BA6859AFP-YE2 [ROHM]

DISK DRIVE MOTOR CONTROLLER, 1.3A, PDSO25, HSOP-25;
BA6859AFP-YE2
型号: BA6859AFP-YE2
厂家: ROHM    ROHM
描述:

DISK DRIVE MOTOR CONTROLLER, 1.3A, PDSO25, HSOP-25

电动机控制 光电二极管
文件: 总20页 (文件大小:639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System Motor Driver ICs for CD/DVD Players  
1ch Spindle  
Motor Driver ICs  
No.10011EAT03  
BA6859AFP-Y,BA6664FM,BD6671FM  
Description  
ROHM’s spindle motor drivers incorporate the 3-phase full-wave pseudo-linear drive system(BA6859AFP-Y, BA6664FM)  
and 180 ° electrifying direct PWM drive system(BD6671FM).Smooth rotation characteristic performance is ensured.  
Besides, high torque is provided in a wide output range because the output stage incorporates low-saturation voltage NPN  
transistors (BA6859AFP-Y, BA6664FM) and low-power consumption MOSFET (BA6671FM).  
Features  
1) 3-phase full-wave pseudo-linear system (BA6859AFP-Y, BA6664FM)  
2) 180° electrifying direct drive PWM system (BD6671FM)  
3) Power saving, TSD (thermal shutdown) functions built in  
4) Current limiting, Hall bias circuit built in  
5) FG output built in  
6) 3-phase component FG output built in (BA6664FM, BD6671FM)  
7) Circuit direction detection function built in (BA6859AFP-Y, BA6664FM)  
8) Reverse rotation prevention circuit built in  
9) Short brake pin built in (BA6859AFP-Y, BA6664FM)  
10) Brake mode selection pin built in (BA6859AFP-Y, BD6671FM)  
11) Supports DSP 3.3 V  
Applications  
Used for car, CD and DVD players incorporating changer function  
Absolute maximum ratings (Ta=25)  
Ratings  
BA6664FM  
7
Parameter  
Symbol  
Unit  
BA6859AFP-Y  
BD6671FM  
7
Applied voltage  
VCC  
VM  
7
15  
V
V
Applied voltage  
15  
15  
Applied voltage  
VG  
-
-
20  
V
Power dissipation  
Operating temperature  
Storage temperature  
Output current  
Pd  
1450*1  
-40+85  
-55+150  
1300  
2200*2  
-40+85  
-55+150  
1300  
2200*2  
-40+85  
-55+150  
2500  
mW  
Topr  
Tstg  
Iout  
Tjmax  
mA  
Junction temperature  
150  
150  
150  
*1 Reduced by 11.6 mW/over 25, when mounted on a glass epoxy board (70 mm x 70 mm x 1.6 mm).  
*2 Reduced by 17.6 mW/over 25, when mounted on a glass epoxy board (70 mm x 70 mm x 1.6 mm).  
Line up matrix  
Ratings  
BA6664FM  
4.55.5  
3.014  
-
Parameter  
Symbol  
Unit  
BA6859AFP-Y  
4.55.5  
3.014  
-
BD6671FM  
4.55.5  
VCC  
VM  
V
V
V
Power supply voltage  
VG pin voltage  
4.013.2  
8.519  
VG  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
1/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
Electrical characteristics  
1) BA6859AFP-Y (Unless otherwise specified, Ta=25, VCC=5.0V, VM=12V)  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
<Total device>  
Circuit current 1  
ICC1  
ICC2  
0
0.2  
7.5  
mA  
mA  
PS=L  
PS=H  
Circuit current 2  
5.0  
<Power-saving >  
ON voltage range  
OFF voltage range  
<Hall bias>  
VPSON  
1.0  
V
V
Internal circuit OFF  
Internal circuit ON  
VPSOFF  
2.5  
Hall bias voltage  
VHB  
0.5  
0.9  
1.5  
V
IHB=10mA  
<Hall amp>  
Input bias current  
Same phase input voltage range  
Mini. input level  
IHA  
1.0  
50  
5
0.7  
3.0  
4.0  
µA  
V
VHAR  
VINH  
VHYS  
mVpp One side input level  
mV  
H3 hysteresis level  
<Torque Command >  
Input voltage range  
Offset voltage -  
20  
40  
EC, ECR  
ECOFF-  
ECOFF+  
ECIN  
0
-80  
20  
-50  
50  
5
-20  
80  
V
Linear range:0.53.3V  
ECR=1.9V  
mV  
mV  
µA  
Offset voltage +  
ECR=1.9V  
Input bias current  
I/O gain  
-3  
3
EC=ECR  
GEC  
0.56  
0.70  
0.84  
A/V  
EC=1.2, 1.7V  
<FG>  
FG output high-level voltage  
FG output low-level voltage  
Duty (reference values)  
<Rotation Detection>  
FR output high-level voltage  
FR output low-level voltage  
<Output>  
VFGH  
VFGL  
DU  
4.5  
4.8  
0.25  
50  
0.4  
V
V
IFG=-20µA  
IFG=3.0mA  
%
VFRH  
VFRL  
4.1  
4.4  
V
V
IFR=-20µA  
IFR=3.0mA  
0.25  
0.4  
Output saturation high level voltage  
Output saturation low level voltage  
Pre-drive current  
VOH  
VOL  
IVML  
