BA2901YF-ME2 [ROHM]

Automotive Ground Sense Comparators;
BA2901YF-ME2
型号: BA2901YF-ME2
厂家: ROHM    ROHM
描述:

Automotive Ground Sense Comparators

文件: 总27页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Comparator series  
Automotive  
Ground Sense Comparators  
BA2903Yxxx-M, BA2901Yxx-M  
General Description  
Key Specifications  
Automotive series BA2903Yxxx-M/BA2901Yxx-M,  
integrate two or four independent high gain voltage  
comparator.  
Wide operating supply voltage  
single supply :  
+2.0V to +36V  
±1.0V to ±18V  
split supply :  
Some features are the wide operating voltage that is 2  
to 36V and low supply current. BA2903Yxxx-M,  
BA2901Yxx-M are manufactured for automotive  
requirements of car navigation system, car audio, etc.  
.
Very low supply current  
BA2903Yxxx-M  
0.6mA(Typ.)  
0.8mA(Typ.)  
50nA(Typ.)  
BA2901Yxx-M  
Low input bias current :  
Low input offset current :  
Operating temperature range :  
5nA(Typ.)  
-40to +125℃  
Features  
Operable with a single power supply  
Wide operating supply voltage  
Standard comparator pin-assignments  
Input and output are operable ground sense  
Internal ESD protection circuit  
Wide temperature range  
Packages  
SOP8  
W(Typ.) x D(Typ.) x H(Max.)  
5.00mm x 6.20mm x 1.71mm  
8.70mm x 6.20mm x 1.71mm  
3.00mm x 6.40mm x 1.35mm  
5.00mm x 6.40mm x 1.35mm  
2.90mm x 4.00mm x 0.90mm  
SOP14  
SSOP-B8  
SSOP-B14  
MSOP8  
Selection Guide  
Maximum Operating Temperature  
+125℃  
Supply Current  
BA2903YF-M  
BA2903YFV-M  
BA2903YFVM-M  
Automotive  
Dual  
0.6mA  
BA2901YF-M  
BA2901YFV-M  
Quad  
0.8mA  
Block Diagram  
VCC  
VOUT  
+IN  
-IN  
VEE  
Fig.1 Simplified schematic (one channel only)  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211114001  
1/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Pin Configuration  
(Top View)  
(Top View)  
14  
1
2
3
4
5
OUT3  
OUT2  
OUT1  
OUT1  
1
VCC  
13 OUT4  
8
7
6
5
12  
VEE  
VCC  
- IN1  
+IN1  
- IN2  
+IN2  
CH1  
- IN1  
2
OUT2  
- IN2  
CH1  
11  
CH4  
CH3  
+IN4  
10  
+IN1  
VEE  
3
4
- IN4  
CH2  
6
7
9
8
+IN3  
- IN3  
CH2  
+ IN2  
SSOP-B8  
MSOP8  
SOP14  
SOP8  
SSOP-B14  
Package  
MSOP8  
SOP8  
BA2903YF-M  
SSOP-B8  
SOP14  
BA2901YF-M  
SSOP-B14  
BA2903YFV-M  
BA2903YFVM-M  
BA2901YFV-M  
Ordering Information  
B
A
2
9
0
x
Y
x
x
x
-
M x x  
Package  
Part Number  
BA2903Yxxx  
BA2901Yxx  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/  
SSOP-B8/SSOP-B14)  
TR: Embossed tape and reel  
(MSOP8)  
F
: SOP8  
SOP14  
FV : SSOP-B8  
: SSOP-B14  
FVM : MSOP8  
M: Automotive (car navigation  
system, car audio, etc.)  
Line-up  
Operating  
Supply  
Voltage  
Orderable  
Part Number  
Topr  
Dual/Quad  
Package  
SOP8  
Reel of 2500 BA2903YF-ME2  
Reel of 2500 BA2903YFV-ME2  
Reel of 3000 BA2903YFVM-MTR  
Reel of 2500 BA2901YF-ME2  
Reel of 2500 BA2901YFV-ME2  
Dual  
SSOP-B8  
MSOP8  
SOP14  
-40to +125℃  
+2.0V ~ +36V  
Quad  
SSOP-B14  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
2/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Absolute Maximum Ratings (Ta=25)  
Parameter  
Symbol  
Ratings  
Unit  
V
VCC-VEE  
SOP8  
+36  
7801*6  
Supply Voltage  
SSOP-B8  
MSOP8  
SOP14  
SSOP-B14  
Vid  
690*2*6  
5903*6  
610*4*6  
8705*6  
Power dissipation  
Pd  
mW  
Differential Input Voltage *7  
+36  
V
V
Input Common-mode Voltage Range  
Operating Temperature Range  
Storage Temperature Range  
Maximum junction Temperature  
Vicm  
(VEE-0.3) to (VEE+36)  
-40 to +125  
-55 to +150  
+150  
Topr  
Tstg  
Tjmax  
Note : Absolute maximum rating item indicates the condition which must not be exceeded.  
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause  
deterioration of characteristics.  
*1  
*2  
*3  
*4  
*5  
*6  
*7  
To use at temperature above Ta25reduce 6.2mW/.  
To use at temperature above Ta25reduce 5.5mW/.  
To use at temperature above Ta25reduce 4.8mW/.  
To use at temperature above Ta25reduce 4.9mW/.  
To use at temperature above Ta25reduce 7.0mW/.  
Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
3/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Electrical Characteristics  
BA2903Yxxx-M (Unless otherwise specified VCC=+5V, VEE=0V)  
Temperature  
range  
Limits  
Typ.  
2
-
5
-
Parameter  
Input Offset Voltage *8  
Input Offset Current *8  
Input Bias Current *8  
Symbol  
Vio  
Unit  
mV  
nA  
nA  
V
Conditions  
VOUT=1.4V  
Min.  
Max.  
7
15  
25℃  
Full range  
25℃  
Full range  
25℃  
Full range  
-
-
-
-
-
-
VCC=5 to 36V, VOUT=1.4V  
50  
Iio  
VOUT=1.4V  
200  
250  
500  
50  
-
Ib  
VOUT=1.4V  
-
Input Common-mode  
Voltage Range  
Vicm  
AV  
25℃  
0
-
VCC-1.5  
25℃  
Full range  
25℃  
88  
74  
-
100  
-
-
1
VCC=15V, VOUT=1.4 to 11.4V  
RL=15k, VRL=15V  
VOUT=open  
VOUT=open, VCC=36V  
VIN+=0V, VIN-=1V  
VOL=1.5V  
Large Signal Voltage Gain  
Supply Current  
dB  
-
0.6  
-
ICC  
IOL  
VOL  
mA  
mA  
mV  
Full range  
-
2.5  
Output Sink Current *9  
25℃  
6
16  
-
Output Saturation Voltage  
(Low level output voltage)  
25℃  
Full range  
-
-
150  
-
400  
700  
VIN+=0V, VIN-=1V  
IOL=4mA  
VIN+=1V, VIN-=0V  
VOH=5V  
VIN+=1V, VIN-=0V  
VOH=36V  
RL=5.1[kΩ],VRL=5[V],  
VIN=100[mVp-p],  
overdrive=5[mV]  
RL=5.1[kΩ],VRL=5[V],VIN=TTL  
Logic Swing, VREF=1.4[V]  
25℃  
-
-
0.1  
-
-
Output Leakage Current  
(High level output voltage)  
Ileak  
Tre  
μA  
μs  
Full range  
1
25℃  
-
-
1.3  
0.4  
-
-
Response Time  
Full range  
*8  
*9  
Absolute value  
Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
BA2901Yxx-M (Unless otherwise specified VCC=+5V, VEE=0V)  
Temperature  
range  
Limits  
Typ.  
2
-
5
-
Parameter  
Symbol  
Vio  
Unit  
mV  
nA  
nA  
V
Conditions  
VOUT=1.4V  
Min.  
Max.  
7
15  
25℃  
Full range  
25℃  
Full range  
25℃  
Full range  
-
-
-
-
-
-
Input Offset Voltage *10  
Input Offset Current *10  
Input Bias Current *10  
VCC=5 to 36V, VOUT=1.4V  
50  
Iio  
VOUT=1.4V  
200  
250  
500  
50  
-
Ib  
VOUT=1.4V  
-
Input Common-mode  
Voltage Range  
Vicm  
AV  
25℃  
0
-
VCC-1.5  
25℃  
Full range  
25℃  
88  
74  
-
100  
-
-
2
VCC=15V, VOUT=1.4 to 11.4V  
RL=15k, VRL=15V  
VOUT=open  
VOUT=open, VCC=36V  
VIN+=0V, VIN-=1V,  
VOL=1.5V  
Large Signal Voltage Gain  
Supply Current  
dB  
mA  
mA  
mV  
μA  
-
0.8  
-
ICC  
IOL  
VOL  
Ileak  
Full range  
-
2.5  
Output Sink Current *11  
25℃  
6
16  
-
Output Saturation Voltage  
(Low level output voltage)  
Output Leakage Current  
(High level output voltage)  
25℃  
Full range  
25℃  
-
-
-
-
150  
400  
700  
-
VIN+=0V, VIN-=1V  
IOL=4mA  
-
0.1  
-
VIN+=1V, VIN-=0V, VOH=5V  
Full range  
1
VIN+=1V, VIN-=0V, VOH=36V  
RL=5.1[kΩ],VRL=5[V],  
VIN=100[mVp-p],  
overdrive=5[mV]  
RL=5.1[kΩ],VRL=5[V],VIN=TTL  
Logic Swing, VREF=1.4[V]  
25℃  
-
-
1.3  
0.4  
-
-
Response Time  
Tre  
μs  
Full range  
*10 Absolute value  
*11 Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
4/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Description of electrical characteristics  
Described below are descriptions of the relevant electrical terms.  
Please note that item names, symbols, and their meanings may differ from those on another manufacturer’s documents.  
1.Absolute maximum ratings  
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration  
of electrical characteristics or damage to the part itself as well as peripheral components.  
1.1 Power supply voltage (VCC-VEE)  
Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals  
without causing deterioration of the electrical characteristics or destruction of the internal circuitry.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without  
damaging the IC.  
1.3 Input common-mode voltage range (Vicm)  
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing  
deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the  
input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of  
the electric characteristics instead.  
1.4 Operating and storage temperature ranges (Topr, Tstg)  
The operating temperature range indicates the temperature range within which the IC can operate. The higher the  
ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range  
of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.  
1.5 Power dissipation (Pd)  
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25).  
For packaged products, Pd is determined by maximum junction temperature and the thermal resistance.  
2.Electrical characteristics  
2.1 Input offset voltage (Vio)  
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input  
voltage difference required for setting the output voltage to 0V.  
2.2 Input offset current (Iio)  
Indicates the difference of the input bias current between the non-inverting and inverting terminals.  
2.3 Input bias current (Ib)  
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at  
the non-inverting terminal and the input bias current at the inverting terminal.  
2.4 Input common-mode voltage range (Vicm)  
Indicates the input voltage range under which the IC operates normally.  
2.5 Large signal voltage gain (AV)  
The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and  
inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.  
AV = (output voltage fluctuation) / (input offset fluctuation)  
2.6 Circuit current (ICC)  
Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.  
2.7 Output sink current (IOL)  
Denotes the maximum current that can be output under specific output conditions.  
2.8 Output saturation voltage low level output voltage (VOL)  
Signifies the voltage range that can be output under specific output conditions.  
2.9 Output leakage current, High level output current (Ileak)  
Indicates the current that flows into the IC under specific input and output conditions.  
2.10 Response time (Tre)  
The interval between the application of input and output conditions.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
TSZ2211115001  
5/24  
25.SEP.2012 Rev.001  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Typical Performance Curves  
BA2903Yxxx-M  
1000  
1. 6  
1. 4  
1. 2  
1. 0  
0. 8  
0. 6  
0. 4  
0. 2  
0. 0  
BA2903YF-M  
800  
BA2903YFV-M  
BA2903YFVM-M  
600  
400  
200  
0
-40℃  
25℃  
125℃  
0
10  
20  
30  
40  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.2  
Fig.3  
Derating Curve  
Supply Current – Supply Voltage  
1. 6  
1. 4  
1. 2  
1. 0  
0. 8  
0. 6  
0. 4  
0. 2  
0. 0  
200  
150  
100  
50  
125℃  
25℃  
-40℃  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.5  
Fig.4  
Maximum Output Voltage – Supply Voltage  
(IOL=4mA)  
Supply Current – Ambient  
Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
6/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2903Yxxx-M  
