falling Edge 1: Both Edges  
Switch Edge where Interrupt Occurs for INZ System  
0: Only Falling Edge 1: Both Edges  
W/R  
Register Write/Read Setting  
0: Write  
1: Read (Setting datais not applicable)  
14. Automatic Mode Transition Command  
This command allows the user to configure the mode to automatically change from sleep mode to normal mode by a change  
in switch status.  
If the automatic transition is enabled, the monitoring period and monitoring method are changed to normal mode settings  
when it detects a change in switch status on sleep.  
Refer to the “[Basic Operation 4] Sleep Mode Operation Automatic Transition to Normal Mode” section for additional details  
on how sleep mode operations works for this IC.  
Table 32. Automatic Mode Transition Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
1
33  
1
32  
0
31  
30  
x
29  
x
28  
x
27  
x
26  
x
25  
x
24  
x
MR_IER  
Automatic Mode Transition  
MIR  
W/R  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
MR_IER [Default: 1]  
W/R  
Automatic Mode Transition  
0: Disabled  
1: Enabled(Automatically mode transition, depend on the  
switch status changing)  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
15. Monitor Mode Transition Command  
This command allows the user to change the mode of operation between normal and sleep.  
Refer to the “[Basic Operation 3] Sleep Mode Operation (Manual Transition)” section for additional details on how sleep  
mode operations works for this IC.  
Table 33. Monitor Mode Transition Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
36  
0
35  
1
34  
1
33  
1
32  
1
31  
30  
x
29  
x
28  
x
27  
x
26  
x
25  
x
24  
x
Monitor Mode Transition  
MDR  
W/R  
MDC  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
MDC [Default: 0]  
W/R  
Monitoring Mode  
0: Normal Mode  
Register Write/Read Setting  
0: Write 1: Read (Setting datais not applicable)  
1: Sleep Mode  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
36/72  
TSZ22111 15 001  
BD3378MUV-M  
Command Description - continued  
16. Reset Command  
This command allows the user to reset the registers to their initial settings. After the reset command has been sent, the  
physical interrupt pin goes to low (INTB=“L”).  
Table 34. Reset Command  
Register address  
Setting data  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
0
36  
1
35  
1
34  
1
33  
1
32  
1
31  
x
30  
x
29  
x
28  
x
27  
x
26  
x
25  
x
24  
x
Reset  
RST  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
17. TEST Command  
This command is used to enter test mode, which is only possible when the TEST pin is “H”.  
Short TEST pin to ground and dont enter to test mode.  
Table 35. TEST Command  
Register address  
Setting data  
28 27  
Command  
0:“L”, 1:“H”, x: don't care  
39  
0
38  
1
37  
1
36  
1
35  
1
34  
0
33  
0
32  
1
31  
30  
29  
26  
25  
24  
TEST  
TSR  
TSS7 TSS6 TSS5 TSS4 TSS3 TSS2 TSS1 TSS0  
Setting data  
CRC  
7 to 0  
CRC  
23  
x
22  
x
21  
x
20  
x
19  
x
18  
x
17  
x
16  
x
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
18. Register Map  
Table 36. Register Map  
Register  
Address  
Setting Data Name  
(def*: Default Setting)  
21 20 19  
CRC  
Register Name  
Symbol  
39:32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7:0  
Null Command  
IRC  
IER  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
CRC  
Interrupt Notification of Switch Change Setting Command  
[Default: Valid]  
IEB5 IEB4 IEB3 IEB2 IEB1 IEB0 IEA7 IEA6 IEA5 IEA4 IEA3 IEA2 IEA1 IEA0  
IEZ7  
IEZ6  
IEZ5  
IEZ4  
IEZ3  
IEZ2  
IEZ1  
IEZ0  
CRC  
CRC  
CRC  
CRC  
CRC  
(def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
CMB5 CMB4 CMB3 CMB2 CMB1 CMB0 CMA7 CMA6 CMA5 CMA4 CMA3 CMA2 CMA1 CMA0 CMZ7 CMZ6 CMZ5 CMZ4 CMZ3 CMZ2 CMZ1 CMZ0  
(def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
Comparator Operation Control Command  
[Default: Valid]  
CMR  
CTR  
PUDR  
CER  
Comparator Threshold Selection Command  
[Default: 3.0V]  
CTB  
CTA CTZ  
(def:0) (def:0) (def:0)  
INZ Current Source/Sink Selection Command  
[Default: Source]  
PUD7 PUD6 PUD5 PUD4 PUD3 PUD2 PUD1 PUD0  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
Current Source Activation Command  
[Default: OFF (Invalid)]  
CEB CEA CEZ  
(def:0) (def:0) (def:0)  
Holding Current / Wetting Current Level Selection  
Command (LSB)  
[Default: Wetting current =1mA (Holding current)]  
CRH1 CRH0 LCB5 LCB4 LCB3 LCB2 LCB1 LCB0 LCA7 LCA6 LCA5 LCA4 LCA3 LCA2 LCA1 LCA0 LCZ7 LCZ6 LCZ5 LCZ4 LCZ3 LCZ2 LCZ1 LCZ0  
(def:0) (def:0) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
LCR  
0x46  
0x47  
CRC  
CRC  
Holding Current / Wetting Current Level Selection  
Command (MSB)  
[Default: Wetting current =1mA (Holding current)]  
Wetting Current Operation Control Command  
[Default: Invalid]  
MCB5 MCB4 MCB3 MCB2 MCB1 MCB0 MCA7 MCA6 MCA5 MCA4 MCA3 MCA2 MCA1 MCA0 MCZ7 MCZ6 MCZ5 MCZ4 MCZ3 MCZ2 MCZ1 MCZ0  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
MCR  
WTB5 WTB4 WTB3 WTB2 WTB1 WTB0 WTA7 WTA6 WTA5 WTA4 WTA3 WTA2 WTA1 WTA0 WTZ7 WTZ6 WTZ5 WTZ4 WTZ3 WTZ2 WTZ1 WTZ0  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
DFB2 DFB1 DFB0 DFA2 DFA1 DFA0 DFZ2 DFZ1 DFZ0  
WTR  
DFR  
DMR  
0x48  
0x49  
0x4A  
CRC  
CRC  
CRC  
n-Times Matched Filter Activation Control Command  
[Default: Invalid]  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
DMUX Setting Command  
[Default: Invalid]  
DMX4 DMX3 DMX2 DMX1 DMX0  
(def:0) (def:0) (def:0) (def:0) (def:0)  
Normal Mode Setting Command  
[Default: Full-time monitor,Strobe time:125us, Sequential  
monitor is invalid]  
FSQ FSQB FSQA FSQZ FITB2 FITB1 FITB0 FITA2 FITA1 FITA0 FITZ2 FITZ1 FITZ0 SVW1 SVW0 FITB3 FITA3 FITZ3  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:1) (def:0) (def:0) (def:0)  
FMR  
0x4B  
CRC  
Sleep Mode Setting Command  
SSQ SSQB SSQA SSQZ SITB2 SITB1 SITB0 SITA2 SITA1 SITA0 SITZ2 SITZ1 SITZ0  
(def:0) (def:0) (def:0) (def:0) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
SITB3 SITA3 SITZ3  
(def:0) (def:0) (def:0)  
SMR  
ISR  
0x4C  
0x4D  
CRC  
CRC  
[Default: Monitor period:50ms,Sequential monitor is invalid]  
Detection Edge Selection Command  
[Default: Both edges]  
ISB  
ISA  
ISZ  
(def:1) (def:1) (def:1)  
MR_  
IER  
(def:1)  
MDC  
(def:0)  
Automatic Mode Transition Command  
[Default: Automatic transition is valid]  
MIR  
0x4E  
CRC  
Monitor Mode Ttransition Command  
[Default: Normal mode]  
MDR  
RST  
0x4F  
0x5F  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x79  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
Reset Command  
Interrupt Notification of Switch Change Setting Command  
Read  
RIER  
Comparator Operation Control Command Read  
Comparator Threshold Selection Command Read  
INZ Current Source/Sink Selection Command Read  
Current Source Activation Command Read  
RCMR  
RCTR  
RPUDR  
RCER  
RLCR  
RMCR  
RWTR  
RDFR  
RDMR  
RFMR  
RSMR  
RISR  
Holding Current / Wetting Current Level Selection  
Command (LSB) Read  
Holding Current / Wetting Current Level Selection  
Command (MSB) Read  
Wetting Current Operation Control Command Read  
n-Times Matched Filter Activation Control Command Read  
DMUX Setting Command Read  
Normal Mode Setting Command Read  
Sleep Mode Setting Command Read  
Detection Edge Selection Command Read  
Automatic Mode Transition Command Read  
Monitor Mode Ttransition Command Read  
RMIR  
RMDR  
TSR  
TEST Command  
[Default: Invalid]  
TSS7 TSS6 TSS5 TSS4 TSS3 TSS2 TSS1 TSS0  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
37/72  
TSZ22111 15 001  
BD3378MUV-M  
18. Register Map - continued  
Table 37. Register Map (SO Bit Alignment)  
-
Read Data Name  
CRC  
7:0  
Register Name  
Symbol  
39:32  
“100”,  
Interrupt Factor  
“100”,  
Interrupt Factor  
“100”,  
Interrupt Factor (def:0) (def:0) (def:0)  
31  
0
30  
0
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IEZ7  
14  
IEZ6  
13  
IEZ5  
12  
IEZ4  
11  
IEZ3  
10  
IEZ2  
9
IEZ1  
8
IEZ0  
Interrupt Notification of Switch Change Setting Command  
Read  
IEB5 IEB4 IEB3 IEB2 IEB1 IEB0 IEA7 IEA6 IEA5 IEA4 IEA3 IEA2 IEA1 IEA0  
RIER  
RCMR  
RCTR  
RPUDR  
RCER  
RLCR  
RMCR  
RWTR  
RDFR  
RDMR  
RFMR  
RSMR  
RISR  
CRC  
(def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
CMB5 CMB4 CMB3 CMB2 CMB1 CMB0 CMA7 CMA6 CMA5 CMA4 CMA3 CMA2 CMA1 CMA0 CMZ7 CMZ6 CMZ5 CMZ4 CMZ3 CMZ2 CMZ1 CMZ0  
(def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
Comparator Operation Control Command Read  
Comparator Threshold Selection Command Read  
INZ Current Source/Sink Selection Command Read  
Wetting Current Operation Control Command Read  
0
0
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
CTB  
CTA CTZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
“100”,  
Interrupt Factor  
PUD7 PUD6 PUD5 PUD4 PUD3 PUD2 PUD1 PUD0  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
0
0
0
“100”,  
CEB CEA CEZ  
0
0
0
0
0
0
0
0
Interrupt Factor (def:0) (def:0) (def:0)  
“100”,  
Interrupt Factor (def:0) (def:0) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
Holding Current / Wetting Current Level Selection  
Command (LSB) Read  
CRH1 CRH0 LCB5 LCB4 LCB3 LCB2 LCB1 LCB0 LCA7 LCA6 LCA5 LCA4 LCA3 LCA2 LCA1 LCA0 LCZ7 LCZ6 LCZ5 LCZ4 LCZ3 LCZ2 LCZ1 LCZ0  
Holding Current / Wetting Current Level Selection  
Command (MSB) Read  
“100”,  
Interrupt Factor  
“100”,  
Interrupt Factor  
“100”,  
MCB5 MCB4 MCB3 MCB2 MCB1 MCB0 MCA7 MCA6 MCA5 MCA4 MCA3 MCA2 MCA1 MCA0 MCZ7 MCZ6 MCZ5 MCZ4 MCZ3 MCZ2 MCZ1 MCZ0  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
WTB5 WTB4 WTB3 WTB2 WTB1 WTB0 WTA7 WTA6 WTA5 WTA4 WTA3 WTA2 WTA1 WTA0 WTZ7 WTZ6 WTZ5 WTZ4 WTZ3 WTZ2 WTZ1 WTZ0  
(def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
0
0
0
0
Wetting Current Operation Control Command Read  
n-Times Matched Filter Activation Control Command Read  
DMUX Setting Command Read  
DFB2 DFB1 DFB0 DFA2 DFA1 DFA0 DFZ2 DFZ1 DFZ0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Interrupt Factor (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0)  
“100”, DMX4 DMX3 DMX2 DMX1 DMX0  
Interrupt Factor (def:0) (def:0) (def:0) (def:0) (def:0)  
“100”,  
Interrupt Factor (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:0) (def:1) (def:0) (def:0) (def:0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
FSQ FSQB FSQA FSQZ FITB2 FITB1 FITB0 FITA2 FITA1 FITA0 FITZ2 FITZ1 FITZ0 SVW1 SVW0 FITB3 FITA3 FITZ3  
Normal Mode Setting Command Read  
“100”,  
SSQ SSQB SSQA SSQZ SITB2 SITB1 SITB0 SITA2 SITA1 SITA0 SITZ2 SITZ1 SITZ0  
SITB3 SITA3 SITZ3  
(def:0) (def:0) (def:0)  
Sleep Mode Setting Command Read  
0
0
0
0
0
0
0
0
Interrupt Factor (def:0) (def:0) (def:0) (def:0) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1) (def:1)  
“100”,  
ISB  
ISA  
ISZ  
Detection Edge Selection Command Read  
Automatic Mode Transition Command Read  
Monitor Mode Ttransition Command Read  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Interrupt Factor (def:1) (def:1) (def:1)  
“100”,  
Interrupt Factor  
“100”,  
MR_IER  
(def:1)  
RMIR  
0
0
0
0
MDC  
RMDR  
Interrupt Factor (def:0)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
38/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves  
Unless otherwise specified, VPUA=VPUB=13V, VDDI=5V, LVDD=AVDD=REF5.  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
VPUB=13V  
VPUB=13V  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature: Ta[]  
Ambient Temperature: Ta[]  
Figure 21. POR (Power on Reset) Activation Voltage  
vs Temperature Characteristic  
Figure 22. POR (Power on Reset) Deactivation Voltage  
vs Temperature Characteristic  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VPUB=26V  
