BD18326NUF-M [ROHM]

BD18326NUF-M是面向车载LED灯的40V高耐压恒流驱动器IC。使用小型封装,适合用作插座型LED灯的驱动用IC。BD18326NUF-M内置温度降额功能、LED开路检测、输出短路保护、SET端子短路保护、过电压保护功能、欠压时旁路功能、异常状态FLAG输出功能、输出电流OFF控制输入功能,可实现高可靠性。;
BD18326NUF-M
型号: BD18326NUF-M
厂家: ROHM    ROHM
描述:

BD18326NUF-M是面向车载LED灯的40V高耐压恒流驱动器IC。使用小型封装,适合用作插座型LED灯的驱动用IC。BD18326NUF-M内置温度降额功能、LED开路检测、输出短路保护、SET端子短路保护、过电压保护功能、欠压时旁路功能、异常状态FLAG输出功能、输出电流OFF控制输入功能,可实现高可靠性。

驱动 插座 驱动器
文件: 总39页 (文件大小:1870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
40 V 600 mA 1ch Constant Current Driver  
for Automotive LED Lamps  
BD18326NUF-M  
General Description  
Key Specifications  
The BD18326NUF-M is a constant current driver IC for  
driving automotive LED lamp, that can withstand up to 40  
V. Small-size package is suitable for use in socket LED  
driver applications.  
The BD18326NUF-M offers high reliability with built-in  
functions for the thermal de-rating function, the LED open  
detection, the output short circuit protection, the SET pin  
short circuit protection, the over-voltage mute function, the  
current bypass function at reduced-voltage, the output for  
fault flag function and the input for output current OFF  
control signal.  
Input Voltage Range:  
Output Current Accuracy:  
Maximum Output Current:  
5.5 V to 20 V  
±5 %  
400 mA (DC)  
600 mA (ON Duty: 50 %)  
-40 °C to +150 °C  
Operating Temperature Tj:  
Package  
VSON10FV3030  
W (Typ) x D (Typ) x H (Max)  
3.0 mm x 3.0 mm x 1.0 mm  
Features  
AEC-Q100 Qualified(Note 1)  
Functional Safety Supportive Automotive Products  
CR Timer for PWM Dimming  
Thermal De-rating Function (THD)  
LED Open Detection  
Output Short Circuit Protection (OUT SCP)  
SET Pin Short Circuit Protection (SET SCP)  
Over Voltage Mute Function (OVM)  
Current Bypass Function at Reduced-Voltage  
Disable LED Open Detection Function  
at Reduced-Voltage (OPM)  
Output for Fault Flag / Input for Output Current OFF  
Control Signal (PBUS)  
(Note 1) Grade1  
Applications  
Automotive LED Exterior Lamps  
(Rear Lamp, Turn Lamp, DRL/Position Lamp, Fog  
Lamp)  
Automotive Interior Lamps  
(Air Conditioner Lamp, Interior Light, Cluster Light  
etc.)  
Typical Application Circuit  
PWM  
SW  
D1  
D2  
D3  
OUT  
VIN  
COUT  
BD18326NUF-M  
CVIN  
DC  
SW  
CRT  
RDCIN CCRT  
RCRT  
ISINK  
EXP-PAD  
+B  
DISC  
THD  
SET  
PBUS  
RBP1  
RSET  
NTC  
BPCNT  
GND  
RBP3  
RBP2  
Product structure: Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
1/36  
BD18326NUF-M  
Pin Configuration  
(TOP VIEW)  
EXP-PAD  
Pin Descriptions  
Pin No.  
Pin Name  
Function  
1
2
VIN  
BPCNT  
PBUS  
CRT  
Power supply input  
Current bypass function at reduced-voltage setting(Note 1)  
Output for fault flag / Input for output current OFF control signal(Note 2)  
CR timer setting 1(Note 3)  
3
4
5
DISC  
THD  
CR timer setting 2(Note 3)  
6
Thermal de-rating setting(Note 4)  
7
SET  
Output current setting(Note 1)  
8
GND  
GND  
9
ISINK  
OUT  
Current sink pin for current bypass function at reduced-voltage  
Current output  
10  
-
Heat radiation pad. The EXP-PAD is connected to GND.  
EXP-PAD  
(Note 1) Do not connect external capacitor.  
(Note 2) Open the PBUS pin when not in use output for fault flag / input for output current OFF control signal.  
(Note 3) Short the CRT pin to the VIN pin and open the DISC pin or connect it to GND when in use at DC mode only.  
(Note 4) Open the THD pin when not in use thermal de-rating function.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
2/36  
BD18326NUF-M  
Block Diagram  
VIN  
Bandgap  
VREG  
OVM  
VBG  
to Current  
Setting  
Block  
TSD  
UVLO  
OPM  
Current  
Driver  
100 mA  
OUT  
to 600 mA  
VBG  
LED Open  
Detection  
VBG  
VIN  
PBUS  
PBUS  
VBG  
Control  
Logic  
0.05 V  
OUT SCP  
BPCNT  
VBG  
VREG  
0.6 V 0.8 V  
ISINK  
Bypass  
Control  
CR  
TIMER  
CRT  
DISC  
VBG  
LED Open  
Detection  
(ISINK)  
VREG  
SET  
SCP  
ITHD  
Current  
Setting  
THD  
VBG  
from OVM  
Block  
GND  
SET  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
3/36  
BD18326NUF-M  
Description of Blocks  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
1. Table of Operations  
The BD18326NUF-M has a built-in CR timer for PWM dimming and it is possible to change between PWM dimming  
mode and DC mode. Once the VIN pin voltage VIN is 17.4 V (Typ) or more, the output current IOUT is limited to  
suppress the heat generation from the IC.  
It is possible to detect the LED open state or short circuit state by monitoring the OUT pin voltage. In case of the LED  
abnormality detection, it can notify the abnormality to the outside by changing the PBUS pin voltage to low.  
The output current is also turned OFF when the Low signal is input to the PBUS pin.  
In addition, under voltage lock out (UVLO) and thermal shutdown circuit (TSD) are built-in, which further increase  
system reliability.  
The correspondence table is given below. For details, refer to functional description of each block.  
Output  
Detecting Condition  
Operation  
CRT Pin  
Current  
(IOUT  
PBUS Pin  
-
Mode  
[Detect]  
[Release]  
)
VCRT  
2.0 V (Typ)  
100 mA  
to 400 mA  
DC  
-
-
Refer to  
Description of  
Blocks 4  
Refer to  
Description of  
Blocks 4  
PWM Dimming  
-
-
-
-
-
Thermal  
De-rating  
(THD)  
Refer to  
Description of  
Blocks 9  
-
-
VTHD ≤ 0.8 V (Typ)  
VIN ≥ 17.4 V (Typ)  
VTHD > 0.8 V (Typ)  
VIN < 17.4 V (Typ)  
Over Voltage  
Mute  
Refer to  
Description of  
Blocks 10  
(OVM)  
VOUT  
VIN - 0.050 V (Typ)  
and  
VOUT <  
VIN - 0.050 V (Typ)  
or  
LED  
Open Detection  
(OUT Pin)  
-
-
-
OFF  
-
Low  
-
VIN ≥ 11.0 V (Typ)  
VIN < 11.0 V (Typ)  
LED  
Open Detection  
(ISINK Pin)  
VISINK  
5.80 V (Typ)  
VISINK <  
4.60 V (Typ)  
Output  
Short Circuit  
Protection  
(OUT SCP)  
OFF  
OFF  
OFF  
VOUT ≤ 0.6 V (Typ)  
VOUT ≥ 0.8 V (Typ)  
Low  
Low  
SET Pin Short  
Circuit Protection  
(SET SCP)  
ISET ≤ 0.5 mA (Typ)  
VPBUS ≤ 0.6 V (Typ)  
ISET > 0.5 mA (Typ)  
VPBUS ≥ 2.4 V (Typ)  
Input for Output  
Current OFF  
Control Signal  
(PBUS)  
VPBUS  
0.6 V (Typ)  
input  
-
Under Voltage  
Lock Out  
OFF  
OFF  
-
-
High  
Low  
VIN ≤ 4.50 V (Typ)  
VIN ≥ 6.05 V (Typ)  
(UVLO)  
Thermal  
Shutdown Circuit  
(TSD)  
Tj ≥ 175 C (Typ)  
Tj ≤ 150 C (Typ)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
4/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
2. Output Current IOUT Setting  
The output current IOUT can be set by the value of the output current setting resistor RSET  
.
푆퐸ꢀ  
푂푈푇  
=
[mA]  
푆퐸ꢀ  
where:  
ꢂꢃ푇  
ꢂꢃ푇  
is the output current setting coefficient, 2400 (Typ).  
is the output current setting resistor. [kΩ]  
VIN  
Current  
Driver  
+B  
100 mA  
OUT  
to 600 mA  
IOUT  
Current  
