TLV2341IP [ROCHESTER]

OP-AMP, 10000uV OFFSET-MAX, 1.7MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8;
TLV2341IP
型号: TLV2341IP
厂家: Rochester Electronics    Rochester Electronics
描述:

OP-AMP, 10000uV OFFSET-MAX, 1.7MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8

放大器 光电二极管
文件: 总56页 (文件大小:1458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
12  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
High Input Impedance . . . 10 Typ  
Low Noise . . . 25 nV/Hz Typically at  
T = 40°C to 85°C . . . 2 V to 8 V  
A
f = 1 kHz (High-Bias Mode)  
Fully Characterized at 3 V and 5 V  
Single-Supply Operation  
ESD-Protection Circuitry  
Designed-In Latch-Up Immunity  
Common-Mode Input-Voltage Range  
Extends Below the Negative Rail and up to  
Bias-Select Feature Enables Maximum  
Supply Current Range From 17 µA to  
1.5 mA at 25°C  
V
–1 V at 25°C  
DD  
Output Voltage Range Includes Negative  
Rail  
D OR P PACKAGE  
(TOP VIEW)  
PW PACKAGE  
(TOP VIEW)  
1
2
3
4
8
7
6
5
OFFSET N1  
IN–  
BIAS SELECT  
OFFSET N1  
IN–  
BIAS SELECT  
1
2
3
4
8
7
6
5
V
V
DD  
DD  
IN+  
GND  
OUT  
OFFSET N2  
IN+  
GND  
OUT  
OFFSET N2  
description  
The TLV2341 operational amplifier has been specifically developed for low-voltage, single-supply applications  
and is fully specified to operate over a voltage range of 2 V to 8 V. The device uses the Texas Instruments  
silicon-gate LinCMOS technology to facilitate low-power, low-voltage operation and excellent offset-voltage  
stability. LinCMOS technology also enables extremely high input impedance and low bias currents allowing  
direct interface to high-impedance sources.  
The TLV2341 offers a bias-select feature, which allows the device to be programmed with a wide range of  
different supply currents and therefore different levels of ac performance. The supply current can be set at  
17 µA, 250 µA, or 1.5 mA, which results in slew-rate specifications between 0.02 and 2.1 V/µs (at 3 V).  
The TLV2341 operational amplifiers are especially well suited to single-supply applications and are fully  
specified and characterized at 3-V and 5-V power supplies. This low-voltage single-supply operation combined  
with low power consumption makes this device a good choice for remote, inaccessible, or portable  
battery-powered applications. The common-mode input range includes the negative rail.  
The device inputs and outputs are designed to withstand 100-mA currents without sustaining latch-up. The  
TLV2341 incorporates internal ESD-protection circuits that prevents functional failures at voltages up to  
2000 V as tested under MIL-STD 883 C, Methods 3015.2; however, care should be exercised in handling these  
devices as exposure to ESD may result in the degradation of the device parametric performance.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
V
max  
IO  
SMALL  
OUTLINE  
(D)  
PLASTIC  
DIP  
FORM  
(Y)  
T
A
TSSOP  
(PW)  
AT 25°C  
(P)  
40°C to 85°C  
8 mV  
TLV2341ID  
TLV2341IP  
TLV2341IPWLE  
TLV2341Y  
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLV2341IDR).  
The PW package is only available left-end taped and reeled (e.g., TLV2341IPWLE).  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1994, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
bias-select feature  
The TLV2342 offers a bias-select feature that allows the user to select any one of three bias levels, depending  
on the level of performance desired. The tradeoffs between bias levels involve ac performance and power  
dissipation (see Table 1).  
Table 1. Effect of Bias Selection on Performance  
MODE  
TYPICAL PARAMETER VALUES  
UNIT  
HIGH BIAS  
MEDIUM BIAS  
LOW BIAS  
T
A
= 25°C, V  
= 3 V  
DD  
R
= 10 kΩ  
975  
2.1  
R
= 100 kΩ  
R
L
= 1 MΩ  
L
L
P
Power dissipation  
Slew rate  
195  
15  
µW  
V/µs  
D
SR  
0.38  
32  
0.02  
68  
V
B
Equivalent input noise voltage at f = 1 kHz  
Unity-gain bandwidth  
25  
nV/Hz  
kHz  
n
790  
46°  
300  
27  
1
φ
m
Phase margin  
39°  
34°  
A
VD  
Large-signal differential voltage amplification  
11  
83  
400  
V/mV  
bias selection  
Bias selection is achieved by connecting BIAS SELECT to one of three voltage levels (see Figure 1). For  
medium-bias applications, it is recommended that the bias-select pin be connected to the midpoint between the  
supply rails. This procedure is simple in split-supply applications since this point is ground. In single-supply  
applications, the medium-bias mode necessitates using a voltage divider as indicated in Figure 1. The use of  
large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However,  
large-value resistors used in conjunction with a large-value capacitor require significant time to charge up to  
the supply midpoint after the supply is switched on. A voltage other than the midpoint may be used if it is within  
the voltages specified in the following table.  
V
DD  
BIAS-SELECT VOLTAGE  
(single supply)  
1 MΩ  
BIAS MODE  
Low  
Medium  
Low  
Medium  
High  
V
DD  
1 V to V  
To the Bias-Select Pin  
–1 V  
High  
DD  
GND  
1 MΩ  
0.01 µF  
Figure 1. Bias Selection for Single-Supply Applications  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
high-bias mode  
In the high-bias mode, the TLV2341 series feature low offset voltage drift, high input impedance, and low noise.  
Speed in this mode approaches that of BiFET devices but at only a fraction of the power dissipation.  
medium-bias mode  
The TLV2341 in the medium-bias mode features a low offset voltage drift, high input impedance, and low noise.  
Speed in this mode is similar to general-purpose bipolar devices but power dissipation is only a fraction of that  
consumed by bipolar devices.  
low-bias mode  
In the low-bias mode, the TLV2341 features low offset voltage drift, high input impedance, extremely low power  
consumption, and high differential voltage gain.  
ORDER OF CONTENTS  
TOPIC  
BIAS MODE  
Schematic  
all  
all  
all  
Absolute maximum ratings  
Recommended operating conditions  
Electrical characteristics  
Operating characteristics  
Typical characteristics  
high  
(Figures 2 – 31)  
Electrical characteristics  
Operating characteristics  
Typical characteristics  
medium  
(Figures 32 – 61)  
Electrical characteristics  
Operating characteristics  
Typical characteristics  
low  
(Figures 62 – 91)  
Parameter measurement information  
Application information  
all  
all  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TLV2341Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLV2341. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive  
epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(2)  
(1)  
(8)  
(7)  
V
DD  
(7)  
(1)  
(3)  
OFFSET N1  
IN+  
+
(6)  
OUT  
(2)  
IN–  
(4)  
GND  
(5)  
(8)  
OFFSET N2  
48  
BIAS SELECT  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
(3)  
T max = 150°C  
J
(4)  
(5)  
(6)  
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
55  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
equivalent schematic  
V
DD  
P3  
P12  
P9A  
R6  
N5  
P4  
P5  
P9B  
P11  
P10  
P1  
P2 R2  
IN–  
R1  
N11  
N12  
N13  
IN+  
P6A  
P6B  
P7B  
P7A  
P8  
C1  
R5  
N3  
N9  
N6  
N7  
N1  
N2  
N4  
R3  
D1  
R4  
D2  
R7  
N10  
OFFSET  
N1  
OFFSET  
N2  
OUT  
GND  
BIAS  
SELECT  
COMPONENT COUNT  
Transistors  
Diodes  
27  
2
Resistors  
Capacitors  
7
1
Includes the amplifier and all  
ESD, bias, and trim circuitry  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
DD  
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
DD±  
I
DD  
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
O
Duration of short-circuit current at (or below) T = 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
A
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any conditions beyond those indicated under “recommended operating conditions” is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may effect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at the noninverting input with respect to the inverting input.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D
P
725 mW  
5.8 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
377 mW  
1000 mW  
520 mW  
PW  
525 mW  
273 mW  
recommended operating conditions  
MIN  
2
MAX  
8
UNIT  
Supply voltage, V  
V
DD  
V
V
= 3 V  
= 5 V  
0.2  
0.2  
40  
1.8  
3.8  
85  
DD  
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
DD  
°C  
A
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
HIGH-BIAS MODE  
electrical characteristics at specified free-air temperature  
TLV2341I  
TEST  
CONDITIONS  
PARAMETER  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
UNIT  
T
A
MIN  
MAX  
MIN  
MAX  
V
V
R
R
= 1 V,  
= 1 V,  
= 50 Ω,  
= 10 kΩ  
O
IC  
S
L
25°C  
0.6  
8
1.1  
8
V
IO  
Input offset voltage  
mV  
Full range  
10  
10  
Average temperature of input  
offset voltage  
25°C to  
85°C  
α
2.7  
2.7  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
22  
0.1  
24  
V
V
= 1 V,  
= 1 V  
O
IC  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
1000  
2000  
1000  
2000  
0.6  
175  
0.6  
200  
V
V
= 1 V,  
= 1 V  
O
IC  
I
IB  
pA  
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
25°C  
V
V
2
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
0.2  
to  
Full range  
1.8  
3.8  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
25°C  
Full range  
25°C  
1.75  
1.7  
1.9  
120  
11  
3.2  
3
3.7  
90  
23  
80  
95  
IC  
ID  
V
V
A
High-level output voltage  
Low-level output voltage  
V
OH  
I
OH  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
150  
190  
150  
190  
IC  
ID  
mV  
V/mV  
dB  
OL  
Full range  
25°C  
I
OL  
V
R
= 1 V,  
= 10 kΩ,  
3
2
5
3.5  
65  
60  
70  
65  
IC  
Large-signal differential  
voltage amplification  
VD  
L
Full range  
25°C  
See Note 6  
V
V
R
= 1 V,  
65  
60  
70  
65  
78  
O
IC  
CMRR Common-mode rejection ratio  
= V  
= 50 Ω  
min,  
ICR  
Full range  
25°C  
S
V
V
R
= 1 V,  
= 1 V,  
= 50 Ω  
95  
IC  
O
Supply-voltage rejection ratio  
k
dB  
µA  
µA  
SVR  
(V  
DD  
/V )  
IO  
Full range  
25°C  
S
I
I
Bias select current  
Supply current  
V
1.2  
325  
1.4  
675  
I(SEL)  
I(SEL) = 0  
V
V
= 1 V,  
= 1 V,  
O
IC  
25°C  
1500  
2000  
1600  
2200  
DD  
Full range  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
HIGH-BIAS MODE  
operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2341I  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MAX  
V
R
= 1 V,  
V
= 1 V,  
25°C  
85°C  
2.1  
1.7  
IC  
= 10 k,  
I(PP)  
C
R
C
= 20 pF,  
= 20 ,  
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
L
L
S
L
See Figure 92  
f = kHz,  
See Figure 93  
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
25°C  
25  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
170  
145  
790  
690  
53°  
49°  
47°  
V
R
= V  
OH  
= 10 k,  
,
O
B
kHz  
OM  
1
See Figure 92  
C = 20 pF,  
L
L
V = 10 mV,  
I
B
kHz  
R
= 10 k,  
See Figure 94  
L
V = 10 mV,  
f = B ,  
R = 1 M,  
I
1
C
= 20 pF,  
φ
m
Phase margin  
L
L
See Figure 94  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2341I  
TYP  
3.6  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
MAX  
25°C  
85°C  
25°C  
85°C  
V
R
C
= 1 V,  
IC  
L
L
V
= 1 V  
I(PP)  
I(PP)  
2.8  
= 10 k,  
= 20 pF,  
See Figure 92  
SR  
Slew rate at unity gain  
V/µs  
2.9  
V
= 2.5 V  
2.3  
f = 1 kHz,  
See Figure 93  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
25°C  
25  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
320  
250  
1.7  
1.2  
49°  
46°  
43°  
V
R
= V  
OH  
= 10 k,  
,
C
= 20 pF,  
O
L
L
B
kHz  
OM  
1
See Figure 92  
C = 20 pF,  
L
V = 10 mV,  
I
L
B
MHz  
R
= 10 k,  
See Figure 94  
V = 10 mV,  
f = B ,  
R = 10 k,  
I
L
1
C
= 20 pF,  
φ
m
Phase margin  
L
See Figure 94  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
HIGH-BIAS MODE  
electrical characteristics, T = 25°C  
A
TLV2341I  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
= 1 V,  
= 50 ,  
V
R
= 1 V,  
= 10 kΩ  
O
IC  
L
V
Input offset voltage  
0.6  
8
1.1  
8
mV  
IO  
R
S
O
O
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 1 V,  
= 1 V,  
V
V
= 1 V  
= 1 V  
0.1  
0.6  
0.1  
0.6  
pA  
pA  
IO  
IC  
IB  
IC  
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
Common-mode input voltage  
range (see Note 5)  
V
V
V
ICR  
2
V
I
= 1 V,  
= 1  
V
V
= 100 mV,  
IC  
OH  
mA  
ID  
V
V
High-level output voltage  
1.75  
1.9  
3.2  
3.7  
OH  
V
= 1 V,  
= 1 mA  
= 100 mV,  
IC  
ID  
Low-level output voltage  
120  
11  
150  
90  
23  
80  
150  
mV  
V/mV  
dB  
OL  
I
OL  
Large-signal differential voltage  
amplification  
V
IC  
= 1 V,  
R
= 10 k,  
L
A
VD  
3
65  
70  
50  
65  
70  
See Note 6  
V
R
= 1 V,  
= 50 Ω  
V
= V  
min,  
ICR  
O
IC  
IC  
CMRR Common-mode rejection ratio  
78  
S
Supply-voltage rejection ratio  
V
R
= 1 V,  
= 50 Ω  
V
= 1 V,  
= 1 V,  
O
k
95  
1.2  
325  
95  
1.4  
675  
dB  
µA  
µA  
SVR  
I(SEL)  
DD  
(V  
DD  
/V  
IO  
)
S
I
I
Bias select current  
V
= 0  
I(SEL)  
V
O
= 1 V,  
V
IC  
Supply current  
1500  
1600  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
Table of Graphs  
FIGURE  
2,3  
V
Input offset voltage  
Distribution  
Distribution  
IO  
α
Input offset voltage temperature coefficient  
4,5  
VIO  
vs Output current  
vs Supply voltage  
vs Temperature  
6
7
8
V
OH  
V
OL  
High-level output voltage  
vs Common-mode input voltage  
vs Temperature  
vs Differential input voltage  
vs Low-level output current  
9
10, 12  
11  
Low-level output voltage  
13  
vs Supply voltage  
vs Temperature  
vs Frequency  
14  
15  
26, 27  
A
VD  
Large-signal differential voltage amplification  
I
I
Input bias current  
vs Temperature  
vs Temperature  
vs Supply voltage  
16  
16  
17  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Temperature  
18  
19  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Temperature  
20  
21  
SR  
Bias select current  
vs Supply voltage  
vs Frequency  
22  
23  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Temperature  
vs Supply voltage  
24  
25  
Unity-gain bandwidth  
Phase margin  
1
vs Supply voltage  
vs Temperature  
vs Load capacitance  
28  
29  
30  
φ
m
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
31  
26, 27  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
60  
50  
50  
V
T
= 5 V  
V
T
= 3 V  
DD  
= 25°C  
DD  
= 25°C  
A
A
P Package  
P Package  
40  
30  
40  
30  
20  
20  
10  
0
10  
0
–5 –4 –3 –2  
–5 –4 –3 –2  
–1  
0
1
2
3
4
5
–1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 2  
Figure 3  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
50  
60  
50  
V
T
= 5 V  
V
T
= 3 V  
DD  
= 25°C to 85°C  
DD  
= 25°C to 85°C  
A
A
P Package  
Outliers:  
(1) 20.5 mV/°C  
P Package  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
–10 8 –6 –4 –2  
0
2
4
6
8
10  
–8 –6 –4 –2  
–10  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 4  
Figure 5  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
SUPPLY VOLTAGE  
8
6
4
5
4
3
V
V
R
= 1 V  
= 100 mV  
= 1 MΩ  
= 25°C  
V
V
T
A
= 1 V  
= 100 mV  
= 25°C  
IC  
ID  
L
IC  
ID  
T
A
V
= 5 V  
DD  
V
DD  
= 3 V  
2
1
0
2
0
0
– 2  
– 4  
– 6  
– 8  
0
2
4
6
8
I
– High-Level Output Current – mA  
V
DD  
– Supply Voltage – V  
OH  
Figure 6  
Figure 7  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
700  
650  
600  
550  
3
2.4  
1.8  
1.2  
0.6  
0
V
V
V
= 3 V  
= 1 V  
= 100 mV  
V
I
T
A
= 5 V  
DD  
IC  
ID  
DD  
= 5 mA  
OL  
= 25°C  
V
= –100 mV  
ID  
500  
450  
400  
350  
I
I
I
I
I
= 500 µA  
= 1 mA  
= 2 mA  
= 3 mA  
= 4 mA  
OH  
OH  
OH  
OH  
OH  
V
ID  
= –1 V  
300  
– 75 – 50 – 25  
0
25  
50  
75 100 125  
0
1
2
3
4
T
A
– Free-Air Temperature °C  
V
IC  
– Common-Mode Input Voltage – V  
Figure 8  
Figure 9  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
800  
700  
600  
500  
200  
185  
V
V
I
= 5 V  
= |V / 2|  
ID  
= 5 mA  
V
V
V
I
= 3 V  
= 1 V  
= 100 mV  
= 1 mA  
DD  
IC  
OL  
DD  
IC  
ID  
T
A
= 25°C  
OL  
150  
125  
400  
300  
100  
75  
200  
100  
50  
0
– 75 – 50 – 25  
0
25  
50  
75 100 125  
0
–1  
–2 –3  
–4  
–5  
–6  
–7 –8  
V
ID  
– Differential Input Voltage – V  
T
A
– Free-Air Temperature °C  
Figure 10  
Figure 11  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
900  
800  
700  
600  
500  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
V
V
T
= 1 V  
= 100 mV  
= 25°C  
V
V
V
= 5 V  
IC  
ID  
A
DD  
IC  
ID  
= 0.5 V  
= 1 V  
= 5 mA  
I
OL  
V
DD  
= 5 V  
400  
300  
V
DD  
= 3 V  
200  
100  
0.2  
0.1  
0
0
0
1
2
3
4
5
6
7
8
– 75 – 50 – 25  
0
25  
50  
75 100 125  
I
– Low-Level Output Current – mA  
T
A
– Free-Air Temperature °C  
OL  
Figure 12  
Figure 13  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
50  
45  
60  
50  
40  
30  
20  
10  
0
R = 10 kΩ  
L
R
= 10 kΩ  
L
40  
35  
T
A
= 40°C  
30  
V
DD  
= 5 V  
25  
20  
15  
10  
5
V
DD  
= 3 V  
T
A
= 25°C  
T
A
= 85°C  
0
0
2
4
6
8
75 50 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 14  
Figure 15  
INPUT BIAS CURRENT AND INPUT OFFSET  
COMMON-MODE INPUT VOLTAGE  
POSITIVE LIMIT  
CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
SUPPLY VOLTAGE  
4
8
6
4
10  
V
V
= 3 V  
DD  
= 1 V  
T
A
= 25°C  
IC  
See Note A  
3
10  
2
10  
1
10  
I
IB  
I
IO  
2
0
1
0.1  
25 35 45 55 65 75 85 95 105 115 125  
0
2
4
6
8
T
A
– Free-Air Temperature °C  
V
DD  
– Supply Voltage – V  
NOTE: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 16  
Figure 17  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
2
1.6  
1.2  
2
V
V
= 1 V  
= 1 V  
V
V
= 1 V  
= 1 V  
IC  
O
IC  
O
1.75  
No Load  
No Load  
1.5  
T
A
= 40°C  
1.25  
T
A
= 25°C  
1
V
= 5 V  
DD  
0.8  
0.4  
0
0.75  
V
= 3 V  
DD  
T
= 85°C  
0.5  
0.25  
0
A
0
2
4
6
8
50 25  
–75  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature °C  
Figure 18  
Figure 19  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
8
7
6
5
4
3
2
8
7
6
5
4
3
2
V
= 1 V  
I(PP)  
= 1  
V
= 1 V  
I(PP)  
= 1  
A
V
A
V
R
C
= 10 kΩ  
= 20 pF  
= 25°C  
L
L
R
C
= 10 kΩ  
= 20 pF  
L
L
T
A
V
DD  
= 5 V  
V
DD  
= 3 V  
1
0
1
0
0
2
4
6
8
75 50 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature °C  
Figure 20  
Figure 21  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
BIAS SELECT CURRENT  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
– 3  
5
4
3
R
= 10 kΩ  
T
V
= 25°C  
L
A
= 0  
I(SEL)  
V
DD  
= 5 V  
– 2.4  
– 1.8  
– 1.2  
– 0.6  
V
DD  
= 3 V  
2
1
0
T
A
= 40°C  
T
A
= 25°C  
T
A
= 85°C  
0
2
4
6
8
10  
100  
1000  
10000  
V
DD  
– Supply Voltage – V  
f – Frequency – kHz  
Figure 22  
Figure 23  
UNITY-GAIN BANDWIDTH  
vs  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
3.5  
V = 10 mV  
V = 10 mV  
I
I
R
C
= 10 kΩ  
= 20 pF  
R
C
T
A
= 10 kΩ  
= 20 pF  
= 25°C  
L
L
L
L
2.9  
2.3  
V
= 5 V  
DD  
1.7  
1.1  
0.5  
V
DD  
= 3 V  
50  
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
75 100 125  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 24  
Figure 25  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
60°  
30°  
0°  
V
R
C
= 3 V  
= 10 kΩ  
= 20 pF  
= 25°C  
DD  
L
L
T
A
30°  
60°  
A
VD  
Phase Shift  
90°  
120°  
150°  
180°  
1
0.1  
10  
100  
1 K  
10 K  
100 K  
1 M  
10 M  
f – Frequency – Hz  
Figure 26  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
60°  
30°  
0°  
V
R
C
= 5 V  
= 10 kΩ  
= 20 pF  
= 25°C  
DD  
L
L
T
A
30°  
60°  
A
VD  
90°  
Phase Shift  
120°  
1
150°  
180°  
0.1  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f – Frequency – Hz  
Figure 27  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
60°  
58°  
53°  
51°  
49°  
47°  
45°  
V = 10 mV  
V = 10 mV  
I
I
R
C
= 10 kΩ  
= 20 pF  
R
C
T
A
= 10 kΩ  
= 20 pF  
= 25°C  
L
L
L
L
56°  
54°  
52°  
V
= 3 V  
DD  
50°  
48°  
46°  
44°  
42°  
V
DD  
= 5 V  
40°  
75 50 25 0  
25  
50  
75 100 125  
0
2
4
6
8
T
A
– Free-Air Temperature °C  
V
– Supply Voltage – V  
DD  
Figure 28  
Figure 29  
EQUIVALENT INPUT NOISE VOLTAGE  
PHASE MARGIN  
vs  
vs  
FREQUENCY  
LOAD CAPACITANCE  
400  
50°  
45°  
R
T
A
= 20 Ω  
= 25°C  
S
300  
200  
V
= 3 V  
DD  
40°  
35°  
V
DD  
= 5 V  
V
DD  
= 5 V  
100  
0
30°  
25°  
V
DD  
= 3 V  
10  
V = 10 mV  
I
R
T
A
= 10 kΩ  
= 25°C  
L
1
100  
1000  
0
10 20 30 40 50 60 70 80 90 100  
f – Frequency – Hz  
C
– Load Capacitance – pF  
L
Figure 30  
Figure 31  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
MEDIUM-BIAS MODE  
electrical characteristics at specified free-air temperature  
TLV2341I  
TEST  
CONDITIONS  
PARAMETER  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
UNIT  
T
A
MIN  
MAX  
MIN  
MAX  
V
V
R
= 1 V,  
= 1 V,  
= 50 ,  
= 100 kΩ  
O
IC  
S
L
25°C  
0.6  
8
1.1  
8
V
IO  
Input offset voltage  
mV  
Full range  
10  
10  
R
Average temperature coefficient of  
input offset voltage  
25°C to  
85°C  
α
1
1.7  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
22  
0.1  
24  
V
V
= 1 V,  
= 1 V  
O
IC  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
1000  
2000  
1000  
2000  
0.6  
175  
0.6  
200  
V
V
= 1 V,  
= 1 V  
O
IC  
I
IB  
pA  
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
25°C  
V
V
2
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
0.2  
to  
Full range  
1.8  
3.8  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
25°C  
Full range  
25°C  
1.75  
1.7  
1.9  
115  
83  
3.2  
3
3.9  
95  
IC  
ID  
V
V
A
High-level output voltage  
Low-level output voltage  
V
OH  
I
OH  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
150  
190  
150  
190  
IC  
ID  
mV  
V/mV  
dB  
OL  
Full range  
25°C  
I
OL  
V
R
= 1 V,  
= 100 k,  
25  
15  
65  
60  
70  
65  
25  
15  
65  
60  
70  
65  
170  
91  
IC  
Large-signal differential  
voltage amplification  
L
VD  
Full range  
25°C  
See Note 6  
V
V
R
= 1 V,  
= V  
92  
O
IC  
min,  
ICR  
CMRR Common-mode rejection ratio  
Full range  
25°C  
= 50 Ω  
S
V
V
R
= 1 V,  
= 1 V,  
= 50 Ω  
94  
94  
IC  
O
Supply-voltage rejection ratio  
k
dB  
nA  
µA  
SVR  
(V  
DD  
/V )  
IO  
Full range  
25°C  
S
I
I
Bias select current  
Supply current  
V
100  
65  
130  
105  
I(SEL)  
DD  
I(SEL) = 0  
V
= 1 V,  
O
25°C  
250  
360  
280  
400  
V
IC  
= 1 V,  
Full range  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
MEDIUM-BIAS MODE  
operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2341I  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MAX  
V
R
= 1 V,  
= 100 k,  
V
= 1 V,  
= 20 pF,  
25°C  
85°C  
0.38  
0.29  
IC  
L
I(PP)  
C
R
C
SR  
Slew rate at unity gain  
V/µs  
L
S
L
See Figure 92  
f = kHz,  
See Figure 93  
= 20 ,  
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
25°C  
32  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
34  
32  
V
R
= V  
OH  
= 100 k,  
,
= 20 pF,  
O
B
kHz  
OM  
1
See Figure 92  
C = 20 pF,  
L
L
300  
235  
42°  
39°  
36°  
V = 10 mV,  
I
B
kHz  
R
= 100 k,  
See Figure 94  
L
V = 10 mV,  
f = B ,  
R = 100 k,  
I
1
C
= 20 pF,  
φ
m
Phase margin  
L
L
See Figure 94  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2341I  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MAX  
25°C  
85°C  
25°C  
85°C  
0.43  
V
R
C
= 1 V,  
= 100 k,  
= 20 pF,  
IC  
L
L
V
= 1 V  
I(PP)  
I(PP)  
0.35  
SR  
Slew rate at unity gain  
V/µs  
0.40  
V
= 2.5 V  
See Figure 92  
0.32  
f =1 kHz,  
See Figure 93  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
25°C  
32  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
55  
45  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
L
B
kHz  
OM  
1
See Figure 92  
C = 20 pF,  
L
525  
370  
43°  
40°  
38°  
V = 10 mV,  
I
L
B
kHz  
R
= 100 k,  
See Figure 94  
V = 10 mV,  
f = B ,  
R = 100 k,  
I
L
1
C
= 20 pF,  
φ
m
Phase margin  
L
See Figure 94  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
MEDIUM-BIAS MODE  
electrical characteristics, T = 25°C  
A
TLV2341I  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
= 1 V,  
= 50 ,  
V
R
= 1 V,  
= 100 kΩ  
O
IC  
L
V
Input offset voltage  
0.6  
8
1.1  
8
mV  
IO  
R
S
O
O
I
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 1 V,  
= 1 V,  
V
V
= 1 V  
= 1 V  
0.1  
0.6  
0.1  
0.6  
pA  
pA  
IO  
IC  
IB  
IC  
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
Common-mode input voltage  
range (see Note 5)  
V
ICR  
V
2
V
= 1 V,  
= 1 mA  
V
V
= 100 mV,  
= 100 mV,  
= 100 k,  
IC  
ID  
V
V
High-level output voltage  
Low-level output voltage  
1.75  
1.9  
115  
83  
3.2  
3.9  
95  
V
mV  
OH  
I
OH  
V
= 1 V,  
= 1 mA  
IC  
ID  
150  
150  
OL  
I
OL  
Large-signal differential voltage  
amplification  
V
IC  
= 1 V,  
R
L
A
VD  
25  
65  
70  
25  
65  
70  
170  
91  
V/mV  
dB  
See Note 6  
V
R
= 1 V,  
= 50 Ω  
V
V
= V  
min,  
ICR  
O
IC  
CMRR Common-mode rejection ratio  
92  
S
Supply-voltage rejection ratio  
V
R
= 1 V,  
= 50 Ω  
= 1 V,  
= 1 V,  
O
IC  
k
94  
100  
65  
94  
130  
105  
dB  
nA  
µA  
SVR  
I(SEL)  
DD  
(V  
DD  
/V  
ID  
)
S
I
I
Bias select current  
V
= 0  
I(SEL)  
V
O
= 1 V,  
V
IC  
Supply current  
250  
280  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
Table of Graphs  
FIGURE  
32, 33  
V
Input offset voltage  
Distribution  
Distribution  
IO  
α
Input offset voltage temperature coefficient  
34, 35  
VIO  
vs Output current  
vs Supply voltage  
vs Temperature  
36  
37  
38  
V
OH  
V
OL  
High-level output voltage  
vs Common-mode input voltage  
vs Temperature  
vs Differential input voltage  
vs Low-level output current  
39  
40, 42  
41  
Low-level output voltage  
43  
vs Supply voltage  
vs Temperature  
vs Frequency  
44  
45  
56, 57  
A
VD  
Large-signal differential voltage amplification  
I
I
Input bias current  
vs Temperature  
vs Temperature  
vs Supply voltage  
46  
46  
47  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Temperature  
48  
49  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Temperature  
50  
51  
SR  
Bias select current  
vs Supply current  
vs Frequency  
52  
53  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Temperature  
vs Supply voltage  
54  
55  
Unity-gain bandwidth  
Phase margin  
1
vs Supply voltage  
vs Temperature  
vs Load capacitance  
58  
59  
60  
φ
m
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
61  
56, 57  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
60  
50  
50  
V
T
= 5 V  
V
T
= 3 V  
DD  
= 25°C  
DD  
= 25°C  
A
A
P Package  
P Package  
40  
30  
40  
30  
20  
20  
10  
0
10  
0
–5 –4 –3 –2  
–5 –4 –3 –2  
–1  
0
1
2
3
4
5
–1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 32  
Figure 33  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
50  
60  
50  
V
T
= 5 V  
V
T
= 3 V  
DD  
= 25°C to 85°C  
DD  
= 25°C to 85°C  
A
A
P Package  
Outliers:  
(1) 33 mV/°C  
P Package  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
–8 –6 –4 –2  
–10  
0
2
4
6
8
10  
–10 8 –6 –4 –2  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 34  
Figure 35  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
HIGH-LEVEL OUTPUT CURRENT  
8
6
4
5
4
3
V
V
T
A
= 1 V  
= 100 mV  
= 25°C  
V
V
R
= 1 V  
= 100 mV  
= 100 kΩ  
= 25°C  
IC  
ID  
IC  
ID  
L
T
A
V
DD  
= 5 V  
V
DD  
= 3 V  
2
1
0
2
0
0
–2  
–4  
–6  
–8  
0
2
4
6
8
V
DD  
– Supply Voltage – V  
I
– High-Level Output Current – mA  
OH  
Figure 36  
Figure 37  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
700  
3
2.4  
1.8  
1.2  
0.6  
0
V
I
T
A
= 5 V  
= 5 mA  
= 25°C  
V
V
V
= 3 V  
= 1 V  
= 100 mV  
DD  
OL  
DD  
IC  
ID  
650  
600  
550  
V
= –100 mV  
ID  
500  
450  
400  
I
I
I
I
I
= 500 µA  
= 1 mA  
= 2 mA  
= 3 mA  
= 4 mA  
OH  
OH  
OH  
OH  
OH  
V
ID  
= –1 V  
350  
300  
0
1
2
3
4
75 50 25  
0
25  
50  
75 100 125  
V
IC  
– Common-Mode Input Voltage – V  
T
A
– Free-Air Temperature °C  
Figure 38  
Figure 39  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
800  
700  
600  
500  
200  
185  
170  
155  
140  
125  
110  
95  
V
V
V
I
= 3 V  
= 1 V  
= 100 mV  
= 1 mA  
V
V
I
= 5 V  
= |V / 2|  
ID  
= 5 mA  
DD  
IC  
ID  
DD  
IC  
OL  
T
A
= 25°C  
OL  
400  
300  
200  
100  
80  
65  
50  
0
75 50 25  
0
25  
50  
75 100 125  
0
–2  
–4  
–6  
–8  
T
A
– Free-Air Temperature °C  
V
ID  
– Differential Input Voltage – V  
Figure 40  
Figure 41  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
1000  
900  
800  
700  
600  
500  
400  
300  
900  
800  
700  
600  
500  
V
V
T
A
= 1 V  
= 100 mV  
= 25°C  
IC  
ID  
V
V
V
= 5 V  
DD  
IC  
ID  
= 0.5 V  
= 1 V  
= 5 mA  
I
OL  
V
DD  
= 5 V  
V
DD  
= 3 V  
400  
300  
200  
100  
200  
100  
0
0
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
I – Low-Level Output Current – mA  
OL  
T
A
– Free-Air Temperature °C  
Figure 42  
Figure 43  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
500  
450  
500  
450  
R
= 100 kΩ  
R = 100 kΩ  
L
L
400  
350  
400  
350  
T
A
= 40°C  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
T
A
= 25°C  
V
= 5 V  
DD  
V
DD  
= 3 V  
T
= 85°C  
A
0
0
0
2
4
6
8
75 50 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature °C  
Figure 44  
Figure 45  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
4
10  
3
10  
2
10  
8
V
V
= 3 V  
T
A
= 25°C  
DD  
= 1 V  
IC  
See Note A  
6
4
I
IB  
1
1
10  
I
IO  
2
0
.01  
25  
45  
65  
85  
105  
125  
0
2
4
6
8
V
DD  
– Supply Voltage – V  
T
A
– Free-sAir Temperature °C  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA are determined mathematically.  
Figure 46  
Figure 47  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
175  
150  
250  
V
V
= 1 V  
= 1 V  
V
V
= 1 V  
= 1 V  
IC  
O
IC  
O
200  
175  
150  
125  
No Load  
No Load  
T
A
= 40°C  
125  
100  
75  
50  
25  
0
T
A
= 25°C  
V
= 5 V  
DD  
100  
75  
V
DD  
= 3 V  
T
A
= 85°C  
50  
25  
0
0
2
4
6
8
–75 –50 –25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 48  
Figure 49  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.9  
0.8  
0.7  
V
V
= 1 V  
V
V
= 1 V  
IC  
IC  
I(PP)  
= 1  
= 1 V  
= 1 V  
I(PP)  
= 1  
A
A
V
V
R
C
= 100 kΩ  
= 20 pF  
= 25°C  
R
C
= 100 kΩ  
= 20 pF  
L
L
L
L
T
A
0.6  
0.5  
0.4  
0.3  
V
DD  
= 5 V  
V
DD  
= 3 V  
0.2  
0
2
4
6
8
75 50 25  
0
25  
50  
75  
100 125  
V
– Supply Voltage – V  
DD  
T
A
– Free-Air Temperature – °C  
Figure 50  
Figure 51  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
BIAS SELECT CURRENT  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
– 300  
– 270  
– 240  
5
4
3
T
V
= 25°C  
A
R
= 100 kΩ  
L
= 1/2 V  
DD  
I(SEL)  
V
DD  
= 5 V  
– 210  
T
= 40°C  
A
– 180  
– 150  
V
DD  
= 3 V  
– 120  
2
1
0
– 90  
– 60  
– 30  
0
T
A
= 85°C  
T
A
= 25°C  
0
2
4
6
8
10  
10  
100  
1000  
V
DD  
– Supply Voltage – V  
f – Frequency – kHz  
Figure 52  
Figure 53  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
V = 10 mV  
I
V = 10 mV  
I
R
L
L
= 100 kΩ  
R
L
C
L
= 100 kΩ  
= 20 pF  
= 25°C  
C
= 20 pF  
T
A
V
= 5 V  
DD  
V
DD  
= 3 V  
75 50 25  
0
25  
50  
75 100  
0
1
2
3
4
5
6
7
8
125  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 54  
Figure 55  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
60°  
30°  
0°  
10  
V
R
C
= 3 V  
= 100 kΩ  
= 20 pF  
= 25°C  
DD  
L
L
10  
T
A
5
4
10  
10  
30°  
A
VD  
3
2
60°  
10  
10  
90°  
Phase Shift  
1
10  
120°  
150°  
1
0.1  
180°  
1 M  
1
10  
100  
1 k  
10 k  
100 k  
f – Frequency – Hz  
Figure 56  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
10  
60°  
30°  
0°  
V
R
C
= 5 V  
= 100 kΩ  
= 20 pF  
= 25°C  
DD  
L
L
6
5
10  
T
A
10  
4
10  
10  
30°  
A
VD  
3
60°  
2
10  
10  
90°  
Phase Shift  
1
120°  
150°  
1
0.1  
180°  
1 M  
1
10  
100  
1 k  
10 k  
100 k  
f – Frequency – Hz  
Figure 57  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
50°  
48°  
45°  
43°  
V = 10 mV  
I
V = 10 mV  
I
R
L
L
= 100 kΩ  
R
L
L
= 100 kΩ  
= 20 pF  
= 25°C  
C
= 20 pF  
C
46°  
T
A
44°  
42°  
40°  
38°  
41°  
39°  
37°  
35°  
V
= 5 V  
DD  
V
= 3 V  
DD  
36°  
34°  
32°  
30°  
0
1
2
3
4
5
6
7
8
– 75 – 50 – 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 58  
Figure 59  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
44°  
300  
250  
R
= 20Ω  
T = 25°C  
A
S
V = 10 mV  
I
42°  
40°  
T
R
= 25°C  
= 100 kΩ  
A
L
V
DD  
= 5 V  
200  
150  
100  
38°  
36°  
V
DD  
= 3 V  
V
= 5 V  
DD  
34°  
32°  
30°  
28°  
V
DD  
= 3 V  
50  
0
0
10  
20 30 40 50  
60 70 80  
90 100  
1
10  
100  
1000  
C
– Load Capacitance – pF  
f – Frequency – Hz  
L
Figure 60  
Figure 61  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
LOW-BIAS MODE  
electrical characteristics at specified free-air temperature  
TLV2341I  
TEST  
CONDITIONS  
PARAMETER  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
UNIT  
T
A
MIN  
MAX  
MIN  
MAX  
V
V
R
R
= 1 V,  
= 1 V,  
= 50 ,  
= 1 MΩ  
O
IC  
S
L
25°C  
0.6  
8
1.1  
8
V
IO  
Input offset voltage  
mV  
Full range  
10  
10  
Average temperature of  
input offset voltage  
25°C to  
85°C  
α
1
1.1  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
22  
0.1  
24  
V
V
= 1 V,  
= 1 V  
O
IC  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
1000  
2000  
1000  
2000  
0.6  
175  
0.6  
200  
V
V
= 1 V,  
= 1 V  
O
IC  
I
IB  
pA  
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
25°C  
V
V
2
Common-mode input  
voltage range (see Note 5)  
V
ICR  
0.2  
to  
0.2  
to  
Full range  
1.8  
3.8  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
25°C  
Full range  
25°C  
1.75  
1.7  
1.9  
115  
400  
88  
3.2  
3
3.8  
95  
IC  
ID  
V
V
A
High-level output voltage  
Low-level output voltage  
V
OH  
I
OH  
V
V
= 1 V,  
= 100 mV,  
= 1 mA  
150  
190  
150  
190  
IC  
ID  
mV  
V/mV  
dB  
OL  
Full range  
25°C  
I
OL  
V
R
= 1 V,  
= 1 M,  
50  
50  
65  
60  
70  
65  
50  
50  
65  
60  
70  
65  
520  
94  
IC  
Large-signal differential  
voltage amplification  
L
VD  
Full range  
25°C  
See Note 6  
V
V
R
= 1 V,  
= V  
O
IC  
min,  
ICR  
CMRR Common-mode rejection ratio  
Full range  
25°C  
= 50 Ω  
S
V
V
R
= 1 V,  
= 1 V,  
= 50 Ω  
86  
86  
IC  
O
Supply-voltage rejection ratio  
k
dB  
nA  
µA  
SVR  
(V  
DD  
/V )  
IO  
Full range  
25°C  
S
I
I
Bias select current  
Supply current  
V
10  
5
65  
10  
I(SEL)  
I(SEL) = 0  
V
= 1 V,  
O
25°C  
17  
27  
17  
27  
V
IC  
= 1 V,  
DD  
Full range  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V  
= 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD  
O(PP)  
DD O  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
LOW-BIAS MODE  
operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2341I  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MAX  
V
R
= 1 V,  
= 1 M,  
V
= 1 V,  
= 20 pF,  
25°C  
85°C  
0.02  
0.02  
IC  
L
I(PP)  
C
R
C
SR  
Slew rate at unity gain  
V/µs  
L
S
L
See Figure 92  
f = kHz,  
See Figure 93  
= 20 ,  
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
25°C  
68  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
2.5  
2
V
R
= V  
OH  
= 1 M,  
,
= 20 pF,  
O
B
kHz  
OM  
1
See Figure 92  
C = 20 pF,  
L
L
27  
V = 10 mV,  
I
B
kHz  
R
= 1 M,  
See Figure 94  
21  
L
39°  
34°  
28°  
V = 10 mV,  
f = B ,  
R = 1 M,  
I
1
C
= 20 pF,  
φ
m
Phase margin  
L
L
See Figure 94  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2341I  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MAX  
25°C  
85°C  
25°C  
85°C  
0.03  
V
R
C
= 1 V,  
= 1 M,  
= 20 pF,  
IC  
L
L
V
= 1 V  
I(PP)  
I(PP)  
0.03  
SR  
Slew rate at unity gain  
V/µs  
0.03  
V
= 2.5 V  
See Figure 92  
0.02  
f =1 kHz,  
See Figure 93  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
25°C  
68  
nV/Hz  
25°C  
85°C  
25°C  
85°C  
40°C  
25°C  
85°C  
5
4
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
L
B
kHz  
OM  
1
See Figure 92  
C = 20 pF,  
L
85  
V = 10 mV,  
I
L
B
kHz  
R
= 1 M,  
See Figure 94  
55  
38°  
34°  
28°  
V = 10 mV,  
f = B ,  
R = 1 M,  
I
L
1
C
= 20 pF,  
φ
m
Phase margin  
L
See Figure 94  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
LOW-BIAS MODE  
electrical characteristics, T = 25°C  
A
TLV2341Y  
V
= 3 V  
DD  
TYP  
V
= 5 V  
DD  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
R
= 1 V,  
= 50 ,  
V
R
= 1 V,  
= 1 MΩ  
O
S
IC  
L
V
Input offset voltage  
0.6  
0.1  
0.6  
8
1.1  
0.1  
0.6  
8
mV  
pA  
pA  
IO  
Input offset current  
(see Note 4)  
I
I
V
O
= 1 V,  
= 1 V,  
V
IC  
= 1 V  
= 1 V  
IO  
Input bias current  
(see Note 4)  
V
O
V
IC  
IB  
0.2  
to  
0.3  
to  
2.3  
0.2  
to  
4
0.3  
to  
4.2  
Common-mode input voltage  
range (see Note 5)  
V
ICR  
V
2
V
= 1 V,  
= 1 mA  
V
V
= 100 mV,  
= 100 mV,  
= 1 M,  
IC  
ID  
V
V
High-level output voltage  
Low-level output voltage  
1.75  
1.9  
115  
400  
88  
3.2  
3.8  
95  
V
mV  
OH  
I
OH  
V
= 1 V,  
= 1 mA  
IC  
ID  
150  
150  
OL  
I
OL  
Large-signal differential  
voltage amplification  
V
IC  
= 1 V,  
R
L
A
VD  
50  
65  
70  
50  
65  
70  
520  
94  
V/mV  
dB  
See Note 6  
V
R
= 1 V,  
= 50 Ω  
V
V
= V  
min,  
ICR  
O
IC  
CMRR Common-mode rejection ratio  
S
Supply-voltage rejection ratio  
V
V
= 3 V to 5 V,  
= 1 V,  
= 1 V,  
= 50 Ω  
DD  
O
IC  
k
86  
10  
5
86  
65  
10  
dB  
nA  
µA  
SVR  
I(SEL)  
DD  
(V  
DD  
/V  
ID  
)
R
S
I
I
Bias select current  
V = 0  
I(SEL)  
V
O
= 1 V,  
V
IC  
= 1 V,  
Supply current  
17  
17  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically.  
5. This range also applies to each input individually.  
6. At V  
= 5 V, V = 0.25 V to 2 V; at V = 3 V, V = 0.5 V to 1.5 V.  
DD O  
DD  
O
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
Table of Graphs  
FIGURE  
62, 63  
V
Input offset voltage  
Distribution  
Distribution  
IO  
α
Input offset voltage temperature coefficient  
64, 65  
VIO  
vs Output current  
vs Supply voltage  
vs Temperature  
66  
67  
68  
V
OH  
V
OL  
High-level output voltage  
vs Common-mode input voltage  
vs Temperature  
vs Differential input voltage  
vs Low-level output current  
69  
70, 72  
71  
Low-level output voltage  
73  
vs Supply voltage  
vs Temperature  
vs Frequency  
74  
75  
86, 87  
A
VD  
Large-signal differential voltage amplification  
I
I
Input bias current  
vs Temperature  
vs Temperature  
vs Supply voltage  
76  
76  
77  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Temperature  
78  
79  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Temperature  
80  
81  
SR  
Bias select current  
vs Supply current  
vs Frequency  
82  
83  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Temperature  
vs Supply voltage  
84  
85  
Unity-gain bandwidth  
Phase margin  
1
vs Supply voltage  
vs Temperature  
vs Load capacitance  
88  
89  
90  
φ
m
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
91  
86, 87  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
70  
50  
V
T
= 3 V  
V
T
= 5 V  
DD  
= 25°C  
DD  
= 25°C  
A
A
60  
50  
P Package  
P Package  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
–5 –4 –3 –2  
–1  
0
1
2
3
4
5
–5 –4 –3 –2  
–1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 62  
Figure 63  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2341  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
50  
70  
V
= 5 V  
DD  
= 25°C to 85°C  
V
= 3 V  
DD  
= 25°C to 85°C  
T
A
T
A
P Package  
60  
50  
P Package  
Outliers:  
(1) 19.2 mV/°C  
(1) 12.1 mV/°C  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
–10 8 –6 –4 –2  
0
2
4
6
8
10  
–10  
0
2
4
6
8
10  
–8 –6 –4 –2  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 64  
Figure 65  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
SUPPLY VOLTAGE  
8
6
4
5
4
3
V
V
T
= 1 V  
= 100 mV  
= 25°C  
V
V
R
= 1 V  
= 100 mV  
= 1 MΩ  
= 25°C  
IC  
ID  
A
IC  
ID  
L
T
A
V
DD  
= 5 V  
V
DD  
= 3 V  
2
1
0
2
0
0
–2  
–4  
–6  
–8  
0
2
4
6
8
I
– High-Level Output Current – mA  
V
DD  
– Supply Voltage – V  
OH  
Figure 66  
Figure 67  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
700  
650  
600  
550  
3
V
= 3 V  
= 1 V  
= 100 mV  
V
I
T
A
= 5 V  
DD  
DD  
= 5 mA  
V
IC  
V
ID  
OL  
= 25°C  
2.4  
1.8  
1.2  
0.6  
0
V
= –100 mV  
ID  
500  
450  
I
I
I
I
I
= – 500 µA  
= 1 mA  
= 2 mA  
= 3 mA  
= 4 mA  
OH  
OH  
OH  
OH  
OH  
400  
350  
V
= –1 V  
ID  
300  
0
1
2
3
4
75 50 25  
0
25  
50  
75 100 125  
V
IC  
– Common-Mode Input Voltage – V  
T
A
– Free-Air Temperature °C  
Figure 68  
Figure 69  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
800  
700  
600  
500  
200  
185  
170  
155  
140  
125  
110  
95  
V
V
V
I
= 3 V  
= 1 V  
= 100 mV  
= 1 mA  
V
V
I
= 5 V  
= |V / 2|  
ID  
= 5 mA  
DD  
IC  
ID  
DD  
IC  
OL  
T
A
= 25°C  
OL  
400  
300  
200  
100  
80  
65  
50  
0
75 50 25  
0
25  
50  
75 100 125  
0
–2  
–4  
–6  
–8  
T
A
– Free-Air Temperature °C  
V
ID  
– Differential Input Voltage – V  
Figure 70  
Figure 71  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
900  
800  
700  
600  
500  
1
V
V
T
A
= 1 V  
= 1 V  
= 25°C  
IC  
ID  
V
V
V
I
= 5 V  
DD  
IC  
ID  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
= 0.5 V  
= 1 V  
= 5 mA  
OL  
V
DD  
= 5 V  
V
DD  
= 3 V  
400  
300  
200  
100  
0.2  
0.1  
0
0
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
I
– Low-Level Output Current – mA  
T
A
– Free-Air Temperature °C  
OL  
Figure 72  
Figure 73  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
2000  
1800  
1600  
1400  
2000  
1800  
1600  
1400  
R
= 1 MΩ  
R
= 1 MΩ  
L
L
1200  
1000  
1200  
1000  
T
A
= 40°C  
800  
800  
V
DD  
= 5 V  
600  
400  
200  
0
600  
400  
200  
0
V
= 3 V  
DD  
T
= 25°C  
A
T
A
= 85°C  
0
2
4
6
8
75 50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 74  
Figure 75  
INPUT BIAS CURRENT AND INPUT  
OFFSET CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
POSITIVE LIMIT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
4
8
6
4
10  
V
V
= 3 V  
= 1 V  
T
A
= 25°C  
DD  
IC  
See Note A  
3
10  
2
10  
1
10  
I
IB  
I
IO  
2
0
1
0.1  
25 35 45 55 65 75 85 95 105 115 125  
0
2
4
6
8
T
A
– Free-Air Temperature °C  
V
DD  
– Supply Voltage – V  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA are determined mathematically.  
Figure 76  
Figure 77  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
30  
25  
20  
15  
10  
5
45  
40  
V
V
= 1 V  
= 1 V  
IC  
O
V
V
= 1 V  
= 1 V  
IC  
O
No Load  
No Load  
35  
30  
25  
V
= 5 V  
20  
15  
DD  
T
A
= 40°C  
V
DD  
= 3 V  
T
= 25°C  
A
10  
5
T
= 85°C  
A
0
0
75 50 25  
0
25  
50  
75 100 125  
0
2
4
6
8
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 78  
Figure 79  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.07  
0.06  
0.05  
V
V
= 1 V  
IC  
V
V
= 1 V  
IC  
= 1 V  
I(PP)  
= 1  
= 1 V  
I(PP)  
= 1  
A
V
A
V
R
C
= 1 MΩ  
= 20 pF  
= 25°C  
L
L
R
C
= 1 MΩ  
= 20 pF  
L
L
T
A
0.04  
0.03  
V
= 5 V  
DD  
V
= 3 V  
0.02  
0.01  
DD  
0.01  
0
0
0
2
4
6
8
75 50 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature °C  
V
DD  
– Supply Voltage – V  
Figure 80  
Figure 81  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
BIAS SELECT CURRENT  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
150  
120  
5
4
3
T
V
= 25°C  
A
= V  
DD  
I(SEL)  
V
DD  
= 5 V  
T
A
= 40°C  
T
A
= 25°C  
90  
60  
30  
0
V
DD  
= 3 V  
2
1
0
T
A
= 85°C  
R
= 1 MΩ  
L
0.1  
1
10  
100  
0
2
4
6
8
V
DD  
– Supply Voltage – V  
f – Frequency – kHz  
Figure 82  
Figure 83  
UNITY-GAIN BANDWIDTH  
vs  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
140  
125  
110  
95  
120  
110  
100  
90  
V = 10 mV  
I
V = 10 mV  
I
R
C
= 1 MΩ  
= 20 pF  
= 25°C  
L
L
R
= 1 MΩ  
L
L
C
= 20 pF  
T
A
V
DD  
= 5 V  
80  
70  
80  
65  
60  
50  
50  
35  
40  
30  
20  
V
= 3 V  
DD  
20  
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature °C  
V
DD  
– Supply Voltage – V  
Figure 84  
Figure 85  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
10  
6
10  
5
10  
4
10  
3
10  
2
10  
1
10  
60°  
30°  
0°  
V
C
R
= 3 V  
= 20 pF  
= 1 MΩ  
= 25°C  
DD  
L
L
T
A
30°  
60°  
A
VD  
90°  
Phase Shift  
120°  
1
150°  
180°  
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 86  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
10  
10  
10  
10  
10  
10  
10  
60°  
30°  
0°  
V
C
R
= 5 V  
= 20 pF  
= 1 MΩ  
= 25°C  
DD  
L
L
6
5
4
3
2
1
T
A
30°  
60°  
A
VD  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 87  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
42°  
40°  
40°  
38°  
36°  
V = 10 mV  
I
V
DD  
= 3 V  
R
C
= 1 MΩ  
= 20 pF  
= 25°C  
L
L
T
A
V
DD  
= 5 V  
38°  
36°  
34°  
34°  
32°  
30°  
28°  
26°  
24°  
22°  
32°  
30°  
V = 10 mV  
I
L
L
R
C
= 1 MΩ  
= 20 pF  
20°  
0
2
4
6
8
75 50 25  
0
25  
50  
75 100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature °C  
Figure 88  
Figure 89  
PHASE MARGIN  
vs  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
LOAD CAPACITANCE  
FREQUENCY  
40°  
38°  
36°  
200  
175  
150  
125  
100  
75  
V
R
T
A
= 3 V, 5 V  
= 20 Ω  
= 25°C  
DD  
S
V
= 3 V  
DD  
34°  
32°  
V
= 5 V  
DD  
30°  
28°  
26°  
24°  
22°  
50  
V = 10 mV  
I
L
A
25  
0
R
T
= 1 MΩ  
= 25°C  
20°  
0
10 20 30 40 50 60 70 80 90 100  
1
10  
100  
1000  
C
– Load Capacitance – pF  
f – Frequency – Hz  
L
Figure 90  
Figure 91  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLV2341 is optimized for single-supply operation, circuit configurations used for the various tests  
often present some inconvenience since the input signal, in many cases, must be offset from ground. This  
inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative  
rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives  
the same result.  
V
DD+  
V
DD  
+
+
V
O
V
O
V
I
V
I
C
C
L
R
L
L
R
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 92. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD  
V
DD+  
20 Ω  
+
+
1/2 V  
V
O
DD  
V
O
20 Ω  
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 93. Noise-Test Circuits  
10 kΩ  
10 kΩ  
V
DD+  
V
DD  
100 Ω  
100 Ω  
V
I
V
+
+
I
V
V
O
O
1/2 V  
DD  
C
C
L
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 94. Gain-of-100 Inverting Amplifier  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLV2341 operational amplifier, attempts to measure the input bias  
current can result in erroneous readings. The bias current at normal ambient temperature is typically less than  
1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid  
erroneous measurements:  
Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 95). Leakages that would otherwise flow to the inputs are shunted away.  
Compensate for the leakage of the test socket by actually performing an input bias current test (using a  
picoammeter) with no device in the test socket. The actual input bias current can then be calculated by  
subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
Many automatic testers as well as some bench-top operational amplifier testers use the servo-loop  
technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires  
that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket  
reading is not feasible using this method.  
8
5
V = V  
IC  
1
4
Figure 95. Isolation Metal Around Device Inputs (P package)  
low-level output voltage  
To obtain low-level supply-voltage operation, some compromise is necessary in the input stage. This  
compromise results in the device low-level output voltage being dependent on both the common-mode input  
voltage level as well as the differential input voltage level. When attempting to correlate low-level output  
readings with those quoted in the electrical specifications, these two conditions should be observed. If  
conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet.  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. These measurements should be  
performed at temperatures above freezing to minimize error.  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
generallymeasuredbymonitoringthedistortionleveloftheoutputwhileincreasingthefrequencyofasinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 92. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. Thefrequencyisthenincreaseduntilthemaximumpeak-to-peakoutputcannolongerbemaintained  
(Figure 96). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 100 Hz  
(b) B  
> f > 100 Hz  
(c) f = B  
OM  
(d) f > B  
OM  
OM  
Figure 96. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
APPLICATION INFORMATION  
single-supply operation  
While the TLV2341 performs well using dual-  
V
DD  
power supplies (also called balanced or split  
supplies), the design is optimized for single-  
supply operation. This includes an input common-  
mode voltage range that encompasses ground as  
well as an output voltage range that pulls down to  
ground. The supply voltage range extends down  
to 2 V, thus allowing operation with supply levels  
commonly available for TTL and HCMOS.  
R2  
R1  
V
I
V
O
+
TLE2426  
Many single-supply applications require that a  
voltage be applied to one input to establish a  
reference level that is above ground. This virtual  
ground can be generated using two large  
resistors, but a preferred technique is to use a  
virtual-ground generator such as the TLE2426.  
The TLE2426 supplies an accurate voltage equal  
V
– V  
V
DD  
I
R2  
R1  
DD  
2
V
O
2
Figure 97. Inverting Amplifier With  
Voltage Reference  
to V /2, while consuming very little power and is  
DD  
suitable for supply voltages of greater than 4 V.  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
single-supply operation (continued)  
The TLV2341 works well in conjunction with digital logic; however, when powering both linear devices and digital  
logic from the same power supply, the following precautions are recommended:  
Power the linear devices from separate bypassed supply lines (see Figure 98); otherwise, the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, RC decoupling may be necessary in high-frequency  
applications.  
Power  
Supply  
Logic  
Logic  
Logic  
+
(a) COMMON-SUPPLY RAILS  
+
Power  
Supply  
Logic  
Logic  
Logic  
(b) SEPARATE-BYPASSED SUPPLY RAILS (preferred)  
Figure 98. Common Versus Separate Supply Rails  
input offset voltage nulling  
The TLV2341 offers external input offset null control. Nulling of the input offset voltage can be achieved by  
adjustinga25-kpotentiometerconnectedbetweentheoffsetnullterminalswiththewiperconnectedasshown  
in Figure 99. The amount of nulling range varies with the bias selection. In the high-bias mode, the nulling range  
allows the maximum offset voltage specified to be trimmed to zero. In low-bias and medium-bias modes, total  
nulling may not be possible.  
V
DD  
+
N2  
25 kΩ  
N1  
+
N2  
25 kΩ  
N1  
GND  
(b) SPLIT SUPPLY  
(a) SINGLE SUPPLY  
Figure 99. Input Offset Voltage Null Circuit  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
bias selection  
Bias selection is achieved by connecting the bias-select pin to one of the three voltage levels (see Figure 100).  
For medium-bias applications, it is recommended that the bias-select pin be connected to the midpoint between  
the supply rails. This is a simple procedure in split-supply applications, since this point is ground. In  
single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated. The use  
of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line.  
However, large-valueresistorsusedinconjunctionwithalarge-valuecapacitorrequiresignificanttimetocharge  
up to the supply midpoint after the supply is switched on. A voltage other than the midpoint may be used if it  
is within the voltages specified in the following table.  
V
DD  
BIAS-SELECT VOLTAGE  
(single supply)  
1 MΩ  
Low  
Medium  
BIAS MODE  
Low  
Medium  
High  
V
DD  
1 V to V  
To BIAS SELECT  
–1 V  
High  
DD  
GND  
1 MΩ  
0.01 µF  
Figure 100. Bias Selection for Single-Supply Applications  
input characteristics  
The TLV2341 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could  
cause the device to malfunction. Exceeding this specified range is a common problem, especially in  
single-supply operation. The lower the range limit includes the negative rail, while the upper range limit is  
specified at V  
–1 V at T = 25°C and at V  
1.2 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLV2341 good input offset  
voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices  
is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in  
the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization  
problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with  
time has been calculated to be typically 0.1 µV/month, including the first month of operation.  
Because of the extremely high input impedance and resulting low bias-current requirements, the TLV2341 is  
well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can  
easily exceed bias-current requirements and cause a degradation in device performance. It is good practice  
to include guard rings around inputs (similar to those of Figure 95 in the Parameter Measurement Information  
section). These guards should be driven from a low-impedance source at the same voltage level as the  
common-mode input (see Figure 101).  
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
input characteristics (continued)  
V
I
+
+
+
V
O
V
O
V
O
V
I
V
I
(c) UNITY-GAIN AMPLIFIER  
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
Figure 101. Guard-Ring Schemes  
noise performance  
The noise specifications in operational amplifiers circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias-current requirements of the TLV2341 results in a very low noise current,  
which is insignificant in most applications. This feature makes the device especially favorable over bipolar  
devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit greater noise  
currents.  
feedback  
Operational amplifier circuits nearly always  
employ feedback, and since feedback is the first  
prerequisite for oscillation, caution is appropriate.  
Most oscillation problems result from driving  
capacitive loads and ignoring stray input  
capacitance. A small-value capacitor connected  
in parallel with the feedback resistor is an effective  
remedy (see Figure 102). The value of this  
capacitor is optimized empirically.  
+
electrostatic-discharge protection  
Figure 102. Compensation for Input Capacitance  
The TLV2341 incorporates an internal electro-  
static-discharge (ESD)-protection circuit that  
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care  
should be exercised, however, when handling these devices as exposure to ESD may result in the degradation  
of the device parametric performance. The protection circuit also causes the input bias currents to be  
temperature dependent and have the characteristics of a reverse-biased diode.  
latch-up  
BecauseCMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLV2341inputs  
andoutputaredesignedtowithstand100-mAsurgecurrentswithoutsustaininglatch-up;however, techniques  
should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not by  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
design be forward biased. Applied input and output voltage should not exceed the supply voltage by more that  
300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients  
should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails as close  
to the device as possible.  
The current path established if latch-up occurs is usually between the positive supply rail and ground and can  
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
output characteristics  
V
DD  
The output stage of the TLV2341 is designed to  
sink and source relatively high amounts of current  
(see Typical Characteristics). If the output is  
R
P
V
F
V
I
I
V
I
P
DD  
O
I
+
R
P
I
I
subjected to  
a short-circuit condition, this  
L
P
V
O
high-current capability can cause device damage  
undercertainconditions. Outputcurrentcapability  
increases with supply voltage.  
I
P
= Pullup Current  
Required by the  
Operational Amplifier  
(typically 500 µA)  
F
R2  
I
R1  
R
L
Although the TLV2341 possesses excellent  
high-level output voltage and current capability,  
methods are available for boosting this capability  
if needed. The simplest method involves the use  
L
Figure 103. Resistive Pullup to Increase V  
OH  
of a pullup resistor (R )connectedfromtheoutput  
P
to the positive supply rail (see Figure 103). There  
are two disadvantages to the use of this circuit.  
First, the NMOS pulldown transistor N4 (see  
equivalent schematic) must sink a comparatively  
largeamountofcurrent. Inthiscircuit, N4behaves  
likealinearresistorwithanonresistancebetween  
approximately 60 and 180 , depending on  
how hard the operational amplifier input is driven.  
2.5 V  
V
O
+
V
I
C
L
With very low values of R , a voltage offset from  
0 V at the output occurs. Secondly, pullup resistor  
P
T
= 25°C  
A
f = 1 kHz  
= 1 V  
R acts as a drain load to N4 and the gain of the  
V
P
I(PP)  
2.5 V  
operational amplifier is reduced at output voltage  
levels where N5 is not supplying the output  
current.  
Figure 104. Test Circuit for Output Characteristics  
All operating characteristics of the TLV2341 are measured using a 20-pF load. The device drives higher  
capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower  
frequencies thereby causing ringing, peaking, or even oscillation (see Figures 105, 106 and 107). In many  
cases, adding some compensation in the form of a series resistor in the feedback loop alleviates the problem.  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2341, TLV2341Y  
LinCMOS PROGRAMMABLE LOW-VOLTAGE  
OPERATIONAL AMPLIFIERS  
SLOS110A – MAY 1992 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
output characteristics (continued)  
(a) C = 20 pF, R = NO LOAD  
(b) C = 130 pF, R = NO LOAD  
(c) C = 150 pF, R = NO LOAD  
L L  
L
L
L
L
Figure 105. Effect of Capacitive Loads in High-Bias Mode  
(a) C = 20 pF, R = NO LOAD  
(b) C = 170 pF, R = NO LOAD  
(c) C = 190 pF, R = NO LOAD  
L L  
L
L
L
L
Figure 106. Effect of Capacitive Loads in Medium-Bias Mode  
(c) C = 310 pF, R = NO LOAD  
(a) C = 20 pF, R = NO LOAD  
(b) C = 260 pF, R = NO LOAD  
L L  
L
L
L
L
Figure 107. Effect of Capacitive Loads in Low-Bias Mode  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  
1 of 4  
Products  
Development Tools  
Applications  
Search  
FEATURES | DESCRIPTION | DATASHEETS |  
PRICING/AVAILABILITY | SAMPLES |  
PRODUCT FOLDER PRODUCT INFO:  
|
APPLICATION NOTES USER MANUALS  
|
|
BLOCK DIAGRAMS  
PRODUCT SUPPORT: DEVELOPMENT TOOLS APPLICATIONS  
|
TLV2341, LinCMOS(TM) Programmable Low-Voltage Operational Amplifier  
DEVICE STATUS: ACTIVE  
PARAMETER NAME  
Vs (max) (V)  
TLV2341  
8
Vs (min) (V)  
2
IQ per channel (max) (mA)  
IQ per channel (typ) (mA)  
GBW (typ) (MHz)  
1.6  
0.675  
1.7  
Slew Rate (typ) (V/us)  
3.6  
VIO (Full Range) (max) (mV) 10  
VIO (25 deg C) (max) (mV)  
IIB (max) (pA)  
8
2000  
65  
25  
1
CMRR (min) (dB)  
Vn at 1kHz (typ) (nV/rtHz)  
Number of Channels  
Spec'd at Vs (V)  
5
Open Loop Gain (min) (dB)  
Offset Drift (typ) (uV/C)  
74  
2.7  
FEATURES  
Back to Top  
l Wide Range of Supply Voltages Over Specified Temperature Range:  
l T = -40°C to 85°C...2 V to 8 V  
A
l Fully Characterized at 3 V and 5 V  
Single-Supply Operation  
l
l Common-Mode Input-Voltage Range  
Extends Below the Negative Rail and up to  
V
-1 V at 25°C  
DD  
l Output Voltage Range Includes Negative Rail  
2 of 4  
12  
l High Input Impedance...10  
Typ  
Low Noise...25 nV/ Hz\ Typically at  
l
f = 1 kHz (High-Bias Mode)  
l ESD-Protection Circuitry  
Designed-In Latch-Up Immunity  
l
l Bias-Select Feature Enables Maximum Supply Current Range From 17 uA to  
1.5 mA at 25°C  
LinCMOS is a trademark of Texas Instruments Incorporated.  
DESCRIPTION  
Back to Top  
The TLV2341 operational amplifier has been specifically developed for low-voltage, single-  
supply applications and is fully specified to operate over a voltage range of 2 V to 8 V. The  
TM  
device uses the Texas Instruments silicon-gate LinCMOS  
technology to facilitate low-power,  
TM  
low-voltage operation and excellent offset-voltage stability. LinCMOS  
technology also  
enables extremely high input impedance and low bias currents allowing direct interface to  
high-impedance sources.  
The TLV2341 offers a bias-select feature, which allows the device to be programmed with a  
wide range of different supply currents and therefore different levels of ac performance. The  
supply current can be set at  
17 uA, 250 uA, or 1.5 mA, which results in slew-rate specifications between 0.02 and 2.1 V/us  
(at 3 V).  
The TLV2341 operational amplifiers are especially well suited to single-supply applications and  
are fully specified and characterized at 3-V and 5-V power supplies. This low-voltage single-  
supply operation combined with low power consumption makes this device a good choice for  
remote, inaccessible, or portable battery-powered applications. The common-mode input  
range includes the negative rail.  
The device inputs and outputs are designed to withstand -100-mA currents without sustaining  
latch-up. The TLV2341 incorporates internal ESD-protection circuits that prevents functional  
failures at voltages up to  
2000 V as tested under MIL-STD 883 C, Methods 3015.2; however, care should be exercised  
in handling these devices as exposure to ESD may result in the degradation of the device  
parametric performance.  
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLV2341IDR).  
The PW package is only available left-end taped and reeled (e.g., TLV2341IPWLE).  
TECHNICAL DOCUMENTS  
Back to Top  
To view the following documents, Acrobat Reader 3.x is required.  
To download a document to your hard drive, right-click on the link and choose 'Save'.  
DATASHEET  
Back to Top  
Full datasheet in Acrobat PDF: slos110a.pdf (748 KB) (  
)
Updated: 08/01/1994  
Full datasheet in Zipped PostScript: slos110a.psz (679 KB)  
3 of 4  
APPLICATION NOTES  
Back to Top  
View Application Reports for Signal Amplifiers (Less than equal to 100MHz)  
Analog Applications Journal May 2000 (SLYT015 -  
)
l
Updated: 04/20/2000  
l Analog Applications Journal, September 1999 edition (SLYT005 -  
)
Updated: 07/15/1999  
l Analysis Of The Sallen-Key Architecture (SLOA024A - Updated: 07/27/1999)  
Current Feedback Amplifiers: Review, Stability Analysis, and Applications (SBOA081 -  
l
)
Updated: 11/20/2000  
Low-Power Signal Conditioning For A Pressure Sensor (SLAA034 -  
)
l
Updated: 09/08/1998  
Back to Top  
USER MANUALS  
Universal Op Amp Single, Dual, Quad (SOIC) Evaluation Module With  
l
l
Shutdown (SLOU061, 1160 KB -  
)
Updated: 10/22/1999  
Universal Operational Amplifier EVM (SLVU006A, 387 KB -  
)
Updated: 03/22/1999  
l Universal Operational Amplifier Evaluation Module Selection Guide (SLOU060A, 16 KB -  
)
Updated: 09/28/2000  
l Universal Operational Amplifier Single, Dual, Quad (MSOP/TSSOP) (SLOU055, 1196 KB -  
)
Updated: 10/22/1999  
Universal Operational Amplifier Single, Dual, Quad (PDIP) (SLOU062, 1211 KB -  
l
Updated:  
)
10/22/1999  
BLOCK DIAGRAMS  
Back to Top  
Digital Cellphone  
SAMPLES  
Back to Top  
ORDERABLE DEVICE  
PACKAGE  
PINS  
TEMP (ºC)  
STATUS  
ACTIVE  
ACTIVE  
SAMPLES  
TLV2341ID  
TLV2341IP  
D
P
8
8
Request Samples  
Request Samples  
PRICING/AVAILABILITY  
Back to Top  
BUDGETARY  
ORDERABLE  
DEVICE  
TEMP  
(ºC)  
PRICE  
US$/UNIT  
QTY=1000+  
PACK  
QTY  
PACKAGE PINS  
STATUS  
PRICING/AVAILABILITY  
TLV2341ID  
TLV2341IDR  
TLV2341IP  
D
D
P
8
8
8
ACTIVE  
ACTIVE  
ACTIVE  
0.53  
0.53  
0.53  
75  
2500  
50  
Check stock or order  
Check stock or order  
Check stock or order  
TLV2341IPWLE  
TLV2341IPWR  
PW  
PW  
8
8
OBSOLETE  
ACTIVE  
0.53  
2000  
Check stock or order  
DEVELOPMENT TOOLS  
Back to Top  
Tool Part  
Tool Title  
Number  
Tool Type  
UNIV-OPAMP- Universal EVM for Single/Dual OpAmps without Shutdown in  
1B MSOP/SOIC/SOT-23 packages  
Evaluation Modules  
(EVM)  
UNIV-OPAMP- Universal EVM for Single/Dual OpAmps with Shutdown in  
2B MSOP/SOIC/SOT-23 packages  
Evaluation Modules  
(EVM)  
4 of 4  
UNIV-OPAMP- Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in  
Evaluation Modules  
(EVM)  
3B  
UNIV-OPAMP- Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in  
4B SOIC packages  
UNIV-OPAMP- Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in  
5B PDIP packages  
MSOP/TSSOP packages  
Evaluation Modules  
(EVM)  
Evaluation Modules  
(EVM)  
Table Data Updated on: 11/29/2000  
© Copyright 2000 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy  
| Important Notice  

相关型号:

TLV2341IPE4

LinCMOS(TM) Programmable Low-Voltage Operational Amplifier 8-PDIP -40 to 85
TI

TLV2341IPW

OP-AMP, 10000uV OFFSET-MAX, 0.79MHz BAND WIDTH, PDSO8, TSSOP-8
TI

TLV2341IPW

OP-AMP, 10000uV OFFSET-MAX, 0.79MHz BAND WIDTH, PDSO8, TSSOP-8
ROCHESTER

TLV2341IPWG4

OP-AMP, 10000uV OFFSET-MAX, 1.7MHz BAND WIDTH, PDSO8, TSSOP-8
TI

TLV2341IPWLE

LinCMOSE PROGRAMMABLE LOW-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2341IPWR

OP-AMP, 10000uV OFFSET-MAX, 0.79MHz BAND WIDTH, PDSO8, GREEN, TSSOP-8
TI

TLV2341IPWR

OP-AMP, 10000uV OFFSET-MAX, 0.79MHz BAND WIDTH, PDSO8, GREEN, TSSOP-8
ROCHESTER

TLV2341IPWRG4

OP-AMP, 10000uV OFFSET-MAX, 0.79MHz BAND WIDTH, PDSO8, GREEN, TSSOP-8
TI

TLV2341P

暂无描述
TI

TLV2341Y

LinCMOSE PROGRAMMABLE LOW-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2342

LinCMOSE LOW-VOLTAGE HIGH-SPEED OPERATIONAL AMPLIFIERS
TI

TLV2342ID

LinCMOSE LOW-VOLTAGE HIGH-SPEED OPERATIONAL AMPLIFIERS
TI