Ta=+125  
Ta=+25  
VPUB=8V  
Ta=-40℃  
VPUB=13V  
0
0
5
10  
15  
20  
25  
30  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 23. VPUA/VPUB Operating Current  
vs Temperature Characteristic  
Figure 24. VPUA/VPUB Operating Current  
vs Voltage Characteristic  
(Continuous monitor setting, Current source is invalid,  
“Hi-Z” Status)  
(Continuous monitor setting, Current source is invalid,  
“Hi-Z” Status)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
39/72  
BD3378MUV-M  
Typical Performance Curves - continued  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
VPUB=26V  
Ta=+125  
Ta=+25  
80  
VPUB=13V  
70  
60  
50  
40  
30  
20  
10  
0
Ta=-40℃  
VPUB=8V  
-50 -25  
0
25  
50  
75 100 125 150  
5
10  
15  
20  
25  
30  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 25. VPUA/VPUB Average Operating Current at  
Intermittent Monitoring vs Temperature Characteristic  
(Monitoring Period: 50ms, Strobe Time: 125µs,  
Source/Sink Current Setting: 1mA)  
Figure 26. VPUA/VPUB Average Operating Current at  
Intermittent Monitoring vs Voltage Characteristic  
(Monitoring Period: 50ms, Strobe Time: 125µs,  
Source/Sink Current Setting: 1mA)  
10  
10  
9
9
8
7
6
5
4
3
2
1
0
8
7
VDDI=5.25V  
VDDI=5V  
6
5
4
3
2
1
0
Ta=+25  
VDDI=3.1V  
Ta=-40℃  
Ta=+125  
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI[V]  
Figure 27. VDDI Operating Current vs Temperature  
Figure 28. VDDI Operating Current vs Voltage  
Characteristic (INTB=“H”, CSB=“H”)  
Characteristic (INTB=“H”, CSB=“H”)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
40/72  
BD3378MUV-M  
Typical Performance Curves - continued  
5.25  
5.20  
5.15  
5.10  
5.05  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
Ta=-40  
Ta=+25℃  
VPUB=26V  
5.00  
4.95  
VPUB=8V  
4.90  
4.85  
4.80  
4.75  
Ta=+125℃  
VPUB=13V  
-50 -25  
0
25 50 75 100 125 150  
Ambient Temperature: Ta[]  
5
10  
15  
20  
25  
30  
Supply Voltage: VPUB[V]  
Figure 29. REF5 Output Voltage vs Temperature  
Characteristic  
Figure 30. REF5 Output Voltage vs Voltage  
Characteristic  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
VPUB=26V  
Ta=+25  
VPUB=8V  
Ta=-40  
VPUB=13V  
Ta=+125℃  
0
5
10  
15  
20  
25  
30  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 31. Source Current 1 vs Temperature Characteristic  
(1mA Setting, 0V external supply)  
Figure 32. Source Current 1 vs Voltage Characteristic  
(1mA Setting, 0V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
41/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
3.0  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
2.0  
VIN=0V  
Ta=+125℃  
VIN=4V  
1.5  
1.0  
VIN=8V  
Ta=+25℃  
Ta=-40℃  
0.5  
0.0  
-0.5  
-1.0  
-50 -25  
0
25 50 75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Ambient Temperature: Ta[]  
Supply Voltage: VIN[V]  
Figure 33. Source Current 1 vs Temperature Characteristic  
(1mA Setting)  
Figure 34. Source Current 1 vs Voltage Characteristic  
(1mA Setting)  
1.8  
1.7  
1.8  
1.7  
1.6  
1.6  
Ta=+25  
AVDD=5V  
1.5  
1.5  
Ta=-40  
AVDD=4.75V  
1.4  
1.3  
1.2  
1.1  
1.0  
1.4  
1.3  
1.2  
1.1  
1.0  
Ta=+125℃  
AVDD=5.25V  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature: Ta[]  
Supply Voltage: AVDD[V]  
Figure 35. Sink Current 1 vs Temperature Characteristic  
(1mA Setting, 8V external supply)  
Figure 36. Sink Current 1 vs Voltage Characteristic  
(1mA Setting, 8V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
42/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
3.0  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
2.0  
VIN=26V  
Ta=-40  
Ta=+125℃  
Ta=+25  
1.5  
VIN=13V  
1.0  
VIN=8V  
0.5  
0.0  
-0.5  
-1.0  
-50 -25  
0
25 50 75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Supply Voltage: VIN[V]  
Ambient Temperature: Ta[]  
Figure 37. Sink Current 1 vs Temperature Characteristic  
(1mA Setting)  
Figure 38. Sink Current 1 vs Voltage Characteristic  
(1mA Setting)  
5.4  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
Ta=+25℃  
VPUB=26V  
VPUB=13V  
VPUB=8V  
Ta=-40℃  
Ta=+125℃  
-50 -25  
0
25  
50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 40. Source Current 2 vs Voltage Characteristic  
(3mA Setting, 0V external supply)  
Figure 39. Source Current 2 vs Temperature Characteristic  
(3mA Setting, 0V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
43/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
7.0  
6.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
Ta=+25  
Ta=-40℃  
VIN=4V  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VIN=0V  
Ta=+125℃  
VIN=8V  
-50 -25  
0
25  
50  
75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Ambient Temperature: Ta[]  
Supply Voltage: VIN[V]  
Figure 41. Source Current 2 vs Temperature Characteristic  
(3mA Setting)  
Figure 42. Source Current 2 vs Voltage Characteristic  
(3mA Setting)  
5.4  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
Ta=+25℃  
Ta=-40℃  
AVDD=5.25V  
AVDD=5V  
AVDD=4.75V  
Ta=+125℃  
-50 -25  
0
25  
50  
75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Ambient Temperature: Ta[]  
Supply Voltage: AVDD[V]  
Figure 43. Sink Current 2 vs Temperature Characteristic  
(3mA Setting, 8V external supply)  
Figure 44. Sink Current 2 vs Voltage Characteristic  
(3mA Setting, 8V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
44/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
7.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
6.0  
VIN=26V  
Ta=+25℃  
Ta=-40℃  
VIN=13V  
VIN=8V  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
Ta=+125℃  
-50 -25  
0
25 50 75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Ambient Temperature: Ta[]  
Supply Voltage: VIN[V]  
Figure 45. Sink Current 2 vs Temperature Characteristic  
(3mA Setting)  
Figure 46. Sink Current 2 vs Voltage Characteristic  
(3mA Setting)  
9.0  
8.5  
8.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
VPUB=26V  
7.5  
Ta=+25  
7.0  
Ta=-40℃  
VPUB=8V  
VPUB=13V  
Ta=+125℃  
6.5  
6.0  
5.5  
5.0  
0
5
10  
15  
20  
25  
30  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 47. Source Current 3 vs Temperature Characteristic  
(5mA Setting, 0V external supply)  
Figure 48. Source Current 3 vs Voltage Characteristic  
(5mA Setting, 0V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
45/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
10.0  
9.0  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VIN=0V  
VIN=4V  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
Ta=+25  
Ta=-40  
VIN=8V  
Ta=+125℃  
-50 -25  
0
25 50 75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Supply Voltage: VIN[V]  
Ambient Temperature: Ta[]  
Figure 49. Source Current 3 vs Temperature Characteristic  
(5mA Setting)  
Figure 50. Source Current 3 vs Voltage Characteristic  
(5mA Setting)  
9.0  
9.0  
8.5  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
Ta=+25℃  
AVDD=5.25V  
AVDD=5V  
Ta=+125℃  
AVDD=4.75V  
Ta=-40℃  
-50 -25  
0
25 50 75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Ambient Temperature: Ta[]  
Supply Voltage: AVDD[V]  
Figure 51. Sink Current 3 vs Temperature Characteristic  
(5mA Setting, 8V external supply)  
Figure 52. Sink Current 3 vs Voltage Characteristic  
(5mA Setting, 8V external supply)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
46/72  
BD3378MUV-M  
Typical Performance Curves - continued  
10.0  
9.0  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VIN=13V  
VIN=8V  
VIN=26V  
Ta=+25℃  
Ta=-40℃  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
Ta=+125℃  
-50 -25  
0
25  
50  
75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Supply Voltage: VIN[V]  
Ambient Temperature: Ta[]  
Figure 54. Sink Current 3 vs Voltage Characteristic  
(5mA Setting)  
Figure 53. Sink Current 3 vs Temperature Characteristic  
(5mA Setting)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
18  
17  
16  
15  
14  
13  
12  
11  
10  
VPUB=26V  
VPUB=13V  
Ta=+25  
Ta=-40℃  
Ta=+125  
VPUB=8V  
-50 -25  
0
25  
50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 55. Source Current 4 vs Temperature Characteristic  
(10mA Setting, 0V external supply)  
Figure 56. Source Current 4 vs Voltage Characteristic  
(10mA Setting, 0V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
47/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
20  
18  
20  
18  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
VIN=4V  
VIN=0V  
VIN=8V  
Ta=+25  
Ta=-40℃  
Ta=+125℃  
6
6
4
4
2
2
0
0
-2  
-2  
-50 -25  
0
25  
50  
75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Supply Voltage: VIN[V]  
Ambient Temperature: Ta[]  
Figure 57. Source Current 4 vs Temperature Characteristic  
(10mA Setting)  
Figure 58. Source Current 4 vs Voltage Characteristic  
(10mA Setting)  
18  
18  
17  
16  
15  
14  
13  
12  
11  
10  
17  
16  
15  
14  
13  
12  
11  
10  
AVDD=5.25V  
AVDD=5V  
Ta=+25  
Ta=-40℃  
Ta=+125℃  
AVDD=4.75V  
-50 -25  
0
25  
50  
75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Ambient Temperature: Ta[]  
Supply Voltage: AVDD[V]  
Figure 59. Sink Current 4 vs Temperature Characteristic  
(10mA Setting, 8V external supply)  
Figure 60. Sink Current 4 vs Voltage Characteristic  
(10mA Setting, 8V external supply)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
48/72  
BD3378MUV-M  
Typical Performance Curves - continued  
20  
18  
20  
18  
16  
14  
12  
10  
8
Ta=+25℃  
VIN=13V  
VIN=8V  
VIN=26V  
Ta=-40℃  
16  
14  
12  
10  
8
Ta=+125℃  
6
6
4
4
2
2
0
0
-2  
-2  
-50 -25  
0
25  
50  
75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Ambient Temperature: Ta[]  
Supply Voltage: VIN[V]  
Figure 62. Sink Current 4 vs Voltage Characteristic  
(10mA Setting)  
Figure 61. Sink Current 4 vs Temperature Characteristic  
(10mA Setting)  
27  
25  
23  
21  
19  
17  
15  
27  
25  
23  
21  
19  
17  
15  
VPUB=26V  
Ta=+25  
VPUB=8  
VPUB=13V  
Ta=+125℃  
Ta=-40℃  
-50 -25  
0
25  
50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
Ambient Temperature: Ta[]  
Supply Voltage: VPUB[V]  
Figure 63. Source Current 5 vs Temperature Characteristic  
(15mA Setting, 0V external supply)  
Figure 64. Source Current 5 vs Voltage Characteristic  
(15mA Setting, 0V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
49/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
30  
30  
25  
20  
15  
10  
5
25  
Ta=+25  
VIN=0V  
Ta=-40℃  
20  
VIN=4V  
VIN=8V  
Ta=+125℃  
15  
10  
5
0
0
-5  
-5  
-50 -25  
0
25  
50  
75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Ambient Temperature: Ta[]  
Supply Voltage: VIN[V]  
Figure 65. Source Current 5 vs Temperature Characteristic  
(15mA Setting)  
Figure 66. Source Current 5 vs Voltage Characteristic  
(15mA Setting)  
27  
27  
25  
23  
21  
19  
17  
15  
25  
23  
21  
19  
17  
15  
AVDD=5V  
AVDD=5.25V  
Ta=+25℃  
Ta=-40℃  
AVDD=4.75V  
Ta=+125℃  
-50 -25  
0
25  
50  
75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Supply Voltage: AVDD[V]  
Ambient Temperature: Ta[]  
Figure 67. Sink Current 5 vs Temperature Characteristic  
(15mA Setting, 8V external supply)  
Figure 68. Sink Current 5 vs Voltage Characteristic  
(15mA Setting, 8V external supply)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
50/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
30  
30  
25  
20  
15  
10  
5
25  
Ta=+25℃  
VIN=26V  
20  
Ta=+125℃  
Ta=-40  
VIN=8V  
VIN=13V  
15  
10  
5
0
0
-5  
-5  
-50 -25  
0
25  
50  
75 100 125 150  
-20  
-10  
0
10  
20  
30  
40  
50  
Ambient Temperature: Ta[]  
Supply Voltage: VIN[V]  
Figure 69. Sink Current 5 vs Temperature Characteristic  
(15mA Setting)  
Figure 70. Sink Current 5 vs Voltage Characteristic  
(15mA Setting)  
3.3  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
Ta=-40  
Ta=+25℃  
VPUB=26V  
VPUB=8V  
VPUB=13V  
Ta=+125℃  
-50 -25  
0
25  
50  
75 100 125 150  
5
10  
15  
20  
25  
30  
Ambient Temperature: Ta[]  
Supply Voltage: VPUB[V]  
Figure 72. Low to High Switch Detection Threshold Voltage  
vs Voltage Characteristic (3.0V Setting)  
Figure 71. Low to High Switch Detection Threshold Voltage  
vs Temperature Characteristic (3.0V Setting)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
51/72  
21.Nov.2018 Rev.002  
BD3378MUV-M  
Typical Performance Curves - continued  
3.2  
3.1  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
3.0  
Ta=-40  
Ta=+25℃  
VPUB=13V  
VPUB=8V  
2.9  
2.8  
2.7  
2.6  
Ta=+125  
VPUB=26V  
-50 -25  
0
25  
50  
75 100 125 150  
5
10  
15  
20  
25  
30  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 73. High to Low Switch Detection Threshold Voltage  
vs Temperature Characteristic (3.0V Setting)  
Figure 74. High to Low Switch Detection Threshold Voltage  
vs Voltage Characteristic (3.0V Setting)  
4.3  
4.2  
4.1  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
Ta=-40  
Ta=+25℃  
VPUB=26V  
VPUB=13V  
4.0  
3.9  
Ta=+125℃  
VPUB=8V  
3.8  
3.7  
-50 -25  
0
25  
50  
75 100 125 150  
5
10  
15  
20  
25  
30  
Ambient Temperature: Ta[]  
Supply Voltage: VPUB[V]  
Figure 75. Low to High Switch Detection Threshold Voltage  
vs Temperature Characteristic (4.0V Setting)  
Figure 76. Low to High Switch Detection Threshold Voltage  
vs Voltage Characteristic (4.0V Setting)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
52/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
4.2  
4.1  
4.0  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
Ta=-40  
Ta=+25℃  
VPUB=26V  
VPUB=13V  
3.9  
3.8  
3.7  
3.6  
VPUB=8V  
Ta=+125℃  
-50 -25  
0
25  
50  
75 100 125 150  
5
10  
15  
20  
25  
30  
Ambient Temperature: Ta[]  
Supply Voltage: VPUB[V]  
Figure 77. High to Low Switch Detection Threshold Voltage  
vs Temperature Characteristic (4.0V Setting)  
Figure 78. High to Low Switch Detection Threshold Voltage  
vs Voltage Characteristic (4.0V Setting)  
2.2  
2.0  
2.2  
2.0  
1.8  
VDDI=5.25V  
1.8  
Ta=-40  
1.6  
1.6  
VDDI=5V  
Ta=+25℃  
1.4  
1.4  
VDDI=3.1V  
Ta=+125  
1.2  
1.2  
1.0  
0.8  
1.0  
0.8  
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI[V]  
Figure 79. Low to High Serial Interface Threshold Voltage  
vs Temperature Characteristic  
Figure 80. Low to High Serial Interface Threshold Voltage  
vs Voltage Characteristic  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
53/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
10  
8
10  
8
6
6
4
4
VDDI=3.1V  
VDDI=5V  
VDDI=5.25V  
2
0
2
Ta=-40  
Ta=+25℃  
Ta=+125℃  
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: VDDI[V]  
Ambient Temperature: Ta[]  
Figure 81. CSB Input Current vs Temperature Characteristic  
(CSB=VDDI)  
Figure 82. CSB Input Current vs Voltage Characteristic  
(CSB=VDDI)  
85  
80  
75  
70  
65  
60  
55  
50  
85  
80  
75  
70  
65  
60  
55  
50  
VDDI=5V  
VDDI=5.25V  
Ta=-40℃  
45  
45  
40  
35  
30  
40  
Ta=+25℃  
VDDI=3.1V  
Ta=+125℃  
35  
30  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: VDDI[V]  
Ambient Temperature: Ta[]  
Figure 84. CSB Pull-up Current vs Voltage  
Characteristic (CSB=0V)  
Figure 83. CSB Pull-up Current vs Temperature  
Characteristic (CSB=0V)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
54/72  
BD3378MUV-M  
Typical Performance Curves - continued  
150  
140  
130  
120  
110  
150  
140  
130  
120  
110  
100  
90  
Ta=-40  
100  
VDDI=3.1V  
Ta=+25  
90  
80  
70  
60  
50  
VDDI=5V  
Ta=+125℃  
80  
VDDI=5.25V  
70  
60  
50  
-50 -25  
0
25 50 75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI [V]  
Figure 85. SI, SCLK Pull-down Resistor vs Temperature  
Characteristic  
Figure 86. SI, SCLK Pull-down Resistor vs Voltage  
Characteristic  
10  
8
10  
8
6
6
4
4
VDDI=5.25V  
2
0
2
VDDI=3.1V  
VDDI=5V  
Ta=-40℃  
Ta=+125℃  
Ta=+25℃  
0
-2  
-2  
-4  
-6  
-8  
-10  
-4  
-6  
-8  
-10  
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI[V]  
Figure 88. SI, SCLK Input Current vs Voltage  
Characteristic  
Figure 87. SI, SCLK Input Current vs Temperature  
Characteristic  
(SI, SCLK=0V)  
(SI, SCLK=0V)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
55/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
7
7
6
5
4
3
2
1
0
6
VDDI=5.25V  
Ta=+25℃  
5
Ta=-40℃  
VDDI=5V  
4
VDDI=3.1V  
3
2
1
0
Ta=+125℃  
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI[V]  
Figure 90. SO “H” Level Output Voltage vs Voltage  
Figure 89. SO “H” Level Output Voltage vs Temperature  
Characteristic (ISOURCE=200µA)  
Characteristic (ISOURCE=200µA)  
400  
400  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
VDDI=3.1V  
Ta=+125  
Ta=+25℃  
VDDI=5.25V  
Ta=-40℃  
VDDI=5V  
0
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage: VDDI[V]  
Ambient Temperature: Ta[]  
Figure 91. SO “L” Level Output Voltage vs Temperature  
Figure 92. SO “L” Level Output Voltage vs Voltage  
Characteristic (ISINK=1.6mA)  
Characteristic (ISINK =1.6mA)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
56/72  
BD3378MUV-M  
Typical Performance Curves - continued  
10  
8
10  
8
6
6
4
4
2
0
VDDI=5.25V  
2
Ta=-40℃  
Ta=+125℃  
Ta=+25℃  
VDDI=3.1V  
VDDI=5V  
0
-2  
-2  
-4  
-6  
-8  
-10  
-4  
-6  
-8  
-10  
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage: VDDI[V]  
Ambient Temperature: Ta[]  
Figure 94. SO (Set to “Hi-Z”) Input Current vs Voltage  
Figure 93. SO (Set to “Hi-Z”) Input Current vs Temperature  
Characteristic  
Characteristic  
7
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
VDDI=5.25V  
VDDI=5V  
Ta=+125  