Setting  
GND  
SET  
RSET  
Output Current Setting  
2.1  
Relationship between VIN Pin Voltage VIN and Output Current IOUT  
Set the VIN pin voltage VIN and output current IOUT to satisfy the following relationship.  
푉 ≥ 푉  
× ꢆ + 퐷푅  
[V]  
ꢅ푁  
푓_퐿ꢃ퐷  
Where:  
ꢅ푁  
is the VIN pin voltage.  
푓_퐿ꢃ퐷  
is the forward voltage of LED.  
is the number of LED.  
퐷푅  
is the drop voltage between the VIN pin and the OUT pin.  
3. SET Pin Short Circuit Protection (SET SCP)  
Once the current which flows through the SET pin is more than or equal to the SET pin short circuit protection threshold  
current ISET_SH (0.50 mA (Typ)), the output current IOUT is turned off to prevent thermal damage of the IC, and it can  
notify the abnormality to the outside by changing the PBUS pin output to low.  
VIN  
Current  
Driver  
100 mA  
to 600 mA  
PBUS  
OUT  
Control  
Logic  
PBUS  
SET  
SCP  
Current  
Setting  
GND  
SET  
RSET  
SET Pin Short Circuit Protection  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
5/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
4. PWM Dimming Operation  
PWM dimming is performed by connecting external parts to the CRT pin and the DISC pin as shown below. PWM  
dimming frequency and ON duty width can be set by the values of the external resistor RCRT and the external capacitor  
CCRT  
. When use the DC mode only, connect the CRT pin to the VIN pin and open the DISC pin.  
A triangular waveform is generated when the DC SW is open as shown below. Output current IOUT is turned OFF  
while the CRT pin voltage ramps up and IOUT is turned ON while the CRT pin voltage is ramp down.  
Once the CRT pin voltage is VCRT_DIS1 (2.0 V (Typ)) or more, it turns to DC mode. And once the CRT pin voltage is  
more than VCRT_DIS2 (2.4 V (Typ)), the DISC pin ON resistance changes from RDISC1 (50 Ω (Typ)) to RDISC2 (5 kΩ (Typ))  
and the power consumption of the IC is reduced by reducing the inflow current of the DISC pin.  
VIN  
VREG  
Current  
Driver  
100 mA  
CRTIMER  
DC SW  
OUT  
to 600 mA  
ICRT  
CRT  
RCRT  
IOUT  
CCRT  
Control  
Logic  
VCRT_DIS1  
GND  
VCRT_DIS2  
DISC  
RDISC1  
RDISC2  
Ramp up  
Ramp down  
VCRT_DIS1  
2.0 V (Typ)  
CRT Pin  
Voltage  
ΔVCRT  
VCRT_CHA  
0.8 V (Typ)  
tOFF  
tON  
ΔVCRT x CCRT  
ICRT  
VCRT_CHA  
tOFF  
=
= RCHA x CCRT  
tON = - (RCRT + RDISC1) x CCRT x ln  
(
)
VCRT_DIS1  
IOUT  
OFF  
IOUT  
ON  
IOUT  
OFF  
IOUT  
ON  
IOUT  
OFF  
IOUT  
ON  
Output Current  
IOUT  
PWM Dimming Operation  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
6/36  
BD18326NUF-M  
4. PWM Dimming Operation – continued  
4.1  
CRT Pin Voltage Ramp Up Time tOFF and Ramp Down Time tON  
CRT pin voltage ramp up time tOFF and ramp down time tON can be set by the following equations.  
Make sure that tON is set PWM minimum pulse width tMIN to 50 μs or more.  
∆ꢇ  
× ꢉ  
퐶ꢈꢀ  
퐶ꢈꢀ  
푂퐹퐹  
=
= ꢄꢉ퐻퐴 × ꢊꢉ푅푇  
[ms]  
[ms]  
퐶ꢈꢀ  
푂푁 = − ꢉ푅푇 + ꢄ퐷ꢅꢂꢉ1 × ꢊꢉ푅푇 × 퐼푛 ꢋ퐶ꢈꢀ_퐶ꢌꢍ ꢑ  
(
)
퐶ꢈꢀ_ꢎꢏ푆ꢐ  
where:  
is the CRT pin charge voltage,  
is the CRT pin discharge voltage 1,  
is the CRT pin charge current,  
is the capacitor for setting CR timer,  
is the resistor for setting CR timer,  
is the CRT pin charge resistor,  
is the DISC pin ON resistor 1,  
0.8 V (Typ).  
2.0 V (Typ).  
40 μA (Typ).  
[μF].  
[kΩ].  
30 kΩ (Typ).  
25 Ω (Typ).  
ꢉ푅푇_ꢉ퐻퐴  
ꢉ푅푇_퐷ꢅꢂ1  
ꢉ푅푇  
ꢉ푅푇  
ꢉ푅푇  
ꢉ퐻퐴  
퐷ꢅꢂꢉ1  
4.2  
4.3  
PWM Dimming Frequency fPWM  
PWM frequency is defined by tON and tOFF  
.
1
푃푊푀  
=
[Hz]  
ꢔꢕ  
ꢖ ꢓ  
ꢔꢗꢗ  
ON Duty (DON  
)
PWM ON duty is defined by tON and tOFF  
.
ꢔꢕ  
푂푁  
=
× ꢙ00  
[%]  
ꢔꢕ  
ꢖ ꢓ  
ꢔꢗꢗ  
(Example) In case of RCRT = 3.6 kΩ (Typ), CCRT = 0.1 μF (Typ)  
푂퐹퐹 = ꢄꢉ퐻퐴 × ꢊꢉ푅푇 = 30 × 0.ꢙ = 3.0  
퐷ꢅꢂꢉ1  
[ms]  
ꢉ푅푇_ꢉ퐻퐴  
푂푁 = − ꢚꢄꢉ푅푇  
+
ꢛ × ꢊꢉ푅푇 × 퐼푛 ꢜ  
ꢙ000  
ꢉ푅푇_퐷ꢅꢂ1  
25  
ꢞ.8  
= − ꢋ3.6 + 1ꢞꢞꢞꢑ × 0.ꢙ × 퐼푛 ꢋ ꢑ = 0.33ꢟ  
[ms]  
[Hz]  
[%]  
2.ꢞ  
1
1
=
=
= 300  
푃푊푀  
ꢔꢕ  
ꢖ ꢓ  
ꢠ.ꢞ ꢖ ꢞ.ꢠꢠ2  
ꢔꢗꢗ  
ꢞ.ꢠꢠ2  
ꢔꢕ  
푂푁  
=
× ꢙ00 =  
ꢔꢗꢗ  
× ꢙ00 = ꢙ0.0  
ꢔꢕ  
ꢖ ꢓ  
ꢠ.ꢞ ꢖ ꢞ.ꢠꢠ2  
4.4  
PWM Dimming Operation Using External Signal  
If input the external pulse signal to the CRT pin as shown below, make sure that input pulse signal high voltage ≥  
2.2 V and pulse signal low voltage ≤ 0.72 V. Also, open the DISC pin.  
VREG  
CRT  
CR  
TIMER  
Control  
Logic  
μ-Con  
VBG  
DISC  
GND  
In Case External Pulse Signal Input to the CRT Pin  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
7/36  
BD18326NUF-M  
4. PWM Dimming Operation – continued  
4.5  
About the Deviation of the CRT Pin Voltage Ramp Up/Down Time Due to Reverse Current Characteristics  
of Reverse Connection Protection Diodes  
If this IC is used to drive LED as shown below, there is a possibility of the deviation of the CRT pin voltage ramp  
up/down time from the settings depends on reverse current characteristics of connected reverse current  
protection diodes (D2, D3).  
Consider a diode which is recommended by ROHM or a diode which is 1 μA (Max) or less of reverse current  
characteristics because reverse current Ir of a diode especially increases at high temperature.  
Since reverse current flows even with the recommended diodes, connect a resistor of RDCIN of 10 kΩ or less  
between Point A and GND so that the voltage at point A does not rise.  
●Mechanism of the deviation of the CRT pin voltage ramp up/down time from the settings.  
A) During the PWM dimming mode, Point A on the below figure is in the high impedance (Hi-Z) state.  
B) Reverse current Ir of D2 and D3 flow to Point A.  
(Power supply voltage is being input into the cathode of D2, so mainly reverse current of D2 flows to C1.)  
→Reverse current Ir of D3 is added to the CRT pin charge current and discharge current, so the CRT pin  
voltage ramp up/down time deviates from the settings.  
C) C1 gets charged, voltage at Point A rises.  
D) Point A voltage is the CRT pin voltage of each IC or more.  
E) Forward voltage Vf is generated to the diode D3.  
F) D3 flows forward current If.  
→Forward current If of D3 is added to the CRT pin charge current and discharge current, so the CRT pin  
voltage ramp up/down time deviates from the settings.  
Repetition of B) to F).  
D1  
D2  
VIN  
OUT  
BD18326NUF-M  
Point A  
Ir  
D3  
CRT  
If  
GND  
RDCIN  
C1  
Vf  
DISC  
Mechanism of the Deviation of the CRT Pin Voltage Ramp Up/Down Time  
due to Reverse Connection Protection Diodes  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
8/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
5. LED Open Detection  
• In case any of Point A to Point C is in the open state  
Once the OUT pin voltage VOUT becomes more than or equal to LED open detection voltage VOPD (VIN - 0.050 V  