200  
2
1. 8  
1. 6  
1. 4  
1. 2  
1
150  
100  
125℃  
25℃  
0. 8  
0. 6  
0. 4  
0. 2  
0
50  
0
-40℃  
0
2
4
6
8
10 12 14 16 18 20  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
OUTPUT SINK CURRENT [mA]  
Fig.7  
Fig.6  
Maximum Output Voltage – Ambient Temperature  
(IOL=4mA)  
Output Voltage – Output Sink Current  
(VCC=5V)  
8
6
40  
30  
20  
10  
0
4
5V  
36V  
-40℃  
2
0
25℃  
125℃  
-2  
-4  
-6  
-8  
2V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.8  
Fig.9  
Output Sink Current – Ambient Temperature  
(VOUT=1.5V)  
Input Offset Voltage – Supply Voltage  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
7/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2903Yxxx-M  
8
6
160  
140  
120  
100  
80  
4
5V  
36V  
-40℃  
25℃  
2
0
2V  
-2  
60  
40  
-4  
-6  
-8  
125℃  
20  
0
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50  
75 100 125 150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.11  
Fig.10  
Input Bias Current – Supply Voltage  
Input Offset Voltage – Ambient  
Temperature  
160  
140  
120  
100  
80  
50  
40  
30  
20  
-40℃  
10  
36V  
0
-10  
-20  
-30  
-40  
-50  
60  
125℃  
25℃  
40  
5V  
2V  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.13  
Fig.12  
Input Offset Current – Supply Voltage  
Input Bias Current – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
8/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2903Yxxx-M  
50  
40  
30  
20  
140  
130  
120  
110  
100  
90  
125℃  
25℃  
2V  
5V  
10  
0
-40℃  
-10  
-20  
-30  
-40  
-50  
36V  
80  
70  
60  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.15  
Fig.14  
Input Offset Current  
– Ambient Temperature  
Large Signal Voltage Gain  
– Supply Voltage  
140  
160  
130  
120  
110  
100  
90  
140  
120  
100  
80  
36V  
125℃  
15V  
5V  
-40℃  
25℃  
80  
60  
70  
40  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.16  
Fig.17  
Large Signal Voltage Gain  
– Ambient Temperature  
Common Mode Rejection Ratio  
– Supply Voltage  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
9/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2903Yxxx-M  
6
4
150  
-40℃  
25℃  
125℃  
125  
36V  
2
100  
0
75  
5V  
2V  
-2  
-4  
-6  
50  
25  
0
-1  
0
1
2
3
4
5
-50 -25  
0
25  
50  
75 100 125 150  
INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.18  
Fig.19  
Common Mode Rejection Ratio  
– Ambient Temperature  
Input Offset Voltage – Input Voltage  
(VCC=5V)  
5
4
3
2
1
0
200  
180  
160  
140  
120  
100  
80  
125℃  
25℃  
-40℃  
60  
-100  
-80  
-60  
-40  
-20  
0
-50 -25  
0
25 50 75 100 125 150  
OVER DRIVEVOLTAGE [mV]  
AMBIENT TEMPERATURE []  
Fig.21  
Fig.20  
Response Time (Low to High) – Over Drive Voltage  
Power Supply Rejection Ratio  
– Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
10/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2903Yxxx-M  
10  
8
5
4
3
6
5mV overdrive  
20mV overdrive  
100mV overdrive  
2
1
0
4
125℃  
25℃  
-40℃  
2
0
-50 -25  
0
25 50 75 100 125 150  
0
20  
40  
60  
80  
100  
OVER DRIVE VOLTAGE [mV]  
AMBIENTTEMPERATURE[]  
Fig.22  
Response Time (Low to High)  
– Ambient Temperature (VCC=5V, VRL=5V,  
RL=5.1k)  
Fig.23  
Response Time (High to Low)  
– Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1k)  
10  
8
6
5mV overdrive  
20mV overdrive  
100mV overdrive  
4
2
0
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
Fig.24  
Response Time (High to Low)  
– Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
11/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2901Yxx-M  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
800  
BA2901YFV-M  
600  
400  
200  
0
BA2901YF-M  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.25  
Derating Curve  
Fig.26  
Supply Current – Supply Voltage  
2.0  
200  
150  
100  
50  
1.5  
1.0  
0.5  
0.0  
125℃  
25℃  
-40℃  
0
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.27  
Fig.28  
Maximum Output Voltage – Supply Voltage  
(IOL=4mA)  
Supply Current – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
12/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2901Yxx-M  
200  
2
1. 8  
1. 6  
1. 4  
1. 2  
1
150  
100  
125℃  
25℃  
0. 8  
0. 6  
0. 4  
0. 2  
0
50  
0
-40℃  
0
2
4
6
8
10 12 14 16 18 20  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
OUTPUT SINK CURRENT [mA]  
Fig.30  
Fig.29  
Maximum Output Voltage – Ambient Temperature  
(IOL=4mA)  
Output Voltage – Output Sink Current  
(VCC=5V)  
8
6
40  
30  
20  
10  
0
4
5V  
36V  
-40℃  
2
0
25℃  
125℃  
-2  
-4  
-6  
-8  
2V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.31  
Output Sink Current – Ambient Temperature  
(VOUT=1.5V)  
Fig.32  
Input Offset Voltage – Supply Voltage  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
13/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2901Yxx-M  
8
6
160  
140  
120  
100  
80  
4
5V  
36V  
-40℃  
25℃  
2
0
2V  
-2  
60  
40  
-4  
-6  
-8  
125℃  
20  
0
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50  
75 100 125 150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.33  
Fig.34  
Input Offset Voltage – Ambient  
Temperature  
Input Bias Current – Supply Voltage  
160  
140  
120  
100  
80  
50  
40  
30  
20  
-40℃  
10  
36V  
0
-10  
-20  
-30  
-40  
-50  
60  
125℃  
25℃  
40  
5V  
2V  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]  
Fig.36  
Fig.35  
Input Offset Current – Supply Voltage  
Input Bias Current – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
14/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2901Yxx-M  
50  
40  
30  
20  
140  
130  
120  
110  
100  
90  
125℃  
25℃  
2V  
5V  
10  
0
-40℃  
-10  
-20  
-30  
-40  
-50  
36V  
80  
70  
60  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE [  
]  
SUPPLY VOLTAGE [V]  
Fig.37  
Fig.38  
Input Offset Current  
– Ambient Temperature  
Large Signal Voltage Gain  
– Supply Voltage  
140  
160  
130  
120  
110  
100  
90  
140  
120  
100  
80  
36V  
125℃  
15V  
5V  
-40℃  
25℃  
80  
60  
70  
40  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.39  
Fig.40  
Large Signal Voltage Gain  
– Ambient Temperature  
Common Mode Rejection Ratio  
– Supply Voltage  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
15/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2901Yxx-M  
6
4
150  
-40℃  
25℃  
125℃  
125  
36V  
2
100  
0
75  
5V  
2V  
-2  
-4  
-6  
50  
25  
0
-1  
0
1
2
3
4
5
-50 -25  
0
25  
50  
75 100 125 150  
INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.41  
Fig.42  
Common Mode Rejection Ratio  
– Ambient Temperature  
Input Offset Voltage – Input Voltage  
(VCC=5V)  
5
200  
180  
160  
140  
120  
100  
80  
4
3
2
1
0
125℃  
25℃  
-40℃  
60  
-100  
-80  
-60  
-40  
-20  
0
-50 -25  
0
25 50 75 100 125 150  
OVER DRIVEVOLTAGE [mV]  
AMBIENT TEMPERATURE [  
]  
Fig.44  
Fig.43  
Response Time (Low to High) – Over Drive Voltage  
Power Supply Rejection Ratio  
– Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
16/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
BA2901Yxx-M  
10  
8
5
4
3
6
5mV overdrive  
20mV overdrive  
100mV overdrive  
2
1
0
4
125℃  
25℃  
-40℃  
2
0
-50 -25  
0
25 50 75 100 125 150  
0
20  
40  
60  
80  
100  
OVER DRIVE VOLTAGE [mV]  
AMBIENTTEMPERATURE[]  
Fig.45  
Response Time (Low to High)  
– Ambient Temperature (VCC=5V, VRL=5V,  
RL=5.1k)  
Fig.46  
Response Time (High to Low)  
– Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1k)  
10  
8
6
5mV overdrive  
20mV overdrive  
100mV overdrive  
4
2
0
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
Fig.47  
Response Time (High to Low)  
– Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
17/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Power Dissipation  
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature).IC is heated  
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that  
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.  
Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal  
resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum  
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead  
frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called  
thermal resistance, represented by the symbol θja/W.The temperature of IC inside the package can be estimated by this  
thermal resistance. Fig.48(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient  
temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below  
θja = (Tjmax-Ta) / Pd  
/W  
・・・・・ ()  
Derating curve in Fig.48(b) indicates power that can be consumed by IC with reference to ambient temperature. Power that  
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal  
resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package  
condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Fig.49(c),(d) show a derating curve for an example of BA2903Yxxx-M and  
BA2901Yxx-M.  
[W]  
Power dissipation of LSI  
Pd (max)  
θja=(Tjmax-Ta)/Pd /W  
P2  
P1  
θja2 < θja1  
θ' ja2  
Ta [ ]  
Ambient tempe  
ra  
tu  
re  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
75  
Chip surface temperature  
Tj [  
]
0
25  
50  
100  
]
125  
150  
Power dissipation Pd[W]  
Ambient temperature Ta [  
(a) Thermal resistance  
(b) Derating curve  
Fig.48 Thermal resistance and derating curve  
1000  
1000  
800  
600  
400  
200  
0
BA2903YF-M(12)  
800  
600  
400  
200  
0
BA2901YFV-M(15)  
BA2901YF-M(16)  
BA2903YFV-M(13)  
BA2903YFVM-M(14)  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
(c) BA2903Y  
(d) BA2901Y  
(12)  
6.2  
(13)  
5.5  
(14)  
4.8  
(15)  
7.0  
(16)  
4.9  
UNIT  
mW/℃  
When using the unit above Ta=25, subtract the value above per degree.  
Permissible dissipation is the value when FR4 glass epoxy board 70mm×70mm×1.6mm(cooper foil area below 3%) is mounted.  
Fig. 49 Derating curve  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
18/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Test Circuit 1 Null Method  
VCC,VEE,EK,Vicm UnitV  
Parameter  
VF  
S1  
S2  
S3  
Vcc  
VEE  
EK  
Vicm Calculation  
Input Offset Voltage  
Input Offset Current  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
ON  
OFF  
OFF  
ON  
ON  
OFF  
ON  
ON  
ON  
536  
0
0
0
0
0
0
-1.4  
-1.4  
-1.4  
-1.4  
-1.4  
-11.4  
0
0
0
0
0
0
1
5
5
2
Input Bias Current  
ON  
ON  
3
OFF  
5
15  
15  
Large Signal Voltage Gain  
ON  
ON  
4
- Calculation -  
1. Input Offset Voltage (Vio)  
| VF1 |  
[V]  
Vio =  
1 + Rf / Rs  
2. Input Offset Current (Iio)  
| VF2 VF1 |  
[A]  
Iio =  
Ri ×(1 + Rf / Rs)  
3. Input Bias Current (Ib)  
| VF4 VF3 |  
[A]  
Ib =  
2×Ri× (1 + Rf / Rs)  
4. Large Signal Voltage Gain (AV)  
EK×(1+Rf /Rs)  
Δ
Av = 20×Log  
[dB]  
|VF5-VF6|  
Rf=50kΩ  
0.1μF  
500kΩ  
VCC  
EK  
SW1  
+15V  
Rs=50Ω  
Rs=50Ω  
500kΩ  
1000pF  
Ri=10kΩ  
Ri=10kΩ  
DUT  
VEE  
NULL  
SW3  
V
VF  
Vicm  
RL  
SW2  
50kΩ  
-15V  
Fig.50 Test circuit1 (one channel only)  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
19/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Test Circuit 2: Switch Condition  
SW  
1
SW  
2
SW  
3
SW  
4
SW  
5
SW  
6
SW  
7
SW No.  
Supply Current  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
Output Sink Current  
Saturation Voltage  
Output Leakage Current  
Response Time  
VOL=1.5V  
IOL=4mA  
ON  
OFF  
ON  
VOH=36V  
ON  
OFF  
OFF  
OFF  
OFF  
RL=5.1k, VRL=5V  
OFF  
OFF  
VCC  
A
SW1  
SW2  
SW3  
VIN-  
SW4 SW5  
RL  
SW6  
SW7  
VEE  
V
A
VRL  
VIN+  
VOL/VOH  
Fig.51 Test Circuit 2 (one channel only)  
Input wave  
Input wave  
VIN  
+100mV  
VIN  
0V  
overdrive voltage  
overdrive voltage  
0V  
-100mV  
Output wave  
Output wave  
VOUT  
VOUT  
VCC  
VCC  
VCC/2  
VCC/2  
0V  
0V  
Tre (LOW to HIGH)  
Tre (HIGH to LOW)  
Fig.52 Response Time  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
20/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Example of circuit  
Reference voltage is Vin-  
Voltage  
Pull Up  
Vout  
VCC  
Vin  
Reference voltage  
+
-
Reference Voltage  
Time  
Vref  
Input voltage wave  
VEE  
Voltage  
High  
While input voltage is bigger than reference voltage,  
output voltage is high. While input voltage is smaller  
than reference voltage, output voltage is low.  
Low  
Time  
Output voltage wave  
Reference voltage is Vin+  
Voltage  
Pull Up  
VCC  
Reference Voltage  
Reference voltage  
+
-
Vout  
Vin  
Vref  
Time  
Input voltage wave  
Voltage  
VEE  
High  
While input voltage is smaller than reference  
voltage, output voltage is high. While input voltage  
is bigger than reference voltage, output voltage is  
low.  
Low  
Time  
Output voltage wave  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
21/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Operational Notes  
1) Unused circuits  
VCC  
When there are unused circuits it is recommended that they be  
connected as in Fig.53, setting the non-inverting input terminal to a  
potential within the in-phase input voltage range (VICR).  
OPEN  
+
Vicm  
Please keep this potential in Vicm  
VCC-1.5VVicmVEE  
VEE  
Fig. 53 Disable circuit example  
2) Input terminal voltage  
Applying VEE + 36V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, irrespective  
of the supply voltage. However, this does not ensure normal circuit  
operation. Please note that the circuit operates normally only when the  
input voltage is within the common mode input voltage range of the  
electric characteristics.  
3) Power supply (single / dual)  
The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the signal supply  
op-amp can be used as a dual supply op-amp as well.  
4) Power dissipation Pd  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in  
chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation  
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating  
curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and  
the power supply, or the output and GND may result in IC destruction.  
6) Terminal short-circuits  
When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation  
and, subsequently, destruction.  
7) Operation in a strong electromagnetic field  
Operation in a strong electromagnetic field may cause malfunctions.  
8) Radiation  
This IC is not designed to withstand radiation.  
9) IC handing  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical  
characteristics due to piezo resistance effects.  
10) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every  
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the  
power is turned off before inspection and removal. Furthermore, please take measures against ESD in the assembly  
process as well as during transportation and storage.  
Status of this document  
The Japanese version of this document is formal specification. A customer may use this translation version only for a reference  
to help reading the formal version.  
If there are any differences in translation version of this document formal version takes priority.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
TSZ2211115001  
22/24  
25.SEP.2012 Rev.001  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
Physical Dimensions Tape and Reel Information  
SOP8  
<Tape and Reel information>  
5.0 0.2  
(MAX 5.35 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
+
6
°
4°  
4
°
Quantity  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
0.1  
S
1.27  
Direction of feed  
1pin  
0.42 0.1  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
SOP14  
<Tape and Reel information>  
8.7 0.2  
(MAX 9.05 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
14  
8
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
1.27  
0.4 0.1  
0.1  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B8  
<Tape and Reel information>  
3.0 0.2  
(MAX 3.35 include BURR)  
8
7
6
5
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.15 0.1  
S
M
0.1  
S
Direction of feed  
1pin  
+0.06  
(0.52)  
0.65  
0.22  
0.04  
0.08  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B14  
<Tape and Reel information>  
5.0 0.2  
Tape  
Embossed carrier tape  
14  
8
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
23/24  
Datasheet  
BA2903Yxxx-M, BA2901Yxx-M  
MSOP8  
<Tape and Reel information>  
2.9 0.1  
Tape  
Embossed carrier tape  
3000pcs  
(MAX 3.25 include BURR)  
+
6°  
4°  
Quantity  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
1pin  
+0.05  
0.03  
0.145  
0.475  
S
0.22  
0.04  
0.08  
S
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.65  
Reel  
(Unit : mm)  
Marking Diagrams  
SOP8(TOP VIEW)  
SSOP-B8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B14(TOP VIEW)  
Part Number Marking  
Product Name  
Package Type  
Marking  
LOT Number  
F-M  
FV-M  
SOP8  
03YM  
03YM  
BA2903Y  
BA2901Y  
SSOP-B8  
FVM-M MSOP8  
03YM  
F-M  
SOP14  
BA2901YFM  
01YM  
FV-M  
SSOP-B14  
1PIN MARK  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RFR1G200550-1-2  
25.SEP.2012 Rev.001  
TSZ2211115001  
24/24  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA2901YFC

Automotive Ground Sense Comparators
ROHM

BA2901YFE2

Automotive Ground Sense Comparators
ROHM

BA2901YFTR

Automotive Ground Sense Comparators
ROHM

BA2901YFV-C

Automotive Comparators:Ground Sense
ROHM

BA2901YFV-CE2

Automotive Ground Sense Comparators
ROHM

BA2901YFV-M

车载适用品BA2903Yxxx-M、BA2901Yxx-M是各自独立的高增益比较器,是将2个电路集成于1个芯片的单片IC。尤其是工作范围较大,为+2V~+36V(单电源工作时),且消耗电流较小,可用于汽车导航、汽车音响等用途。
ROHM

BA2901YFV-ME2

Automotive Ground Sense Comparators
ROHM

BA2901YFVC

Automotive Ground Sense Comparators
ROHM

BA2901YFVE2

Automotive Ground Sense Comparators
ROHM

BA2901YFVM-CTR

Operational Amplifier, 15000uV Offset-Max, PDSO8, ROHS COMPLIANT, MSOP-8
ROHM

BA2901YFVMC

Automotive Ground Sense Comparators
ROHM

BA2901YFVME2

Automotive Ground Sense Comparators
ROHM