Ta=+25℃  
Ta=-40℃  
VDDI=3.1V  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI[V]  
Figure 95. DMUX “H” Level Output Voltage vs  
Figure 96. DMUX “H” Level Output Voltage vs  
Temperature Characteristic (ISOURCE=200µA)  
Voltage Characteristic (ISOURCE=200µA)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
57/72  
BD3378MUV-M  
Typical Performance Curves - continued  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
Ta=+125  
Ta=+25℃  
VDDI=5V  
VDDI=3.1V  
Ta=-40℃  
100  
50  
0
VDDI=5.25V  
0
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage: VDDI[V]  
Ambient Temperature: Ta[]  
Figure 97. DMUX “L” Level Output Voltage vs Temperature  
Figure 98. DMUX “L” Level Output Voltage vs Voltage  
Characteristic (ISINK=1.6mA)  
Characteristic (ISINK=1.6mA)  
85  
80  
75  
70  
65  
60  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
55  
50  
45  
40  
35  
30  
25  
20  
15  
VDDI=5.25V  
VDDI=5V  
Ta=+125  
Ta=+25℃  
Ta=-40  
VDDI=3.1V  
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI[V]  
Figure 99. INTB Internal Pull-up Current vs Temperature  
Characteristic  
Figure 100. INTB Internal Pull-up Current vs Voltage  
Characteristic  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
58/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
7
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
VDDI=5.25V  
Ta=+125℃  
VDDI=5V  
Ta=+25℃  
Ta=-40℃  
VDDI=3.1V  
-50 -25  
0
25  
50  
75 100 125 150  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta[]  
Supply Voltage: VDDI[V]  
Figure 101. INTB “H” Level Output Voltage vs Temperature  
Figure 102. INTB “H” Level Output Voltage vs  
Characteristic (INTB=OPEN)  
Voltage Characteristic (INTB=OPEN)  
400  
350  
300  
250  
200  
400  
350  
300  
250  
200  
150  
100  
50  
AVDD=4.75V  
Ta=+25℃  
Ta=+125℃  
Ta=-40℃  
150  
100  
AVDD=5V  
50  
AVDD=5.25V  
0
0
-50 -25  
0
25 50 75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Ambient Temperature: Ta[]  
Supply Voltage: AVDD[V]  
Figure 104. INTB “L” Level Output Voltage vs Voltage  
Figure 103. INTB “L” Level Output Voltage vs Temperature  
Characteristic (ISINK=1.0mA)  
Characteristic (ISINK=1.0mA)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
59/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
400  
350  
300  
400  
350  
300  
250  
200  
150  
100  
50  
Ta=+125  
AVDD=4.75V  
250  
200  
Ta=+25℃  
AVDD=5V  
150  
100  
50  
AVDD=5.25V  
Ta=-40℃  
0
0
-50 -25  
0
25  
50  
75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Ambient Temperature: Ta[]  
Supply Voltage: AVDD[V]  
Figure 105. WAKEB “L” Level Output Voltage vs Temperature  
Figure 106. WAKEB “L” Level Output Voltage vs Voltage  
Characteristic (WAKEB=1.0mA)  
Characteristic (WAKEB=1.0mA)  
10  
8
10  
8
6
6
4
4
VPUB=8V  
2
0
2
Ta=-40  
Ta=+125℃  
0
-2  
-2  
VPUB=13V  
Ta=+25℃  
VPUB=26V  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-10  
-50 -25  
0
25  
50  
75 100 125 150  
5
10  
15  
20  
25  
30  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 108. WAKEB (Set to “Hi-Z”) Input Current vs  
Figure 107. WAKEB (Set to “Hi-Z”) Input Current vs  
Voltage Characteristic  
Temperature Characteristic  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
60/72  
BD3378MUV-M  
Typical Performance Curves - continued  
110  
105  
100  
95  
110  
105  
Ta=+125  
LVDD/AVDD=5.25V  
100  
95  
90  
Ta=+25℃  
90  
LVDD/AVDD=5V  
LVDD/AVDD=4.75V  
Ta=-40℃  
85  
85  
80  
80  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: LVDD/AVDD[V]  
Ambient Temperature: Ta[]  
Figure 109. Switch Strobe Time vs Temperature Characteristic  
(93.75µs Setting)  
Figure 110. Switch Strobe Time vs Voltage Characteristic  
(93.75µs Setting)  
140  
140  
135  
135  
LVDD/AVDD=5.25V  
Ta=+125  
130  
125  
130  
125  
Ta=+25℃  
Ta=-40℃  
120  
115  
110  
LVDD/AVDD=5V  
120  
LVDD/AVDD=4.75V  
115  
110  
-50 -25  
0
25  
50  
75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Ambient Temperature: Ta[]  
Supply Voltage: LVDD/AVDD[V]  
Figure 111. Switch Strobe Time vs Temperature Characteristic  
(125µs Setting)  
Figure 112. Switch Strobe Time vs Voltage Characteristic  
(125µs Setting)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
61/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
210  
205  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
LVDD/AVDD=5.25V  
200  
195  
190  
185  
180  
175  
170  
165  
160  
Ta=+125  
Ta=+25℃  
Ta=-40℃  
LVDD/AVDD=5V  
LVDD/AVDD=4.75V  
-50 -25  
0
25  
50  
75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Ambient Temperature: Ta[]  
Supply Voltage: LVDD/AVDD[V]  
Figure 113. Switch Strobe Time vs Temperature Characteristic  
(187.5µsSetting)  
Figure 114. Switch Strobe Time vs Voltage Characteristic  
(187.5µsSetting)  
280  
275  
270  
280  
275  
270  
LVDD/AVDD=5.25V  
265  
260  
255  
250  
245  
240  
235  
230  
225  
220  
265  
Ta=+125  
260  
255  
250  
Ta=+25℃  
245  
240  
Ta=-40℃  
LVDD/AVDD=5V  
235  
230  
225  
220  
LVDD/AVDD=4.75V  
-50 -25  
0
25  
50  
75 100 125 150  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
Supply Voltage: LVDD/AVDD[V]  
Ambient Temperature: Ta[]  
Figure 115. Switch Strobe Time vs Temperature Characteristic  
(250µs Setting)  
Figure 116. Switch Strobe Time vs Voltage Characteristic  
(250µs Setting)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
62/72  
TSZ22111 15 001  
BD3378MUV-M  
Typical Performance Curves - continued  
50  
45  
40  
35  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
Ta=-40  
VPUB=8V  
Ta=+25℃  
25  
20  
15  
10  
5
VPUB=13V  
VPUB=26V  
Ta=+125℃  
0
0
-50 -25  
0
25  
50  
75 100 125 150  
5
10  
15  
20  
25  
30  
Ambient Temperature: Ta[]  
Supply Voltage: VPUB[V]  
Figure 117. Switch Input Source/Sink Current Rise Time  
vs Temperature Characteristic  
Figure 118. Switch Input Source/Sink Current Rise Time  
vs Voltage Characteristic  
(FSQ=“0”, FSQZ/A/B=“0”, 10mA Setting,  
Load Resistance=100)  
(FSQ=“0”, FSQZ/A/B=“0”, 10mA Setting,  
Load Resistance=100)  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
25  
25  
Ta=-40  
VPUB=8V  
VPUB=13V  
20  
20  
15  
15  
VPUB=26V  
Ta=+25  
Ta=+125℃  
10  
5
10  
5
0
0
5
10  
15  
20  
25  
30  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: VPUB[V]  
Ambient Temperature: Ta[]  
Figure 119. Switch Input Source/Sink Current Fall Time  
vs Temperature Characteristic  
Figure 120. Switch Input Source/Sink Current Fall Time  
vs Voltage Characteristic  
(FSQ=“0”, FSQZ/A/B=“0”, 10mA Setting,  
Load Resistance=100)  
(FSQ=“0”, FSQZ/A/B=“0”, 10mA Setting,  
Load Resistance=100)  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
63/72  
TSZ22111 15 001  
BD3378MUV-M  
Application Examples  
1. Example of Application Circuit and its External Components  
VBAT  
VBAT  
BD3378MUV-M  
R0  
VPUB  
INZ0  
C0  
C23  
C24  
C25  
VPUA  
VBAT  
R7  
C7  
R8  
C8  
R15  
C15  
R16  
C16  
R21  
C21  
INZ7  
VBAT  
WAKEB  
INA0  
INA7  
SCLK  
SI  
CSB  
SO  
MCU  
INTB  
INB0  
INB5  
DMUX  
VDDI  
VDDI  
C26  
REF5  
LVDD  
AVDD  
C22  
TEST  
GND  
Figure 121. Example of Application Circuit and its External Components  
·Capacitor (C23, C24, C26) at Power Supply Pins (VPUA, VPUB, VDDI)  
Insert a 0.1µF capacitor between each power supply pin (VPUA, VPUB, and VDDI) and ground. Make sure to design the  
external components with sufficient margin for the intended application. It is recommended to use capacitors with excellent  
voltage and temperature characteristics.  
·Capacitor (C22) at REF5  
In order to prevent oscillation, a capacitor needs to be placed between the REF5 output pin and ground. It is recommended  
to use a capacitor (electrolytic, tantalum, or ceramic of at least 4.7µF). Make sure that capacitance of 4.7µF or higher is  
maintained at the intended operating supply voltage and temperature range. Temperature change can cause fluctuation in  
capacitance, which may lead to oscillation. If a ceramic capacitor is chosen, it is recommended to use X5R, X7R, or any  
others with better temperature and DC biasing characteristics and higher voltage tolerance.  
·Capacitor (C0 to C21) at Switch Pin (INZ, INA, INB)  
It is recommended to use at least 0.1µF capacitors as protection against ESD. Make sure to design the external circuit with  
sufficient margin for the intended application. Use capacitors with application specific voltage and temperature  
characteristics.  
·Resistor (R0 to R21) at Switch Pin (INZ, INA, INB)  
Choose the appropriate resistor to reduce EMI noise. Design the circuit so the pin voltage does not fall below the threshold  
voltage defined by ground float of [Load Resistance] x [Wetting Current] (when wetting current is set to source) or voltage  
drop (when wetting current is set to sink) may occur.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
64/72  
TSZ22111 15 001  
21.Nov.2018 Rev.002  
BD3378MUV-M  
Application Circuit Examples - continued  
2. Example of Parallel Connection Circuit  
MCU  
BD3378MUV-M  
MOSI  
SI  
MISO  
SCLK  
SO  
SCLK  
CSB  
CSB1  
CSB2  
INTB  
INTB  
BD3378MUV-M  
SI  
SO  
SCLK  
CSB  
INTB  
Figure 122. Example of Parallel Connection Circuit  
·Parallel Connection  
Please prepare CSB pins respectively.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
65/72  
TSZ22111 15 001  
BD3378MUV-M  
I / O Equivalence Circuit  
Type  
Equivalence circuit  
Type  
Equivalence circuit  
VDDI  
VDDI  
VDDI  
VDDI  
A
B
Input: SI, SCLK  
(with an internal pull-down resistor)  
Input: CSB  
(with an internal pull-up current source)  
VDDI  
VDDI  
C
E
G
D
Open-drain Interrupt Output: INTB  
(with an internal pull-up resistor)  
Open-drain Output: WAKEB  
VPUA/VPUB  
VPUA  
F
Switch Input: INZ0 to INZ7  
(with an internal pull-up/pull-down current source)  
Switch Input: INA0 to INA7, INB0 to INB5  
(with an internal pull-up current source)  
VDDI  
VDDI  
VDDI  
VDDI  
H
Output: DMUX  
Output: SO  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
66/72  
TSZ22111 15 001  
BD3378MUV-M  
I / O Equivalence Circuit - continued  
Type  
Equivalence circuit  
Type  
Equivalence circuit  
AVDD  
VPUB  
VPUB  
I
J
Input: TEST  
(with an internal pull-down resistor)  
Output: REF5  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
67/72  
TSZ22111 15 001  
BD3378MUV-M  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
Ground Voltage  
Except for pins the output and the input of which were designed to go below ground, ensure that no pins are at a  
voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
68/72  
TSZ22111 15 001  
BD3378MUV-M  
Operational Notes - continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 123. Example of monolithic IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
69/72  
TSZ22111 15 001  
BD3378MUV-M  
Ordering Information  
B D 3  
3
7
8 M U V -  
ME 2  
Part  
Package  
Rank  
Number  
MUV: VQFN48MCV070 M:Automotive  
Packaging and Forming Specification  
E2:Embossed Tape and Reel  
Marking Diagrams  
VQFN48MCV070 (TOP VIEW)  
Part Number Marking  
B D 3 3 7 8  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
70/72  
TSZ22111 15 001  
BD3378MUV-M  
Physical Dimension, Tape and Reel information  
Package Name  
VQFN48MCV070  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
71/72  
BD3378MUV-M  
Revision History  
Date  
Revision  
Changes  
6.Feb.2018  
001  
002  
New release.  
21.Nov.2018  
Modified Physical Dimension.  
www.rohm.com  
TSZ02201-0E3E0H700770-1-2  
21.Nov.2018 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
72/72  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD338