(Typ)), it can notify the abnormality to the outside by changing the PBUS pin output to low.  
• In case any of Point D or Point E is in the open state  
Once the ISINK pin voltage becomes 5.80 V (Typ) or more, the ISINK pin current IISINK is turned OFF(Note 1)  
.
After  
that, once the OUT pin voltage VOUT becomes more than or equal to LED open detection voltage VOPD (VIN - 0.050 V  
(Typ)), it can notify the abnormality to the outside by changing the PBUS pin output to low.  
(Note 1) While output current bypass function at reduced-voltage (Refer to Description of Function 13) is activated, the LED is lighted because the  
output current flows to the two upper side LEDs.  
6. Disable LED Open Detection Function at Reduced-Voltage (OPM)  
The disable LED open detection function serves to prevent LED open erroneous detection at the reduced-voltage  
during the ramp up/down of the VIN pin voltage. Even if the LED is in the open state, LED open is not detected until  
the VIN pin voltage becomes more than disable LED open detection voltage at reduced-voltage VIN_OPM (11.0 V (Typ)).  
Set VIN_OPM to satisfy the following formula.  
> 푉  
ꢅ푁_푂푃ꢃ푅푅  
ꢅ푁_푂푃푀  
(
푉 − 푂푃퐷  
ꢅ푁  
)
= 푉  
× ꢆ +  
[V]  
ꢅ푁_푂푃ꢃ푅푅  
푓_퐿ꢃ퐷_푂푃퐷  
where:  
is the VIN pin disable LED open detection voltage at reduced-voltage.  
is the VIN pin LED open erroneous detection voltage at reduced-voltage.  
is the LED Vf at LED open release.  
ꢅ푁_푂푃푀  
ꢅ푁_푂푃ꢃ푅푅  
푓_퐿ꢃ퐷_푂푃퐷  
is the number of LED.  
푂푃퐷  
is the LED open detection voltage.  
VIN  
Current  
Driver  
100 mA  
+B  
to 600 mA  
OUT  
OPM  
Point A  
Point B  
IOUT  
LED Open  
Detection  
PBUS  
Control  
Logic  
PBUS  
0.050 V  
ISINK  
Point C  
Point D  
IISINK  
Bypass  
Control  
LED Open Detection  
(ISINK)  
Point E  
VIN_OPM  
VIN_OPM  
VIN_OPERR  
VIN_OPERR  
VIN  
Disable  
LED Open  
Detection  
Area  
Disable  
LED Open  
Detection  
Area  
VIN  
VOP = VIN - 0.050 V  
VOUT  
VOUT = Vf_LED x N  
LED Open  
Erroneous  
Detection  
Area  
LED Open  
Erroneous  
Detection  
Area  
IOUT  
IOUT  
4.5 V  
VPBUS  
VIN Pin Disable LED Open Detection Voltage at Reduced-Voltage  
and LED Open Erroneous Detection Voltage at Reduced-Voltage  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
9/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
7. Output Short Circuit Protection (OUT SCP)  
Once the OUT pin voltage is less than or equal to the OUT pin short circuit protection voltage VSCP (0.6 V (Typ)), then  
the short circuit protection is activated when SCP delay time tSCP1 (25 μs (Typ)) passes. At that time output current  
IOUT is turned off to prevent the thermal damage of the IC and it can notify the abnormality to the outside by changing  
the PBUS pin output to low.  
In order to avoid the malfunction when the power is turned on, the short circuit protection is not activated until the CRT  
pin voltage is more than 2.0 V (Typ) after UVLO is released.  
In addition, in case it is in the output short circuit state (VOUT < 0.6 V (Typ)) since the power is turned on, the output  
short circuit protection is activated when VCRT > 2.0 V (Typ) condition is reached and tIOUT_ON (40 μs (Typ)) and tSCP2 (85  
μs (Typ)) pass, after UVLO is released.  
VIN  
Current  
Driver  
100 mA  
40 µs Filter  
(at Start-Up)  
OUT  
to 600 mA  
SHORT  
PBUS  
GND  
VIN  
Control  
Logic  
PBUS  
OUT SCP  
1.0 V 1.1 V  
25 µs  
Filter  
85 µs  
Filter  
0.6 V 0.8 V  
Output Short  
Circuit State  
Output Short  
Circuit State  
5.25 V  
VIN  
2.0 V  
VCRT  
0.8 V  
ON  
0.8 V  
0.6 V  
VOUT  
ON  
ON  
40 μs 85 μs  
25 μs  
OFF  
OFF  
OFF  
IOUT  
High  
High  
High  
Low  
Low  
VPBUS  
Output Short Circuit Protection (OUT SCP)  
Current at OUT Pin Short Circuit  
7.1  
The OUT pin sources the OUT pin short circuit current IOUT_SCP (1.2 mA (Typ)) once its voltage is less than 1.0 V  
(Typ) in order to prevent the malfunction of the short circuit protection.  
VIN  
1.0 V (Typ)  
Current  
Driver  
VOUT  
100 mA  
OUT  
to 600 mA  
SHORT  
0 V  
VIN  
OUT SCP  
1.2 mA (Typ)  
1.0 V 1.1 V  
IOUT_SCP  
0 mA  
Current at OUT Pin Short Circuit  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
10/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
8. Caution of Using LED Open Detection and Output Short Circuit Protection  
8.1  
Connection Method of LEDs to the OUT Pin  
Protection functions could be enabled or disabled based on how LEDs are connected to the OUT pin.  
OUT  
OUT  
OUT  
・・・  
・・・  
1 string  
in series  
2 or more  
strings in parallel  
2 or more strings in parallel  
Matrix connection  
Connection Method of LEDs  
Connection Method  
1 string in series  
Output Short Circuit Protection  
Detectable  
LED Open Detection  
Detectable  
2 or more strings in parallel  
Detectable  
Not detectable(Note 1)  
2 or more strings in parallel  
(Matrix connection)  
Detectable  
Not detectable (Note 2)  
(Note 1) Detectable only when 1 or more LEDs are open in all strings.  
(Note 2) Detectable only when all LEDs from any string are open.  
8.2  
The Enable Zone of LED Open Detection and Output Short Circuit Protection, and Hi-Z Zone of the OUT  
Pin  
The enable zone of LED open detection and output short circuit protection is different between DC mode and  
PWM dimming mode.  
DC mode  
PWM dimming mode  
: LED open detection and output short circuit protection are enable in all zone.  
: LED open detection is enable in only CRT ramp down zone.  
Output short circuit protection is enable in all zone.  
There is a zone which the OUT pin becomes Hi-Z at PWM dimming mode. During this time noise(Note 3) may  
affect the decrease of the OUT pin voltage and cause malfunction of output short circuit protection. To prevent  
this, consider measurements such as connecting a capacitor COUT(Note4) between the OUT pin and GND nearby  
IC. (Recommended value by ROHM: COUT = 0.1 μF GCM188L81H104KA42 murata)  
(Note 3) Conducted noise, Radiated noise, Crosstalk of wiring and connecter etc.  
(Note 4) In case connecting a capacitor with 0.1 μF or more, do evaluation of a delay time from the power-on of VIN until output current IOUT flows  
and pulse width of output current IOUT at PWM dimming mode. (Refer to example of evaluation: Description of Blocks 8.3)  
[DC Mode]  
[PWM Dimming Mode]  
VCRT  
VCRT  
VOUT  
IOUT  
0 V  
VOUT  
0 V  
IOUT  
0 mA  
0 mA  
OUT pin Hi-Z  
Zone  
OUT pin Hi-Z  
Zone  
None  
Hi-Z  
Hi-Z  
Hi-Z  
LED Open  
Detection  
LED Open  
Detection  
Enable  
Enable  
Enable  
Enable  
Enable  
Output Short  
Circuit Protection  
Output Short  
Circuit Protection  
Enable  
The Enable Zone of LED Open Detection, Output Short Circuit Protection,  
and Hi-Z Zone of the OUT Pin  
OUT  
COUT  
BD18326NUF-M  
Capacitor Connected to the OUT Pin  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
11/36  
BD18326NUF-M  
8. Caution of Using LED Open Detection and Output Short Circuit Protection – continued  
8.3  
Evaluation Example of PWM Dimming IOUT Pulse Width  
Evaluation condition: VIN = 13 V, Tj = 25 °C, 3 White LEDs in series, PWM ON Duty = 3.2 %, Pulse width = 0.105  
ms, PWM Frequency = 300 Hz  
COUT = 0.10 μF  
COUT = 0.47 μF  
VCRT  
VCRT  
1.0 V / div  
1.0 V / div  
LED Anode  
2.0 V / div  
LED Anode  
2.0 V / div  
IOUT = 100 mA  
IOUT = 240 mA  
IOUT = 400 mA  
IOUT = 600 mA  
IOUT  
200 mA / div  
IOUT  
200 mA / div  
50 μs / div  
50 μs / div  
50 μs / div  
50 μs / div  
VCRT  
1.0 V / div  
VCRT  
1.0 V / div  
LED Anode  
2.0 V / div  
LED Anode  
2.0 V / div  
IOUT  
200 mA / div  
IOUT  
200 mA / div  
50 μs / div  
VCRT  
1.0 V / div  
VCRT  
1.0 V / div  
LED Anode  
2.0 V / div  
LED Anode  
2.0 V / div  
IOUT  
200 mA / div  
IOUT  
200 mA / div  
50 μs / div  
VCRT  
1.0 V / div  
VCRT  
1.0 V / div  
LED Anode  
2.0 V / div  
LED Anode  
2.0 V / div  
IOUT  
200 mA / div  
IOUT  
200 mA / div  
50 μs / div  
50 μs / div  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
12/36  
BD18326NUF-M  
8. Caution of Using LED Open Detection and Output Short Circuit Protection – continued  
8.4  
Maximum Capacitance Value Connected to the OUT Pin (COUT)  
When the capacitance connected to the OUT pin is above the recommended range (1.0 μF or more), the delay  
time of output rise time could be in around hundreds of microseconds. Below are examples of evaluation data  
for reference.  
Measurement conditions: VIN = 13 V, Tj = 25 °C, DC mode, 3 LEDs in series  
COUT = 0.10 μF  
COUT = 0.47 μF  
VIN  
VIN  
10 V / div  
10 V / div  
VPBUS  
VPBUS  
10 V / div  
10 V / div  
IOUT  
200 mA / div  
IOUT  
200 mA / div  
200 μs / div  
200 μs / div  
COUT = 1.00 μF  
COUT = 10.00 μF  
VIN  
VIN  
10 V / div  
10 V / div  
VPBUS  
VPBUS  
10 V / div  
10 V / div  
IOUT  
200 mA / div  
IOUT  
200 mA / div  
200 μs / div  
200 μs / div  
Capacitor Connected to the OUT Pin  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
13/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
9. Thermal De-rating Function (THD)  
It is possible to reduce the output current IOUT at high temperature and suppress the degradation of the LED by  
connecting a thermistor to the THD pin. Once the THD pin voltage is less than or equal to thermal de-rating start  
voltage VTHDS (0.8 V (Typ)), the output current IOUT is reduced according to the THD pin voltage.  
Open the THD pin when not using thermal de-rating function.  
In case variation of the THD pin voltage is steep, take measures such as connecting a capacitor to the THD pin to  
prevent the output current chattering. In addition, evaluate IOUT waveform on actual board because the output  
amplifier may not follow the steep variation.  
The thermal de-rating function can be set by the following formula.  
푇퐻퐷 = 퐼푇퐻퐷 × ꢄ푁푇ꢉ  
[V]  
ꢂꢃ푇  
ꢂꢃ푇  
푇퐻퐷  
(
)
=
푂푈푇 푇퐻퐷 ≤ 0.ꢡ 푉  
×
ꢂꢃ푇  
Where:  
푇퐻퐷  
푁푇ꢉ  
푂푈푇  
푇퐻퐷  
is the THD pin source current, 200 μA (Typ).  
is the resistance of NTC thermistor.  
is the output current.  
is the THD pin voltage.  
ꢂꢃ푇  
is the SET pin voltage, 0.8 V (Typ).  
VIN  
IOUT  
100 %  
+B  
Current  
Driver  
100 mA  
IOUT  
OUT  
to 600 mA  
VREG  
50 %  
ITHD  
THD  
RNTC  
Current  
Setting  
0.4  
0.8  
GND  
SET  
VTHD[V]  
Thermal De-rating Function  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
14/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
10. Over Voltage Mute Function (OVM)  
Once the VIN pin voltage VIN is over voltage mute start voltage VOVMS 17.4 V (Typ) or more, the over voltage mute  
function is activated to decrease the output current IOUT in order to suppress the heat generation from the IC.  
The output current IOUT will decay at -20 %/V (Typ).  
IOUT  
VIN  
17.4 V (Typ)  
+B  
Current  
Driver  
100 mA  
100 %  
OVM  
OUT  
to 600 mA  
-20 %/V (Typ)  
IOUT  
Current  
Setting  
GND  
SET  
0
VOVMS  
VIN  
Over Voltage Mute Function (OVM)  
11. Under Voltage Lock Out (UVLO)  
UVLO is a protection circuit to prevent malfunction of the IC when the power is turned on or when the power is  
suddenly shut off. When the VIN pin voltage VIN is 4.50 V (Typ) or less, the output current IOUT is turned OFF, and  
when the VIN pin voltage VIN increases to 6.05 V (Typ) or more, normal operation starts.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
15/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
12. Output for Fault Flag / Input for Output Current OFF Control Signal (PBUS)  
When abnormality such as LED open or output short circuit occurs, it can notify the abnormality to the outside by  
changing the PBUS pin output from high to low. In addition, by externally controlling the PBUS pin from high to low,  
the output current IOUT is turned off. When using multiple ICs to drive multiple LED strings, it is possible to turn off all  
LED strings at once by connecting the PBUS pins of each CH as shown in the figure below, even if LED open or output  
short circuit occurs.  
Caution of Using the PBUS Pin  
Do not connect to the PBUS pins other than below list items due to the difference of ratings, internal threshold voltages,  
and so on.  
(BD18340FV-M, BD18341FV-M, BD18342FV-M, BD18343FV-M, BD18345EFV-M, BD18337EFV-M, BD18347EFV-M)  
VIN  
OUT  
VIN  
OUT  
CH1  
CH2  
PBUS  
PBUS  
LED  
LED  
OFF  
OPEN  
GND  
GND  
Mutual Communication via PBUS Line  
PBUS Function  
12.1  
Example of Protective Operation Due to LED Open  
A) CH1 LED  
Open  
CH1 VOUT  
ON  
CH1 IOUT  
OFF  
B) VPBUS: HighLow  
VPBUS  
The OUT pin of CH2 is clampled  
to 1.4 V at PBUS is low.  
ON  
CH2 VOUT  
1.4 V  
ON  
CH2 IOUT  
OFF  
Example of Protective Operation  
When CH1 is the LED open state, the PBUS pin of CH1 is changed from High to Low output. As the PBUS pin  
becomes Low, LED driver of CH2 turns OFF its output current. The OUT pin voltage is clamped to 1.4 V (Typ) during  
the OFF period, in order to prevent malfunction of output short circuit.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
16/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
13. Current Bypass Function at Reduced-Voltage  
The BD18326NUF-M is built-in current bypass function at reduced-voltage.  
When the VIN_DIV which is the resistor divider of the VIN pin voltage VIN is more than the BPCNT reference voltage VBP  
(2.0 V (Typ)), the ISINK pin sink current IISINK decreases. The output current IOUT changes linearly.  
The ISINK pin sink current IISINK can be set by the following formula.  
푆ꢏꢕꢢ  
ꢅꢂꢅ푁퐾  
=
+ 퐺ꢂꢅ푁퐾 × 퐼퐵푃ꢉ푁푇 ÷ ꢙ0ꢠ  
[mA]  
퐵푃} × ꢙ0≥ 0 [μA]  
[mA]  
푆퐸ꢀ  
(
)
ꢏꢕ  
1
×
× ꢇ  
ꢖ 푅  
× ꢇ  
ꢣꢤꢦ  
ꢣꢤꢐ  
ꢣꢤ  
ꢣꢤꢥ  
퐵푃ꢉ푁푇  
=
{
(
× 푅  
ꢣꢤꢥ  
)
ꢣꢤꢦ  
× 푅  
ꢖ 푅  
ꢖ 푅  
ꢣꢤꢥ  
ꢣꢤꢐ  
ꢣꢤꢦ  
ꢣꢤꢐ  
푆ꢏꢕꢢ  
ꢅꢂꢅ푁퐾_푀퐴푋  
=
푆퐸ꢀ  
Where:  
ꢂꢅ푁퐾  
ꢂꢃ푇  
ꢂꢅ푁퐾  
퐵푃ꢉ푁푇  
퐵푃1  
is the ISINK current setting coefficient,  
is the output current setting resistor,  
is the ISINK current gain,  
3000 (Typ).  
[kΩ]  
-7300 (Typ).  
[μA]  
is the BPCNT pin input current,  
is the resistor for setting current bypass 1, [kΩ]  
is the resistor for setting current bypass 2, [kΩ]  
is the resistor for setting current bypass 3, [kΩ]  
퐵푃2  
퐵푃ꢠ  
퐵푃  
ꢅꢂꢅ푁퐾_푀퐴푋  
is the BPCNT reference voltage,  
is the ISINK pin maximum sink current,  
2.00 V (Typ)  
[mA]  
VIN  
VIN_DIV  
VBP (2.00 V)  
VIN  
IOUT  
Current  
Driver  
100 mA  
OUT  
+B  
to 600 mA  
IBPCNT  
IBPCNT  
IOUT  
BPCNT  
RBP3  
RBP1  
RBP2  
IISINK_MAX  
ISET  
ISINK  
IISINK  
IISINK = IOUT  
KSINK  
RSET  
IOUTA  
+
- GSINK x IBPCNT  
KSINK  
GSINK  
V
BP  
IISINK  
VIN_DIV  
-
IOUTA  
Current Bypass Function at Reduced-Voltage  
When not using the current bypass function at reduced-voltage, the ISINK pin is connected to the GND and the  
BPCNT pin is connected with pull-down resistor or to the GND.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
17/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
14. ISINK Pin Sink Current On Delay Time at Power On  
Once UVLO is released and the CRT pin voltage is VCRT_DIS1 (2.0 V (Typ)) or more, the ISINK pin sink current is OFF  
until the ISINK Pin Sink Current On Delay Time at Power On tISINKON_VINRISE (40 μs (Typ)) elapses. At this time, the  
ISINK Pin LED Open Monitor Current IOPISINK_MONI is sourced from the ISINK pin to monitor the status of the ISINK pin.  
If the LED connected between the ISINK pin and GND is open, it is detected that the ISINK pin voltage VISINK is  
exceeded the ISINK Pin LED Open Detection Voltage VOPISINKD (5.80 V (Typ)), and the ISINK pin sink current continues  
to be OFF.  
Set the external parts connected to the ISINK pin to satisfy the following formula.  
ꢖ ꢓ  
ꢏ푆ꢏꢕꢢꢔꢕ_ꢨꢏꢕꢈꢏ푆퐸  
ꢔꢤ푆ꢏꢕꢢ_ꢧꢔꢕꢏ  
푂푃ꢅꢂꢅ푁퐾퐷  
<
[V]  
ꢩ퐸ꢎ  
ꢖ ꢉ  
ꢏ푆ꢏꢕꢢ  
푂푃ꢅꢂꢅ푁퐾퐷  
푂푃ꢅꢂꢅ푁퐾_푀푂푁ꢅ  
ꢅꢂꢅ푁퐾푂푁_ꢇꢅ푁푅ꢅꢂꢃ  
퐿ꢃ퐷  
is the ISINK pin LED open detection voltage,  
is the ISINK pin LED open monitor current,  
is the ISINK pin sink current on delay time at power on,  
is the LED parasitic capacitance,  
5.80 V (Typ)  
1.3 mA (Typ)  
40 μs (Typ)  
[nF]  
ꢅꢂꢅ푁퐾  
the capacitor connecting the ISINK pin,  
[nF]  
VIN  
VIN  
OUT  
VINUVLO Signal  
LED ON Signal  
VIN  
SW  
ISINK  
CLED  
Delay Circuit  
at Power On  
Control  
Logic  
VOPISINKD  
CISINK  
ISINK Pin  
Current Sink Circuit  
VINUVLO  
Release  
VINUVLO  
Detection  
(VIN > VUVLOR)  
(VIN < VUVLOD)  
VIN  
(=VCRT  
)
tISINKON_VINRISE  
VIN  
VOPISINK D  
VISINK  
VOPISINKR  
1.3mA (Typ)  
IOPISINK  
OFF  
_MONI  
SW  
OFF  
ON  
OFF  
IISINK  
OFF  
ISINK Current  
Sink Circuit  
Forced  
OFF  
OFF  
OFF  
ISINK Pin Sink Current On Delay Time at Power On  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
18/36  
BD18326NUF-M  
Description of Blocks – continued  
(Unless otherwise specified, Tj = 25 °C, VIN = 13 V)  
15. Output Current Rise/Fall Time Fixed Function  
The BD18326NUF-M has built-in output current rise/fall time fixed function.  
It can suppress the noise generated to the power supply line by fixing the output current rise/fall time to 20 μs (Typ).  
VCRT  
IOUT  
20 μs 20 μs  
Output Current Rise/Fall Time Fixed Function  
www.rohm.com  
TSZ02201-0T1T0B300340-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
19/36  
TSZ22111 • 15 • 001  
28.Sep.2020 Rev.001  
BD18326NUF-M  
Absolute Maximum Ratings (Ta = 25 °C)  
No.  
Parameter  
Symbol  
VIN  
Rating  
-0.3 to +42.0  
-0.3 to +42.0  
-0.3 to VIN+0.3 < +42.0  
-0.3 to +20.0  
-0.3 to +7.0  
Unit  
V
A-1 VIN Pin Voltage  
A-2 CRT, DISC Pin Voltage  
VCRT, VDISC  
VOUT  
V
OUT Pin Voltage  
V
A-3  
A-4  
PBUS, BPCNT, ISINK Pin  
Voltage  
VPBUS, VBPCNT, VISINK  
VSET, VTHD  
Tstg  
V
A-5 SET, THD Pin Voltage  
V
A-6 Storage Temperature Range  
-55 to +150  
°C  
°C  
Maximum Junction Temperature  
Tjmax  
150  
A-7  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VSON10FV3030  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
158.00  
23.00  
46.00  
12.00  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Thermal Via(Note 5)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
20/36  
BD18326NUF-M  
Recommended Operating Conditions  
No.  
Parameter  
Symbol  
VIN  
Min  
5.5  
Typ  
Max  
20.0  
Unit  
V
O-1 Supply Voltage(Note 1) (Note 2)  
13.0  
OUT Pin Maximum Output Current  
(DC)  
O-2  
IOUT(DC)  
IOUT(50%DUTY)  
fPWM  
-
-
-
-
-
-
400  
600  
750  
-
mA  
mA  
Hz  
µs  
OUT Pin Maximum Output Current  
(ON Duty: 50 %)  
-
O-3  
O-4 PWM Dimming Frequency  
200  
50  
-40  
O-5 PWM Minimum Pulse Width (Note 3)  
tMIN  
Operating Temperature  
Topr  
+150  
°C  
O-6  
(Note 1) ASO should not be exceeded.  
(Note 2) At start up, apply 6.5 V or more once. The value is the voltage range after applying 6.5 V or more once.  
(Note 3) It is the same as when the pulse input to the CRT pin.  
External Parts Setting Range  
No.  
Parameter  
Symbol  
CVIN_DC  
Min  
Typ  
-
Max  
-
Unit  
μF  
Capacitor Connecting The VIN Pin  
at Operating DC Mode Only(Note 3)  
P-1  
0.47  
Capacitor Connecting The VIN Pin  
at Operating PWM Mode(Note 3)  
P-2  
CVIN_PWM  
1.0  
-
-
-
-
μF  
μF  
Capacitor  
P-3 Connecting The OUT Pin(Note 4)  
(ILED < 400 mA)  
COUT U400  
1.0  
Capacitor  
P-4 Connecting The OUT Pin(Note 4)  
(ILED ≥ 400 mA)  
COUT O400  
0.1  
-
-
-
1.0  
1.0  
μF  
nF  
Capacitor  
P-5  
CISINK  
Connecting The ISINK Pin  
P-6 Capacitor for Setting CR Timer  
CCRT  
RCRT  
RSET  
RDCIN  
RBP1  
RBP2  
RBP3  
0.047  
0.1  
0.100  
0.220  
50.0  
24.0  
10  
μF  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Resistor for Setting CR Timer  
-
-
-
-
-
-
P-7  
P-8  
Resistor for Setting Output Current  
4.0  
P-9 Resistor for DCIN Pull-down  
P-10 Resistor for Setting BPCNT 1  
-
10.5  
3.3  
100.0  
30.0  
96.50  
Resistor for Setting BPCNT 2  
Resistor for Setting BPCNT 3  
P-11  
P-12  
0.24  
(Note 3) Connect CVIN_DC or CVIN_PWM within 10 mm from the IC. If they are connected more than 10 mm from the IC, there is a possibility of unstable operation  
such as oscillation of output current IOUT etc. So consider with enough evaluation on actual board  
(Note 4) If a long wire connects from the OUT pin to the LED anode, there is a possibility of output current IOUT oscillation.  
After consideration with enough evaluation, connect a capacitor connecting to the OUT pin COUT between the OUT pin and GND to prevent oscillation.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
21/36  
BD18326NUF-M  
Electrical Characteristics  
(Unless otherwise specified Tj = -40 °C to +150 °C, VIN = 13 V)  
Limit  
Typ  
No.  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
Circuit Current  
VIN Pin Circuit Current  
at Normal Mode  
E-1  
E-2  
E-3  
IVIN1  
IVIN2  
IVIN3  
-
-
-
2.6  
2.4  
2.7  
5.0  
5.0  
5.0  
mA  
mA  
mA  
RSET = 24 kΩ  
VIN Pin Circuit Current  
at LED Open Detection  
VOUT = Open  
RSET = 24 kΩ  
VIN Pin Circuit Current  
at PBUS = Low  
VPBUS = 0 V  
RSET = 24 kΩ  
Output Current  
VOUT = 2.0 V  
VCRT = 0 V, Tj = 25 °C  
E-4 OUT OFF Current  
IOUT_OFF  
VDR1  
-
-
-
-
1.0  
0.92  
1.03  
1.25  
30  
μA  
V
Drop Voltage  
E-5  
Tj = -40 °C  
IOUT = 600 mA  
Between VIN Pin and OUT Pin 1  
Drop Voltage  
Between VIN Pin and OUT Pin 2  
Tj = +25 °C  
IOUT = 600 mA  
E-6  
E-7  
VDR2  
-
-
V
Drop Voltage  
Between VIN Pin and OUT Pin 3  
Tj = +150 °C  
IOUT = 600 mA  
VDR3  
-
-
V
IOUT = 20 %→80 %  
RSET = 10 kΩ  
E-8 Output Current Rise Time  
E-9 Output Current Fall Time  
IOUT_RISE  
IOUT_FALL  
ΔIRISEFALL  
10  
10  
-5  
20  
20  
0
µs  
µs  
µs  
IOUT = 80 %→20 %  
RSET = 10 kΩ  
30  
The Difference Between Output  
E-10  
5
RSET = 10 kΩ  
Current Rise Time and Fall Time  
LED Open Detection  
OUT Pin  
E-11  
VIN  
- 0.080  
VIN  
- 0.050  
VIN  
- 0.020  
VOPD  
V
V
LED Open Detection Voltage  
ISINK Pin  
E-12  
VOPISINKR  
VOPISINKD  
4.35  
5.50  
0.65  
10.5  
4.60  
5.80  
1.50  
11.0  
4.85  
6.10  
2.50  
11.5  
VISINK: Sweep down  
VISINK: Sweep up  
VIN = 6.5V, VISINK = 6.2V  
VIN  
LED Open Release Voltage  
ISINK Pin  
E-13  
V
LED Open Detection Voltage  
ISINK Pin  
E-14  
IOPISINK  
_MONI  
mA  
V
LED Open Monitor Current  
Release Voltage for Function to  
E-15  
VIN_OPM  
Disable LED Open Detection  
Output Short Circuit Protection (OUT SCP)  
E-16 Current at OUT Pin Short Circuit  
IOUT_SCP  
VSCP  
0.2  
0.5  
0.7  
0.9  
10  
-
1.2  
0.6  
0.8  
1.0  
25  
2.0  
0.7  
0.9  
1.2  
50  
-
mA  
V
OUT Pin Short Circuit Protection  
Voltage  
E-17  
OUT Pin Short Circuit Protection  
Release Voltage  
E-18  
VSCPR  
VISCPON  
tSCP1  
V
Current ON Voltage at OUT Pin  
Short Circuit  
E-19  
V
E-20 SCP Delay Time  
µs  
µs  
E-21 SCP Disable Time at Power On  
tSCP2  
85  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
22/36  
BD18326NUF-M  
Electrical Characteristics – continued  
(Unless otherwise specified Tj = -40 °C to +150 °C, VIN = 13 V)  
Limit  
Typ  
No.  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
Output Current Setting  
RSET  
4 kΩ  
=
Tj =  
-40 °C  
2280  
2400  
2520  
to 10 kΩ  
to +150 °C  
2256  
2232  
2400  
2400  
2544  
2568  
Tj = 25 °C  
RSET  
10 kΩ  
to 20 kΩ  
=
Tj = 150 °C  
E-22 Output Current Setting Coefficient  
KSET  
-
Tj =  
2160  
2160  
2400  
2400  
2640  
2640  
-40 °C  
to +150 °C  
Tj =  
-40 °C  
to +150 °C  
RSET  
20 kΩ  
to 24 kΩ  
=
Reference Voltage  
E-23  
VSET_REF  
ISET_SH  
0.72  
0.24  
0.80  
0.50  
0.88  
1.20  
V
VSET  
for Output Current Setting  
SET Pin Short Circuit Protection  
E-24  
mA  
Threshold Current  
VIN = 0 V→13 V  
tIOUT_ON  
tIOUT (80 %) –  
tIOUT (@VIN = VUVLOR  
RSET = 24 kΩ  
=
Output Current On Delay Time at  
Power On  
E-25  
tIOUT_ON  
-
40  
100  
µs  
)
Thermal De-Rating (THD)  
E-26 THD Pin Source Current  
ITHD  
193  
0.76  
203  
0.80  
213  
0.84  
μA  
V
E-27 Thermal De-Rating Start Voltage  
E-28 Thermal De-Rating Gain  
VTHDS  
VTHD  
ΔIOUT / ΔVTHD  
VTHD: 0.667 V→0.333 V  
VIN = 13 V  
GTHD  
-131.3 -125.0 -118.7  
%/V  
CR Timer for PWM Dimming  
E-29 CRT Pin Charge Current  
ICRT  
36  
0.72  
1.80  
2.10  
28.5  
0.38  
10  
40  
0.80  
2.00  
2.40  
30.0  
0.40  
25  
44  
0.88  
2.20  
3.00  
31.5  
0.42  
80  
μA  
V
E-30 CRT Pin Charge Voltage  
VCRT_CHA  
VCRT_DIS1  
VCRT_DIS2  
RCHA  
CRT Pin  
E-31  
V
Discharge Voltage 1  
CRT Pin  
E-32  
VCRT > VCRT_DIS2  
RD1→RD2  
V
Discharge Voltage 2  
CRT Pin  
E-33  
kΩ  
V/V  
Ω
Charge Resistance  
VCRT_CHA  
VCRT_DIS1  
/
E-34 CRT Discharge Constant  
E-35 DISC Pin ON Resistance 1  
E-36 DISC Pin ON Resistance 2  
E-37 CRT Pin Leakage Current  
RDISC1  
RDISC2  
IDISC = 10 mA  
IDISC = 100 μA  
VCRT = VIN  
2.5  
5
10  
kΩ  
μA  
ICRT_LEAK  
-
-
10  
Over Voltage Mute Function (OVM)  
ΔIOUT = -3 %  
ΔIOUT  
=
E-38 Over Voltage Mute Start Voltage  
VOVMS  
16.0  
-
17.4  
-20  
18.8  
-
V
IOUT (@VIN = VOVM) /  
IOUT (@VIN = 13 V) -1  
ΔIOUT / ΔVIN  
VTHD > 1.5 V  
E-39 Over Voltage Mute Gain  
GOVM  
%/V  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
23/36  
BD18326NUF-M  
Electrical Characteristics – continued  
(Unless otherwise specified Tj = -40 °C to +150 °C, VIN = 13 V)  
Limit  
Typ  
No.  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
Output for Fault Flag / Input for Output Current OFF Control Signal (PBUS)  
E-40 Input High Voltage  
VPBUSH  
VPBUSL  
2.4  
-
-
-
-
V
V
E-41 Input Low Voltage  
0.6  
300  
0.6  
5.5  
10  
E-42 PBUS Pin Source Current  
E-43 PBUS Pin Output Low Voltage  
E-44 PBUS Pin Output High Voltage  
IPBUS  
75  
-
150  
-
μA  
V
VPBUS = 0 V  
VPBUS_OL  
VPBUS_OH  
IPBUS_LEAK  
IPBUS_EXT = 3 mA  
IPBUS_EXT = -10 μA  
VPBUS = 5 V  
3.5  
-
4.5  
-
V
E-45 PBUS Pin Leakage Current  
Under Voltage Lock Out (UVLO)  
E-46 UVLO VIN Detection Voltage  
μA  
VUVLOD  
VUVLOR  
VHYS  
4.25  
5.75  
-
4.50  
6.05  
1.55  
4.75  
6.35  
-
V
V
V
VIN: Sweep down  
VIN: Sweep up  
E-47 UVLO VIN Release Voltage  
E-48 UVLO VIN Hysteresis Voltage  
Current Bypass Function at Reduced-Voltage  
1.94  
2.00  
2.06  
E-49 BPCNT Reference Voltage  
VBP  
V
V
IBPCNT = 10 μA  
IBPCNT = 0 μA  
KSINK = ISINK x RSET  
RSET = 24 kΩ  
ISINK Current Setting  
2790  
3000  
3210  
E-50  
KSINK  
Coefficient  
GSINK  
=
{IISINK1 (@IBPCNT = 5 μA) -  
IISINK2 (@IBPCNT = 10 μA)} /  
5 μA  
-7447 -7230 -7013  
E-51 ISINK Current Gain  
GSINK  
-
RSET = 24 kΩ  
Voltage  
Tj = -40 °C  
IISINK = 600 mA  
E-52  
VDRIS1  
VDRIS2  
VDRIS3  
-
-
-
-
-
-
0.88  
1.00  
1.25  
V
V
V
Between ISINK Pin and GND 1  
Voltage  
Tj = +25 °C  
IISINK = 600 mA  
E-53  
Between ISINK Pin and GND 2  
Voltage  
Tj = +150 °C  
E-54  
Between ISINK Pin and GND 3  
IISINK = 600 mA  
VISINK = 2.0V,  
VIN > VINUVLOR,  
VCRT > VCRT_DIS1  
→ ISINK:ON  
ISINK Pin Sink Current On  
E-55  
tISINKON  
_VINRISE  
20  
40  
-
μs  
Delay Time at Power On  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
24/36  
BD18326NUF-M  
Typical Performance Curves (Reference Data)  
(Unless otherwise specified Tj = 25 °C, VIN = 13 V)  
5.0  
800  
700  
600  
500  
400  
300  
200  
100  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0