ITL  
1.0  
0.4  
35  
1.4  
0.7  
70  
V
V
IO=-600mA  
IO=600mA  
mA  
mA  
EC=0V output open  
Output limit current  
<Short brake >  
560  
700  
840  
ON voltage range  
OFF voltage range  
<Brake mode >  
VSBON  
2.5  
V
V
BR=0V  
BR=0V  
VSBOFF  
1.0  
ON voltage range  
OFF voltage range  
VBRON  
2.5  
V
V
EC>ECR, SB=Open  
EC>ECR, SB=Open  
VBROFF  
1.0  
Reference: Data  
10  
8
1.5  
1.5  
1.0  
0.5  
0.0  
85℃  
85℃  
1.0  
-40℃  
85℃  
25℃  
6
-40℃  
4
25℃  
25℃  
0.5  
2
-40℃  
0
0.0  
4.5  
5
5.5  
6
6.5  
7
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Output Current :IOL [A]  
Supply voltage :Vcc[v]  
Output Current :IOH[v]  
Fig.2 Output Saturation Voltage  
at High Level  
Fig.3 Output Saturation Voltage  
at Low Level  
Fig.1 Circuit Current 2  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
2/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
2) BA6664FM(Unless otherwise specified, Ta=25, VCC=5.0V, VM=12V)  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
<Total device>  
Circuit current 1  
ICC1  
ICC2  
0
0.2  
9.1  
mA  
mA  
PS=L, GSW=Open  
PS=H, GSW=Open  
Circuit current 2  
6.2  
<Power-saving >  
ON voltage range  
OFF voltage range  
<Hall bias>  
VPSON  
1.0  
V
V
Internal current circuit OFF  
Internal current circuit ON  
VPSOFF  
2.5  
Hall bias voltage  
VHB  
0.5  
0.9  
1.5  
V
IHB=10mA  
<Hall amp>  
Input bias current  
IHA  
1.0  
50  
5
0.7  
3.0  
4.0  
µA  
V
Same phase input voltage range  
Mini. input level  
VHAR  
VINH  
VHYS  
mVpp One side input level  
mV  
H3 hysteresis level  
<Torque Command >  
Input voltage range  
Offset voltage -  
20  
40  
EC, ECR  
ECOFF-  
ECOFF+  
ECIN  
0
-45  
45  
5
V
Linear range:0.53.3V  
ECR=1.65V, GSW=L  
ECR=1.65V, GSW=L  
EC=ECR  
-75  
15  
-15  
75  
mV  
mV  
µA  
Offset voltage +  
Input bias current  
-3  
3
I/O gain low-level  
GECL  
0.52  
1.04  
2.24  
0.65  
1.3  
2.8  
0.78  
1.56  
3.36  
A/V  
A/V  
A/V  
GSW=L,RNF=0.5Ω  
GSW=OPEN,RNF=0.5Ω  
GSW=H,RNF=0.5Ω  
I/O gain medium-level  
I/O gain high-level  
<FG>  
GECM  
GECH  
FG output high-level voltage  
FG output low-level voltage  
<FG2>  
VFGH  
VFGL  
4.5  
4.8  
0.2  
V
V
IFG=-20µA  
IFG=3.0mA  
0.4  
FG output high-level voltage  
FG output low-level voltage  
<Rotation Detection>  
FR output high-level voltage  
FR output low-level voltage  
<Output>  
VFG2H  
VFG2L  
4.6  
4.9  
0.2  
V
V
IFG2=-20µA  
IFG2=3mA  
0.4  
VFRH  
VFRL  
4.1  
4.4  
0.2  
V
V
IFR=-20µA  
IFR=3.0mA  
0.4  
Output saturation high-level voltage  
Output saturation low-level voltage  
Pre-drive current  
VOH  
VOL  
IVML  
ITL  
1.0  
0.4  
35  
1.35  
0.65  
70  
V
V
IOUT=-600mA  
IOUT=600mA  
mA  
mA  
EC=0V output open  
Output limit current  
<Short brake >  
560  
700  
840  
ON voltage range  
OFF voltage range  
<Brake mode >  
VSBON  
2.5  
V
V
BR=0V  
BR=0V  
VSBOFF  
1.0  
ON voltage range  
OFF voltage range  
<Gain switching >  
Low voltage range  
High voltage range  
OPEN voltage  
VBRON  
2.5  
V
V
EC>ECR, SB=Open  
EC>ECR, SB=Open  
VBROFF  
1.0  
VGSWL  
VGSWH  
VGSWOP  
3.0  
1.0  
V
V
V
2.0  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
3/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
3) BD6671FM (Unless otherwise specified, Ta=25, VCC=5.0V, VM=12V)  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
<Total device>  
Circuit current 1  
Circuit current 2  
ICC1  
ICC2  
100  
14  
200  
20  
µA  
PS=L, GSW=Open  
PS=H, GSW=Open  
8
mA  
<Power-saving >  
ON voltage range  
OFF voltage range  
<Hall bias>  
VPSON  
1.0  
V
V
Internal current circuit OFF  
Internal current circuit ON  
VPSOFF  
2.5  
Hall bias voltage  
<Hall amp>  
VHB  
0.7  
1.0  
1.3  
V
V
IHB=10mA  
Same phase input voltage range  
Mini. input level  
VHAR  
VINH  
1.4  
100  
5
3.6  
40  
-5  
mVpp Both side input level  
Hall hysteresis level +  
Hall hysteresis level -  
<Gain switching >  
Low voltage range  
High voltage range  
OPEN voltage range  
<Torque Command >  
Input voltage range  
Offset voltage +  
VHYS+  
VHYS-  
20  
-20  
mV  
mV  
-40  
VGSWL  
VGSWH  
VGSWOP  
2.0  
0.6  
V
V
V
1.3  
EC, ECR  
ECOFF+  
ECOFF-  
ECIN  
0
5
V
Linear range: 0.53.0V  
GSW=M  
5
50  
100  
5
mV  
mV  
µA  
Offset voltage -  
-100  
-11  
-50  
GSW=M  
Input current  
-2.5  
0.35  
0.70  
1.40  
0
EC=ECR=1.65V  
GSW=L  
I/O gain low-level  
I/O gain medium-level  
I/O gain high-level  
<Output>  
GECL  
0.28  
0.56  
1.12  
0.42  
0.84  
1.68  
A/V  
A/V  
A/V  
GECM  
GECH  
GSW=M  
GSW=H  
IOUT=±600mA  
(upper + lower side)  
Output ON resistance  
RON  
1.0  
1.35  
Ω
Output limit current low-level  
Output limit current medium-level  
Output limit current high-level  
<FG/FG3 output >  
ITLL  
ITLM  
ITLH  
340  
680  
400  
800  
460  
920  
mA  
mA  
mA  
GSW=L  
GSW=M  
GSW=H  
1020  
1200  
1380  
High level voltage  
VFGH  
VFGL  
4.6  
V
V
IFG=-100µA  
IFG=+100µA  
Low level voltage  
0.4  
<Booster voltage >  
VCC= 5V,VM=12V  
CP1=CP2=0.1µF  
Charge pump output voltage  
VPUMP  
12.5  
17  
19  
V
<CP1 output >  
Upper side saturation voltage  
Lower side saturation voltage  
<CP2 output >  
VCP1H  
VCP1L  
0.25  
0.2  
0.45  
0.4  
0.65  
0.6  
V
V
ICP1=-4mA  
ICP1=+4mA  
Upper side saturation voltage  
Lower side saturation voltage  
VCP2H  
VCP2L  
0.4  
0.6  
0.8  
V
V
ICP2=-4mA  
ICP2=+4mA  
0.15  
0.35  
0.55  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
4/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
Block Diagram, application Circuit Diagram and Pin Function  
1)BA6859AFP-Y  
Fig.4 BA6859AFP-Y Block Diagram  
BA6859AFP-Y Pin Function Table  
Pin No. Pin name  
Function  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
N.C.  
N.C.  
N.C.  
A3  
A2  
A1  
GND  
H1+  
H1-  
H2+  
H2-  
H3+  
H3-  
VH  
N.C.  
N.C.  
N.C.  
Output pin  
Output pin  
Output pin  
GND pin  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall bias input pin  
Pd (W)  
2.0  
1.45  
1.0  
BR  
Brake mode selection pin  
Capacitor connection pin for phase  
compensation  
16  
CNF  
0
25  
50  
75 85 100  
125  
150  
Ta()  
17  
18  
19  
20  
21  
22  
23  
24  
SB  
FR  
ECR  
EC  
PS  
FG  
Short brake pin  
Rotation detection pin  
Output voltage control reference pin  
Output voltage control pin  
Power-saving pin  
FG signal output pin  
Power supply pin  
Motor power supply pin  
Resistance connection pin for output  
current detection  
Fig.5 Power Dissipation Reduction (BA6859AFP-Y)  
*
Reduced by 11.6 mW/over 25, when mounted on a glass epoxy  
board (70 mm x 70 mm x 1.6 mm).  
VCC  
VM  
25  
RNF  
FIN  
FIN  
GND  
www.rohm.com  
2010.06 - Rev.A  
5/17  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
2)BA6664FM  
Torque limit current and I/O gain settings are made by  
the RNF resistance value.  
Output to the motor will be opened at a chip tempe  
175°C (Typ.). Do not use the IC in excess of a chip  
rature of temperature of 150°C.  
Resistance of 0.4 to 1.0Ωis recommended.  
0.5Ω  
RNF  
Capacitor for noise level mitigation.  
The recommended value is 0.47 µF to 10 µF.  
28  
27  
26  
RNF  
VM  
DRIVER  
GSW  
+
-
1µF  
A3  
A2  
TSD  
VM  
GAIN  
SWITCH  
2
VCC  
I/O gain  
GAIN  
CONTROL  
25  
+
-
VCC  
1µF  
4
CURRENT  
SENSE AMP  
Speed detection is attained by FG signal output.  
A1  
+
-
FG  
PS  
TL  
24  
23  
7
8
The power saving mode is turned ON by low-level voltage,  
and the circuit current and motor output will stop.  
HALL AMP  
PS  
GND  
+
-
TORQUE  
SENSE AMP  
EC  
SERVO  
SIGNAL  
22  
H1+  
The motor torque current is controllable.  
+
-
ECR  
FR  
9
21  
20  
If the ECR voltage is set between 1.6 and 2.2V, the  
maximum torque limit current will be obtained.  
-
H1  
Hall1  
Hall1  
VCC  
VCC  
+
-
10  
H2+  
The detection of motor rotation direction is possible.  
FG2  
SB  
+
-
11  
19  
18  
R
H2-  
D
Q
Q
The short brake is operated regardless of brake mode settings.  
SHORT BRAKE  
CK  
+
-
12  
H3+  
CNF  
Connect a capacitor for phase compensation.  
The recommended value is 0.1µF.  
17  
+
-
13  
0.1µF  
BR  
VH  
Hall1  
-
H3  
BRAKE MODE  
Hall Bias  
FIN  
16  
15  
14  
Short brake and reversed brake settings are possible.  
500Ω  
500Ω  
Resistor for setting Hall input level  
.
The recommended value is 200 Ωto 1k Ω.  
Output will be open when the reverse rotation of the motor is  
detected.  
Fig.6 BA6664FM Block Diagram  
BA6664FM Pin Function Table  
Pin No. Pin name  
Function  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
N.C.  
A3  
N.C.  
A2  
N.C  
N.C.  
A1  
GND  
H1+  
H1-  
H2+  
H2-  
H3+  
H3-  
VH  
N.C.  
Output pin  
N.C.  
Output pin  
N.C.  
N.C.  
Output pin  
GND pin  
Pd[W]  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall bias input pin  
Hall bias input pin  
2.2  
2.0  
BR  
Brake mode pin  
Capacitor connection pin for phase  
compensation  
17  
CNF  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SB  
FG2  
FR  
ECR  
EC  
PS  
FG  
VCC  
GSW  
VM  
Short brake pin  
1.0  
FG 3-phase component output pin  
Rotation detection pin  
Output voltage control reference pin  
Output voltage control pin  
Power-saving pin  
FG signal output pin  
Power supply pin  
Gain switching pin  
0
25  
50  
75 85 100  
125  
150  
Ta()  
Fig.7 Power Dissipation Reduction (BA6664FMBD6671FM)  
*Reduced by 11.6 mW/over 25, when mounted on a glass epoxy board  
(70 mm x 70 mm x 1.6 mm).  
Motor power supply pin  
Resistance connection pin for output  
current detection  
28  
RNF  
FIN  
FIN  
GND  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
6/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
3)BD6671FM  
EXOR  
200Ω  
Hall comp  
H1+  
FG3  
FG  
PWM  
Comp  
H1  
H1-  
H2+  
H2-  
H3+  
+
-
1000pF  
Hall Amp  
VH  
Hall  
bias  
H2  
VM  
2
+
-
1000pF  
TSD  
A1  
H3  
H3  
-
RNF  
A2  
0.5Ω  
1000pF  
+
-
U-Pre  
Driver  
200Ω  
Vcc  
GSW  
FIN  
FIN  
Matrix  
Gain  
control  
Driver  
OSC  
L-Pre  
Driver  
GND  
CP1  
CP2  
VG  
RNF1  
A3  
Charge  
Pump  
0.1 µ F  
0.1 µF  
10kΩ  
RNF2  
PS  
UVLO  
0.01µF  
Vcc  
PS  
Torque  
CNF  
EC  
AMP  
0.047µF  
Vcc  
Current Limit Comp  
servo  
signal  
MODE  
Vcc  
ECR  
VM  
Matrix  
1.65V  
Current  
Sense AMP  
10µF  
CL  
100µF  
D
CK  
Q
1  
REVERSE  
DETECT  
QB  
1 Set capacitor between VM and GND, close as possible to the IC.  
2 To prevent from concentration of current routes, make the wiring  
impedance values from the power supply equal as possible.  
Fig.8 BD6671FM Block Diagram  
BD6671FM Pin Function  
Pin No Pin name  
Function  
Pin No Pin name  
Function  
Motor power supply pin  
Output voltage control reference pin  
Output voltage control pin  
Power-saving pin  
1
2
3
4
H1+  
H1-  
H2+  
H2-  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
Hall signal input pin  
15  
16  
17  
18  
VM  
ECR  
EC  
PS  
Resistance connection pin for output  
current detection  
5
6
7
8
9
H3+  
H3-  
Hall signal input pin  
Hall signal input pin  
19  
20  
21  
22  
23  
RNF2  
A3  
Output pin  
Resistance connection pin for output  
current detection  
GSW Gain switching pin  
RNF1  
A2  
GND  
CP1  
GND  
Output pin  
Charge pump capacity connection  
pin 1  
Resistance connection for output  
current  
RNF1  
Charge pump capacity connection  
pin 2  
Charge pump output pin  
10  
11  
12  
CP2  
VG  
24  
25  
26  
A1  
VM  
VH  
Output pin  
Motor power supply pin  
Hall bias pin  
Capacitor connection pin for phase  
compensation  
CNF  
13  
14  
MODE Brake mode switching pin  
VCC Power supply pin  
27  
28  
FG  
FG3  
FIN  
FG Output pin  
FG3 Output pin  
GND  
FIN  
*Heat radiation FIN: GND  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
7/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
I/O logic  
1)BA6859AFP-Y  
Output conditions  
Forward rotation Reverse rotation  
Input conditions  
Pin. No  
8
9
10  
11  
12  
13  
6
5
4
6
5
4
H1  
+
H1  
-
H2  