SILICON DARLINGTON POWER TRANSISTORS
NXP

BD3381EKV-C

BD3381EKV-C是33通道的开关输入监测LSI。其作用是监测各通道所连接的机械开关的状态变化、使MCU产生中断。使用串行接口读取中断因素并写入内部寄存器。33通道的开关输入分为VPUB、VPUA两种电源系统,可按电池系统和电源控制系统分类使用。动作模式备有常规模式和睡眠模式两种。各模式可通过设定寄存器,使用开关端子连续监测设定和间歇监测设定。使用间歇监测设定时是以固定周期监测开关状态变化,可降低功耗。而且,通过使用各种电源系统时序动作和全部开关统一时序动作设定,还能实现低噪声动作。
ROHM

BD33BC0FP

Fixed Positive LDO Regulator, 3.3V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD33BC0FPE2

Fixed Positive LDO Regulator, 3.3V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD33BC0T

Fixed Positive LDO Regulator, 3.3V, PSFM3, ROHS COMPLIANT, TO-220FP, 3 PIN
ROHM

BD33BC0WFP

Fixed Positive LDO Regulator, 3.3V, PSSO5, ROHS COMPLIANT, TO-252, 5 PIN
ROHM

BD33BC0WFPE2

Fixed Positive LDO Regulator, 3.3V, PSSO5, ROHS COMPLIANT, TO-252, 5 PIN
ROHM

BD33BC0WT

Fixed Positive LDO Regulator, 3.3V, PSFM5, ROHS COMPLIANT, TO-220FP, 5 PIN
ROHM

BD33BC0WT-V5

Fixed Positive LDO Regulator, 3.3V, PZFM5, ROHS COMPLIANT, TO-220FP , 5 PIN
ROHM

BD33C0AFP-C

BD33C0AFP-C是可提供最大1A电流的低饱和型稳压器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。
ROHM

BD33C0AFP-CE2

Adjustable Positive LDO Regulator,
ROHM

BD33C0AFP-E2

Fixed Positive LDO Regulator, 3.3V, 0.7V Dropout, PDSO4, ROHS COMPLIANT, TO-252, 5/4 PIN
ROHM