2
4
6
8
10 12 14 16 18 20  
4
6
8
10 12 14 16 18 20 22 24  
Supply Voltage: V [V]  
IN  
Resistor for Setting Output Current:RSET [kΩ]  
Figure 1. VIN Pin Circuit Current at Normal Mode  
vs Supply Voltage  
Figure 2. Output Current  
vs Resistor for Setting Output Current  
600  
5.0  
4.0  
500  
400  
300  
200  
100  
0
IOUT = 100 mA  
3.0  
IOUT = 240 mA  
IOUT = 400 mA  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Drop Voltage between VIN Pin and OUT Pin:  
VDR1 to VDR3 [V]  
Figure 3. Output Current Accuracy vs Temperature  
Figure 4. Output Current  
vs Drop Voltage between VIN Pin and OUT Pin  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
25/36  
BD18326NUF-M  
Typical Performance Curves (Reference Data) – continued  
(Unless otherwise specified Tj = 25 °C, VIN = 13 V)  
500  
500  
400  
300  
200  
100  
0
RSET = 6 kΩ  
400  
300  
RSET = 10 kΩ  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
200  
RSET = 24 kΩ  
100  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
Supply Voltage: V [V]  
Supply Voltage: V [V]  
IN  
IN  
Figure 5. Output Current vs Supply Voltage  
Figure 6. Output Current vs Supply Voltage  
42.0  
210  
205  
200  
195  
190  
41.5  
41.0  
40.5  
40.0  
39.5  
39.0  
38.5  
38.0  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 7. CRT Pin Charge Current vs Temperature  
Figure 8. THD Pin Source Current vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
26/36  
BD18326NUF-M  
Typical Performance Curves (Reference Data) – continued  
(Unless otherwise specified Tj = 25 °C, VIN = 13 V)  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
4
6
8
10 12 14 16 18 20 22 24  
Voltage between ISINK Pin and GND:  
VDRIS1 to VDRIS3 [V]  
ResistorforSetting Output Current:RSET [kΩ]  
Figure 9. ISINK Pin Sink Current  
vs Resistor for Setting Output Current  
Figure 10. ISINK Pin Sink Current  
vs Voltage between ISINK Pin and GND  
150  
125  
100  
75  
Tj = -40 °C  
Tj = +25 °C  
Tj = +150 °C  
50  
25  
0
0
5
10  
15  
20  
25  
30  
BPCNT Pin Input Current:IBPCNT [μA]  
Figure 11. ISINK Pin Sink Current  
vs BPCNT Pin Input Current  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
27/36  
BD18326NUF-M  
Timing Chart  
PWM Dimming Mode  
DC Mode  
LED  
Current  
OUTPUT  
GND  
LED  
Current  
OUTPUT  
GND  
LED  
OPEN  
ISET  
LED  
ISET  
SHORT Bypass  
Current  
De-rating  
SHORT  
SHORT  
OPEN  
De-rating  
SHORT  
13  
V
VIN  
VCRT  
VTHD  
VOUT  
VPBUS  
IOUT  
6.05 V  
4.50  
V
13 V  
0.667 V  
0.667 V  
40 μs  
V
IN  
- 0.050 V  
VIN - 0.050 V  
0.8  
V
0.6  
V
0.8  
V
0.6  
V
20 μs  
20 μs  
IISINK  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
28/36  
BD18326NUF-M  
Application Examples  
1. IOUT = 200 mA, 3 White LEDs in Series, Unused Thermal De-rating Function  
SW  
D1  
OUT  
VIN  
ZD  
CVIN  
+B  
U1  
BD18326NUF-M  
CR  
ISINK  
DISC  
THD  
SET  
GND  
RBP1  
PBUS  
BPCNT  
RSET  
RBP3  
RBP2  
Recommended Parts List 1  
Parts  
IC  
No  
U1  
D1  
Parts Name  
Value  
UNIT  
Product Maker  
ROHM  
BD18326NUF-M  
RFN2LAM6STF  
-
-
-
-
ROHM  
Diode  
NIPPON  
CHEMICON  
ZD  
TND12H-220KB00AAA0  
-
-
Resistor  
RSET  
CVIN  
MCR03EZPFX1202  
12  
kΩ  
μF  
ROHM  
murata  
Capacitor  
GCM31CL81H105KA40  
1.0  
Caution: About ZD, mount according to test standard of battery line.  
2. IOUT = 387 mA, 3 White LEDs in Series, Thermal De-rating Function  
SW  
D1  
OUT  
VIN  
CR  
ZD  
CVIN  
+B  
U1  
BD18326NUF-M  
ISINK  
DISC  
THD  
SET  
GND  
RBP1  
PBUS  
BPCNT  
NTC  
RSET  
RBP3  
RBP2  
Recommended Parts List 2  
Parts  
IC  
No  
U1  
D1  
Parts Name  
Value  
UNIT  
Product Maker  
ROHM  
BD18326NUF-M  
RFN2LAM6STF  
-
-
-
-
ROHM  
Diode  
NIPPON  
CHEMICON  
ZD  
TND12H-220KB00AAA0  
-
-
Resistor  
Thermistor  
Capacitor  
RSET  
NTC  
CVIN  
MCR03EZPFX6201  
6.2  
150  
1.0  
kΩ  
kΩ  
μF  
ROHM  
TDK  
NTCG104LH154JTDS  
GCM31CL81H105KA40  
murata  
Caution: About ZD, mount according to test standard of battery line.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
29/36  
BD18326NUF-M  
Application Examples continued  
3. IOUT = 387 mA, 3 White LEDs in Series, PWM ON Duty = 10 %, Pulse Width = 0.334 ms, PWM Frequency = 300 Hz  
PWM  
SW  
D1  
D2  
OUT  
VIN  
ZD  
CVIN  
U1  
DC  
SW  
BD18326NUF-M  
D3  
CR  
ISINK  
RDCIN CCRT  
RCRT  
+B  
DISC  
THD  
SET  
GND  
RBP1  
PBUS  
BPCNT  
NTC  
RSET  
RBP3  
RBP2  
Recommended Parts List 3  
Parts  
IC  
No  
U1  
D1  
D2  
D3  
Parts Name  
Value  
UNIT  
Product Maker  
BD18326NUF-M  
RFN2LAM6STF  
RFN2LAM6STF  
RFN2LAM6STF  
-
-
-
-
-
-
-
-
ROHM  
ROHM  
ROHM  
ROHM  
Diode  
NIPPON  
CHEMICON  
ZD  
TND12H-220KB00AAA0  
-
-
RSET  
RCRT  
RDCIN  
NTC  
CVIN  
MCR03EZPFX6201  
MCR03EZPFX3601  
MCR03EZPFX3902  
NTCG104LH154JTDS  
GCM31CL81H105KA40  
GCM188L81H104KA42  
6.2  
3.6  
39  
kΩ  
kΩ  
kΩ  
kΩ  
μF  
μF  
ROHM  
ROHM  
ROHM  
TDK  
Resistor  
Thermistor  
Capacitor  
150  
1.0  
0.1  
murata  
murata  
CCRT  
Caution: About ZD, mount according to test standard of battery line.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
30/36  
BD18326NUF-M  
I/O Equivalence Circuits  
Pin  
No.  
Pin  
Name  
Equivalence Circuit  
No.  
Equivalence Circuit  
Name  
BPCNT  
(Pin 2)  
THD  
(Pin 6)  
2
3
4
5
BPCNT  
PBUS  
CRT  
6
THD  
GND  
(Pin 8)  
GND  
(Pin 8)  
PBUS  
(Pin 3)  
SET  
(Pin 7)  
10 Ω  
7
SET  
(Typ)  
GND  
(Pin 8)  
GND  
(Pin 8)  
VIN  
(Pin 1)  
CRT  
(Pin 4)  
ISINK  
(Pin 9)  
9
ISINK  
GND  
(Pin 8)  
GND  
(Pin 8)  
VIN  
(Pin 1)  
DISC  
(Pin 5)  
OUT  
(Pin 10)  
DISC  
10  
OUT  
5 kΩ  
(Typ)  
5.2V  
(Typ)  
GND  
GND  
(Pin 8)  
(Pin 8)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
31/36  
BD18326NUF-M  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
32/36  
BD18326NUF-M  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 12. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to  
the functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
33/36  
BD18326NUF-M  
Ordering Information  
B D 1 8 3 2 6 N U F  
-
M E 2  
Package  
Product Rank  
NUF:  
VSON10FV3030  
M: for Automotive  
Packaging Specification  
E2: Embossed tape and reel  
Marking Diagram  
VSON10FV3030 (TOP VIEW)  
Part Number Marking  
D 1 8  
3 2 6  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
34/36  
Daattaasshheeeett  
BD18326NUF-M  
Physical Dimension and Packing Information  
Package Name  
VSON10FV3030  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
35/36  
BD18326NUF-M  
Revision History  
Date  
Revision  
001  
Changes  
New Release  
28.Sep.2020  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300340-1-2  
28.Sep.2020 Rev.001  
36/36  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18327EFV-M

BD18327EFV-M是一款适用于两轮机动车转向指示灯的50V耐压 1.5A 单通道LED驱动器。该产品采用内置CR定时器来控制LED闪烁,内置LED开路检测、短路保护、过电压保护等功能,因此具有高可靠性。当检测到LED开路时,其输出闪烁频率会加倍。在高输入电压条件下,为了控制IC的发热量并保护LED负载,IC的输出PWM占空比会降低。
ROHM

BD18333EUV-M (新产品)

BD18333EUV-M is 24CH constant current driver with 8-bit PWM dimming and 8-bit local DC dimming individual channels. Communication with μ-Controller is available via UART.
ROHM

BD18336NUF-M

BD18336NUF-M是面向车载LED灯的40V高耐压恒电流驱动器IC。由于使用的是小型封装,适合用作插座型LED灯的驱动用IC。BD18336NUF-M内置温度降额功能、LED开路检测、输出接地故障保护、SET引脚接地故障保护、过电压保护功能、欠压时分流功能、异常状态FLAG输出功能、输出电流OFF控制输入功能,可实现高可靠性。
ROHM

BD18337EFV-M

BD18337EFV-M是4通道线性LED驱动器,可通过1个引脚控制多个输出的热分散。不仅可显著减少部件数量和安装面积,还非常有助于平台化扩展机型的汽车LED灯驱动模块电路板的通用化设计。可用于车后灯(刹车灯、尾灯)、雾灯、转向灯、牌照灯、日间行车灯(Daylight Running Lamps)等汽车和摩托车领域的众多LED灯驱动。产品内置LED开路检测功能、OUTx(x=1~4)引脚输出接地故障保护功能、过电压静音功能及热关断功能,可实现高可靠性。连接于输出引脚的LED如果是2段的,请使用BD18347EFV-M;如果是3段的,请使用本BD18337EFV-M。
ROHM

BD18337EFV-ME2

LED Driver,
ROHM

BD18340FV-M

BD18340FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18340FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18341FV-M

BD18341FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18341FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18342FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-ME2

LED Driver,
ROHM