+
H2  
-
H3  
+
H3  
-
A1  
A2  
A3  
A1  
A2  
A3  
1
2
3
4
5
6
L
H
M
M
H
L
M
M
M
M
M
M
H
L
M
M
M
M
M
M
M
M
H
L
M
M
M
M
M
M
H
L
L
H
H
L
L
H
L
L
H
H
L
H
L
H
L
Input voltage  
Hi=2.6V  
Mid=2.5V  
Low=2.4V  
L
L
L
H
L
H
M
M
H
L
H
H
L
H
H
L
L
L
H
L
L
H
H
H
H
Note: Forward rotation EC<ECR  
Reverse rotation EC>ECR  
2)BA6664FM  
Output conditions  
Forward rotation Reverse rotation  
Input conditions  
Pin. No  
9
10  
11  
12  
13  
14  
7
4
2
7
4
2
H1  
+
H1  
-
H2  
+
H2  
-
H3  
+
H3  
-
A1  
A2  
A3  
A1  
A2  
A3  
1
2
3
4
5
6
L
H
M
M
H
L
M
M
M
M
M
M
H
L
M
M
M
M
M
M
M
M
H
L
M
M
M
M
M
M
H
L
L
H
H
L
L
H
L
L
H
H
L
H
L
H
L
Input voltage  
Hi=2.6V  
Mid=2.5V  
Low=2.4V  
L
L
L
H
L
H
M
M
H
L
H
H
L
H
H
L
L
L
H
L
L
H
H
H
H
Note: Forward rotation EC<ECR  
Reverse rotation EC>ECR  
3)BD6671FM  
Output conditions  
Reverse rotation Reverse rotation  
Input conditions  
Forward rotation  
24 22 20  
A1 A2 A3  
(MODE=L)  
(MODE=H)  
Pin. No  
1
2
3
4
5
6
24  
22  
20  
24  
22  
20  
H1 H1 H2 H2 H3 H3  
A1 A2 A3  
A1 A2 A3  
+
-
+
-
+
-
1
2
3
4
5
6
L
M
H
M
M
M
H
L
L
H
H
L
L
H
L
L
H
H
L
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Input voltage  
Hi=2.6V  
H
M
M
H
L
M
M
M
M
M
L
L
M
M
M
M
M
M
H
L
M
M
M
M
M
Mid=2.5V  
Low=2.4V  
L
L
H
L
H
M
M
H
L
H
H
L
H
H
L
L
L
H
L
L
H
H
H
H
Note: Forward rotation EC<ECR  
Reverse rotation EC>ECR  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
8/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
I/O Timing Chart  
1) BA6859AFP-Y, BA6664FM  
H1+  
H 2+  
H 3+  
30°  
A1  
Output current  
H1 - + H2+  
A1  
Output current  
A 2  
Output current  
H2 - + H3+  
A2  
Output current  
A 3  
Output current  
H3 - + H1+  
A3  
Output current  
Fig. 9  
2) BD6671FM  
H1+  
H2+  
H3+  
30°  
A1 Output current  
A1 Output voltage  
A2 Output voltage  
A2 Output current  
Fig. 10  
www.rohm.com  
2010.06 - Rev.A  
9/17  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
I/O Circuit  
1)BA6859AFP-Y  
(1) Power saving (pin 21)  
(6) FG output (pin 22)  
VCC  
15KΩ  
21  
10KΩ  
10kΩ  
22  
(2) Torque command input (pin 19, pin 20)  
(7) FR output (pin 18)  
1kΩ  
1kΩ  
19  
20  
30kΩ  
18  
(3) Coil output (A1: pin 6, A2: pin 5, A3: pin 4)  
VM  
External RNF Register  
RNF  
(8) Short brake (17 pin)  
10kΩ  
500Ω  
500Ω  
13kΩ  
17  
6
5
4
1kΩ  
5kΩ  
12kΩ  
GND  
(4) Hall input (H1+ : 8 pin, H1- : 9 pin, H2+ : 10 pin,  
H2- : 11 pin, H3+ : 12 pin, H3- : 13 pin)  
1KΩ  
1KΩ  
(9) Brake mode (15 pin)  
15kΩ  
15  
(5) Hall bias(14 pin)  
14  
10kΩ  
100KΩ  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
10/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
2)BA6664FM  
(1) Power saving (23 pin)  
(7) FG output (19 pin)  
VCC  
15KΩ  
23  
5kΩ  
10KΩ  
19  
(2) Torque command input (21 pin, 22 pin)  
(8) FR output (20 pin)  
VCC  
1kΩ  
1kΩ  
21  
22  
30kΩ  
20  
(3) Coil output (A1 : 7 pin, A2 : 4 pin, A3 : 2 pin)  
VM  
External RNFRegister  
RNF  
(9) Short Brake mode (18 pin)  
7
4
2
10kΩ  
500Ω  
500Ω  
13kΩ  
18  
1kΩ  
5kΩ  
12kΩ  
(4) Hall input (H1+ : 9 pin, H1- : 10 pin, H2+ : 11 pin,  
H2- : 12 pin, H3+ : 13 pin, H3- : 14 pin)  
1KΩ  
1KΩ  
(10)Brake mode (16 pin)  
16  
15kΩ  
(5) Hall bias (15 pin)  
15  
10kΩ  
(11) Gain switch (26 pin)  
100KΩ  
100KΩ  
(6) FG output (24 pin)  
VCC  
5KΩ  
5KΩ  
1KΩ  
26  
30KΩ  
10kΩ  
56KΩ  
24  
www.rohm.com  
2010.06 - Rev.A  
11/17  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
3)BD6671FM  
(1) Hall input (H1 : 1 pin, H1-: 2 pin, H2+ : 3 pin,  
H2- : 4 pin, H3+ : 5 pin, H3- : 6 pin)  
(6) Brake mode selection pin (13 pin)  
VCC  
VCC  
VCC  
Hn-  
30KΩ  
20KΩ  
13  
Hn+  
1KΩ  
1KΩ  
1KΩ  
1KΩ  
25KΩ  
(2) Gain switch (7pin)  
VCC  
(7) Torque amp (ECR : 16 pin, EC : 17 pin)  
VCC  
VCC  
100KΩ  
1KΩ  
75KΩ  
7
10KΩ  
10KΩ  
16,17  
1KΩ  
25KΩ  
(3)CP1 output (9pin)  
VCC VCC  
(8) Power saving (18 pin)  
VCC  
(9)RNF2(19 pin)  
VCC  
30KΩ  
710Ω  
18  
9
50Ω  
1KΩ  
19  
20KΩ  
(4) CP2 / VG output (CP2 : 10 pin, VG : 11 pin)  
(10) Output pin (A1 : 24 pin, A2 : 22 pin, A3 : 20 pin)  
VM  
50Ω  
11  
VM  
50Ω  
24  
22  
20  
10  
RNF1  
(5) CNF pin (12 pin)  
VCC  
(11) Hall bias (26 pin)  
(12) FG / FG3 output (FG : 27 pin, FG3 : 28 pin)  
VCC  
VCC  
VCC  
50Ω  
12  
27,28  
50Ω  
26  
2KΩ  
100KΩ  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
12/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
Operation Explanation  
Torque Command  
Rotation direction  
Forward  
EC<ECR  
EC>ECR  
Reverse*  
*Stops after detecting reverse rotation  
The I/O gain GEC from the EC pin to the RNF pin (output current) is determined  
by the RNF detection resistor.  
(BA6859AFP-Y)  
Forward  
Offset voltage -  
Offset voltage +  
RNF  
[V]  
G
EC=0.35/RNF [A/V] ・・・・・(1)  
(BA6664FM)  
GECL=0.325/RNF [A/V] (GSW=L)  
GECM=0.60/RNF [A/V] (GSW=OPEN)  
3mV  
G
ECH=1.4/RNF [A/V] (GSW=H)  
(BD6671FM)  
GECL=0.175/RNF [A/V] (GSW=L)  
GECM=0.35/RNF [A/V] (GSW=M)  
EC[V]  
1.65(ECR)  
Fig.11  
G
ECH=0.70/RNF [A/V] (GSW=H)  
The following torque limit current ITL is obtained (BA6859AFP-Y, BA6664FM)  
ITL=0.35/RNF [A]・・・・・・・・・・・・・・・・・・・(2)  
(BD6671FM)  
ITLL=0.2/RNF [A] (GSW=L)  
ITLM=0.4/RNF [A] (GSW=M)  
I
TLH=0.6/RNF [A] (GSW=H)  
The value will become smaller than the computed value due to the wiring  
capacity and other factors, if the RNF resistance is 0.5Ωor below.  
Set-up of Motor Rotation Direction and Voltage Range of Torque Control Reference Terminal.  
The motor rotation direction determined by the torque control terminal voltage EC and the torque control reference terminal  
voltage ECR  
Torque control input voltage  
EC<ECR  
Rotation direction  
Forward torque  
Reverse torque  
EC>ECR  
Io  
Forward torque  
Reverse torque  
ITL  
0.5  
2.5 3.3  
Fig.12  
5.0  
EC[V]  
The relation between the input gain and torque limit current expressed as (1) and (2) discussed previously is only valid  
when EC and ECR are within a range from 0.5V to 3.3V. Depending on how the torque control reference terminal voltage,  
ECR is specified, there may be a case when the output current for the motor does not go up to the torque limit value.  
Please be aware of this voltage range when specifying the ECR voltage.  
For BA6859AFP-Y, BA6664FM and BD6671FM, 1.6V2.2V is recommended.  
If above conditions are understood, the voltage input range to the EC and ECR terminals can be from 0V to VCC.  
Power Saving  
The input circuit specified in I/O circuit 1) BA6859AFP-Y (1) is used for power saving input.  
The power saving pin has a temperature characteristic of approximately –5 mV/and also the built-in resistors has a dispersion of 30%.  
Keep the input voltage range in mind.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
13/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
Reverse Rotation Detection Function  
Actual motor rotation at reverse detection  
D-FF  
EC < ECR: Forward torque (forward rotation)  
H2+  
H2-  
+
-
Q
D
H3+  
H3-  
+
-
EC > ECR: Deceleration (forward rotation)  
CK  
H:OUTPUT.OPEN  
When the motor rotates in the reverse direction, the reverse rotation  
detection function will operate and the output will be in an open state.  
+
-
EC  
ECR  
(HIGH-IMPEDANCE)  
Fig.13  
The motor rotates in a reverse direction with inertial force.  
Stop  
Fig. 13 shows the construction of the reverse rotation detection circuit.  
Forward rotation (EC<ECR)  
Fig. 9 shows the phase relation of the H2+ and H3+ Hall input signals,  
in which case the reverse rotation detection circuit will not work.  
Reverse rotation (EC>ECR)  
The phase relation of the H2+ and H3+ signals are opposite to that when the motor is rotating in the forward direction.  
Therefore, the reverse rotation detection circuit operates, and the output is turned off and open.  
FR Signal Output (BA6859AFP-Y, BA6664FM)  
FR output signal pin outputs the FR signal of low(L) or high(H) after detecting the motor rotation direction.  
Motor rotation direction  
Forward  
FR signal output  
“H”  
“L”  
Reverse  
Brake Mode Change (BA6664FM, BD6671FM)  
By applying high-level voltage to the BR pin, the brake mode for the following condition can be changed: EC > ECR.  
EC<ECR  
EC>ECR  
Reverse rotation brake  
Short brake  
L
Forward rotation  
Forward rotation  
BR  
H
When the BR pin is set to high level and used in short-brake mode, open the SB pin.  
The BR pin has a temperature characteristics of approximately -5 mV/. Use the BR pin within the permissible input range.  
Short Brake (BA6859AFP-Y, BA6664FM)  
OFF  
ON  
OFF  
OFF  
When the short-brake pin is set to high level, as shown in Fig.18, the output  
transistor (3-phase) on the high side will be turned off and the output transistor  
(3-phase) on the low side will be turned on. The short brake pin has a  
temperature characteristic of approximately -5 mV/. Keep the input voltage  
range (see Fig12) in mind.  
A
A
ON  
O
A
ON  
MOTOR  
Fig.14  
Hall Input  
The Hall element allows both serial and parallel connections.  
Set the Hall input voltage between 1.0 and 4.0 V. Compute the  
VCC  
VCC  
resistance between the VH and VCC pins in consideration of the  
flowing current of the Hall device.  
H1  
H2  
H3  
H3  
H2  
H1  
15-pin (Hall Bias)  
Parallel Connection  
15-pin (Hall Bias)  
Serial Connection  
Fig.15  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
14/17  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
FG Signal Output / FG2 Signal Output  
The FG signal output/FG2 signal output terminals are for detecting the motor rotation speed. The output frequency of FG2  
signal is three times higher than the FG frequency signal output. So, it is suitable for the slow speed rotation detection.  
However, due to the Hall device variation and other reasons, the duty cycle may not reach 50% in some instances.  
H1  
H1+  
H1-  
+
-
H2  
H3  
H2+  
+
-
FG2  
FG  
H2-  
+
-
H3+  
H3-  
Fig. 16  
H1 waveform  
H2 waveform  
H3 waveform  
FG waveform  
FG2 waveform  
Fig. 17  
Notes for use  
(1) Absolute maximum ratings  
This product is subject to a strict quality management regime during its manufacture. However, damage may result if  
absolute maximum ratings such as applied voltage and operating temperature range are exceeded. Assumptions should  
not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety  
measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum  
ratings may be exceeded is anticipated.  
(2) Connecting the power supply connector backward  
Connecting the power supply connector backwards may result in damage to the IC. Insert external diodes between the  
power supply and the IC's power supply pins as well as the motor coil to protect against damage from backward  
connections.  
(3) Power supply lines  
As return of current regenerated by back electromotive force of motor happens, take steps such as putting capacitor  
between power source and GND as an electric pathway for the regenerated current. Be sure that there is no problem with  
each property such as emptied capacity at lower temperature regarding electrolytic capacitor to decide capacity value. If  
the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the  
voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the  
absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage  
clamp diode between the power supply and GND pins.  
(4) GND potential  
Ensure a minimum GND pin potential in all operating conditions.  
(5) Setting of heat  
Take the power dissipation Pd) into account for practical application and make thermal design with sufficiently margined.  
(6) Pin short and mistake fitting  
Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result  
in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pins caused by  
the presence of a foreign object may result in damage to the IC.  
(7) Actions in strong magnetic field  
Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.  
www.rohm.com  
2010.06 - Rev.A  
15/17  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
(8) ASO  
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.  
(9) Thermal shutdown circuit (TSD)  
This IC incorporates a TSD circuit. If the chip becomes the following temperature, coil output to the motor will be open.  
The TSD circuit is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the  
IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment  
where the operation of the TSD circuit is assumed.  
TSD ON temperature [] (typ.)  
Hysteresis temperature [] (typ.)  
BA6859AFP-Y  
BA6664FM  
175  
175  
170  
25  
15  
25  
BD6671FM  
(10) Regarding input pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of  
parasitic elements.  
For example, when the resistors and transistors are connected to the pins as shown in Fig. 18,  
the P/N junction functions as a parasitic diode  
when GND > (Pin A) for the resistor or GND > (Pin B) for the transistor (NPN).  
Similarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described above combines  
with the N layer of other adjacent elements to operate as a parasitic NPN transistor.  
The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result  
of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC  
malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will  
trigger the operation of parasitic elements, such as by the application of voltages lower than the GND (P substrate)  
voltage to input pins.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
C
Pin A  
E
B
C
E
P+  
P+  
P+  
P+  
N
N
N
P
N
N
N
P
Parasitic  
element  
Parasitic  
element  
P substrate  
P substrate  
GND  
GND  
GND  
Parasitic element  
GND  
Other adjacent  
elements  
Parasitic element  
Fig.18 Example of IC structure  
(11) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress.  
Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure,  
and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to  
or removing it from a jig or fixture during the inspection process.  
(12) Ground Wiring Pattern  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns,  
placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage  
variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change  
the GND wiring pattern of any external parts, either.  
www.rohm.com  
2010.06 - Rev.A  
16/17  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA6859AFP-Y,BA6664FM,BD6671FM  
Ordering part number  
B
A
6
6
6
4
F
M
-
E
2
Part No.  
BA  
Part No.  
6859A  
6664  
Package  
FP-Y : HSOP25  
FM : HSOP-M28  
Packaging and forming specification  
E2: Embossed tape and reel  
BD  
6671  
HSOP25  
<Tape and Reel information>  
13.6 0.2  
(MAX 13.95 include BURR)  
Tape  
Embossed carrier tape  
2000pcs  
Quantity  
2.75 0.1  
25  
14  
13  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
0.25 0.1  
(Unit : mm)  
+6°  
1.95 0.1  
S
0.1  
S
0.8  
0.36 0.1  
12.0 0.2  
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
HSOP-M28  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
18.5 0.2  
(MAX 18.85 include BURR)  
Quantity  
1500pcs  
4°  
4°  
28  
15  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
14  
1
1.25  
5.15 0.1  
+0.1  
0.05  
0.27  
S
0.37 0.1  
0.8  
0.1  
S
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.06 - Rev.A  
17/17  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA6859AFP-Y_10

1ch Spindle Motor Driver ICs
ROHM

BA6859AFS

Three-phase motor driver for CD-ROMs
ROHM

BA685B

Rechargeable lithium-ion battery – extreme performance
SAFT

BA6860FS

3-phase motor driver
ROHM

BA6862

3-phase motor driver(243.57 k)
ETC

BA6862FS

3-phase motor driver
ROHM

BA6868FM

Direct PWM pseudo-linear drive system
ROHM

BA6868FM-E1

Disk Drive Motor Controller, 1.8A, PDSO28, ROHS COMPLIANT, HSOP-28
ROHM

BA6868FM-E2

Disk Drive Motor Controller, 1.8A, PDSO28, ROHS COMPLIANT, HSOP-28
ROHM

BA6868FM_11

Silicon monolithic integrated circuits
ROHM

BA6870

3-phase motor driver
ROHM