BA10324AFJ [ROHM]

Ground Sense Operational Amplifiers;
BA10324AFJ
型号: BA10324AFJ
厂家: ROHM    ROHM
描述:

Ground Sense Operational Amplifiers

文件: 总56页 (文件大小:1116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Ground Sense Operational Amplifiers  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
General Description  
Key Specification  
General purpose BA10358 / BA10324A and high  
reliability BA2904 / BA2902 integrate two or four  
independent Op-Amps on a single chip and have some  
features of high-gain, low power consumption, and  
wide operating voltage range of 3V to 36V (single  
power supply ).  
Wide Operating Supply Voltage (single supply):  
BA10358/BA10324A  
BA2904/BA2902  
Wide Temperature Range:  
BA10358/ BA10324A  
BA2904S/ BA2902S  
BA2904/ BA2902  
BA2904W  
+3.0V to +32.0V  
+3.0V to +36.0V  
-40°C~+85°C  
-40°C~+105°C  
-40°C~+125°C  
-40°C~+125°C  
BA2904W have low input offset voltage(2mV max.).  
Input Offset Voltage:  
BA10358/ BA10324A  
BA2904S/ BA2902S  
BA2904/ BA2902  
BA2904W  
Features  
7mV (Max)  
7mV (Max)  
7mV (Max)  
2mV (Max)  
Operable with a single power supply  
Wide operating supply voltage range  
Input and output are operable GND sense  
Low supply current  
Low Input Bias Current:  
BA10358  
High open loop voltage gain  
Wide temperature range  
45nA (Typ)  
20nA (Typ)  
20nA (Typ)  
20nA (Typ)  
20nA (Typ)  
BA10324A  
BA2904S/ BA2902S  
BA2904/ BA2902  
BA2904W  
Application  
Current sense application  
Buffer application amplifier  
Active filter  
Packages  
SOP8  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
2.90mm x 4.00mm x 0.90mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.35mm  
Consumer electronics  
SOP-J8  
SSOP-B8  
MSOP8  
SOP14  
SOP-J14  
SSOP-B14  
Selection Guide  
Maximum operating temperature  
Output Current  
Source/Sink  
Input Offset  
Voltage  
+85°C  
+125°C  
+105°C  
BA10358F  
BA10358FV  
BA10358FJ  
Normal  
Dual  
20mA/20mA  
7mV  
BA10324AF  
BA10324AFV  
BA10324AFJ  
Quad  
35mA/20mA  
7mV  
BA2904F  
BA2904SF  
BA2904FV  
BA2904FVM  
BA2904SFV  
BA2904SFVM  
High-reliability  
Dual  
30mA/20mA  
30mA/20mA  
7mV  
2mV  
7mV  
BA2904WF  
BA2904WFV  
BA2902F  
BA2902FV  
BA2902SF  
BA2902SFV  
Quad  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
1/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Simplified schematic  
VCC  
IN  
IN  
OUT  
VEE  
Figure 1. Simplified schematicone channel only)  
Pin Configuration  
BA10358F,BA2904SF,BA2904F,BA2904WF :SOP8  
BA10358FV,BA2904SFV,BA2904FV,BA2904WFV :SSOP-B8  
BA2904SFVM,BA2904FVM :MSOP8  
BA10358FJ :SOP-J8  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
OUT1  
-IN1  
+IN1  
VEE  
VCC  
OUT2  
-IN2  
+IN2  
1
2
3
4
8
7
6
5
+IN1  
VEE  
+IN2  
-IN2  
CH1  
- +  
CH2  
+ -  
OUT2  
VCC  
BA10324AF,BA2902SF,BA2902F :SOP14  
BA10324AFV,BA2902SFV,BA2902FV :SSOP-B14  
BA10324AFJ :SOP-J14  
Pin No.  
Pin Name  
1
2
OUT1  
-IN1  
1
2
3
14 OUT4  
OUT1  
-IN1  
+IN1  
VCC  
+IN2  
-IN2  
OUT2  
3
+IN1  
VCC  
+IN2  
-IN2  
13  
12  
-IN4  
+IN4  
CH1  
- +  
CH4  
+ -  
4
5
4
5
11  
10  
VEE  
+IN3  
-IN3  
OUT3  
6
7
OUT2  
OUT3  
-IN3  
+ -  
CH3  
- +  
CH2  
6
7
9
8
8
9
10  
11  
12  
13  
14  
+IN3  
VEE  
+IN4  
-IN4  
OUT4  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
2/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Package  
SOP8  
SSOP-B8  
MSOP8  
SOP-J8  
SOP14  
SSOP-B14  
SOP-J14  
BA10358F  
BA2904SF  
BA2904F  
BA10358FV  
BA2904SFV  
BA2904FV  
BA2904SFVM BA10358FJ  
BA2904FVM  
BA10324AF  
BA2902SF  
BA2902F  
BA10324AFV BA10324AFJ  
BA2902SFV  
BA2902FV  
BA2904WF  
BA2904WFV  
Ordering Information  
B A  
x
x
x
x
x
x
x
x
-
x x  
Part Number.  
BA10358xx  
BA10324Axx  
BA2904xxx  
BA2904Sxxx  
BA2904Wxx  
BA2902xx  
Package  
: SOP8  
SOP14  
FV : SSOP-B8  
SSOP-B14  
FVM : MSOP8  
FJ : SOP-J8  
SOP-J14  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B8/  
SSOP-B14/SOP-J8/SOP-J14)  
TR: Embossed tape and reel  
(MSOP8)  
F
BA2902Sxx  
Line-up  
Input Offset  
Voltage  
Supply  
Current  
(Typ)  
Orderable  
Part Number  
Topr  
Package  
Reel of 2500  
(Max)  
SOP8  
BA10358F-E2  
BA10358FJ-E2  
BA10358FV-E2  
BA10324AF-E2  
BA10324AFJ-E2  
BA10324AFV-E2  
BA2904SF-E2  
BA2904SFV-E2  
BA2904SFVM-TR  
BA2902SF-E2  
BA2902SFV-E2  
BA2904F-E2  
0.5mA  
0.6mA  
SOP-J8  
SSOP-B8  
SOP14  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
-40°C to +85°C  
SOP-J14  
SSOP-B14  
SOP8  
0.5mA  
0.7mA  
0.5mA  
SSOP-B8  
MSOP8  
SOP14  
7mV  
-40°C to +105°C  
SSOP-B14  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
BA2904FV-E2  
BA2904FVM-TR  
BA2902F-E2  
-40°C to +125°C  
0.7mA  
0.5mA  
SSOP-B14  
SOP8  
BA2902FV-E2  
BA2904WF-E2  
BA2904WFV-E2  
2mV  
SSOP-B8  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
3/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Absolute Maximum Ratings (TA=25°C)  
BA10358, BA10324A  
Parameter  
Supply Voltage  
Symbol  
Ratings  
Unit  
V
VCC-VEE  
SOP8  
SOP-J8  
SSOP-B8  
SOP14  
SOP-J14  
SSOP-B14  
VID  
+32  
620(Note 1,7)  
540(Note 2,7)  
500(Note 3,7)  
450(Note 4,7)  
820(Note 5,7)  
700(Note 6,7)  
+32  
Power dissipation  
PD  
mW  
Differential Input Voltage(Note 8)  
Input Common-mode Voltage Range  
Input Current(Note 9)  
V
V
VICM  
(VEE-0.3) to (VEE+32)  
-10  
II  
mA  
V
Vopr  
Wide Operating Supply Voltage  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
+3.0 to +32.0  
-40 to +85  
-55 to +125  
+125  
Topr  
°C  
°C  
°C  
Tstg  
TJmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating  
or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(Note 1) To use at temperature above TA=25°C reduce 6.2mW.  
(Note 2) To use at temperature above TA=25°C reduce 5.4mW  
(Note 3) To use at temperature above TA=25°C reduce 5.0mW.  
(Note 4) To use at temperature above TA=25°C reduce 4.5mW.  
(Note 5) To use at temperature above TA=25°C reduce 8.2mW  
(Note 6) To use at temperature above TA=25°C reduce 7.0mW.  
(Note 7) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 8) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
(Note 9) An excessive input current will flow when input voltages of less than VEE-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
4/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Absolute Maximum Ratings (TA=25°C)  
BA2904, BA2902  
Ratings  
BA2904, BA2904W  
BA2902  
Parameter  
Supply Voltage  
Symbol  
Unit  
V
BA2904S  
BA2902S  
VCC-VEE  
SOP8  
+36  
775(Note 10,15)  
625(Note 11,15)  
600(Note 12,15)  
560(Note 13,15)  
870(Note 14,15)  
+36  
SSOP-B8  
Power dissipation  
PD  
MSOP8  
SOP14  
SSOP-B14  
VID  
mW  
Differential Input Voltage(Note 16)  
Input Common-mode Voltage Range  
Input Current(Note 17)  
V
V
VICM  
(VEE-0.3) to (VEE+36)  
-10  
II  
mA  
V
Vopr  
Wide Operating Supply Voltage  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
+3.0 to +36.0  
Topr  
-40 to +105  
-40 to +125  
°C  
°C  
°C  
Tstg  
-55 to +150  
+150  
TJmax  
(Note 10) To use at temperature above TA=25°C reduce 6.2mW.  
(Note 11) To use at temperature above TA=25°C reduce 5.0mW.  
(Note 12) To use at temperature above TA=25°C reduce 4.8mW.  
(Note 13) To use at temperature above TA=25°C reduce 4.5mW.  
(Note 14) To use at temperature above TA=25°C reduce 7.0mW.  
(Note 15) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 16) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
(Note 17) An excessive input current will flow when input voltages of less than VEE-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
5/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Electrical Characteristics  
BA10358 (Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
-
Typ.  
2
Max.  
7
Input Offset Voltage (Note 18)  
Input Offset Current (Note 18)  
Input Bias Current (Note 19)  
Supply Current  
VIO  
IIO  
mV OUT=1.4V  
-
-
5
45  
0.5  
-
50  
nA OUT=1.4V  
IB  
250  
nA OUT=1.4V  
ICC  
VOH  
VOL  
-
1.2  
mA RL=, All Op-Amps  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
3.5  
-
-
V
RL=2k  
-
250  
mV RL=,All Op-Amps  
25  
88  
0
100  
100  
-
-
V/mV  
RL2k, VCC=15V  
OUT=1.4 to 11.4V  
AV  
Large Signal Voltage Gain  
-
dB  
(VCC-VEE)=5V  
V
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
VICM  
VCC-1.5  
OUT=VEE+1.4V  
CMRR  
PSRR  
65  
65  
80  
100  
-
-
dB OUT=1.4V  
dB VCC=5 to 30V  
VIN+=1V, VIN-=0V  
mA OUT=0V,  
1CH is short circuit  
VIN+=0V, VIN-=1V  
mA OUT=5V,  
ISOURCE  
10  
10  
20  
20  
-
-
Output Source Current  
Output Sink Current  
ISINK  
1CH is short circuit  
CS  
SR  
-
-
-
120  
0.2  
0.5  
-
-
-
dB f=1kHz, input referred  
Channel Separation  
Slew Rate  
VCC=15V, Av=0dB  
V/μs  
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
GBW  
MHz  
Gain Band Width  
(Note 18) Absolute value  
(Note 19) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
6/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A (Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
-
Typ.  
2
Max.  
7
Input Offset Voltage (Note 20)  
Input Offset Current (Note 20)  
Input Bias Current (Note 21)  
Supply Current  
VIO  
IIO  
mV OUT=1.4V  
-
-
5
20  
0.6  
-
50  
nA OUT=1.4V  
IB  
250  
nA OUT=1.4V  
ICC  
VOH  
VOL  
-
2
mA RL=,All Op-Amps  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
3.5  
-
-
V
RL=2kΩ  
-
250  
mV RL=,All Op-Amps  
25  
88  
0
100  
100  
-
-
V/mV  
RL2k, VCC=15V  
OUT=1.4 to 11.4V  
Large Signal Voltage Gain  
AV  
-
dB  
(VCC-VEE)=5V  
V
Input Common-mode Voltage range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
VICM  
VCC-1.5  
OUT=VEE+1.4V  
CMRR  
PSRR  
65  
65  
75  
100  
-
-
dB OUT=1.4V  
dB VCC=5 to 30V  
VIN+=1V, VIN-=0V  
mA OUT=0V,  
1CH is short circuit  
VIN+=0V, VIN-=1V  
mA OUT=5V,  
Output Source Current  
Output Sink Current  
ISOURCE  
20  
10  
35  
20  
-
-
ISINK  
1CH is short circuit  
Channel Separation  
Slew Rate  
CS  
SR  
-
-
-
120  
0.2  
0.5  
-
-
-
dB f=1kHz, input referred  
VCC=15V, Av=0dB  
V/μs  
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
GBW  
MHz  
Gain Band Width  
(Note 20) Absolute value  
(Note 21) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
7/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
Temperature  
Range  
Parameter  
Symbol  
Unit  
mV  
Condition  
Min.  
Max.  
25°C  
Full range  
-
-
2
-
7
10  
OUT=1.4V  
VCC=5 to 30V, OUT=1.4V  
Input Offset Voltage (Note 22,23)  
Input Offset Voltage Drift  
VIO  
VIO /T  
IIO  
-
-
±7  
-
μV/°C OUT=1.4V  
nA OUT=1.4V  
25°C  
Full range  
-
-
2
-
50  
200  
Input Offset Current (Note 22,23)  
Input Offset Current Drift  
IIO /T  
IB  
-
-
±10  
-
pA/°C OUT=1.4V  
nA OUT=1.4V  
25°C  
Full range  
25°C  
Full range  
25°C  
-
-
-
20  
-
0.5  
-
-
28  
250  
250  
1.2  
2
-
-
Input Bias Current (Note 22,23)  
Supply Current (Note 23)  
ICC  
mA RL=, All Op-Amps  
-
3.5  
27  
RL=2kΩ  
Maximum Output Voltage(High) (Note 23)  
Maximum Output Voltage(Low) (Note 23)  
VOH  
V
Full range  
VCC=30V, RL=10kΩ  
VOL  
Full range  
25°C  
-
5
100  
100  
-
20  
mV RL=, All Op-Amps  
25  
88  
0
-
V/mV  
RL2k, VCC=15V  
OUT=1.4 to 11.4V  
Large Signal Voltage Gain  
AV  
-
dB  
Input Common-mode  
Voltage Range  
(VCC-VEE)=5V  
V
VICM  
25°C  
VCC-1.5  
OUT=VEE+1.4V  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
25°C  
25°C  
50  
65  
80  
-
-
dB OUT=1.4V  
100  
dB VCC=5 to 30V  
25°C  
Full range  
25°C  
20  
10  
10  
2
30  
-
20  
-
-
-
-
-
VIN+=1V, VIN-=0V  
mA  
Output Source Current (Note 23,24)  
ISOURCE  
OUT=0V, 1CH is short circuit  
VIN+=0V, VIN-=1V  
mA  
OUT=5V, 1CH is short circuit  
Full range  
Output Sink Current (Note 23,24)  
ISINK  
VIN+=0V, VIN-=1V  
OUT=200mV  
25°C  
25°C  
25°C  
12  
-
40  
120  
0.2  
-
-
-
μA  
Channel Separation  
Slew rate  
CS  
SR  
dB f=1kHz, input referred  
VCC=15V, Av=0dB  
V/μs  
-
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
Gain Band Width  
GBW  
VN  
25°C  
25°C  
-
-
0.5  
40  
-
-
MHz  
VCC=15V, VEE=-15V  
nV/ Hz  
Input referred noise voltage  
RS=100, Vi=0V, f=1kHz  
(Note 22) Absolute value  
(Note 23) BA2904S :Full range -40 to +105°C BA2904 :Full range -40 to +125°C  
(Note 24) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
8/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904W (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
0.5  
±7  
2
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Max.  
2
Input Offset Voltage (Note 25)  
Input Offset Voltage Drift  
Input Offset Current (Note 25)  
Input Offset Current Drift  
VIO  
VIO/T  
IIO  
25°C  
-
-
mV OUT=1.4V  
μV/°C OUT=1.4V  
nA OUT=1.4V  
pA/°C OUT=1.4V  
-
-
25°C  
-
-
50  
-
IIO/T  
-
±10  
20  
-
25°C  
-
250  
250  
1.2  
1.2  
-
Input Bias Current (Note 25)  
IB  
nA OUT=1.4V  
Full range  
25°C  
-
-
0.5  
-
Supply Current  
ICC  
mA RL=, All Op-Amps  
Full range  
25°C  
-
3.5  
27  
-
RL=2kΩ  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
VOH  
VOL  
V
Full range  
28  
-
VCC=30V, RL=10kΩ  
Full range  
25°C  
-
5
100  
100  
-
20  
mV RL=, All Op-Amps  
25  
88  
0
-
V/mV  
RL2k, VCC=15V  
OUT=1.4 to 11.4V  
Large Signal Voltage Gain  
AV  
-
dB  
Input Common-mode  
Voltage Range  
(VCC-VEE)=5V  
V
VICM  
25°C  
VCC-1.5  
OUT=VEE+1.4V  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
25°C  
25°C  
50  
65  
20  
10  
10  
2
80  
100  
30  
-
-
-
-
-
-
-
dB OUT=1.4V  
dB VCC=5 to 30V  
25°C  
VIN+=1V, VIN-=0V  
mA  
Output Source Current (Note 26)  
ISOURCE  
OUT=0V, 1CH is short circuit  
Full range  
25°C  
20  
-
VIN+=0V, VIN-=1V  
mA  
OUT=5V, 1CH is short circuit  
Output Sink Current (Note 26)  
ISINK  
Full range  
VIN+=0V, VIN-=1V  
OUT=200mV  
25°C  
25°C  
25°C  
12  
-
40  
120  
0.2  
-
-
-
μA  
Channel Separation  
Slew rate  
CS  
SR  
dB f=1kHz, input referred  
VCC=15V, Av=0dB  
V/μs  
-
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
Gain Band Width  
GBW  
VN  
25°C  
25°C  
-
-
0.5  
40  
-
-
MHz  
VCC=15V, VEE=-15V  
nV/ Hz  
Input referred noise voltage  
RS=100, Vi=0V, f=1kHz  
(Note 25) Absolute value  
(Note 26) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
9/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
Temperature  
Range  
Parameter  
Symbol  
Unit  
mV  
Condition  
Min.  
Max.  
25°C  
Full range  
-
25°C  
Full range  
-
-
-
-
-
2
-
±7  
2
7
10  
-
50  
200  
OUT=1.4V  
VCC=5 to 30V, OUT=1.4V  
Input Offset Voltage (Note 27,28)  
Input Offset Voltage Drift  
VIO  
VIO/T  
IIO  
μV/°C OUT=1.4V  
nA OUT=1.4V  
Input Offset Current (Note 27,28)  
-
Input Offset Current Drift  
IIO/T  
IB  
-
-
±10  
-
pA/°C OUT=1.4V  
nA OUT=1.4V  
25°C  
Full range  
25°C  
Full range  
25°C  
-
-
-
20  
-
0.7  
-
-
28  
250  
250  
2
3
-
Input Bias Current (Note 27,28)  
Supply Current (Note 28)  
ICC  
A RL=,All Op-Amps  
-
3.5  
27  
RL=2kΩ  
V
Maximum Output Voltage(High) (Note 28)  
Maximum Output Voltage(Low) (Note 28)  
VOH  
VOL  
Full range  
-
VCC=30V, RL=10kΩ  
Full range  
25°C  
-
5
20  
mV RL=, All Op-Amps  
25  
88  
0
100  
100  
-
-
V/mV  
RL2k, VCC=15V  
Large Signal Voltage Gain  
AV  
OUT=1.4 to 11.4V  
-
dB  
(VCC-VEE)=5V  
V
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
VICM  
25°C  
25°C  
25°C  
VCC-1.5  
OUT=VEE+1.4V  
CMRR  
PSRR  
50  
65  
80  
-
-
dB  
dB  
OUT=1.4V  
100  
VCC=5 to 30V  
VIN+=1V, VIN-=0V  
mA OUT=0V  
1CH is short circuit  
25°C  
20  
10  
30  
-
-
-
Output Source Current (Note 28,29)  
Output Sink Current (Note 28,29)  
ISOURCE  
Full range  
25°C  
Full range  
10  
2
20  
-
-
-
VIN+=0V, VIN-=1V  
OUT=5V, 1CH is short circuit  
mA  
μA  
ISINK  
VIN+=0V, VIN-=1V  
OUT=200mV  
25°C  
25°C  
25°C  
25°C  
25°C  
12  
-
40  
120  
0.2  
0.5  
40  
-
-
-
-
-
Channel Separation  
Slew rate  
CS  
SR  
dB  
f=1kHz, input referred  
VCC=15V, Av=0dB  
RL=2k, CL=100pF  
-
V/μs  
MHz  
nV/ Hz  
VCC=30V, RL=2kΩ  
CL=100p  
Gain Band Width  
GBW  
VN  
-
VCC=15V, VEE=-15V  
RS=100, Vi=0V, f=1kHz  
Input referred noise voltage  
-
(Note 27) Absolute value  
(Note 28) BA2902S :Full range -40 to +105°C ,BA2902 :Full range -40 to +125°C  
(Note 29) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
10/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VCC/VEE)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃  
(normal temperature). As for package product, Pd is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(2) Input Offset Voltage drift (VIO /T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
(3) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(4) Input Offset Current Drift (Iio/T)  
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.  
(4) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(5) Supply Current (ICC)  
Indicates the current that flows within the IC under specified no-load conditions.  
(7) Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL)  
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage High and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(8) Large Signal Voltage Gain (Av)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
(9) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(10) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
11/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
(11) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
(12) Output Source Current/ Output Sink Current (Isource / Isink  
)
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(13) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
(14) Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
(15) Gain Bandwidth (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
(16) Input Referred Noise Voltage (VN)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
12/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Typical Performance Curves  
BA10358  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
200  
0
BA10358F  
25℃  
BA10358FJ  
BA10358FV  
-40℃  
85℃  
85  
0
5
10  
15  
20  
25  
30  
35  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
.
Figure 2.  
Figure 3.  
Derating Curve  
Supply Current – Supply Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
35  
30  
25  
20  
15  
10  
5
85℃  
32V  
25℃  
-40℃  
5V  
3V  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 5.  
Figure 4.  
Maximum Output Voltage - Supply Voltage  
Supply Current – Ambient Temperature  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
5
4
3
2
1
0
40  
30  
20  
10  
0
-40℃  
25℃  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 6.  
Figure 7.  
Output Source Current - Output Voltage  
(VCC=5V)  
Maximum Output Voltage - Ambient Temperature  
(VCC=5V, RL=2k)  
40  
30  
20  
10  
0
100  
10  
15V  
85℃  
25℃  
-40℃  
1
0. 1  
5V  
3V  
0.01  
0. 001  
0
0.4  
0.8  
1.2  
1.6  
2
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
Figure 8.  
Figure 9.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Output Source Current - Ambient Temperature  
(OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
15V  
25℃  
5V  
-40℃  
3V  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 11.  
Figure 10.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
60  
50  
40  
30  
20  
10  
0
8
6
32V  
4
2
-40℃  
0
5V  
-2  
-4  
-6  
-8  
3V  
25℃  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 13.  
Input Offset Voltage - Supply Voltage  
(VICM=0V, OUT=1.4V)  
Figure 12.  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
50  
40  
30  
20  
10  
0
8
6
4
2
25℃  
0
3V  
5V  
-2  
-4  
-6  
-8  
85℃  
-40℃  
32V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Figure 14.  
Figure 15.  
Input Offset Voltage - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Input Bias Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
32V  
5V  
3V  
-10  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
Figure 16.  
Figure 17.  
Input Bias Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, VICM=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
8
6
10  
5
4
2
-40℃  
25℃  
0
0
-40℃  
25℃  
-2  
-4  
-6  
-8  
85℃  
-5  
-10  
85℃  
-1  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Figure 18.  
Figure 19.  
Input Offset Voltage - Common Mode Input Voltage  
(VCC=5V)  
Input Offset Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
10  
5
140  
130  
120  
110  
100  
90  
-40℃  
25℃  
5V  
3V  
0
85℃  
32V  
80  
-5  
-10  
70  
60  
4
6
8
10  
12  
14  
16  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Figure 21.  
Figure 20.  
Large Signal Voltage Gain - Supply Voltage  
Input Offset Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
(RL=2k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10358  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
5V  
-40℃  
15V  
25℃  
80  
85℃  
60  
70  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 23.  
Common Mode Rejection Ratio  
- Supply Voltage  
Figure 22.  
Large Signal Voltage Gain - Ambient Temperature  
(RL=2k)  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
32V  
80  
5V  
3V  
60  
70  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
AMBIENTTEMPERATURE[]  
Figure 25.  
Power Supply Rejection Ratio  
- Ambient Temperature  
Figure 24.  
Common Mode Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
1000  
800  
600  
400  
200  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
BA10324AFJ  
BA10324AFV  
25℃  
BA10324AF  
85℃  
-40℃  
85  
0
5
10  
15  
20  
25  
30  
35  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE [V]  
]
AMBIENT TEMPERATURE [  
.
Figure 27.  
Supply Current - Supply Voltage  
Figure 26.  
Derating Curve  
35  
30  
25  
20  
15  
10  
5
2. 0  
1. 6  
1. 2  
0. 8  
0. 4  
0. 0  
85℃  
32V  
25℃  
-40℃  
5V  
3V  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 28.  
Supply Current - Ambient Temperature  
Figure 29.  
Maximum Output Voltage - Supply Voltage  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
85℃  
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
OUTPUT VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 30.  
Maximum Output Voltage - Ambient  
Temperature  
Figure 31.  
Output Source Current - Output Voltage  
(VCC=5V)  
(VCC=5V, RL=2k)  
100  
10  
50  
40  
30  
20  
10  
0
15V  
85℃  
5V  
1
3V  
25℃  
0.1  
-40℃  
0. 01  
0.001  
-50  
-25  
0
25  
50  
75  
100  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENTTEMPERATURE[]  
OUTPUT VOLTAGE [V]  
Figure 33.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Figure 32.  
Output Source Current - Ambient Temperature  
(OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
85℃  
15V  
5V  
25℃  
-40℃  
3V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 35.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Figure 34.  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
60  
50  
40  
30  
20  
10  
0
8
6
4
85℃  
25℃  
32V  
2
0
-40℃  
-2  
-4  
-6  
-8  
3V  
5V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 37.  
Input Offset Voltage - Supply Voltage  
(VICM=0V, OUT=1.4V)  
Figure 36.  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
8
6
50  
40  
30  
20  
10  
0
4
32V  
5V  
2
0
85℃  
3V  
25℃  
-2  
-4  
-6  
-8  
-40℃  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENTTEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 39.  
Input Bias Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
Figure 38.  
Input Offset Voltage - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
32V  
5V  
3V  
-10  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE[]  
AMBIENT TEMPERATURE[]  
Figure 40.  
Figure 41.  
Input Bias Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, VICM=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
22/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
10  
5
8
6
-40℃  
4
25℃  
85℃  
25℃  
2
85℃  
0
0
-40℃  
-2  
-4  
-6  
-8  
-5  
-10  
0
5
10  
15  
20  
25  
30  
35  
-1  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
INPUTVOLTAGE [V]  
Figure 42.  
Input Offset Voltage  
- Common Mode Input Voltage  
(VCC=5V)  
Figure 43.  
Input Offset Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
10  
5
140  
130  
120  
110  
100  
90  
-40℃  
32V  
5V  
0
25℃  
85℃  
3V  
-5  
-10  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 44.  
Figure 45.  
Input Offset Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Large Signal Voltage Gain - Supply Voltage  
(RL=2k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
23/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA10324A  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
15V  
-40℃  
5V  
25℃  
85℃  
80  
60  
70  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 46.  
Large Signal Voltage Gain  
- Ambient Temperature  
(RL=2k)  
Figure 47.  
Common Mode Rejection Ratio  
- Supply Voltage  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
32V  
5V  
80  
3V  
60  
70  
40  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENTTEMPERATURE[]  
AMBIENT TEMPERATURE[]  
Figure 48.  
Figure 49.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Power Supply Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
24/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
BA2904F  
BA2904WF  
BA2904SF  
BA2904FV  
BA2904WFV  
BA2904SFV  
25℃  
-40℃  
105℃  
BA2904FVM  
BA2904SFVM  
125℃  
200  
0
105  
0
10  
20  
30  
40  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE [  
]
.
SUPPLY VOLTAGE [V]  
Figure 50.  
Figure 51.  
Derating Curve  
Supply Current- Supply Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
30  
20  
10  
0
-40℃  
125℃  
36V  
25℃  
105℃  
5V  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENTTEMPERATURE[]  
SUPPLY VOLTAGE [V]  
Figure 52.  
Supply Current – Ambient Temperature  
Figure 53.  
Maximum Output Voltage - Supply Voltage  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
BA2904, BA2904W-40°C to 125°C BA2904S-40°C to +105°C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
25/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
AMBIENTTEMPERATURE[]  
OUTPUT VOLTAGE [V]  
Figure 54.  
Figure 55.  
Maximum Output Voltage - Ambient Temperature  
Output Source Current - Output Voltage  
(VCC=5V)  
(VCC=5V, RL=2k)  
100  
10  
50  
105℃  
40  
30  
20  
10  
0
3V  
125℃  
1
5V  
-40℃  
25℃  
15V  
0.1  
0. 01  
0. 001  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 57.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Figure 56.  
Output Source Current - Ambient Temperature  
(OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
26/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
15V  
25℃  
-40℃  
105℃  
125℃  
3V  
5V  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
-50 -25  
0
25 50 75 100 125 150  
AMBIENTTEMPERATURE[]  
Figure 59.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Figure 58.  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
36V  
4
-40℃  
25℃  
2
5V  
0
3V  
105℃  
125℃  
-2  
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]  
Figure 61.  
Figure 60.  
Input Offset Voltage - Supply Voltage  
(VICM=0V, OUT=1.4V)  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
27/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
8
6
50  
40  
30  
20  
10  
0
4
3V  
2
25℃  
-40℃  
0
5V  
36V  
-2  
-4  
-6  
-8  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 62.  
Figure 63.  
Input Offset Voltage - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Input Bias Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
36V  
5V  
3V  
-10  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[  
]  
AMBIENT TEMPERATURE[]  
Figure 64.  
Figure 65.  
Input Bias Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, VICM=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
28/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
8
6
10  
5
105℃  
125℃  
-40℃  
4
-40℃  
25℃  
25℃  
2
0
0
125℃  
105℃  
-2  
-4  
-6  
-8  
-5  
-10  
-1  
0
1
2
3
4
5
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
INPUTVOLTAGE [V]  
Figure 66.  
Figure 67.  
Input Offset Voltage - Common Mode Input Voltage  
(VCC=5V)  
Input Offset Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
140  
130  
120  
110  
100  
90  
10  
-40℃  
25℃  
5
0
36V  
5V  
3V  
105℃  
125℃  
80  
-5  
70  
60  
-10  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 68.  
Figure 69.  
Large Signal Voltage Gain - Supply Voltage  
(RL=2k)  
Input Offset Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
29/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2904, BA2904S, BA2904W  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
15V  
-40℃  
25℃  
5V  
125℃  
105℃  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 70.  
Large Signal Voltage Gain  
- Ambient Temperature  
(RL=2k)  
Figure 71.  
Common Mode Rejection Ratio  
- Supply Voltage  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
36V  
5V  
3V  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[]  
AMBIENTTEMPERATURE[]  
Figure 72.  
Figure 73.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Power Supply Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
30/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
1000  
2.0  
800  
1.6  
BA2902FV  
BA2902SFV  
600  
1.2  
-40℃  
25℃  
BA2902F  
BA2902SF  
400  
200  
0
0.8  
0.4  
0.0  
125℃  
105℃  
105  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE [  
]
.
SUPPLY VOLTAGE [V]  
Figure 74.  
Figure 75.  
Derating Curve  
Supply Current - Supply Voltage  
40  
30  
20  
10  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
-40℃  
125℃  
36V  
25℃  
105℃  
5V  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 76.  
Supply Current - Ambient Temperature  
Figure 77.  
Maximum Output Voltage - Supply Voltage  
(RL=10k)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
BA2902-40°C to +125°C BA2902S-40°C to +105°C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
31/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
AMBIENTTEMPERATURE[  
]  
OUTPUT VOLTAGE [V]  
Figure 79.  
Output Source Current - Output Voltage  
(VCC=5V)  
Figure 78.  
Maximum Output Voltage - Ambient  
Temperature (VCC=5V, RL=2k)  
100  
10  
50  
105℃  
40  
30  
20  
10  
0
3V  
125℃  
1
5V  
-40℃  
25℃  
15V  
0.1  
0. 01  
0. 001  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 81.  
Output Sink Current - Output Voltage  
(VCC=5V)  
Figure 80.  
Output Source Current - Ambient  
Temperature (OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
32/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
15V  
25℃  
-40℃  
105℃  
125℃  
3V  
5V  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
-50 -25  
0
25 50 75 100 125 150  
AMBIENTTEMPERATURE[]  
Figure 83.  
Low Level Sink Current - Supply Voltage  
(OUT=0.2V)  
Figure 82.  
Output Sink Current - Ambient Temperature  
(OUT=VCC)  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
36V  
4
-40℃  
25℃  
2
5V  
0
3V  
105℃  
125℃  
-2  
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]  
Figure 84.  
Figure 85.  
Low Level Sink Current - Ambient Temperature  
(OUT=0.2V)  
Input Offset Voltage - Supply Voltage  
(VICM=0V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
33/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
8
6
50  
40  
30  
20  
10  
0
4
3V  
2
25℃  
-40℃  
0
5V  
36V  
-2  
-4  
-6  
-8  
105℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
AMBIENTTEMPERATURE[]  
Figure 86.  
Figure 87.  
Input Offset Voltage - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Input Bias Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
36V  
5V  
3V  
-10  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[  
]  
AMBIENT TEMPERATURE[]  
Figure 88.  
Figure 89.  
Input Bias Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
Input Bias Current - Ambient Temperature  
(VCC=30V, VICM=28V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
34/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
8
6
10  
5
105℃  
125℃  
-40℃  
4
-40℃  
25℃  
25℃  
2
0
0
125℃  
105℃  
-2  
-4  
-6  
-8  
-5  
-10  
-1  
0
1
2
3
4
5
0
5
10 15 20 25 30 35 40  
SUPPLY VOLTAGE [V]  
INPUTVOLTAGE [V]  
Figure 90.  
Figure 91.  
Input Offset Voltage - Common Mode Input Voltage  
(VCC=5V)  
Input Offset Current - Supply Voltage  
(VICM=0V, OUT=1.4V)  
140  
130  
120  
110  
100  
90  
10  
-40℃  
25℃  
5
0
36V  
5V  
3V  
105℃  
125℃  
80  
-5  
70  
60  
-10  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[]  
Figure 92.  
Figure 93.  
Large Signal Voltage Gain - Supply Voltage  
(RL=2k)  
Input Offset Current - Ambient Temperature  
(VICM=0V, OUT=1.4V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
35/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
BA2902, BA2902S  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
15V  
-40℃  
25℃  
5V  
125℃  
105℃  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]  
Figure 94.  
Figure 95.  
Large Signal Voltage Gain - Ambient Temperature  
Common Mode Rejection Ratio  
- Supply Voltage  
(RL=2k)  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
36V  
5V  
3V  
80  
60  
70  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE[]  
AMBIENTTEMPERATURE[]  
Figure 96.  
Figure 97.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Power Supply Rejection Ratio  
- Ambient Temperature  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
36/52  
TSZ2211115001  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Application Information  
NULL method condition for Test Circuit 1  
VCC, VEE, EK, VICM Unit : V  
BA2904  
BA10358  
BA10324A  
BA2902  
Parameter  
VF  
VF1  
S1  
S2  
S3  
calculation  
EK  
VICM  
EK  
VICM  
VCC VEE  
VCC VEE  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
ON  
ON OFF  
5
5
5
0
0
0
-1.4  
0
5 to 30  
0
0
0
-1.4  
0
1
2
3
4
VF2 OFF OFF OFF  
-1.4  
-1.4  
0
0
5
5
-1.4  
-1.4  
0
0
VF3 OFF ON  
OFF  
VF4  
VF5  
VF6  
VF7  
ON OFF  
15  
15  
5
0
0
0
-1.4  
-11.4  
-1.4  
0
0
0
15  
15  
5
0
0
0
-1.4  
-11.4  
-1.4  
0
0
0
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
Common-mode Rejection Ratio  
(Input common-mode Voltage  
Range)  
ON OFF  
ON OFF  
5
6
VF8  
5
0
-1.4  
3.5  
5
0
-1.4  
3.5  
VF9  
5
0
0
-1.4  
-1.4  
0
0
5
0
0
-1.4  
-1.4  
0
0
Power Supply  
Rejection Ratio  
VF10  
30  
30  
-Calculation-  
1. Input Offset Voltage (Vio)  
|VF1|  
[V]  
=
=
=
VIO  
1+RF/RS  
|VF2-VF1|  
[A]  
2. Input Offset Current (Iio)  
3. Input Bias Current (Ib)  
IIO  
RI ×(1+RF/RS)  
|VF4-VF3|  
[A]  
IB  
2 × RI ×(1+RF/RS)  
10 × (1+RF/RS)  
AV  
[dB]  
= 20Log  
4. Large Signal Voltage Gain (Av)  
|VF5-VF6|  
3.5 × (1+RF/RS)  
|VF8-VF7|  
CMRR  
[dB]  
[dB]  
=
20Log  
5. Common-mode Rejection Ration (CMRR)  
6. Power supply rejection ratio (PSRR)  
25 × (1+ RF/RS)  
|VF10 – VF9|  
PSRR  
=
20Log  
0.1µF  
RF=50kΩ  
0.1µF  
500kΩ  
SW1  
VCC  
15V  
EK  
Vo  
RS=50Ω  
Ri=10kΩ  
500kΩ  
DUT  
NULL  
-15V  
SW3  
1000pF  
Ri=10kΩ  
RS=50Ω  
50kΩ  
RL  
VF  
Vicm  
SW2  
VEE  
Figure . 98 Test circuit1 (one channel only)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
37/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Switch Condition for Test Circuit 2  
SW SW SW SW SW SW SW SW SW SW SW SW SW SW  
10 11 12 13 14  
SW No.  
Supply Current  
1
2
3
4
5
6
7
8
9
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
Maximum Output Voltage(High) OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
Maximum Output Voltage(Low) OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
Output Source Current  
Output Sink Current  
Slew Rate  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
Gain Bandwidth Product  
Equivalent Input Noise Voltage  
SW4  
Input voltage  
R2  
SW5  
VCC  
VH  
VL  
SW1  
RS  
SW2  
SW3  
t
Input wave  
SW9 SW10 SW11 SW12 SW13 SW14  
SW6  
SW7  
SW8  
Output voltage  
R1  
C
90%  
SR=ΔV/Δt  
VEE  
VH  
RL  
CL  
ΔV  
VIN-  
VIN+  
OUT  
10%  
VL  
Δt  
Output wave  
t
Figure 100. Slew Rate Input Waveform  
Figure 99. Test Circuit 2 (each Op-Amp)  
VCC  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
VIN  
R2  
OUT1  
=0.5 Vrms  
R1  
R2  
V
V
OUT2  
100 × OUT1  
CS 20 × log  
OUT2  
Figure 101. Test Circuit 3(Channel Separation)  
(R1=1k,R2=100k)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
38/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Examples of circuit  
Voltage follower  
Voltage gain is 0 dB.  
VCC  
This circuit controls output voltage (OUT) equal input  
voltage (IN), and keeps OUT with stable because of  
high input impedance and low output impedance.  
OUT is shown next formula.  
OUT=IN  
OUT  
IN  
VEE  
Inverting amplifier  
R2  
VCC  
For inverting amplifier, IN is amplified by voltage gain  
decided R1 and R2, and phase reversed voltage is  
output.  
R1  
IN  
OUT  
OUT is shown next formula.  
OUT=-(R2/R1)IN  
Input impedance is R1.  
R1//R2  
VEE  
Non-inverting amplifier  
For non-inverting amplifier, IN is amplified by voltage  
gain decided R1 and R2, and phase is same with IN.  
OUT is shown next formula.  
OUT= (1+R2/R1)IN  
This circuit realizes high input impedance because  
Input impedance is operational amplifier’s input  
Impedance.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
39/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 102 (a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(PD).  
θJA  
= (TJmaxTA) / PD °C/W  
The derating curve in Figure 102 (b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 102. (c) to (f) show a derating curve for an example of BA10358,  
BA10324A, BA2904S, BA2904, BA2904W, BA2902S, BA2902.  
[W]  
Power Dissipation of LSI [W]  
PD  
(mx)
a
P2  
P1  
θ
< θ  
JA2 JA1
θJA=(TJmax-TA)/ PD °C/W  
TA  
Ambient Temperature  
[ °C ]  
θ’  
JA2
θ
JA2
T
T
Jmax
J’max  
θJA  
1
1  
θJA1  
0
25  
50  
75  
100  
125  
150  
Chip Surface Temperature TJ [ °C ]  
Ambient Temperature TA[C]  
(b) Derating Curve  
(a) Thermal Resistance  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
BA10324AFJ(Note 33)  
BA10324AFV V(Note 34)  
BA10358F(Note 30)  
BA10358FJ(Note 31)  
BA10324AF(Note 35)  
BA10358FV(Note 32)  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
AMBIEN T TEMPERATURE [  
]
.
AMBIENT TEMPERATURE [  
]
.
(c)BA10358  
(d)BA10324  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
BA2904F(Note 36)  
BA2904WF(Note 36)  
BA2904SF(Note 36)  
BA2902FV(Note 39)  
BA2902SFV(Note 39)  
BA2904FV(Note 37)  
BA2904WFV(Note 37)  
BA2904SFV(Note 37)  
BA2902F((Note 40)  
BA2902SF(Note 40)  
BA2904FVM(Note 38)  
BA2904SFVM(Note 38)  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE [  
]
.
]
AMBIENT TEMPERATURE [  
.
(f)BA2902  
(e)BA2904  
(Note 30) (Note 31) (Note 32) (Note 33) (Note 34) (Note 35) (Note 36) (Note 37) (Note 38) (Note 39) (Note 40) Unit  
6.2 5.4 5.0 8.2 7.0 4.5 6.2 5.0 4.7 7.0 4.5 mW/°C  
When using the unit above TA=25°C, subtract the value above per degree °C.  
Permissible dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (copper foil area below 3%) is mounted.  
Figure 102. Thermal resistance and derating  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
40/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
terminals.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply  
lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting  
the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of  
temperature and aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current GND traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on  
the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of  
connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground. Inter-pin shorts could be due to  
many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge  
deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
41/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Operational Notes – continued  
11. Regarding Input Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P+  
P+  
P+  
P+  
P
N
P
N
N
N
N
N
N
N
Parasitic  
Element  
Parasitic  
Element  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Element  
Parasitic  
Element  
Parasitic element  
or Transistor  
Figure 103. Example of Monolithic IC Structure  
12. Unused Circuits  
When there are unused circuits it is recommended that they be connected as in Figure 104, setting the non-inverting  
input terminal to a potential within the in-phase input voltage range (VICM).  
VCC  
+
-
Keep this potential  
VICM  
in VICM  
VEE  
Figure 104. Disable Circuit Example  
13. Input Terminal Voltage  
(BA10358 / BA10324) Applying VEE + 32V, (BA2904 / BA2902) Applying VEE + 36V to the input terminal is possible  
without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However,  
this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage  
is within the common mode input voltage range of the electric characteristics.  
14. Power Supply (signal / dual)  
The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply  
op-amp can be used as a dual supply op-amp as well.  
15. Terminal short-circuits  
When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation  
and, subsequently, destruction.  
16. IC Handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical  
characteristics due to piezo resistance effects.  
17. Output Capacitor  
If a large capacitor is connected between the output pin and VEE pin, current from the charged capacitor will flow into  
the output pin and may destroy the IC when the VCC pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 0.1uF between output pin and VEE pin.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
42/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimensions Tape and Reel Information  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
43/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
SOP-J8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
44/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
SSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
45/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
MSOP8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
46/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
47/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
SOP-J14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
48/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Physical Dimension, Tape and Reel Information – continued  
Package Name  
SSOP-B14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
49/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Marking Diagrams  
SOP8(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B8(TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
SOP-J14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP-J8(TOP VIEW)  
Part Number Marking  
LOT Number  
1PIN MARK  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
50/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Product Name  
Package Type  
SOP8  
Marking  
10358  
F
FJ  
FV  
F
BA10358  
SOP-J8  
SSOP-B8  
SOP14  
358  
BA10324AF  
BA10324A  
324A  
BA10324A  
FJ  
FV  
F
SOP-J14  
SSOP-B14  
SOP8  
BA2904  
BA2904W  
BA2904S  
FV  
FVM  
F
SSOP-B8  
MSOP8  
SOP8  
2904  
FV  
F
SSOP-B8  
SOP8  
2904S  
04S  
FV  
FVM  
F
SSOP-B8  
MSOP8  
SOP14  
2904S  
BA2902F  
2902  
BA2902  
FV  
F
SSOP-B14  
SOP14  
BA2902S  
2902S  
FV  
SSOP-B14  
Land pattern data  
all dimensions in mm  
Land length  
Land pitch  
Land space  
Land width  
b2  
PKG  
SOP8  
e
MIE  
4.60  
4.60  
3.90  
2.62  
4.60  
4.60  
3.90  
≧ℓ 2  
1.10  
1.20  
1.35  
0.99  
1.10  
1.20  
1.35  
1.27  
0.65  
1.27  
0.65  
1.27  
0.65  
1.27  
0.76  
0.35  
0.76  
0.35  
0.76  
0.35  
0.76  
SSOP-B8  
SOP-J8  
MSOP8  
SOP14  
SSOP-B14  
SOP-J14  
MIE  
ℓ2  
SOP8, SSOP-B8, SOP-J8, MSOP8  
SOP14, SSOP-B14, SOP-J14  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
51/52  
BA10358xx, BA10324Axx, BA2904xxx, BA2904Sxxx, BA2904Wxx  
BA2902xx, BA2902Sxx  
Datasheet  
Revision History  
Date  
Revision  
001  
Changes  
14.SEP.2012  
11.Jan.2013  
New Release  
002  
Land pattern data inserted.  
The Differential Input Voltage and Input Common-mode Voltage Range are updated in  
absolute maximum ratings for BA10358 and BA10324A.  
23.Jan.2014  
003  
The input current is added in absolute maximum ratings.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200130-1-2  
23.Jan.2014 Rev.003  
52/52  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BA10324AF - Web Page  
Distribution Inventory  
Part Number  
Package  
BA10324AF  
SOP14  
Unit Quantity  
2500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2500  
Taping  
inquiry  
Yes  

相关型号:

BA10324AFJ-E2

Ground Sense Operational Amplifiers
ROHM

BA10324AFJ-GE2

IC OPAMP STD GRD SENSE 14SOP
ROHM

BA10324AFT1

QUAD OP-AMP, PDSO14, SOP-14
ROHM

BA10324AFT2

QUAD OP-AMP, PDSO14, SOP-14
ROHM

BA10324AFV

Quad ground sense operational
ROHM

BA10324AFV-E1

Operational Amplifier, 4 Func, 7000uV Offset-Max, BIPolar, PDSO14, SSOP-14
ROHM

BA10324AFV-E2

Ground Sense Operational Amplifiers
ROHM

BA10324AFV-T1

Operational Amplifier, 4 Func, PDSO14, SSOP-14
ROHM

BA10324AFV-T2

QUAD OP-AMP, PDSO14, SSOP-14
ROHM

BA10324AFVE1

QUAD OP-AMP, PDSO14, SSOP-14
ROHM

BA10324AFVE2

QUAD OP-AMP, 7000uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDSO14, ROHS COMPLIANT, SSOP-14
ROHM

BA10324AFVM-TR

Operational Amplifier, 4 Func, 7000uV Offset-Max, BIPolar, PDSO8, MSOP-8
ROHM