W185-5H [ROCHESTER]

75MHz, OTHER CLOCK GENERATOR, PDSO24, 0.209 INCH, MO-150AD, SSOP-24;
W185-5H
型号: W185-5H
厂家: Rochester Electronics    Rochester Electronics
描述:

75MHz, OTHER CLOCK GENERATOR, PDSO24, 0.209 INCH, MO-150AD, SSOP-24

时钟 光电二极管 外围集成电路 晶体
文件: 总10页 (文件大小:895K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W185  
Six Output Peak Reducing EMI Solution  
Features  
Table 1. Modulation Width Selection  
Cypress PREMIS™ family offering  
• Generates an EMI optimized clocking signal at the  
output  
• Selectable output frequency range  
• Six 1.25%, 3.75%, or 0% down or center spread outputs  
• One non-Spread output of Reference input  
• Integrated loop filter components  
W185  
W185-5  
Output  
SS%  
Output  
0
F
F
in Fout Fin 1.25% Fin + 0.625% Fin≥  
0.625%  
1
in Fout Fin 3.75% Fin + 1.875% Fin≥  
1.875%  
• Operates with a 3.3V or 5V supply  
• Low power CMOS design  
Table 2. Frequency Range Selection  
• Available in 24-pin SSOP (Shrink Small Outline  
Package)  
• Outputs may be selectively disabled  
FS2  
0
FS1  
0
Frequency Range  
28 MHz FIN 38 MHz  
38 MHz FIN 48 MHz  
46 MHz FIN 60 MHz  
58 MHz FIN 75 MHz  
0
1
Key Specifications  
1
0
Supply Voltages:...........................................VDD = 3.3V±5%  
or VDD = 5V±10%  
1
1
Frequency Range: ............................ 28 MHz Fin 75 MHz  
Crystal Reference Range:................. 28 MHz Fin 40 MHz  
Cycle to Cycle Jitter: ....................................... 300 ps (max.)  
Selectable Spread Percentage:....................1.25% or 3.75%  
Output Duty Cycle: ............................... 40/60% (worst case)  
Output Rise and Fall Time: .................................. 5 ns (max.)  
Table 3. Output Enable  
EN1  
EN2  
CLK0:4  
CLK5  
0
0
1
1
0
1
0
1
Low  
Low  
Low  
Active  
Low  
Active  
Active  
Active  
Simplified Block Diagram  
Pin Configuration  
3.3V or 5.0V  
SSOP  
REFOUT  
FS2  
SSON#  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
RESET  
FS1  
X1  
X1  
XTAL  
Input  
40MHz  
max.  
X2  
VDD  
VDD  
X2  
Spread Spectrum  
Output  
(EMI suppressed)  
W185  
GND  
NC  
SS%  
EN2  
GND  
EN1  
CLK5  
3.3V or 5.0V  
VDD  
CLK0  
VDD  
CLK1  
CLK2  
10  
11  
CLK4  
GND  
15  
14  
12  
CLK3  
13  
Oscillator or  
Reference Input  
Spread Spectrum  
W185  
Output  
(EMI suppressed)  
PREMIS is a trademark of Cypress Semiconductor Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-07159 Rev. **  
Revised September 25, 2001  
W185  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
CLK0:5  
9, 11, 12, 13,  
15, 17  
O
I
Modulated Frequency Outputs: Frequency modulated copies of the unmod-  
ulated input clock (SSON# asserted).  
CLKIN or X1  
3
Crystal Connection or External Reference Frequency Input: This pin has  
dual functions. It may either be connected to an external crystal, or to an  
external reference clock.  
NC or X2  
SS%  
4
6
I
I
Crystal Connection: If using an external reference, this pin must be left un-  
connected.  
Modulation Width Selection: When Spread Spectrum feature is turned on,  
this pin is used to select the amount of variation and peak EMI reduction that  
is desired on the output signal. This pin has an internal pull-up resistor.  
Reset  
23  
1
I
ModulationProfileRestart:Arisingedgeonthisinputrestartsthemodulation  
pattern at the beginning of its defined path. This pin has an internal pull-down  
resistor.  
REFOUT  
O
Non-Modulated Output: This pin provides a copy of the reference frequency.  
This output will not have the Spread Spectrum feature enabled regardless of  
the state of logic input SSON#.  
EN1:2  
18, 7  
24  
I
I
Output Enable Select Pins: These pins control the activity of specific output  
buffers. See Table 3 on page 1.  
SSON#  
Spread Spectrum Control (Active LOW): Asserting this signal (active LOW)  
turns the internal modulation waveform on. This pin has an internal pull-down  
resistor.  
FS1:2  
22, 2  
I
Frequency Selection Bit 1 and 2: These pins select the frequency of opera-  
tion. Refer to Table 1. These pins have internal pull-up resistors.  
VDD  
GND  
NC  
10, 16, 20, 21  
5, 8, 14  
19  
P
G
Power Connection: Connected to 3.3V or 5V power supply.  
Ground Connection: This should be connected to the common ground plane.  
No Connect: This pin should be left floating.  
NC  
Document #: 38-07159 Rev. **  
Page 2 of 9  
W185  
times the reference frequency. (Note: For the W184 the output  
frequency is nominally equal to the input frequency.) The  
unique feature of the Spread Spectrum Frequency Timing  
Generator is that a modulating waveform is superimposed at  
the input to the VCO. This causes the VCO output to be slowly  
swept across a predetermined frequency band.  
Overview  
The W185 products are one series of devices in the Cypress  
PREMIS family. The PREMIS family incorporates the latest  
advances in PLL spread spectrum frequency synthesizer tech-  
niques. By frequency modulating the output with a low-fre-  
quency carrier, peak EMI is greatly reduced. Use of this tech-  
nology allows systems to pass increasingly difficult EMI testing  
without resorting to costly shielding or redesign.  
Because the modulating frequency is typically 1000 times  
slower than the fundamental clock, the spread spectrum pro-  
cess has little impact on system performance.  
In a system, not only is EMI reduced in the various clock lines,  
but also in all signals which are synchronized to the clock.  
Therefore, the benefits of using this technology increase with  
the number of address and data lines in the system. The Sim-  
plified Block Diagram shows a simple implementation.  
Frequency Selection With SSFTG  
In Spread Spectrum Frequency Timing Generation, EMI re-  
duction depends on the shape, modulation percentage, and  
frequency of the modulating waveform. While the shape and  
frequency of the modulating waveform are fixed for a given  
frequency, the modulation percentage may be varied.  
Functional Description  
Using frequency select bits (FS1:2 pins), the frequency range  
can be set. Spreading percentage may be selected as either  
1.25% or 3.75% (see Table 1).  
The W185 uses a Phase-Locked Loop (PLL) to frequency  
modulate an input clock. The result is an output clock whose  
frequency is slowly swept over a narrow band near the input  
signal. The basic circuit topology is shown in Figure 1. The  
input reference signal is divided by Q and fed to the phase  
detector. A signal from the VCO is divided by P and fed back  
to the phase detector also. The PLL will force the frequency of  
the VCO output signal to change until the divided output signal  
and the divided reference signal match at the phase detector  
input. The output frequency is then equal to the ratio of P/Q  
A larger spreading percentage improves EMI reduction. How-  
ever, large spread percentages may either exceed system  
maximum frequency ratings or lower the average frequency to  
a point where performance is affected. For these reasons,  
spreading percentage options are provided.  
VDD  
Clock Input  
CLKOUT  
Freq.  
Divider  
Q
Phase  
Detector  
Charge  
Pump  
Post  
Dividers  
Reference Input  
(EMI suppressed)  
Σ
VCO  
Modulating  
Waveform  
Feedback  
Divider  
P
PLL  
GND  
Figure 1. Functional Block Diagram  
Document #: 38-07159 Rev. **  
Page 3 of 9  
W185  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Frequency Timing  
Generation  
The output clock is modulated with a waveform depicted in  
Figure 3. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. Figure  
3 details the Cypress spreading pattern. Cypress does offer  
options with more spread and greater EMI reduction. Contact  
your local Sales representative for details on these devices.  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 2.  
As shown in Figure 2, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is:  
dB = 6.5 + 9*log10(P) + 9*log10(F)  
EMI Reduction  
SSFTG  
Typical Clock  
Spread  
Spectrum  
Enabled  
Non-  
Spread  
Spectrum  
Frequency Span (MHz)  
Down Spread  
Frequency Span (MHz)  
Center Spread  
Figure 2. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX.  
MIN.  
Figure 3. Typical Modulation Profile  
Document #: 38-07159 Rev. **  
Page 4 of 9  
W185  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
VDD, VIN  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
0 to +70  
Unit  
V
TSTG  
TA  
°C  
°C  
°C  
W
Operating Temperature  
TB  
Ambient Temperature under Bias  
Power Dissipation  
55 to +125  
0.5  
PD  
DC Electrical Characteristics: 0°C < TA < 70°C, VDD = 3.3V ±5%  
Parameter  
IDD  
Description  
Supply Current  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
mA  
ms  
18  
32  
5
tON  
Power Up Time  
First locked clock cycle after Power  
Good  
VIL  
VIH  
VOL  
VOH  
IIL  
Input Low Voltage  
0.8  
0.4  
V
V
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input Low Current  
2.4  
V
2.4  
V
Note 1  
50  
µA  
µA  
mA  
mA  
pF  
kΩ  
IIH  
Input High Current  
Output Low Current  
Output High Current  
Input Capacitance  
Input Pull-Up Resistor  
Clock Output Impedance  
Note 1  
50  
7
IOL  
IOH  
CI  
@ 0.4V, VDD = 3.3V  
@ 2.4V, VDD = 3.3V  
15  
15  
RP  
500  
25  
ZOUT  
Note:  
1. Inputs FS1:2 have a pull-up resistor; Input SSON# has a pull-down resistor.  
Document #: 38-07159 Rev. **  
Page 5 of 9  
W185  
DC Electrical Characteristics: 0°C < TA < 70°C, VDD = 5V ±10%  
Parameter  
IDD  
Description  
Supply Current  
Test Condition  
Min.  
Typ.  
Max.  
50  
Unit  
mA  
ms  
30  
tON  
Power Up Time  
First locked clock cycle after  
Power Good  
5
VIL  
VIH  
VOL  
VOH  
IIL  
Input Low Voltage  
0.15VDD  
0.4  
V
V
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input Low Current  
0.7VDD  
V
2.4  
V
Note 1  
100  
µA  
µA  
mA  
mA  
pF  
kΩ  
IIH  
Input High Current  
Output Low Current  
Output High Current  
Input Capacitance  
Input Pull-Up Resistor  
Clock Output Impedance  
Note 1  
50  
7
IOL  
IOH  
CI  
@ 0.4V, VDD = 5V  
@ 2.4V, VDD = 5V  
24  
24  
RP  
500  
25  
ZOUT  
AC Electrical Characteristics: TA = 0°C to +70°C, VDD = 3.3V ±5% or 5V±10%  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
fOSC  
Internal Xtal Oscillator  
Frequency  
Xtal connected to X1, X2  
28  
40  
MHz  
fIN  
Input Frequency  
External reference  
28  
28  
75  
75  
MHz  
MHz  
fOUT  
Output Frequency  
Spread Off, FS2:1 per  
Table 2  
tR  
Output Rise Time  
Output Fall Time  
15-pF load 0.8V2.4V  
15-pF load 2.4 0.8V  
15-pF load  
2
2
5
5
ns  
ns  
%
tF  
tOD  
Output Duty Cycle  
Input Duty Cycle  
40  
40  
60  
60  
300  
tID  
%
tJCYC  
EMIRED  
Jitter, Cycle-to-Cycle  
Harmonic Reduction  
250  
ps  
dB  
fout = 40 MHz, third harmonic  
measured, reference board,  
15-pF load  
8
tSK  
Output to Output Skew  
300  
ps  
Document #: 38-07159 Rev. **  
Page 6 of 9  
W185  
creased trace inductance will negate its decoupling capability.  
The 10-µF decoupling capacitor shown should be a tantalum  
type. For further EMI protection, the VDD connection can be  
made via a ferrite bead, as shown.  
Application Information  
Recommended Circuit Configuration  
For optimum performance in system applications the power  
supply decoupling scheme shown in Figure 4 should be used.  
Recommended Board Layout  
VDD decoupling is important to both reduce phase jitter and  
EMI radiation. The 0.1-µF decoupling capacitor should be  
placed as close to the VDD pin as possible, otherwise the in-  
Figure 5 shows a recommended 2-layer board layout.  
R
Reference Output  
1
2
3
24  
23  
22  
Logic Input  
XTAL Connection or Reference Input  
XTAL Connection or NC  
4
5
6
7
8
21  
20  
C2  
0.1 µF  
C3  
0.1  
NC  
19  
18  
17  
16  
15  
14  
µF  
R
Output  
Clock  
Clock Output  
9
R
10  
11  
12  
C4  
0.1  
R
Output  
Output  
Clock  
Clock  
Clock Output  
µF  
R
R
R
13  
Clock Output  
C1  
µF  
0.1  
FB  
C5  
10  
3.3V or 5V System Supply  
µF Tantalum  
Figure 4. Recommended Circuit Configuration  
High frequency supply decoupling  
C1....C4 =  
µF recommended).  
capacitor (0.1-  
C5 =  
Common supply low frequency  
Xtal Connection or Reference Input  
Xtal Connection or NC  
-µF tantalum  
decoupling capacitor (10  
recommended).  
C2  
C3  
G
G
R =  
Match value to line impedance  
=
Ferrite Bead  
G
FB  
G
=
Via To GND Plane  
R
G
R
Clock Output  
G
C4  
R
G
C1  
R
G
G
Power Supply Input  
(3.3V or 5V)  
FB  
C5  
Figure 5. Recommended Board Layout (2-Layer Board)  
Ordering Information  
Package  
Name  
Ordering Code  
Package Type  
W185  
H
24-Pin SSOP (209-mil)  
W185-5  
Document #: 38-07159 Rev. **  
Page 7 of 9  
W185  
Package Diagram  
24-Pin Shrink Small Outline Package (SSOP, 209-mil)  
Document #: 38-07159 Rev. **  
Page 8 of 9  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
W185  
Document Title: W185 Six Output Peak Reducing EMI Solution  
Document Number: 38-07159  
Issue  
ECN NO. Date  
Orig. of  
Change  
REV.  
Description of Change  
**  
110269  
10/28/01  
SZV  
Change from Spec number: 38-00809 to 38-07159  
Document #: 38-07159 Rev. **  
Page 9 of 9  

相关型号:

W1856NC400

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4000V V(RRM), Silicon,
IXYS

W1856NC400

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4000V V(RRM), Silicon,
LITTELFUSE

W1856NC420

Rectifier Diode,
LITTELFUSE

W1856NC440

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4400V V(RRM), Silicon,
IXYS

W1856NC460

Rectifier Diode,
LITTELFUSE

W1856NC460

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4600V V(RRM), Silicon,
IXYS

W1856NC480

Rectifier Diode,
LITTELFUSE

W1856NC480

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4800V V(RRM), Silicon,
IXYS

W1856NC500

Rectifier Diode, 1 Phase, 1 Element, 1856A, 5000V V(RRM), Silicon,
LITTELFUSE

W185H

Miscellaneous Clock Generator
ETC

W18D100N

Power Management Circuit,
WALL

W18D50UK

Power Management Circuit,
WALL