BA00CC0T-V5 [ROHM]

Adjustable Positive LDO Regulator, 1.2V Min, 1.25V Max, 0.5V Dropout, PSFM5, TO-220FP, 5 PIN;
BA00CC0T-V5
型号: BA00CC0T-V5
厂家: ROHM    ROHM
描述:

Adjustable Positive LDO Regulator, 1.2V Min, 1.25V Max, 0.5V Dropout, PSFM5, TO-220FP, 5 PIN

局域网 输出元件 调节器
文件: 总9页 (文件大小:2299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
3-terminal Regulator LDO Regulator series  
Standard Variable  
Output LDO Regulator  
BA00DD0W and BA00CC0W Series  
General Description  
The BA00DD0/CC0 series are low-saturation regulators available for outputs up to 2A/1A. The output voltage can be  
arbitrarily configured using the external resistance. These series of LDO regulators are offered in a broad packaging lineup.  
This IC has a built-in over-current protection circuit that prevents the destruction of the IC due to output short circuits and a  
thermal shutdown circuit that protects the IC from thermal damage due to overloading.  
Features  
1) Maximum output current : 2A (BA00DD0 series), 1A(BA00CC0 series)  
2) ±1% high-precision output voltage (BA00DD0)  
3) Low saturation with PNP output  
4) Built-in over-current protection circuit that prevents the destruction of the IC due to output short circuits  
5) Built-in thermal shutdown circuit for protecting the IC from thermal damage due to overloading  
6) Built-in over- voltage protection circuit that prevents the destruction of the IC due to power supply surges  
7) TO220CP and HRP5 packaging(BA00DD0), and TO220FP/CP and TO252 packaging(BA00CC0)  
Applications  
Usable in DSP power supplies for DVDs and CDs, FPDs, televisions, personal computers or any other consumer device  
Line up  
1A BA00CC0 Series  
Part Number  
BA00CC0WT  
Package  
TO220FP-5  
BA00CC0WT-V5  
BA00CC0CP-V5  
BA00CC0WFP  
TO220FP-5(V5)  
TO220CP-V5  
TO252-5  
2A BA00DD0 Series  
Part Number  
BA00DD0CP-V5  
BA00DD0WHFP  
Package  
TO220CP-V5  
HRP-5  
2007.Oct.  
ABSOLUTE MAXIMUM RATINGS(Ta=25)  
Parameter  
Symbol  
Vcc  
Limits  
-0.3 ~ +35  
Unit  
V
Input Power Supply Voltage1  
2300(HRP5)  
1300(TO252-5)  
2000(TO220FP/CP)  
-40 ~ +125  
-55 ~ +150  
+150  
2  
Power Dissipation  
Pd  
mW  
Operating Temperature Range  
Ambient Storage Temperature  
Junction Temperature  
Topr  
Tstg  
V
Tjmax  
VCTL  
Output Control Terminal Voltage  
-0.3 ~ +Vcc  
+50  
3  
Voltage Applied to the Tip  
1 Must not exceed Pd  
Vcc peak  
V
2 HRP5 : In cases in which Ta25when a 70mm×70mm×1.6mm glass epoxy board is used, the power is reduced by 18.4 mW/.  
TO252-5 : In cases in which Ta25when a 70mm×70mm×1.6mm glass epoxy board is used, the power is reduced by 10.4 mW/.  
TO252FP-5 : No heat sink. When Ta25, the power is reduced by 16 mW/.  
3 Applied voltage : 200msec or less (tr1msec)  
tr1msec  
50V  
35V  
MAX200msec  
(Voltage Supply more than 35V)  
0V  
Recommended Operating Range (Ta=25)  
Parameter  
Symbol  
Min.  
4.0  
3.0  
Max.  
25.0  
25.0  
1
Unit  
V
Input Power  
BA00CC0□□  
BA00DD0□□  
BA00CC0□□  
BA00DD0□□  
Vcc  
Supply Voltage  
Output Current  
Io  
A
V
2
Output Control Terminal Voltage  
VCTL  
0
Vcc  
Electrical Characteristics(ABRIDGED)  
BA00CC0□□ Series (unless specified otherwise, Ta=25, Vcc=10V, VCTL=5V, Io=500mA, R1=2.2KΩ, R2=6.8KΩ)  
Parameter  
C-terminal Voltage  
Symbol  
Vc  
Min.  
1.200  
Typ.  
1.225  
0
Max.  
1.250  
10  
Unit  
V
Conditions  
Io=50mA  
Circuit Current at the Time of Shutdown  
Minimum I/O Voltage Difference  
Output Current Capacity  
Isd  
μA  
V
VCTL=0V  
ΔVd  
Io  
0.3  
0.5  
Vcc= 0.95×Vo  
1.0  
A
Input Stability  
Reg.I  
Reg.L  
TCVO  
20  
100  
150  
mV  
mV  
Vcc= 6V25 V  
Io=5mA1A  
Load Stability  
50  
Output Voltage Temperature Coefficient*  
Design guarantee(100% shipping inspection not performed)  
±0.02  
%/Io=5mA ,Tj=0~125℃  
BA00DD0□□ Series (unless specified otherwise, Ta=25, Vcc=8V, VCTL=3V, Io=500mA, R1=15KΩ, R2=44KΩ)  
Parameter  
C-terminal Voltage  
Symbol  
VADJ  
Isd  
Min.  
1.257  
Typ.  
1.270  
0
Max.  
1.283  
10  
Unit  
V
Conditions  
Io=100mA  
Circuit Current at the Time of Shutdown  
Minimum I/O Voltage Difference  
Output Current Capacity  
μA  
V
VCTL=0V  
ΔVd  
Io  
0.45  
0.7  
Vcc= 0.95×Vo, Io=2A  
2.0  
A
Vcc= 5.7V 25 V,  
Io=200mA  
Input Stability  
Reg.I  
15  
35  
mV  
mV  
Load Stability  
Reg.L  
TCVO  
50  
100  
Io=0mA2A  
Output Voltage Temperature Coefficient*  
Design guarantee(100% shipping inspection not performed)  
±0.02  
%/Io=5mA ,Tj=0~125℃  
2/8  
Reference Data  
BA00CC0□□(3.3V preset voltage)  
(Unless specified otherwise, Vcc=10V, VOUT=3.3V preset, VCTL=3V, Io=0mA, R1=2.2KΩ, and R2=6.8KΩ)  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLY VOLTAGE:VCC[V]  
SUPPLY VOLTAGE:VCC[V]  
SUPPLY VOLTAGE:VCC[V]  
Fig.1 Circuit current  
Fig.2 Input Stability  
Fig.3 Input Stability  
Io=500mA)  
600  
500  
400  
300  
200  
100  
0
3.5  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
1k  
10k  
100k  
0
100 200 300 400 500 600 700 800 900 1000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY:f[Hz]  
OUTPUT CURRENT:Io[mA]  
OUTPUT CURRENT:Io[mA]  
Fig.5 Input/Output Voltage Difference  
Fig.6 Ripple Rejection Characteristics  
Fig.4 Load Stability  
Io-ΔVd CharacteristicsVcc=2.95V)  
Io=100mA)  
4.5  
200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
4.0  
3.5  
3.0  
2.5  
2.0  
150  
100  
50  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
2
4
6
8
10 12  
14 16  
18 20  
0
100 200 300 400 500 600 700 800 900 1000  
CONTROL VOLTAGE:VCTL[V]  
AMBIENT TEMPERATURE:Ta[  
]
OUTPUT CURRENT:Io[mA]  
Fig.7 Output Voltage  
Temperature Characteristics  
Fig.8 Circuit Current by load Level  
Fig.9 CTL Voltage vs. CTL Current  
(IOUT=0mA1A)  
4
3
2
1
0
4
3
2
1
0
8
7
6
5
4
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
5
10  
15  
20  
25  
30  
35  
40  
130  
140  
150  
160  
170  
180  
190  
CONTROL VOLTAGE:VCTL[V]  
SUPPLY VOLTAGE:Vcc[V]  
AMBIENT TEMPERATURE:Ta[  
]
Fig.10 CTL Voltage vs. Output Voltage  
Fig.12 Thermal Shutdown  
Circuit Characteristics  
Fig.11 Overvoltage Operating  
Characteristics(Io=200mA)  
3/8  
Reference Data  
BA00DD0□□(5.0V preset voltage)  
(Unless specified otherwise, Vcc=8V, VOUT=5V preset, VCTL=3V, Io=0mA, R1=15KΩ, and R2=44KΩ)  
8
7
6
5
4
3
2
1
0
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
8
7
6
5
4
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0
2
4
6
8
10 12 14 16 18 20 22 24  
SUPPLY VOLTAGE:VCC[V]  
SUPPLY VOLTAGE:VCC[V]  
SUPPLY VOLTAGE:VCC[V]  
Fig.13 Circuit Current  
Fig.14 Input Stability  
Fig.15 Input Stability  
Io=2A)  
8
7
6
5
4
3
2
1
0
800  
700  
600  
500  
400  
300  
200  
100  
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
1k  
100  
10k  
1000k  
100k  
1.0  
2.0  
3.0  
4.0  
4.8  
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT:IOUT[A]  
FREQUENCY:f[Hz]  
OUTPUT CURRENT:IOUT[A]  
Fig.16 Load Stability  
Fig.17 Input/Output Voltage Difference  
Fig.18 Ripple Rejection Characteristics  
Iout=100mA)  
Iout-ΔVd CharacteristicsVcc=4.75V)  
5.2  
5.1  
5.0  
4.9  
4.8  
200  
180  
160  
140  
120  
100  
80  
800  
700  
600  
500  
400  
300  
200  
100  
0
60  
40  
20  
0
0.5  
1.0  
1.5  
2.0  
-40  
-20  
0
20  
40  
60  
80  
100  
0
2
4
6
8
10 12 14 16 18 20 22 24  
CONTROL VOLTAGE:VCTL[V]  
OUTPUT CURRENT:IOUT[A]  
AMBIENT TEMPERATURE:Ta[  
]
Fig.19 Output Voltage  
Temperature Characteristics  
Fig.20 Circuit Current by load Level  
Fig.21 CTL Voltage vs. CTL Current  
(IOUT=0mA2A)  
8
6
4
2
0
8
7
6
5
4
3
2
1
0
8  
7  
6
5  
4
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
130  
140  
150  
160  
170  
180  
190  
0
5
10  
15  
20  
25  
30  
35  
40  
CONTROL VOLTAGE:VCTL[V]  
AMBIENT TEMPERATURE:Ta[  
]
SUPPLY VOLTAGE:Vcc[V]  
Fig.22 CTL Voltage vs. Output Voltage  
Fig.24 Thermal Shutdown  
Circuit Characteristics  
Fig.23 Overvoltage Operating  
Characteristics(Io=200mA)  
4/8  
1
Block Diagrams  
[BA00CC0WFP]  
[BA00DD0WHFP]  
[BA00CC0WT]  
[BA00DD0WT]  
N.C.(TO252-5)  
GND(HRP5)  
3
Vref  
Vref  
Driver  
Driver  
VOUT  
VOUT  
Vcc  
2
Vcc  
4
4
2
0.33μF  
0.33μF  
+
22μF  
+
22μF  
OVP  
TSD  
OCP  
OVP  
TSD  
3
OCP  
1
5
1
5
Fin  
C(ADJ)  
R1  
C(ADJ)  
R1  
GND  
GND  
CTL  
CTL  
R2  
R2  
Fig.25  
Fig.26  
TOP VIEW  
TOP VIEW  
TOP VIEW  
FIN  
PINNo.  
Symbol  
CTL  
Function  
PINNo.  
Symbol  
CTL  
Function  
1
2
Output voltage ON/OFF control  
Power supply voltage input  
Unconnected terminal/GND*  
Voltage output  
1
2
3
4
5
Output voltage ON/OFF control  
Power supply voltage input  
GND  
VCC  
VCC  
GND  
OUT  
ADJ  
3
N.C./GND  
OUT  
1
2 3 4 5  
1
2 3 4 5  
4
1 2 345  
1 2 345  
Voltage output  
TO252-5  
HRP5  
TO220FP-5 TO220FP-5(V5)  
5
C
Output voltage regulation terminal  
GND  
Output voltage regulation terminal  
FIN  
GND  
*TO252-5 is N.C., and HRP5 is GND  
4 5  
12 3  
TO220CP-V5  
Input / Output Equivalent Circuit Diagrams  
< BA00CC0WT/BA00CC0WFP >  
Vcc  
25kΩ  
CTL  
C
10 kΩ  
25kΩ  
5.5 kΩ  
VOUT  
Fig.27  
< BA00DD0WT/BA00DD0WFP >  
Vcc  
Vcc  
Vcc  
10kΩ  
39kΩ  
2kΩ  
VOUT  
CTL  
ADJ  
31kΩ  
500Ω  
Fig.28  
Output Voltage Configuration Method  
Please connect resistors R1 and R2 (which determines the output voltage) as shown in Fig.29.  
Please be aware that the offset due to the current that flows from the ADJ terminal becomes large when resistors with large  
values are used. The use of resistors with R1=2KΩ to 15 KΩ is recommended.  
VOUT  
R2  
R1  
Vo = Vc (VADJ) × 1 +  
R2  
Vc  
VADJ  
BA□□CC0□□  
BA□□DD0□□  
Vc : 1.225 (Typ.)  
R
1
CADJ)  
VADJ : 1.270 (Typ.)  
Fig.29  
5/8  
Thermal Design  
HRP-5  
To225FP-5  
TO252-5  
10  
25  
20  
15  
10  
5
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
Board size : 70×70×1.6 3 board contains a thermal)  
1When using a maximum heat sick : θj-c=6.25(/W)  
2When using an IC alone : θj-c=62.5(/W)  
Board front copper foil area : 10.5×10.5 2  
9
8
7
6
5
4
3
2
1
0
2-layer board (back surface copper foil area :15×15 2  
2-layer board (back surface copper foil area :70×70 2  
4-layer board (back surface copper foil area :70×70 2  
)
)
)
120.0  
7.3W  
1.30  
5.5W  
2.3W  
22.0  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient temperature:Ta(℃)  
Ambient temperature:Ta(℃)  
Ambient temperature:Ta(℃)  
Fig.30  
Fig.31  
Fig.32  
When using at temperatures over Ta=25, please refer to the heat reducing characteristics shown in Fig.30 through 32.  
The IC characteristics are closely related to the temperature at which the IC is used, so it is necessary to operate the IC at  
temperatures less than the maximum junction temperature TjMAX.  
Fig.31 shows the acceptable loss and heat reducing characteristics of the TO220FP package The portion shown by the  
diagonal line is the acceptable loss range that can be used with the IC alone. Even when the ambient temperature Ta is a  
normal temperature (25), the chip (junction) temperature Tj may be quite high so please operate the IC at temperatures  
less than the acceptable loss Pd.  
The calculation method for power consumption Pc(W) is as follows :  
Vcc:  
Vo:  
Input voltage  
Output voltage  
Load current  
Circuit current  
Pc = (Vcc-Vo)×IoVcc×Icca  
Acceptable loss PdPc  
Io:  
Icca:  
Solving this for load current IO in order to operate within the acceptable loss,  
Pd – Vcc×Icca  
Io≦  
VccVo  
Please refer to Figs.8 and 20 for Icca.)  
It is then possible to find the maximum load current IoMAX with respect to the applied voltage Vcc at the time of thermal  
design.  
Calculation Example  
Example 1) When Ta=85, Vcc=8.3V, Vo=3.3V, BA33DD0WT  
1.048.3×Icca  
Io≦  
With the IC alone : θja=62.5/W -16mW/℃  
25=2000mW 85=1040mW  
5
Io200mA (Icca : 2mA)  
Please refer to the above information and keep thermal designs within the scope of acceptable loss for all operating  
temperature ranges. The power consumption Pc of the IC when there is a short circuit (short between Vo and GND) is :  
Pc=Vcc×(IccaIshort)  
Ishort : Short circuit current  
Terminal Vicinity Settings and Cautions  
Vcc Terminal  
Please attach a capacitor (greater than 0.33μF) between the Vcc and GND.  
The capacitance values differ depending on the application, so please chose a capacitor with sufficient margin and verify  
the operation on an actual board.  
CTL Terminal  
The CTL terminal is turned ON at 2.0V and higher and OFF at 0.8V and lower within the operating power supply voltage  
range.  
The power supply and the CTL terminal may be started up and shut down in any order without problems.  
Vo Terminal  
Please attach an anti-oscillation capacitor between VOUT and GND. The capacitance of the capacitor may significantly  
change due to factors such as temperature changes, which may cause oscillations. Please use a tantalum capacitor or  
aluminum electrolytic capacitor with favorable characteristics and small external series resistance (ESR) even at low  
temperatures. The output oscillates regardless of whether the ESR is large or small. Please use the IC within the stable  
operating region while referring to the ESR characteristics reference data shown in Figs.33 through 35. In cases where there  
are sudden load fluctuations, the a large capacitor is recommended.  
Below figure , it is ESR-to-Io stability Area characteristics ,measured by 22μF-ceramic-capacitor and resistor connected in  
series.  
This characteristics is not equal value perfectly to 22μF-aluminum electrolytic capacitor in order to measurement  
method.  
6/8  
Note, however, that the stable range suggested in the figure depends on the IC and the resistance load involved, and can  
vary with the board’s wiring impedance, input impedance, and/or load impedance. Therefore, be certain to ascertain the final  
status of these items for actual use.  
Keep capacitor capacitance within a range of 22μF1000μF. It is also recommended that a 0.33μF bypass capacitor be  
connected as close to the input pin-GND as location possible. However, in situations such as rapid fluctuation of the input  
voltage or the load, please check the operation in real application to determine proper capacitance.  
100  
Unstable operating region  
Unstable operating region  
100  
10  
10  
1
Stable operating region  
OUT  
IC  
Stable operating region  
22μF  
C(ADJ)  
1
Unstable operating region  
Unstable operating region  
0.1  
1
0.1  
200  
600  
800  
1000  
400  
100  
0
10  
1000  
OUTPUT CURRENTlo(mA)  
OUTPUT CURRENTlo(mA)  
Fig.33:Output equivalent circuit  
Other  
Fig.34:Io vs. ESR characteristics  
Fig.35: Io vs. ESR characteristics  
(BA□□CC0,22μF)  
(BA□□DD0,22μF)  
1) Protection Circuits  
Overcurrent Protection Circuit  
A built-in overcurrent protection circuit corresponding to the current capacity prevents the destruction of the IC when there  
are load shorts. This protection circuit is a “7”-shaped current control circuit that is designed such that the current is restricted  
and does not latch even when a large current momentarily flows through the system with a high-capacitance capacitor.  
However, while this protection circuit is effective for the prevention of destruction due to unexpected accidents, it is not  
suitable for continuous operation or transient use. Please be aware when creating thermal designs that the overcurrent  
protection circuit has negative current capacity characteristics with regard to temperature (Refer to Figs.4 and 16).  
Thermal Shutdown Circuit (Thermal Protection)  
This system has a built-in temperature protection circuit for the purpose of protecting the IC from thermal damage. As shown  
above, this must be used within the range of acceptable loss, but if the acceptable loss happens to be continuously  
exceeded, the chip temperature Tj increases, causing the temperature protection circuit to operate.  
When the thermal shutdown circuit operates, the operation of the circuit is suspended. The circuit resumes operation  
immediately after the chip temperature Tj decreases, so the output repeats the ON and OFF states (Please refer to Figs.12  
and 24 for the temperatures at which the temperature protection circuit operates).  
There are cases in which the IC is destroyed due to thermal runaway when it is left in the overloaded state. Be sure to avoid  
leaving the IC in the overloaded state.  
Reverse Current  
In order to prevent the destruction of the IC when a reverse current flows through the IC, it is recommended that a diode be  
placed between the Vcc and Vo and a pathway be created so that the current can escape (Refer to Fig.36).  
2) This IC is bipolar IC that has a P-board (substrate) and P+ isolation layer  
between each devise, as shown in Fig.37. A P-N junction is formed between  
Reverse current  
this P-layer and the N-layer of each device, and the P-N junction operates  
as a parasitic diode when the electric potential relationship is GND>  
OUT  
Vcc  
Terminal A, GND> Terminal B, while it operates as a parasitic transistor  
when the electric potential relationship is Terminal B GND> Terminal A.  
Parasitic devices are intrinsic to the IC. The operation of parasitic devices  
induces mutual interference between circuits, causing malfunctions and  
eventually the destruction of the IC itself. It is necessary to be careful not to  
use the IC in ways that would cause parasitic elements to operate. For  
example, applying a voltage that is lower than the GND (P-board) to the  
input terminal.  
CTL  
GND  
Fig. 36:Bypass diode  
Transistor (NPN)  
Resistor  
B
(Pin A)  
(Pin B)  
O
(Pin B)  
E
C
B
GND  
E
N
P+  
P+  
P
N
GND  
P
P+  
Parasitic element  
or transistor  
N
P
N
P+  
N
N
N
Parasitic element  
GND  
P
(Pin A)  
Parasitic element  
GND  
Parasitic element  
or transistor  
GND  
Fig. 37: Example of the basic structure of a bipolar IC  
7/8  
Part Number Selection  
H P  
F
0
B A 0 0 C C  
W
2
E
Output  
voltage  
Current capacity  
CC0 : 1A  
DD0 : 1A  
ROHM  
model name  
Package  
Shutdown switch  
W : With switch  
None : Without  
switch  
Package specification  
TR : Embossed taping(HRP5)  
E2 : Embossed taping(TO252-5,  
TO220CP)  
None : Tube container  
V5 :Foaming(V5 only)  
TO220-3,5  
TO252-3,5  
HRP5  
T :  
F P :  
HFP :  
CP:  
TO220CP  
Unit:mm)  
Unit:mm)  
Unit:mm)  
Unit:mm)  
TO220FP-5  
Unit:mm)  
TO220FP-5 (V5)  
TO252-5  
HRP5  
TO2220CP-V5  
Package SpecificationTO220FP-5  
Package SpecificationTO220FP-5V5)  
Package Form  
Container tube  
500pcs  
Package Form  
Container tube  
500pcs  
Package Quantity  
Package Quantity  
The product orientation in each container  
tube is constant.  
The product orientation in each container  
tube is constant.  
Package Orientation  
Package Orientation  
*Please make orders in multiples of the package quantity.  
<Tape and Reel information > TO252-3,5  
*Please make orders in multiples of the package quantity.  
Tape and Reel informationHRP5  
Embossed taping  
Tape  
Embossed taping  
2000pcs  
Tape  
2000pcs  
Quantity  
Quantity  
E2  
TR  
Direction  
of feed  
Direction  
of feed  
When the reek is held with the left hand and the tape is drawn out with the  
right hand, the No.1 pin of the product faces the lower left direction.)  
When the reek is held with the left hand and the tape is drawn out with the  
right hand, the No.1 pin of the product faces the upper right direction.)  
Direction of feed  
Direction of feed  
No.1 pin  
Reel  
Reel  
No.1 pin  
*Please make orders in multiples of the package quantity.  
*Please make orders in multiples of the package quantity.  
8/8  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUPOPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2007 ROHM CO.,LTD.  
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY