MAX923CUA-T [ROCHESTER]

DUAL COMPARATOR, 10000uV OFFSET-MAX, 14000ns RESPONSE TIME, PDSO8, UMAX-8;
MAX923CUA-T
型号: MAX923CUA-T
厂家: Rochester Electronics    Rochester Electronics
描述:

DUAL COMPARATOR, 10000uV OFFSET-MAX, 14000ns RESPONSE TIME, PDSO8, UMAX-8

放大器 光电二极管
文件: 总18页 (文件大小:893K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0115; Rev 6; 4/09  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
_______________General Description  
____________________________Features  
µMAX® Package—Smallest 8-Pin SO  
The MAX921–MAX924 single, dual, and quad micro-  
power, low-voltage comparators feature the lowest  
power consumption available. These comparators draw  
less than 4µA supply current over temperature  
(MAX921/MAX922), and include an internal 1.182V  
1ꢀ voltage reference, programmable hysteresis, and  
TTL/CMOS outputs that sink and source current.  
(MAX921/MAX922/MAX923)  
Ultra-Low 4µA Max Quiescent Current  
Over Extended Temp. Range (MAX921)  
Power Supplies:  
Single +2.5V to +11V  
Dual 1.25V to 5.5V  
Ideal for 3V or 5V single-supply applications, the  
MAX921–MAX924 operate from a single +2.5V to +11V  
supply (or a 1.25V to 5V dual supply), and each  
comparator’s input voltage range swings from the  
negative supply rail to within 1.3V of the positive  
supply.  
Input Voltage Range Includes Negative Supply  
Internal 1.182V 1ꢀ ꢁandgap Reꢂerence  
Adjustable Hysteresis  
TTL/CMOS-Compatible Outputs  
The MAX921–MAX924’s unique output stage con-  
tinuously sources as much as 40mA. And by eliminating  
power-supply glitches that commonly occur when com-  
parators change logic states, the MAX921–MAX924  
minimize parasitic feedback, which makes them easier to  
use.  
12µs Propagation Delay (10mV Overdrive)  
No Switching Crowbar Current  
40mA Continuous Source Current  
The single MAX921 and dual MAX923 provide a unique  
and simple method for adding hysteresis without  
feedback and complicated equations, simply by using  
the HYST pin and two resistors.  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX921CPA  
MAX921CSA  
MAX921CUA  
MAX921C/D  
MAX921EPA  
MAX921ESA  
MAX921MJA  
8 µMAX  
Dice*  
8 Plastic DIP  
8 SO  
8 CERDIP  
Ordering Information continued at end of data sheet.  
*Dice are tested at T = +25°C, DC parameters only.  
**Contact factory for availability.  
A
8-Pin  
DIP/SO/µMAX  
MAX921  
MAX922  
MAX923  
MAX924  
Yes  
No  
1
2
2
4
Yes  
No  
__________Typical Operating Circuit  
8-Pin  
DIP/SO/µMAX  
V
IN  
8-Pin  
DIP/SO/µMAX  
Yes  
Yes  
Yes  
No  
7
V+  
16-Pin  
DIP/SO/µMAX  
3
IN+  
OUT 8  
4 IN-  
________________________Applications  
HYST  
5
Battery-Powered Systems  
Threshold Detectors  
Window Comparators  
Oscillator Circuits  
MAX921  
6 REF  
GND  
1
V-  
2
THRESHOLD DETECTOR  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim's website at www.maxim-ic.com.  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
AꢁSOLUTE MAXIMUM RATINGS  
V+ to V-, V+ to GND, GND to V-................................-0.3V, +12V  
Inputs  
Continuous Power Dissipation (T = +70°C)  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
A
Current, IN_+, IN_-, HYST...............................................20mA  
Voltage, IN_+, IN_-, HYST................(V+ + 0.3V) to (V- – 0.3V)  
Outputs  
Current, REF....................................................................20mA  
Current, OUT_.................................................................50mA  
Voltage, REF ....................................(V+ + 0.3V) to (V- – 0.3V)  
Voltage, OUT_ (MAX921/924) .....(V+ + 0.3V) to (GND – 0.3V)  
Voltage OUT_ (MAX922/923)...........(V+ + 0.3V) to (V- – 0.3V)  
OUT_ Short-Circuit Duration (V+ 5.5V) ...............Continuous  
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C).............330mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW  
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)..842mW  
16-Pin SO (derate 8.70mW/°C above +70°C) ................696mW  
16-Pin CERDIP (derate 10.00mW/°C above +70°C)......800mW  
Operating Temperature Ranges:  
MAX92_C_ _ .......................................................0°C to +70°C  
MAX92_E_ _.....................................................-40°C to +85°C  
MAX92_MJ_ ..................................................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings‘” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS: 5V OPERATION  
(V+ = 5V, V- = GND = 0V, T = T  
A
to T  
, unless otherwise noted.)  
MIN  
MAX  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage Range  
(Note 1)  
2.5  
11  
3.2  
4
V
T
= +25°C  
2.5  
2.5  
3.1  
5.5  
A
MAX921,  
HYST = REF  
C/E temp. ranges  
M temp. range  
5
T
A
= +25°C  
3.2  
4
MAX922  
C/E temp. ranges  
M temp. range  
5
Supply Current  
IN+ = IN- + 100mV  
µA  
T
A
= +25°C  
4.5  
6
MAX923,  
HYST = REF  
C/E temp. ranges  
M temp. range  
7.5  
6.5  
8.5  
11  
T
A
= +25°C  
MAX924  
C/E temp. ranges  
M temp. range  
COMPARATOR  
Input Offset Voltage  
V
= 2.5V  
10  
5
mV  
nA  
CM  
C/E temp. ranges  
M temp. range  
0.01  
0.02  
Input Leakage Current (IN-, IN+)  
Input Leakage Current (HYST)  
IN+ = IN- = 2.5V  
MAX921, MAX923  
40  
nA  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Voltage Noise  
V-  
V+ – 1.3  
1.0  
V- to (V+ – 1.3V)  
V+ = 2.5V to 11V  
100Hz to 100kHz  
MAX921, MAX923  
0.1  
0.1  
20  
mV/V  
mV/V  
1.0  
µV  
RMS  
V
Hysteresis Input Voltage Range  
REF- 0.05V  
REF  
Overdrive = 10mV  
Overdrive = 100mV  
12  
4
Response Time  
T
A
= +25°C, 100pF load  
µs  
2
_______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
ELECTRICAL CHARACTERISTICS: 5V OPERATION (continued)  
(V+ = 5V, V- = GND = 0V, T = T  
A
to T  
, unless otherwise noted.)  
MIN  
MAX  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C/E temp. ranges: I  
= 17mA;  
= 10mA  
OUT  
OUT  
OUT  
Output High Voltage  
MAX92_  
V+ – 0.4  
V
M temp. range: I  
OUT  
MAX922/ C/E temp. ranges: I  
MAX923 M temp. range: I  
= 1.8mA;  
= 1.2mA  
V- + 0.4  
OUT  
Output Low Voltage  
V
MAX921/ C/E temp. ranges: I  
MAX924 M temp. range: I  
= 1.8mA;  
= 1.2mA  
GND + 0.4  
OUT  
REFERENCE (MAX921/MAX923/MAX924 ONLY)  
C temp. range  
E temp. range  
M temp. range  
1.170  
1.182  
25  
1.194  
1.206  
1.217  
Reference Voltage  
1.158  
V
1.147  
T
A
= +25°C  
15  
6
Source Current  
Sink Current  
C/E temp. ranges  
M temp. range  
µA  
µA  
4
T
A
= +25°C  
8
15  
C/E temp. ranges  
M temp. range  
4
2
Voltage Noise  
100Hz to 100kHz  
100  
µV  
RMS  
Note 1: MAX924 comparators work below 2.5V, see Low-Voltage Operation section for more details.  
ELECTRICAL CHARACTERISTICS: 3V OPERATION  
(V+ = 3V, V- = GND = 0V, T = T  
A
to T  
, unless otherwise noted.)  
MIN  
MAX  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
T
= +25°C  
2.4  
3.0  
3.8  
4.8  
3.0  
3.8  
4.8  
4.3  
5.8  
7.2  
6.2  
8.0  
10.5  
A
MAX921 C/E temp. ranges  
M temp. range  
T
A
= +25°C  
2.4  
3.4  
5.2  
MAX922 C/E temp. ranges  
M temp. range  
HYST = REF,  
IN+ = (IN- + 100mV)  
Supply Current  
µA  
T
A
= +25°C  
MAX923  
C/E temp. ranges  
M temp. range  
T
A
= +25°C  
MAX924 C/E temp. ranges  
M temp. range  
COMPARATOR  
Input Offset Voltage  
V
= 1.5V  
10  
mV  
nA  
nA  
CM  
C/E temp. ranges  
M temp. range  
0.01  
0.02  
5
Input Leakage Current (IN-, IN+)  
Input Leakage Current (HYST)  
IN+ = IN- = 1.5V  
MAX921, MAX923  
40  
_______________________________________________________________________________________  
3
Ultra Low-Power,  
Single/Dual-Supply Comparators  
ELECTRICAL CHARACTERISTICS: 3V OPERATION (continued)  
(V+ = 3V, V- = GND = 0V, T = T  
A
to T  
, unless otherwise noted.)  
MIN  
MAX  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Voltage Noise  
V-  
V+ – 1.3  
V
V- to (V+ – 1.3V)  
V+ = 2.5V to 11V  
100Hz to 100kHz  
MAX921, MAX923  
0.2  
0.1  
20  
1
1
mV/V  
mV/V  
µV  
RMS  
Hysteresis Input Voltage Range  
REF- 0.05V  
V+ – 0.4  
REF  
V
Overdrive = 10mV  
Overdrive = 100mV  
14  
5
Response Time  
T
A
= +25°C, 100pF load  
µs  
V
C/E temp. ranges: I  
M temp. range: I  
= 10mA;  
= 6mA  
OUT  
OUT  
OUT  
Output High Voltage  
MAX92_  
OUT  
MAX922/ C/E temp. ranges: I  
MAX923 M temp. range: I  
= 0.8mA;  
= 0.6mA  
V- + 0.4  
OUT  
Output Low Voltage  
V
MAX921/ C/E temp. ranges: I  
MAX924 M temp. range: I  
= 0.8mA;  
GND + 0.4  
= 0.6mA  
OUT  
REFERENCE  
C temp. range  
E temp. range  
M temp. range  
1.170  
1.182  
25  
1.194  
1.206  
1.217  
Reference Voltage  
1.158  
V
1.147  
T
A
= +25°C  
15  
6
Source Current  
C/E temp. ranges  
M temp. range  
µA  
µA  
4
T
A
= +25°C  
8
15  
Sink Current  
C/E temp. ranges  
M temp. range  
4
2
Voltage Noise  
100Hz to 100kHz  
100  
µV  
RMS  
Typical Operating Characteristics  
(V+ = 5V, V- = GND, T = +25°C, unless otherwise noted).  
A
OUTPUT VOLTAGE LOW  
vs. LOAD CURRENT  
OUTPUT VOLTAGE HIGH vs.  
LOAD CURRENT  
REFERENCE OUTPUT VOLTAGE vs.  
OUTPUT LOAD CURRENT  
2.5  
2.0  
5.0  
1.190  
V+ = 5V  
SINK  
V+ = 5V  
4.5  
4.0  
1.185  
1.180  
V+ = 3V  
SOURCE  
1.5  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.175  
1.170  
1.165  
1.160  
1.155  
V+ = 3V  
V+ = 5V  
OR  
0.5  
0.0  
V+ = 3V  
0
4
8
12  
16  
20  
0
10  
20  
30  
40  
50  
0
5
10  
15  
20  
25  
30  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT LOAD CURRENT (μA)  
4
_______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
Typical Operating Characteristics (continued)  
(V+ = 5V, V- = GND, T = +25°C, unless otherwise noted).  
A
MAX921  
SUPPLY CURRENT vs.  
TEMPERATURE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
MAX922  
SUPPLY CURRENT vs. TEMPERATURE  
1.22  
1.21  
4.5  
4.0  
4.5  
4.0  
IN+ = (IN- + 100mV)  
V+ = 10V, V- = 0V  
IN+ = (IN- + 100mV)  
MILITARY TEMP. RANGE  
EXTENDED TEMP. RANGE  
1.20  
1.19  
3.5  
3.0  
2.5  
2.0  
1.5  
V+ = 5V, V- = - 5V  
COMMERCIAL  
TEMP. RANGE  
3.5  
3.0  
1.18  
1.17  
V+ = 3V, V- = 0V  
V+ = 5V, V- = 0V  
V+ = 3V, V- = 0V  
1.16  
1.15  
2.5  
2.0  
V+ = 5V, V- = 0V  
1.14  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX924  
SUPPLY CURRENT vs.  
LOW SUPPLY VOLTAGES  
MAX924  
MAX923  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
10  
9
5.0  
10  
IN+ = (IN- + 100mV)  
4.5  
4.0  
8
1
V+ = 5V, V- = 0V  
7
V+ = 5V, V- = -5V  
3.5  
3.0  
2.5  
2.0  
6
0.1  
V+ = 5V, V- = 0V  
V+ = 3V, V- = 0V  
5
4
V+ = 3V, V- = 0V  
3
0.01  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
1.0  
1.5  
2.0  
2.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SINGLE-SUPPLY VOLTAGE (V)  
RESPONSE TIME vs.  
LOAD CAPACITANCE  
TRANSFER FUNCTION  
HYSTERESIS CONTROL  
5.0  
4.5  
80  
60  
18  
16  
V- = 0V  
100k  
V
0
OUTPUT HIGH  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10μF  
40  
20  
14  
12  
V
OHL  
NO CHANGE  
10  
8
0
-20  
V
OLH  
-40  
-60  
6
4
OUTPUT LOW  
10  
-80  
2
-0.3  
-0.1  
0.1  
0.2  
0.3  
0
20  
-V  
30  
(mV)  
40  
50  
-0.2  
0
0
20  
40  
60  
80  
100  
IN+ INPUT VOLTAGE (mV)  
V
LOAD CAPACITANCE (nF)  
REF HYST  
_______________________________________________________________________________________  
5
Ultra Low-Power,  
Single/Dual-Supply Comparators  
Typical Operating Characteristics (continued)  
(V+ = 5V, V- = GND, T = +25°C, unless otherwise noted).  
A
RESPONSE TIME FOR VARIOUS  
INPUT OVERDRIVES  
RESPONSE TIME FOR VARIOUS  
INPUT OVERDRIVES  
MAX924 RESPONSE TIME  
AT LOW SUPPLY VOLTAGES  
10  
5
5
4
3
4
3
100mV  
50mV  
10mV  
1
20mV  
100mV  
2
1
2
1
20mV  
50mV  
10mV  
0
100  
0
0
20mV OVERDRIVE  
0.1  
100mV  
OVERDRIVE  
0
100  
0.01  
-2  
2
6
10  
14  
18  
1.0  
1.5  
2.0  
2.5  
-2  
2
6
10  
14  
18  
RESPONSE TIME (μs)  
SINGLE-SUPPLY VOLTAGE (V)  
RESPONSE TIME (μs)  
SHORT-CIRCUIT SOURCE CURRENT  
vs. SUPPLY VOLTAGE  
SHORT-CIRCUIT SINK CURRENT  
vs. SUPPLY VOLTAGE  
MAX924 RESPONSE TIME  
AT LOW SUPPLY VOLTAGES  
200  
100  
OUT CONNECTED TO V+  
GND CONNECTED TO V-  
180  
160  
140  
120  
100  
80  
OUT CONNECTED TO V-  
SOURCE CURRENT INTO 0.75V LOAD  
20  
10  
1
10  
0
60  
40  
20  
SINK CURRENT AT V  
1.5  
= 0.4V  
2.0  
OUT  
0
0.1  
0
1.0  
2.0  
3.0  
4.0  
5.0  
0
5
10  
1.0  
2.5  
TOTAL SUPPLY VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
SINGLE-SUPPLY VOLTAGE (V)  
____________________________________________________________Pin Descriptions  
PIN  
NAME  
FUNCTION  
MAX921 MAX922 MAX923  
1
2
3
4
1
2
3
4
1
2
3
GND  
OUTA  
V-  
Ground. Connect to V- for single-supply operation. Output swings from V+ to GND.  
Comparator A output. Sinks and sources current. Swings from V+ to V-.  
Negative supply. Connect to ground for single-supply operation (MAX921).  
Noninverting comparator input  
IN+  
INA+  
IN-  
Noninverting input of comparator A  
Inverting comparator input  
INA-  
Inverting input of comparator A  
6
_______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
_______________________________________________Pin Descriptions (continued)  
PIN  
NAME  
FUNCTION  
MAX921 MAX922 MAX923  
5
4
5
INB-  
Inverting input of comparator B  
Hysteresis input. Connect to REF if not used. Input voltage range is from  
5
HYST  
V
REF  
to V - 50mV.  
REF  
6
7
8
6
7
8
6
7
8
REF  
INB+  
V+  
Reference output. 1.182V with respect to V-.  
Noninverting input of comparator B  
Positive supply  
OUT  
OUTB  
Comparator output. Sinks and sources current. Swings from V+ to GND.  
Comparator B output. Sinks and sources current. Swings from V+ to V-.  
PIN  
MAX924  
NAME  
FUNCTION  
1
2
OUTB  
OUTA  
V+  
Comparator B output. Sinks and sources current. Swings from V+ to GND.  
Comparator A output. Sinks and sources current. Swings from V+ to GND.  
Positive supply  
3
4
INA-  
INA+  
INB-  
INB+  
REF  
Inverting input of comparator A  
5
Noninverting input of comparator A  
6
Inverting input of comparator B  
7
Noninverting input of comparator B  
8
Reference output. 1.182V with respect to V-.  
Negative supply. Connect to ground for single-supply operation.  
Inverting input of comparator C  
9
V-  
10  
11  
12  
13  
14  
15  
16  
INC-  
INC+  
IND-  
IND+  
GND  
OUTD  
OUTC  
Noninverting input of comparator C  
Inverting input of comparator D  
Noninverting input of comparator D  
Ground. Connect to V- for single-supply operation.  
Comparator D output. Sinks and sources current. Swings from V+ to GND.  
Comparator C output. Sinks and sources current. Swings from V+ to GND.  
_______________________________________________________________________________________  
7
Ultra Low-Power,  
Single/Dual-Supply Comparators  
separate ground for the output driver, allowing  
_______________Detailed Description  
operation with dual supplies ranging from 1.25V to  
5.5V. Connect V- to GND when operating the  
MAX921 and the MAX924 from a single supply. The  
maximum supply voltage in this case is still 11V.  
The MAX921–MAX924 comprise various combinations  
of a micropower 1.182V reference and a micropower  
comparator. The Typical Operating Circuit shows the  
MAX921 configuration, and Figures 1a-1c show the  
MAX922–MAX924 configurations.  
For proper comparator operation, the input signal can  
swing from the negative supply (V-) to within one volt of  
the positive supply (V+ – 1V). The guaranteed  
common-mode input voltage range extends from V- to  
(V+ - 1.3V). The inputs can be taken above and below  
the supply rails by up to 300mV without damage.  
Each comparator continuously sources up to 40mA,  
and the unique output stage eliminates crowbar  
glitches during output transitions. This makes them  
immune to parasitic feedback (which can cause  
instability) and provides excellent performance, even  
when circuit-board layout is not optimal.  
Operating the MAX921 and MAX924 at 5V provides  
TTL/CMOS compatibility when monitoring bipolar input  
signals. TTL compatibility for the MAX922 and MAX923  
is achieved by operation from a single +5V supply.  
Internal hysteresis in the MAX921 and MAX923 provides  
the easiest method for implementing hysteresis. It also  
produces faster hysteresis action and consumes much  
less current than circuits using external positive feedback.  
Low-Voltage Operation: V+ = 1V (MAX924 Only)  
The guaranteed minimum operating voltage is 2.5V (or  
1.25V). As the total supply voltage is reduced below  
2.5V, the performance degrades and the supply  
current falls. The reference will not function below  
Power-Supply and Input Signal Ranges  
This family of devices operates from a single +2.5V to  
+11V power supply. The MAX921 and MAX924 have a  
MAX922  
OUTA  
OUTB 8  
1
2 V-  
V+ 7  
INB+ 6  
INB- 5  
MAX924  
1
2
OUTC 16  
OUTD 15  
OUTB  
OUTA  
INA+  
3
4 INA-  
3 V+  
GND 14  
IND+ 13  
IND- 12  
INA-  
4
Figure 1a. MAX922 Functional Diagram  
5 INA+  
INB-  
6
INC+ 11  
INC- 10  
V- 9  
MAX923  
OUTA  
OUTB 8  
1
7 INB+  
2 V-  
V+ 7  
REF 6  
8
REF  
INA+  
3
4 INB-  
HYST 5  
V-  
Figure 1c. MAX924 Functional Diagram  
Figure 1b. MAX923 Functional Diagram  
8
_______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
The MAX921–MAX924’s unique design achieves an  
output source current of more than 40mA and a sink  
current of over 5mA, while keeping quiescent currents in  
the microampere range. The output can source 100mA  
(at V+ = 5V) for short pulses, as long as the package's  
maximum power dissipation is not exceeded. The  
output stage does not generate crowbar switching  
currents during transitions, which minimizes feedback  
through the supplies and helps ensure stability without  
bypassing.  
THRESHOLDS  
IN+  
HYSTERESIS  
BAND  
IN-  
VREF - VHYST  
V
HB  
Voltage Reference  
The internal bandgap voltage reference has an output  
of 1.182V above V-. Note that the REF voltage is  
referenced to V-, not to GND. Its accuracy is 1ꢀ in  
the range 0°C to +70°C. The REF output is typically  
capable of sourcing 15µA and sinking 8µA. Do not  
bypass the REF output.  
OUT  
Figure 2. Threshold Hysteresis Band  
Noise Considerations  
Although the comparators have a very high gain, useful  
gain is limited by noise. This is shown in the Transfer  
about 2.2V, although the comparators will continue to  
operate with a total supply voltage as low as 1V. While  
the MAX924 has comparators that may be used at  
supply voltages below 2V, the MAX921, MAX922, and  
MAX923 may not be used with supply voltages sig-  
nificantly below 2.5V.  
Function graph (see Typical Operating Characteristics).  
As the input voltage approaches the comparator's  
offset, the output begins to bounce back and forth; this  
peaks when VIN = VOS. (The lowpass filter shown on  
the graph averages out the bouncing, making the  
transfer function easy to observe.) Consequently, the  
comparator has an effective wideband peak-to-peak  
noise of around 0.3mV. The voltage reference has  
peak-to peak noise approaching 1mV. Thus, when a  
At low supply voltages, the comparators’ output drive is  
reduced and the propagation delay increases (see  
Typical Operating Characteristics). The useful input  
voltage range extends from the negative supply to a  
little under 1V below the positive supply, which is  
slightly closer to the positive rail than the device  
operating from higher supply voltages. Test your  
prototype over the full temperature and supply-voltage  
range if operation below 2.5V is anticipated.  
2.5V TO 11V  
7
I
6
5
REF  
V+  
REF  
Comparator Output  
With 100mV of overdrive, propagation delay is typically  
3µs. The Typical Operating Characteristics show the  
propagation delay for various overdrive levels.  
R1  
R2  
MAX921  
MAX923  
HYST  
V-  
2
The MAX921 and MAX924 output swings from V+ to  
GND, so TTL compatibility is assured by using a +5V  
10ꢀ supply. The negative supply does not affect the  
output swing, and can range from 0V to -5V 10ꢀ.  
The MAX922 and MAX923 have no GND pin, and their  
outputs swing from V+ to V-. Connect V- to ground and  
V+ to a +5V supply to achieve TTL compatibility.  
Figure 3. Programming the HYST Pin  
_______________________________________________________________________________________  
9
Ultra Low-Power,  
Single/Dual-Supply Comparators  
comparator is used with the reference, the combined  
peak-to-peak noise is about 1mV. This, of course, is  
much higher than the RMS noise of the individual  
components. Care should be taken in the layout to  
avoid capacitive coupling from any output to the  
reference pin. Crosstalk can significantly increase the  
actual noise of the reference.  
feedback impedance slows hysteresis. The design  
procedure is as follows:  
1. Choose R3. The leakage current of IN+ is under  
1nA (up to +85°C), so the current through R3 can be  
around 100nA and still maintain good accuracy.  
The current through R3 at the trip point is VREF/R3,  
or 100nA for R3 = 11.8MΩ. 10MΩ is a good  
practical value.  
__________Applications Information  
2. Choose the hysteresis voltage (VHB), the voltage  
between the upper and lower thresholds. In this  
example, choose VHB = 50mV.  
Hysteresis  
Hysteresis increases the comparators’ noise margin by  
increasing the upper threshold and decreasing the  
lower threshold (see Figure 2).  
3. Calculate R1.  
V
V +  
HB  
R1 = R3 ×  
Hysteresis (MAX921/MAX923)  
To add hysteresis to the MAX921 or MAX923, connect  
resistor R1 between REF and HYST, and connect  
resistor R2 between HYST and V- (Figure 3). If no  
hysteresis is required, connect HYST to REF. When  
hysteresis is added, the upper threshold increases by  
the same amount that the lower threshold decreases.  
The hysteresis band (the difference between the upper  
and lower thresholds, VHB) is approximately equal to  
twice the voltage between REF and HYST. The HYST  
input can be adjusted to a maximum voltage of REF  
and to a minimum voltage of (REF – 50mV). The  
maximum difference between REF and HYST (50mV)  
will therefore produce a 100mV max hysteresis band.  
Use the following equations to determine R1 and R2:  
0.05  
5
= 10M ×  
=
100k
Ω  
4. Choose the threshold voltage for VIN rising (VTHR).  
In this example, choose VTHR = 3V.  
5. Calculate R2.  
1
R2 =  
V
1
1
THR  
(V  
R1 R3  
REF × R1)  
1
=
3
1
1
V
HB  
R1 =  
(1.182 × 100k)  
100k 10M  
2 × I  
(
)
REF  
= 65.44kΩ  
V
HB  
2 ⎠  
A 1ꢀ preferred value is 64.9kΩ.  
1.182 –  
R2 =  
I
REF  
V+  
Where IREF (the current sourced by the reference)  
should not exceed the REF source capability, and  
should be significantly larger than the HYST input  
current. IREF values between 0.1µA and 4µA are  
R3  
R1  
V
IN  
usually appropriate. If 2.4MΩ is chosen for R2 (IREF  
=
0.5µA), the equation for R1 and VHB can be  
approximated as:  
V+ OUT  
V-  
R2  
MAX924  
GND  
R1 (kΩ) = V (mV)  
HB  
When hysteresis is obtained in this manner for the  
MAX923, the same hysteresis applies to both comparators.  
V
REF  
Hysteresis (MAX922/MAX924)  
Hysteresis can be set with two resistors using positive  
feedback, as shown in Figure 4. This circuit generally  
draws more current than the circuits using the HYST  
pin on the MAX921 and MAX923, and the high  
Figure 4. External Hysteresis  
10 ______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
_______________Typical Applications  
MOMENTARY  
SWITCH  
Auto-Off Power Source  
Figure 5 shows the schematic for a 40mA power supply  
that has a timed auto power-off function. The  
comparator output is the switched power-supply  
output. With a 10mA load, it typically provides a  
voltage of (VBATT – 0.12V), but draws only 3.5µA  
quiescent current. This circuit takes advantage of the  
four key features of the MAX921: 2.5µA supply current,  
an internal reference, hysteresis, and high current  
output. Using the component values shown, the three-  
resistor voltage divider programs the maximum 50mV  
of hysteresis and sets the IN- voltage at 100mV. This  
gives an IN+ trip threshold of approximately 50mV for  
IN+ falling.  
4.5V TO 6.0V  
7
V+  
MAX921  
IN+ 3  
6
REF  
47k  
R
C
5
HYST  
1.1M  
100k  
OUT 8  
VBATT -0.15V  
10mA  
4 IN-  
The RC time constant determines the maximum power-  
on time of the OUT pin before power-down occurs.  
This period can be approximated by:  
V-  
GND  
1
2
R x C x 4.6sec  
For example: 2MΩ x 10µF x 4.6 = 92sec. The actual  
time will vary with both the leakage current of the  
capacitor and the voltage applied to the circuit.  
Figure 5. Auto-off power switch operates on 2.5µA quiescent  
current.  
Window Detector  
The MAX923 is ideal for making window detectors  
(undervoltage/overvoltage detectors). The schematic  
is shown in Figure 6, with component values selected  
for an 4.5V undervoltage threshold, and a 5.5V  
overvoltage threshold. Choose different thresholds by  
changing the values of R1, R2, and R3. To prevent  
chatter at the output when the supply voltage is close  
to a threshold, hysteresis has been added using R4  
and R5. OUTA provides an active-low undervoltage  
indication, and OUTB gives an active-low overvoltage  
indication. ANDing the two outputs provides an active-  
high, power-good signal.  
6. Verify the threshold voltages with these formulas:  
V
rising:  
IN  
1
R1  
1
R2  
1
R3  
V
= V  
× R1 ×  
+
+
THR  
REF  
V
falling:  
IN  
R1 × V +  
(
THR  
)
V
= V  
THF  
R3  
The design procedure is as follows:  
1. Choose the required hysteresis level and calculate  
values for R4 and R5 according to the formulas in  
the Hysteresis (MAX921/MAX923) section. In this  
example, 5mV of hysteresis has been added at the  
comparator input (VH = VHB/2). This means that the  
hysteresis apparent at VIN will be larger because of  
the input resistor divider.  
Board Layout and Bypassing  
Power-supply bypass capacitors are not needed if the  
supply impedance is low, but 100nF bypass capacitors  
should be used when the supply impedance is high or  
when the supply leads are long. Minimize signal lead  
lengths to reduce stray capacitance between the input  
and output that might cause instability. Do not bypass  
the reference output.  
______________________________________________________________________________________ 11  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
2. Select R1. The leakage current into INB- is normally  
under 1nA, so the current through R1 should  
exceed 100nA for the thresholds to be accurate. R1  
V
V
= 5.5V  
= 4.5V  
V
OTH  
UTH  
IN  
values up to about 10MΩ can be used, but values in  
the 100kΩ to 1MΩ range are usually easier to deal  
with. In this example, choose R1 = 294kΩ.  
+5V  
V+  
R3  
INA+  
3. Calculate R2 + R3. The overvoltage threshold  
should be 5.5V when VIN is rising. The design  
equation is as follows:  
OUTA  
UNDERVOLTAGE  
POWER GOOD  
HYST  
REF  
V
OTH  
+ V  
H
R2 + R3 = R1 ×  
1  
10k  
R5  
V
R2  
REF  
5.5  
(1.182 + 0.005)  
= 294k ×  
1  
R4  
2.4M  
OUTB  
OVERVOLTAGE  
= 1.068MΩ  
INB-  
V-  
4. Calculate R2. The undervoltage threshold should  
be 4.5V when VIN is falling. The design equation is  
as follows:  
MAX923  
R1  
(V  
V )  
REF  
V
H
R2 = (R1 + R2 + R3) ×  
R1  
UTH  
(1.182 0.005)  
= (294k + 1.068M) ×  
= 62.2kΩ  
294k  
Figure 6. Window Detector  
4.5  
Choose R2 = 61.9kΩ (1ꢀ standard value).  
Bar-Graph Level Gauge  
5. Calculate R3.  
The high output source capability of the MAX921 series  
is useful for driving LEDs. An example of this is the  
simple four-stage level detector shown in Figure 7.  
R3 = (R2 + R3) R2  
= 1.068M 61.9k  
The full-scale threshold (all LEDs on) is given by VIN  
=
(R1 + R2)/R1 volts. The other thresholds are at 3/4 full  
scale, 1/2 full scale, and 1/4 full scale. The output  
resistors limit the current into the LEDs.  
= 1.006MΩ  
Choose R3 = 1MΩ (1ꢀ standard value)  
6. Verify the resistor values. The equations are as  
follows, evaluated for the above example.  
Level Shifter  
Figure 8 shows a circuit to shift from bipolar 5V inputs  
to TTL signals. The 10kΩ resistors protect the  
comparator inputs, and do not materially affect the  
operation of the circuit.  
Overvoltage threshold :  
(R1 + R2 + R3)  
V
= (V  
+ V ) ×  
OTH  
REF H  
R1  
= 5.474V.  
Undervoltage threshold :  
(R1 + R2 + R3)  
V
= (V  
V ) ×  
UTH  
REF H  
(R1 + R2)  
= 4.484V,  
R5  
R4  
where the hysteresis voltage V = V  
×
REF  
.
H
12 ______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
R2  
R1  
V
IN  
+5V  
V+  
+5V  
3
V+  
MAX924  
10k  
10k  
MAX924  
INA+  
1.182V  
8
5
REF  
V
INA  
OUTA  
0 FOR V < 0V  
INA  
V-  
9
2
1 FOR V > 0V  
INB  
INA-  
INB+  
INB-  
INA+  
182k  
250k  
250k  
OUTA  
OUTB  
OUTC  
OUTD  
330Ω  
330Ω  
330Ω  
330Ω  
1V  
4
INA-  
INB+  
INB-  
V
INB  
INC  
IND  
OUTB  
OUTC  
7
1
10k  
10k  
INC+  
INC-  
IND+  
IND-  
750mV  
6
V
V
INC+  
11  
16  
15  
500mV 10 INC-  
OUTD  
REF  
13  
IND+  
250k  
250k  
N.C.  
250mV 12 IND-  
V-  
GND  
GND  
14  
-5V  
Figure 7. Bar-Graph Level Gauge  
Figure 8. Level Shifter: 5V Input to CMOS Output  
______________________________________________________________________________________ 13  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
_________________Pin Configurations  
_Ordering Information (continued)  
PART  
TEMP RANGE  
-55°C to +125°C  
-55°C to +125°C  
0°C to +70°C  
PIN-PACKAGE  
TOP VIEW  
MAX921MSA/PR  
MAX921MSA/PR-T  
MAX922CPA  
MAX922CSA  
MAX922CUA  
MAX922C/D  
8 SO**  
1
2
3
4
8
7
6
5
8 SO**  
GND  
V-  
OUT  
V+  
8 Plastic DIP  
8 SO  
MAX921  
0°C to +70°C  
REF  
IN+  
IN-  
0°C to +70°C  
8 µMAX  
HYST  
0°C to +70°C  
Dice*  
DIP/SO/μMAX  
MAX922EPA  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
MAX922ESA  
MAX922MJA  
MAX922MSA/PR  
MAX922MSA/PR-T  
MAX923CPA  
MAX923CSA  
MAX923CUA  
MAX923C/D  
8 CERDIP**  
8 SO**  
1
2
3
4
8
7
6
5
OUTA  
V-  
OUTB  
V+  
8 SO**  
MAX922  
INB+  
INB-  
INA+  
INA-  
8 Plastic DIP  
8 SO  
0°C to +70°C  
0°C to +70°C  
8 µMAX  
DIP/SO/μMAX  
0°C to +70°C  
Dice*  
MAX923EPA  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
MAX923ESA  
1
2
3
4
8
7
6
5
OUTA  
V-  
OUTB  
V+  
MAX923MJA  
MAX923MSA/PR  
MAX923MSA/PR-T  
MAX924CPE  
MAX924CSE  
8 CERDIP**  
8 SO**  
MAX923  
REF  
INA+  
INB-  
8 SO**  
HYST  
16 Plastic DIP  
16 Narrow SO  
Dice*  
0°C to +70°C  
DIP/SO/μMAX  
MAX924C/D  
0°C to +70°C  
MAX924EPE  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
16 Plastic DIP  
16 Narrow SO  
16 CERDIP**  
16 Narrow SO**  
16 Narrow SO**  
OUTB  
OUTA  
V+  
OUTC  
OUTD  
GND  
IND+  
IND-  
INC+  
INC-  
V-  
MAX924ESE  
1
16  
15  
14  
13  
12  
11  
10  
9
MAX924MJE  
2
3
4
5
6
7
8
MAX924MSE/PR  
MAX924MSE/PR-T  
INA-  
MAX924  
*Dice are tested at T = +25°C, DC parameters only.  
A
**Contact factory for availability.  
INA+  
INB-  
INB+  
REF  
DIP/Narrow SO  
14 ______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
__________________________________________________________Chip Topographies  
MAX921/MAX922/MAX923  
MAX924  
OUTB OUTC  
OUTA  
OUTD  
10  
V+  
1
9
8
2
3
GND  
0.075"  
(1.91mm)  
4
5
7
6
0.108"  
(2.74mm)  
IND+  
INA-  
INA+  
IND-  
INC+  
0.059"  
INB-  
(1.50mm)  
INB+ REF  
V- INC-  
DIE PAD  
MAX921  
GND  
V-  
MAX922  
OUTA  
V-  
MAX923  
OUTA  
V-  
0.069"  
(1.75mm)  
1
2
3
V-  
V-  
V-  
4
IN+  
IN-  
INA+  
INA-  
INB-  
INB+  
V+  
INA+  
INB-  
HYST  
REF  
TRANSISTOR COUNT: 267  
SUBSTRATE CONNECTED TO V+  
5
6
HYST  
REF  
V+  
7
8
V+  
9
V+  
V+  
V+  
10  
OUT  
OUTB  
OUTB  
TRANSISTOR COUNT: 164  
SUBSTRATE CONNECTED TO V+  
______________________________________________________________________________________ 15  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.  
PACKAGE TYPE  
8 Plastic DIP  
16 Plastic DIP  
8 SO  
PACKAGE CODE  
DOCUMENT NO.  
21-0043  
P8-1  
P16-1  
S8-2  
21-0043  
21-0041  
16 SO  
S16-3  
U8-1  
J8-1  
21-0041  
8 µMAX  
21-0036  
8 CERDIP  
16 CERDIP  
21-0045  
J16-3  
21-0045  
16 ______________________________________________________________________________________  
Ultra Low-Power,  
Single/Dual-Supply Comparators  
Revision History  
REVISION  
NUMꢁER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
4
5
6
8/08  
8/08  
4/09  
Updated TOCs 5 and 10  
5
Adding information for rugged plastic product  
1, 14  
Updated Ordering Information  
1, 14, 16  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY