MAX5864ETM [ROCHESTER]

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, QCC48, 7 X 7 MM, 0.80 MM HEIGHT, TQFN-48;
MAX5864ETM
型号: MAX5864ETM
厂家: Rochester Electronics    Rochester Electronics
描述:

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, QCC48, 7 X 7 MM, 0.80 MM HEIGHT, TQFN-48

蜂窝 电信 电信集成电路
文件: 总27页 (文件大小:2762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2915; Rev 1; 10/03  
Ultra-Low-Power, High-Dynamic-  
Performance, 22Msps Analog Front End  
General Description  
Features  
o Integrated Dual 8-Bit ADCs and Dual 10-Bit DACs  
o Ultra-Low Power  
The MAX5864 ultra-low-power, highly integrated analog  
front end is ideal for portable communication equipment  
such as handsets, PDAs, WLAN, and 3G wireless termi-  
nals. The MAX5864 integrates dual 8-bit receive ADCs  
and dual 10-bit transmit DACs while providing the high-  
est dynamic performance at ultra-low power. The ADCs’  
analog I-Q input amplifiers are fully differential and  
42mW at f  
34mW at f  
= 22MHz (Transceiver Mode)  
= 15.36MHz (Transceiver Mode)  
CLK  
CLK  
Low-Current Idle and Shutdown Modes  
o Excellent Dynamic Performance  
accept 1V  
full-scale signals. Typical I-Q channel  
P-P  
48.5dB SINAD at f = 5.5MHz (ADC)  
IN  
phase matching is 0.1° and amplitude matching is  
71.7dB SFDR at f  
= 2.2MHz (DAC)  
OUT  
0.03dB. The ADCs feature 48.5dB SINAD and 69dBc  
spurious-free dynamic range (SFDR) at f = 5.5MHz and  
IN  
o Excellent Gain/Phase Match  
f
= 22Msps. The DACs’ analog I-Q outputs are fully  
CLK  
0.1° Phase, 0.03dB Gain at f = 5.5MHz (ADC)  
IN  
differential with 400mV full-scale output, and 1.4V com-  
mon-mode level. Typical I-Q channel phase match is  
0.15° and amplitude match is 0.05dB. The DACs also  
feature dual 10-bit resolution with 71.7dBc SFDR, and  
o Internal/External Reference Option  
o +1.8V to +3.3V Digital Output Level (TTL/CMOS  
Compatible)  
57dB SNR at f  
= 2.2MHz and f  
= 22MHz.  
OUT  
CLK  
o Multiplexed Parallel Digital Input/Output for  
The ADCs and DACs operate simultaneously or indepen-  
dently for frequency-division duplex (FDD) and time-divi-  
sion duplex (TDD) modes. A 3-wire serial interface  
controls power-down and transceiver modes of opera-  
ADCs/DACs  
o Miniature 48-Pin Thin QFN Package (7mm 7mm)  
o Evaluation Kit Available (Order MAX5865EVKIT)  
tion. The typical operating power is 42mW at f  
=
CLK  
22Msps with the ADCs and DACs operating simultane-  
ously in transceiver mode. The MAX5864 features an  
internal 1.024V voltage reference that is stable over the  
entire operating power-supply range and temperature  
range. The MAX5864 operates on a +2.7V to +3.3V ana-  
log power supply and a +1.8V to +3.3V digital I/O power  
supply for logic compatibility. The quiescent current is  
5.6mA in idle mode and 1µA in shutdown mode. The  
MAX5864 is specified for the extended (-40°C to +85°C)  
temperature range and is available in a 48-pin thin QFN  
package.  
Functional Diagram  
IA+  
ADC  
IA-  
ADC  
OUTPUT  
MUX  
DA0–DA7  
CLK  
QA+  
QA-  
ADC  
Applications  
Narrowband/Wideband CDMA Handsets  
and PDAs  
ID+  
ID-  
DAC  
DAC  
Fixed/Mobile Broadband Wireless Modems  
3G Wireless Terminals  
DAC  
INPUT  
MUX  
DD0–DD9  
QD+  
QD-  
Ordering Information  
REFP  
COM  
REFN  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
SERIAL  
INTERFACE  
AND SYSTEM  
CONTROL  
48 Thin QFN-EP*  
(7mm x 7mm)  
DIN  
SCLK  
CS  
MAX5864ETM  
MAX5864E/D  
REF AND  
BIAS  
REFIN  
Dice**  
*EP = Exposed paddle.  
**Contact factory for dice specifications.  
MAX5864  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ABSOLUTE MAXIMUM RATINGS  
V
to GND, OV  
to OGND................................-0.3V to +3.3V  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
GND to OGND.......................................................-0.3V to +0.3V  
IA+, IA-, QA+, QA-, ID+, ID-, QD+, QD-, REFP, REFN,  
REFIN, COM to GND..............................-0.3V to (V  
DD0DD9, SCLK, DIN, CS, CLK,  
48-Pin Thin QFN (derate 26.3mW/°C above +70°C) ..........2.1W  
Thermal Resistance θ .................................................+38°C/W  
JA  
+ 0.3V)  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DA0DA7 to OGND .............................-0.3V to (OV  
+ 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz, ADC input amplitude = -0.5dBFS,  
DD  
DD  
L
CLK  
DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
= C  
= 0.33µF, Xcvr mode, unless  
REFP  
REFN  
COM  
otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
POWER REQUIREMENTS  
Analog Supply Voltage  
Output Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
2.7  
1.8  
3.0  
3.3  
V
V
DD  
OV  
V
DD  
DD  
ADC operating mode, f = 5.5MHz, f  
=
IN  
CLK  
14  
16.5  
22MHz, DAC operating mode, f  
= 2.2MHz  
OUT  
ADC operating mode, f = 5.5MHz, f  
IN  
=
CLK  
=
15.36MHz, DAC operating mode, f  
11.4  
OUT  
2.2MHz  
ADC operating mode (Rx), f = 5.5MHz,  
IN  
f
= 15.36MHz, DAC off, DAC digital  
8.25  
8
CLK  
mA  
inputs at zero or DV  
DD  
V
Supply Current  
DD  
DAC operating mode (Tx), f  
f
= 2.2MHz,  
OUT  
= 15.36MHz, ADC off  
CLK  
Standby mode, DAC digital inputs and CLK  
at zero or OV  
2.0  
6.7  
DD  
Idle mode, DAC digital inputs at zero or  
OV , f = 22MHz  
DD CLK  
Shutdown mode, digital inputs and CLK at  
zero or OV , CS = OV  
1
2.3  
20.6  
1
µA  
DD  
DD  
ADC operating mode, f = 5.5MHz, f  
=
IN  
CLK  
mA  
22MHz, DAC operating mode, f  
= 2.2MHz  
OUT  
Idle mode, DAC digital inputs at zero or  
OV = 22MHz  
OV  
Supply Current  
DD  
f
DD, CLK  
µA  
Shutdown mode, DAC digital inputs and  
CLK at zero or OV , CS = OV  
DD  
DD  
2
_______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz, ADC input amplitude = -0.5dBFS,  
DD  
DD  
L
CLK  
DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
= C  
= 0.33µF, Xcvr mode, unless  
REFP  
REFN  
COM  
otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
ADC DC ACCURACY  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
8
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.15  
0.15  
0.24  
0.77  
0.03  
3
DNL  
No missing codes over temperature  
Residual DC offset error  
LSB  
5
5
%FS  
%FS  
dB  
Gain Error  
Includes reference error  
DC Gain Matching  
Offset Matching  
0.25  
LSB  
Gain Temperature Coefficient  
59  
ppm/°C  
Offset error (V  
5%)  
0.2  
DD  
Power-Supply Rejection  
PSRR  
LSB  
Gain error (V  
5%)  
0.07  
DD  
ADC ANALOG INPUT  
Input Differential Range  
V
Differential or single-ended inputs  
Switched capacitor load  
0.512  
V
V
ID  
Input Common-Mode Voltage  
Range  
V
/ 2  
DD  
R
C
245  
5
kΩ  
IN  
Input Impedance  
pF  
IN  
ADC CONVERSION RATE  
Maximum Clock Frequency  
f
(Note 2)  
22  
MHz  
CLK  
Channel I  
Channel Q  
5
Clock  
cycles  
Data Latency  
5.5  
ADC DYNAMIC CHARACTERISTICS (Note 3)  
f
f
f
f
f
f
f
f
= 5.5MHz  
= 11MHz  
= 5.5MHz  
= 11MHz  
= 5.5MHz  
= 11MHz  
= 5.5MHz  
= 11MHz  
47  
46.5  
58  
48.6  
48.6  
48.5  
48.5  
69  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Signal-to-Noise Ratio  
SNR  
SINAD  
SFDR  
dB  
dB  
Signal-to-Noise and Distortion  
Ratio  
Spurious-Free Dynamic Range  
dBc  
71.5  
-70.3  
-75.5  
-64  
Third-Harmonic Distortion  
Intermodulation Distortion  
HD3  
IMD  
IM3  
dBc  
dBc  
dBc  
f = 2MHz, -7dBFS; f = 2.01MHz, -7dBFS  
1
2
Third-Order Intermodulation  
Distortion  
f = 2MHz, -7dBFS; f = 2.01MHz, -7dBFS  
1
-67  
2
f
f
= 5.5MHz  
= 11MHz  
-68.2  
-68  
-57  
IN  
IN  
Total Harmonic Distortion  
THD  
dBc  
_______________________________________________________________________________________  
3
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz, ADC input amplitude = -0.5dBFS,  
DD  
DD  
L
CLK  
DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
= C  
= 0.33µF, Xcvr mode, unless  
REFP  
REFN  
COM  
otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
Small-Signal Bandwidth  
Large-Signal Bandwidth  
Aperture Delay  
SYMBOL  
SSBW  
CONDITIONS  
MIN  
TYP  
440  
440  
3.3  
2.7  
2
MAX  
UNITS  
MHz  
MHz  
ns  
A
A
= -20dBFS  
= -0.5dBFS  
IN  
IN  
FBW  
Aperture Jitter  
ps  
RMS  
Overdrive Recovery Time  
1.5 × full-scale input  
ns  
ADC INTERCHANNEL CHARACTERISTICS  
f
= 5.5MHz at -0.5dBFS, f  
= 0.3MHz at  
INX  
INY  
Crosstalk Rejection  
-75  
dB  
-0.5dBFS (Note 5)  
Amplitude Matching  
Phase Matching  
f
f
= 5.5MHz at -0.5dBFS (Note 6)  
= 5.5MHz at -0.5dBFS (Note 6)  
0.03  
0.1  
dB  
IN  
IN  
Degrees  
DAC DC ACCURACY  
Resolution  
N
10  
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Zero-Scale Error  
INL  
DNL  
1
0.5  
3
Guaranteed monotonic  
Residual DC offset  
Full-Scale Error  
Include Reference Error  
-35  
+35  
22  
DAC DYNAMIC PERFORMANCE  
DAC Conversion Rate  
Noise over Nyquist  
(Note 2)  
Msps  
N
N
f
= 2.2MHz, f  
= 22MHz  
-128.4  
-131.5  
dBc/Hz  
D
OUT  
CLK  
CLK  
Output-of-Band Noise Power  
Density  
f
= 1.2MHz, f  
= 15.36MHz, offset =  
OUT  
dBc/Hz  
O
10MHz  
WCDMA at offset = 5MHz, f  
15.36Msps  
=
CLK  
Adjacent Channel Power Ratio  
Glitch Impulse  
ACPR  
57  
dB  
pVs  
dBc  
10  
f
f
= 22MHz  
f
f
= 2.2MHz  
= 200kHz  
60  
71.7  
72.5  
CLK  
CLK  
OUT  
OUT  
Spurious-Free Dynamic Range  
SFDR  
THD  
SNR  
= 15.36MHz  
Total Harmonic Distortion  
(to Nyquist)  
f
f
= 22MHz, f  
= 2.2MHz  
= 2.2MHz  
-70  
57  
-59  
dB  
dB  
CLK  
CLK  
OUT  
OUT  
Signal-to-Noise Ratio  
(to Nyquist)  
= 22MHz, f  
DAC INTERCHANNEL CHARACTERISTICS  
DAC-to-DAC Output Isolation  
f
f
= 2.2MHz, f  
= 2.0MHz  
OUTX, Y  
80  
dB  
dB  
OUTX, Y  
Gain Mismatch Between DAC  
Outputs  
= 2.2MHz, f  
= 22MHz  
= 22MHz  
0.05  
OUT  
OUT  
CLK  
Phase Mismatch Between DAC  
Outputs  
f
= 2.2MHz, f  
0.15  
Degrees  
CLK  
4
_______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz, ADC input amplitude = -0.5dBFS,  
DD  
DD  
L
CLK  
DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
= C  
= 0.33µF, Xcvr mode, unless  
REFP  
REFN  
COM  
otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
DAC ANALOG OUTPUT  
Full-Scale Output Voltage  
Output Common-Mode Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
400  
mV  
V
FS  
1.29  
1. 5  
ADC-DAC INTERCHANNEL CHARACTERISTICS  
ADC f = f  
= 5.5MHz, DAC f  
=
INI  
INQ  
OUTI  
ADC-DAC Isolation  
75  
dB  
f
= 2.2MHz, f  
= 22MHz  
OUTQ  
CLK  
ADC-DAC TIMING CHARACTERISTICS  
CLK Rise to I-ADC Channel-I  
Output Data Valid  
t
Figure 3 (Note 4)  
Figure 3 (Note 4)  
Figure 4 (Note 4)  
Figure 4 (Note 4)  
7.4  
6.9  
9
9
ns  
ns  
ns  
ns  
DOI  
CLK Fall to Q-ADC Channel-Q  
Output Data Valid  
t
DOQ  
I-DAC Data to CLK Fall Setup  
Time  
t
10  
10  
DSI  
Q-DAC Data to CLK Rise Setup  
Time  
t
DSQ  
CLK Fall to I-DAC Data Hold Time  
CLK Rise to Q-DAC Data Hold Time  
Clock Duty Cycle  
t
Figure 4 (Note 4)  
Figure 4 (Note 4)  
0
0
ns  
ns  
%
DHI  
t
DHQ  
50  
15  
CLK Duty-Cycle Variation  
Digital Output Rise/Fall Time  
%
20% to 80%  
2.6  
ns  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Falling Edge of CS to Rising Edge  
of First SCLK Time  
t
Figure 5 (Note 4)  
10  
ns  
CSS  
DIN to SCLK Setup Time  
DIN to SCLK Hold Time  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Period  
t
Figure 5 (Note 4)  
Figure 5 (Note 4)  
Figure 5 (Note 4)  
Figure 5 (Note 4)  
Figure 5 (Note 4)  
Figure 5 (Note 4)  
Figure 5 (Note 4)  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
CH  
t
t
25  
25  
50  
0
t
t
t
CL  
CP  
CS  
SCLK to CS Setup Time  
CS High Pulse Width  
t
80  
CSW  
MODE RECOVERY TIMING CHARACTERISTICS  
From shutdown to Rx mode, Figure 6, ADC  
settles to within 1dB  
20  
40  
Shutdown Wake-Up Time  
t
µs  
WAKE,SD  
From shutdown to Tx mode, Figure 6, DAC  
settles to within 1 LSB error  
_______________________________________________________________________________________  
5
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz, ADC input amplitude = -0.5dBFS,  
DD  
DD  
L
CLK  
DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
= C  
= 0.33µF, Xcvr mode, unless  
REFP  
REFN  
COM  
otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
From idle to Rx mode with CLK present  
during idle, Figure 6, ADC settles to within  
1dB SINAD  
10  
Idle Wake-Up Time (with CLK)  
t
µs  
WAKE,ST  
From idle to Tx mode with CLK present  
during idle, Figure 6, DAC settles to 10 LSB  
error  
10  
From standby to Rx mode, Figure 6, ADC  
settles to within 1dB SINAD  
10  
40  
Standby Wake-Up Time  
t
µs  
WAKE,St1  
From standby to Tx mode, Figure 6, DAC  
settles to 10 LSB error  
Enable Time from Xcvr or Tx to Rx  
Enable Time from Xcvr or Rx to Tx  
t
ADC settles to within 1dB SINAD  
DAC settles to 1 LSB error  
10  
10  
µs  
µs  
ENABLE, Rx  
t
ENABLE, Tx  
INTERNAL REFERENCE (REFIN = V . V  
, V  
, and V  
are generated internally)  
DD REFP REFN  
COM  
COM  
Positive Reference  
Negative Reference  
V
V
- V  
0.256  
V
V
REFP  
REFN  
- V  
-0.256  
COM  
V
/ 2  
V
/ 2  
DD  
DD  
Common-Mode Output Voltage  
V
V
/ 2  
DD  
V
V
COM  
- 0.15  
+ 0.15  
Differential Reference Output  
V
V
- V  
REFN  
+0.49 +0.512 +0.534  
REF  
REFP  
Differential Reference  
Temperature Coefficient  
REFTC  
30  
ppm/°C  
Maximum REFP/REFN/COM  
Source Current  
I
2
2
mA  
mA  
SOURCE  
Maximum REFP/REFN/COM  
Sink Current  
I
SINK  
BUFFERED EXTERNAL REFERENCE (REFIN = 1.024V. V  
, V  
, and V  
are generated internally)  
COM  
REFP REFN  
Reference Input  
V
1.024  
0.512  
V
V
V
REFIN  
Differential Reference Output  
Common-Mode Output Voltage  
V
V
- V  
REFP REFN  
DIFF  
V
V
/ 2  
COM  
DD  
Maximum REFP/REFN/COM  
Source Current  
I
2
mA  
mA  
SOURCE  
Maximum REFP/REFN/COM  
Sink Current  
I
2
SINK  
REFIN Input Resistance  
REFIN Input Current  
>500  
-0.7  
kΩ  
µA  
DIGITAL INPUTS (CLK, SCLK, DIN, CS, DD0–DD9)  
0.7 x  
OV  
Input High Threshold DD0DD9, CLK, SCLK, DIN, CS  
V
V
INH  
DD  
6
_______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz, ADC input amplitude = -0.5dBFS,  
DD  
DD  
L
CLK  
DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
= C  
= 0.33µF, Xcvr mode, unless  
REFP  
REFN  
COM  
otherwise noted. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.3 x  
Input Low Threshold  
V
DD0DD9, CLK, SCLK, DIN, CS  
V
INL  
OV  
DD  
DD0DD9, CLK, SCLK, DIN, CS = OGND or  
OV  
Input Leakage  
DI  
5
µA  
pF  
IN  
DD  
Input Capacitance  
DC  
5
IN  
DIGITAL OUTPUTS (DA0DA7)  
0.2 x  
OV  
Output Voltage Low  
Output Voltage High  
V
I
I
= 200µA  
SINK  
V
V
OL  
DD  
0.8 x  
OV  
V
= 200µA  
SOURCE  
OH  
DD  
Tri-State Leakage Current  
I
5
µA  
pF  
LEAK  
Tri-State Output Capacitance  
C
5
OUT  
Note 1: Specifications from T = +25°C to +85°C are guaranteed by product tests. Specifications from T = +25°C to -40°C are  
A
A
guaranteed by design and characterization.  
Note 2: The minimum clock frequency for the MAX5864 is 7.5MHz.  
Note 3: SNR, SINAD, SFDR, HD3, and THD are based on a differential analog input voltage of -0.5dBFS referenced to the amplitude  
of the digital outputs. SINAD and THD are calculated using HD2 through HD6.  
Note 4: Guaranteed by design and characterization.  
Note 5: Crosstalk rejection is measured by applying a high-frequency test tone to one channel and a low-frequency tone to the sec-  
ond channel. FFTs are performed on each channel. The parameter is specified as the power ratio of the first and second  
channel FFT test tone bins.  
Note 6: Amplitude/phase matching is measured by applying the same signal to each channel, and comparing the magnitude and  
phase of the fundamental bin on the calculated FFT.  
Typical Operating Characteristics  
(V  
= DV  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz 50% duty cycle, ADC  
DD  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
=
REFP  
REFN  
C
COM  
= 0.33µF, Xcvr mode, T = +25°C, unless otherwise noted.)  
A
ADC CHANNEL-IA FFT PLOT  
ADC CHANNEL-QA FFT PLOT  
ADC CHANNEL-IA TWO-TONE FFT PLOT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
f
f
f
= 22MHz  
f
f
f
= 22MHz  
f
1
= 22MHz  
CLK  
IA  
QA  
CLK  
IA  
QA  
CLK  
f = 1.8MHz  
QA  
IA  
QA  
7
= 5.50885MHz  
= 5.50885MHz  
-20  
= 7.9787MHz  
= 7.9787MHz  
f = 2.2MHz  
2
F
F
2
1
A
= A = -0.5dBFS  
A
= A = -0.5dBFS  
A
-7dBFS PER TONE  
IA  
QA  
IA  
QA  
-30  
IA =  
8192-POINT  
DATA RECORD  
8192-POINT  
DATA RECORD  
8192-POINT  
-40  
DATA RECORD  
-50  
-60  
HD2  
HD3  
HD3  
HD2  
IA  
-70  
-80  
-90  
-100  
-110  
-120  
0
1
2
3
4
5
6
8
9
10 11  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
6
7
8
9 10 11  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Typical Operating Characteristics (continued)  
(V  
= DV  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz 50% duty cycle, ADC  
DD  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, Xcvr mode, T = +25°C, unless otherwise noted.)  
A
ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. ANALOG INPUT FREQUENCY  
ADC SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
ADC CHANNEL-QA TWO-TONE FFT PLOT  
50  
49  
48  
47  
46  
45  
44  
43  
42  
0
50  
49  
48  
47  
46  
45  
44  
43  
42  
f
1
= 22MHz  
CLK  
f = 1.8MHz  
IA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
IA  
f = 2.2MHz  
2
F
F
2
1
A
-7dBFS PER TONE  
IA =  
8192-POINT  
QA  
DATA RECORD  
QA  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
7
8
9 10 11  
0
25  
50  
75  
100  
125  
ANALOG INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
ADC TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
SINGLE ENDED  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ADC SIGNAL-TO-NOISE-RATIO AND  
DISTORTION vs. ANALOG INPUT POWER  
ADC TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT POWER  
ADC SIGNAL-TO-NOISE-RATIO  
vs. ANALOG INPUT POWER  
60  
50  
40  
30  
20  
10  
0
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
60  
50  
40  
30  
20  
10  
0
f
= 5.50885  
f = 5.50885  
IN  
f
= 5.50885  
IN  
IN  
QA  
QA  
IA  
IA  
-24  
-20  
-16  
-12  
-8  
-4  
0
-24  
-20  
-16  
-12  
-8  
-4  
0
-24  
-20  
-16  
-12  
-8  
-4  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
8
_______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Typical Operating Characteristics (continued)  
(V  
= DV  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz 50% duty cycle, ADC  
DD  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, Xcvr mode, T = +25°C, unless otherwise noted.)  
A
ADC SPURIOUS -FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER  
ADC SIGNAL-TO-NOISE RATIO  
ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. SAMPLING RATE  
vs. SAMPLING RATE  
80  
50  
49  
48  
47  
46  
45  
50  
49  
48  
47  
46  
45  
f
= 5.50885  
IN  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
QA  
IA  
QA  
IA  
f
= 5.50885  
19  
f
IN  
= 5.50885  
19  
IN  
-24  
-20  
-16  
-12  
-8  
-4  
0
7
10  
13  
16  
22  
7
10  
13  
16  
22  
ANALOG INPUT POWER (dBFS)  
SAMPLING RATE (MHz)  
SAMPLING RATE (MHz)  
ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. SAMPLING RATE  
ADC SIGNAL-TO-NOISE RATIO  
vs. CLOCK DUTY CYCLE  
ADC TOTAL HARMONIC DISTORTION  
vs. SAMPLING RATE  
80  
75  
70  
65  
65  
55  
50  
50  
49  
48  
47  
46  
45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
f = 5.50885  
IN  
f
= 5.50885  
IA  
f
= 5.50885  
IN  
IN  
QA  
7
10  
13  
16  
19  
22  
35  
40  
45  
50  
55  
60  
65  
7
10  
13  
16  
19  
22  
SAMPLING RATE (MHz)  
CLOCK DUTY CYCLE (%)  
SAMPLING RATE (MHz)  
ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. CLOCK DUTY CYCLE  
ADC TOTAL HARMONIC DISTORTION  
vs. CLOCK DUTY CYCLE  
ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK DUTY CYCLE  
50  
49  
48  
47  
46  
45  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
80  
75  
70  
65  
60  
55  
50  
f
= 5.50885  
IN  
IA  
QA  
f
= 5.050885  
60  
f
= 5.050885  
60 65  
IN  
IN  
35  
40  
45  
50  
55  
60  
65  
35  
40  
45  
50  
55  
65  
35  
40  
45  
50  
55  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
_______________________________________________________________________________________  
9
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Typical Operating Characteristics (continued)  
(V  
= DV  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz 50% duty cycle, ADC  
DD  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, Xcvr mode, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. SAMPLING RATE  
ADC OFFSET ERROR vs. TEMPERATURE  
ADC GAIN ERROR vs. TEMPERATURE  
12  
10  
8
0
2.0  
1.5  
1.0  
0.5  
0
Rx MODE ONLY  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
QA  
I
VDD  
6
IA  
4
I
OVDD  
2
-0.5  
-1.0  
0
7
10  
13  
16  
19  
22  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SAMPLING RATE (MHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DAC SPURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT POWER  
DAC SPRURIOUS-FREE DYNAMIC RANGE  
vs. OUTPUT FREQUENCY  
DAC SPRURIOUS-FREE DYNAMIC RANGE  
vs. SAMPLING RATE  
90  
85  
80  
75  
70  
65  
60  
80  
70  
60  
50  
40  
30  
20  
90  
85  
80  
75  
70  
65  
60  
f
= 2MHz  
OUT  
f
= f /10  
OUT CLK  
0
2
4
6
8
10  
-30  
-25  
-20  
-15  
-10  
-5  
0
7
10  
13  
16  
19  
22  
FREQUENCY (MHz)  
OUTPUT POWER (dBFS)  
SAMPLING RATE (MHz)  
DAC CHANNEL-ID TWO TONE  
SPECTRAL PLOT  
DAC CHANNEL-ID SPECTRAL PLOT  
DAC CHANNEL-QD SPECTRAL PLOT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f = 2.0MHz, f = 2.2MHz, -7dBFS  
1
2
f
ID  
= 2.2MHz  
f
= 2.2MHz  
QD  
f
1
f
2
1
3
5
7
9
11  
1
3
5
7
9
11  
1
3
5
7
9
11  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
10 ______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Typical Operating Characteristics (continued)  
(V  
= DV  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 22MHz 50% duty cycle, ADC  
DD  
DD  
DD  
L
CLK  
input amplitude = -0.5dBFS, DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, Xcvr mode, T = +25°C, unless otherwise noted.)  
A
DAC CHANNEL-QD TWO-TONE  
SUPPLY CURRENT vs. SAMPLING RATE  
SPECTRAL PLOT  
DAC ACPR SPECTRAL PLOT  
0
16  
14  
12  
10  
8
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f = 2.0MHz, f = 2.2MHz, -7dBFS  
1
2
Xcrv MODE  
f
= 15.36Msps  
CLK  
WCDMA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
I
VDD  
f
1
f
2
6
4
-100  
-110  
-120  
I
OVDD  
2
0
1
3
5
7
9
11  
7
10  
13  
16  
19  
22  
CENTER = 4MHz, SPAN = 7MHz  
FREQUENCY (MHz)  
SAMPLING RATE (MHz)  
ADC DIFFERENTIAL NONLINEARITY  
ADC INTEGRAL NONLINEARITY  
DAC INTEGRAL NONLINEARITY  
0.5  
0.4  
0.5  
0.4  
1.0  
0.8  
0.3  
0.3  
0.6  
0.2  
0.2  
0.4  
0.1  
0.1  
0.2  
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
32 64 96 128 160 192 224 256  
DIGITAL OUTPUT CODE  
0
32 64 96 128 160 192 224 256  
DIGITAL OUTPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
REFERENCE OUTPUT VOLTAGE  
vs.TEMPERATURE  
DAC DIFFERENTIAL NONLINEARITY  
0.5  
0.4  
0.520  
0.515  
0.510  
0.505  
0.500  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Pin Description  
PIN  
NAME  
FUNCTION  
1
REFP  
Upper Reference Voltage. Bypass with a 0.33µF capacitor to GND as close to REFP as possible.  
Analog Supply Voltage. Bypass V  
0.1µF capacitor.  
to GND with a combination of a 2.2µF capacitor in parallel with a  
DD  
2, 8, 43  
V
DD  
3
4
IA+  
IA-  
Channel IA Positive Analog Input. For single-ended operation, connect signal source to IA+.  
Channel IA Negative Analog Input. For single-ended operation, connect IA- to COM.  
5, 7, 12, 37,  
42  
GND  
Analog Ground. Connect all pins to GND ground plane.  
6
CLK  
QA-  
Conversion Clock Input. Clock signal for both ADCs and DACs.  
9
10  
Channel QA Negative Analog Input. For single-ended operation, connect QA- to COM.  
Channel QA Positive Analog Input. For single-ended operation, connect signal source to QA+.  
QA+  
11, 33, 39  
V
Analog Supply Voltage. Connect to V  
power plane as close to the device as possible.  
DD  
DD  
ADC Tri-State Digital Output Bits. DA7 is the most significant bit (MSB), and DA0 is the least  
significant bit (LSB).  
1316, 1922  
DA0DA7  
17  
18  
OGND  
Output Driver Ground  
Output Driver Power Supply. Supply range from +1.8V to V to accommodate most logic levels.  
DD  
OV  
DD  
Bypass OV  
to OGND with a combination of a 2.2µF capacitor in parallel with a 0.1µF capacitor.  
DD  
2332  
34  
DD0DD9 DAC Digital Input Bits. DD9 is the MSB, and DD0 is the LSB.  
DIN  
SCLK  
CS  
3-Wire Serial Interface Data Input. Data is latched on the rising edge of the SCLK.  
3-Wire Serial Interface Clock Input  
35  
36  
3-Wire Serial Interface Chip Select Input. Apply logic low enables the serial interface.  
No Connection  
38  
N.C.  
40, 41  
44, 45  
46  
QD+, QD- DAC Channel-QD Differential Voltage Output  
ID-, ID+  
REFIN  
COM  
DAC Channel-ID Differential Voltage Output  
Reference Input. Connect to V for internal reference.  
DD  
47  
Common-Mode Voltage I/O. Bypass COM to GND with a 0.33µF capacitor.  
Negative Reference I/O. Conversion range is (V  
capacitor.  
- V  
). Bypass REFN to GND with a 0.33µF  
REFP  
REFN  
48  
REFN  
EP  
Exposed Paddle. Exposed paddle is internally connected to GND. Connect EP to the GND plane.  
12 ______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
The MAX5864 can operate in FDD or TDD applications  
Detailed Description  
by configuring the device for transmit, receive, or trans-  
The MAX5864 integrates dual 8-bit receive ADCs and  
ceiver modes through a 3-wire serial interface. In TDD  
mode, the digital bus for receive ADC and transmit  
DAC can be shared to reduce the digital I/O to a single  
10-bit parallel multiplexed bus. In FDD mode, the  
MAX5864 digital I/O can be configured for an 18-bit,  
parallel multiplexed bus to match the dual 8-bit ADC  
and dual 10-bit DAC.  
dual 10-bit transmit DACs while providing ultra-low  
power and highest dynamic performance at a conver-  
sion rate of 22Msps. The ADCsanalog input amplifiers  
are fully differential and accept 1V  
full-scale signals.  
P-P  
The DACsanalog outputs are fully differential with  
400mV full-scale output range at 1.4V common mode.  
The MAX5864 includes a 3-wire serial interface to con-  
trol operating modes and power management. The ser-  
ial interface is SPIand MICROWIREcompatible.  
The MAX5864 serial interface selects shutdown, idle,  
standby, transmit, receive, and transceiver modes.  
The MAX5864 features an internal precision 1.024V  
bandgap reference is stable over the entire power-supply  
and temperature ranges.  
INTERNAL  
COM  
S5a  
BIAS  
S2a  
C1a  
S3a  
S4a  
S4b  
IA+  
IA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
QA+  
QA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
MAX5864  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 1. MAX5864 ADC Internal T/H Circuits  
SPI is a trademark of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
______________________________________________________________________________________ 13  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
The amplifiers charge capacitors C1a and C1b to the  
Dual 8-Bit ADC  
The ADC uses a seven-stage, fully differential,  
pipelined architecture that allows for high-speed con-  
version while minimizing power consumption. Samples  
taken at the inputs move progressively through the  
pipeline stages every half-clock cycle. Including the  
delay through the output latch, the total clock-cycle  
latency is 5 clock cycles for channel IA and 5.5 clock  
cycles for channel QA. The ADCs full-scale analog  
same values originally held on C2a and C2b. These val-  
ues are then presented to the first-stage quantizers and  
isolate the pipelines from the fast-changing inputs. The  
wide input bandwidth T/H amplifiers allow the ADC to  
track and sample/hold analog inputs of high frequen-  
cies (> Nyquist). Both ADC inputs (IA+, QA+, IA-, and  
QA-) can be driven either differentially or single ended.  
Match the impedance of IA+ and IA-, as well as QA+  
and QA-, and set the common-mode voltage to mid-  
input range is  
V
with a common-mode input range  
is the difference between V  
REF  
supply (V /2) for optimum performance.  
DD  
of V /2 0.2V. V  
DD  
REF  
REFP  
and V  
. See the Reference Configurations section  
REFN  
ADC Digital Output Data (DA0–DA7)  
for details.  
DA0DA7 are the ADCsdigital logic outputs. The logic  
level is set by OV  
from 1.8V to V . The digital out-  
DD  
Input Track-and-Hold (T/H) Circuits  
DD  
put coding is offset binary (Table 1, Figure 2). The  
capacitive load on digital outputs DA0DA7 should be  
kept as low as possible (<15pF) to avoid large digital  
currents feeding back into the analog portion of the  
MAX5864 and degrading its dynamic performance.  
Buffers on the digital outputs isolate them from heavy  
capacitive loads. Adding 100resistors in series with  
the digital outputs close to the MAX5864 helps improve  
ADC performance. Refer to the MAX5865 EV kit  
schematic for an example of the digital outputs driving  
a digital buffer through 100series resistors.  
Figure 1 displays a simplified functional diagram of the  
ADCs input T/H circuitry. In track mode, switches S1,  
S2a, S2b, S4a, S4b, S5a, and S5b are closed. The fully  
differential circuits sample the input signals onto the  
two capacitors (C2a and C2b) through switches S4a  
and S4b. S2a and S2b set the common mode for the  
amplifier input, and open simultaneously with S1, sam-  
pling the input waveform. Switches S4a, S4b, S5a, and  
S5b are then opened before switches S3a and S3b  
connect capacitors C1a and C1b to the output of the  
amplifier and switch S4c is closed. The resulting differ-  
ential voltages are held on capacitors C2a and C2b.  
Table 1. Output Codes vs. Input Voltage  
DIFFERENTIAL  
INPUT VOLTAGE  
DIFFERENTIAL INPUT  
(LSB)  
OFFSET BINARY  
OUTPUT DECIMAL  
CODE  
(DA7DA0)  
127  
128  
127  
V
×
REF  
1111 1111  
1111 1110  
1000 0001  
1000 0000  
0111 1111  
0000 0001  
0000 0000  
255  
254  
129  
128  
127  
1
(+full scale - 1LSB)  
126  
128  
126  
V
×
×
REF  
(+full scale - 2LSB)  
1
128  
V
+1  
REF  
0
128  
0
V
×
×
REF  
(bipolar zero)  
1
128  
V  
REF  
-1  
127  
128  
-127  
V  
REF  
×
×
(-full scale + 1LSB)  
128  
128  
-128  
(-full scale)  
V  
REF  
0
14 ______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ADC System Timing Requirements  
Figure 3 shows the relationship between the clock, ana-  
log inputs, and the resulting output data. Channel IA  
(CHI) and channel QA (CHQ) are simultaneously sam-  
pled on the rising edge of the clock signal (CLK) and  
the resulting data is multiplexed at the DA0DA7 out-  
puts. CHI data is updated on the rising edge and CHQ  
data is updated on the falling edge of the CLK.  
Including the delay through the output latch, the total  
clock-cycle latency is 5 clock cycles for CHI and 5.5  
clock cycles for CHQ.  
Dual 10-Bit DAC  
The 10-bit DACs are capable of operating with clock  
speeds up to 22MHz. The DACs digital inputs,  
DD0DD9, are multiplexed on a single 10-bit bus. The  
voltage reference determines the data convertersfull-  
scale output voltages. See the Reference Configurations  
section for setting reference voltage. The DACs utilize a  
current-array technique with a 1mA (with 1.024V refer-  
ence) full-scale output current driving a 400internal  
resistor resulting in a 400mV full-scale differential out-  
put voltage. The MAX5864 is designed for differential  
output only and is not intended for single-ended appli-  
cation. The analog outputs are biased at 1.4V common  
mode and designed to drive a differential input stage  
with input impedance 70k. This simplifies the analog  
interface between RF quadrature upconverters and the  
MAX5864. RF upconverters require a 1.3V to 1.5V com-  
mon-mode bias. The internal DC common-mode bias  
eliminates discrete level setting resistors and code-gen-  
erated level-shifting while preserving the full dynamic  
range of each transmit DAC. Table 2 shows the output  
voltage vs. input code.  
2 x V  
REF  
V
= V  
- V  
1 LSB =  
REF  
REFP REFN  
256  
V
V
REF  
REF  
1111 1111  
1111 1110  
1111 1101  
1000 0001  
1000 0000  
0111 1111  
(COM)  
0000 0011  
0000 0010  
0000 0001  
0000 0000  
-128 -127 -126 -125  
-1  
0
+1  
+125 +126 +127 +128  
(COM)  
INPUT VOLTAGE (LSB)  
Figure 2. ADC Transfer Function  
5 CLOCK-CYCLE LATENCY (CHI), 5.5 CLOCK-CYCLE LATENCY (CHQ)  
CHI  
CHQ  
CLK  
t
t
DOI  
DOQ  
DA0DA7  
D0Q  
D1I  
D1Q  
D2I  
D2Q  
D3I  
D3Q  
D4I  
D4Q  
D5I  
D5Q  
D6I  
D6Q  
Figure 3. ADC System Timing Diagram  
______________________________________________________________________________________ 15  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Table 2. DAC Output Voltage vs. Input Codes (Internal Reference Mode V  
=
REFDAC  
1.024V, External Reference Mode V  
= V  
)
REFDAC  
REFIN  
OFFSET BINARY  
DIFFERENTIAL OUTPUT VOLTAGE  
INPUT DECIMAL CODE  
(DD0DD9)  
V
1023  
1023  
REFDAC  
2.56  
11 1111 1111  
11 1111 1110  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
1023  
1022  
513  
512  
511  
1
×
×
×
×
V
1021  
1023  
REFDAC  
2.56  
V
3
1023  
REFDAC  
2.56  
V
1
1023  
REFDAC  
2.56  
V  
1
1023  
REFDAC  
2.56  
×
×
V  
1021  
1023  
REFDAC  
2.56  
V  
1023  
1023  
REFDAC  
2.56  
×
0
CLK  
t
t
DHQ  
DSQ  
Q: N-2  
I: N-1  
Q: N-1  
Q: N  
I: N+1  
DD0DD9  
I: N  
t
t
DHI  
DSI  
N-2  
N-2  
ID  
N-1  
N-1  
N
N
QD  
Figure 4. DAC System Timing Diagram  
DAC Timing  
3-Wire Serial Interface and  
Operation Modes  
Figure 4 shows the relationship between the clock, input  
data, and analog outputs. Data for the I channel (ID) is  
latched on the falling edge of the clock signal, and Q-  
channel (QD) data is latched on the rising edge of the  
clock signal. Both I and Q outputs are simultaneously  
updated on the next rising edge of the clock signal.  
The 3-wire serial interface controls the MAX5864 opera-  
tion modes. Upon power-up, the MAX5864 must be  
programmed to operate in the desired mode. Use the  
3-wire serial interface to program the device for the shut-  
down, idle, standby, Rx, Tx, or Xcvr mode. An 8-bit data  
register sets the operation modes as shown in Table 3.  
The serial interface remains active in all six modes.  
16 ______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Table 3. MAX5864 Operation Modes  
D7  
(MSB)  
FUNCTION  
DESCRIPTION  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Device shutdown. REF is off, ADCs are  
off, and the ADC bus is tri-stated; DACs  
are off and the DAC input bus must be  
Shutdown  
X
X
X
X
X
0
0
0
set to zero or OV  
.
DD  
REF and CLK are on, ADCs are off,  
and the ADC bus is tri-stated; DACs  
are off and the DAC input bus must be  
Idle  
Rx  
X
X
X
X
X
X
X
X
X
X
0
0
0
1
1
0
set to zero or OV  
.
DD  
REF is on, ADCs are on; DACs are off,  
and the DAC input bus must be set to  
zero or OV  
.
DD  
REF is on, ADCs are off, and the ADC  
bus is tri-stated; DACs are on.  
Tx  
X
X
X
X
X
X
X
X
X
X
0
1
1
0
1
0
Xcvr  
REF is on, ADCs and DACs are on.  
REF is on, ADCs are off, and the ADC  
bus is tri-stated; DACs are off and the  
DAC input bus must be set to zero or  
Standby  
X
X
X
X
X
1
0
1
OV  
.
DD  
X = Don’t care.  
Shutdown mode offers the most dramatic power savings  
by shutting down all the analog sections of the MAX5864  
and placing the ADCsdigital outputs in tri-state mode.  
When the ADCsoutputs transition from tri-state to on,  
the last converted word is placed on the digital outputs.  
In standby mode, only the ADCsreference is powered;  
the rest of the devices functions are off. The pipeline  
ADCs are off and DA0 to DA7 are in tri-state mode. The  
DACsdigital bus inputs must be zero or OV  
DD  
because the bus is not internally pulled up. The wake-  
up time from standby mode to the Xcvr mode is domi-  
nated by the 40µs required to activate the pipeline  
ADCs and DACs. When the ADC outputs transition from  
tri-state to active, the last converted word is placed on  
the digital outputs.  
The DACsdigital bus inputs must be zero or OV  
DD  
because the bus is not internally pulled up. The DACs’  
previously stored data is lost when coming out of shut-  
down mode. The wake-up time from shutdown mode is  
dominated by the time required to charge the capacitors  
at REFP, REFN, and COM. In internal reference mode  
and buffered external reference mode, the wake-up time  
is typically 40µs to enter Xcvr moed, 20µs to enter Rx  
mode, and 40µs to enter Tx mode.  
The serial digital interface is a standard 3-wire connec-  
tion compatible with SPI/QSPI/MICROWIRE/DSP  
interfaces. Set CS low to enable the serial data loading  
at DIN. Following CS high-to-low transition, data is shift-  
ed synchronously, MSB first, on the rising edge of the  
serial clock (SCLK). After 8 bits are loaded into the seri-  
al input register, data is transferred to the latch. CS  
must transition high for a minimum of 80ns before the  
next write sequence. The SCLK can idle either high or  
low between transitions. Figure 5 shows the detailed  
timing diagram of the 3-wire serial interface.  
In idle mode, the reference and clock distribution circuits  
are powered, but all other functions are off. The ADCs’  
outputs are forced to tri-state. The DACsdigital bus  
inputs must be zero or OV , because the bus is not  
DD  
internally pulled up. The wake-up time from the idle mode  
is 10µs required for the ADCs and DACs to be fully oper-  
ational. When the ADCsoutputs transition from tri-state to  
on, the last converted word is placed on the digital out-  
puts. In the idle mode, the supply current is lowered if the  
clock input is set to zero or OV ; however, the wake-up  
DD  
time extends to 40µs.  
QSPI is a trademark of Motorola, Inc.  
______________________________________________________________________________________ 17  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
t
CSW  
CS  
t
t
t
t
t
CS  
CSS  
CP  
CH  
CL  
SCLK  
DIN  
t
DS  
LSB  
MSB  
t
DH  
Figure 5. 3-Wire Serial Interface Timing Diagram  
CS  
SCLK  
8-BIT DATA  
DIN  
t
OR t  
R
ENABLE, x  
WAKE, SD, ST_ (Rx)  
ADC DIGITAL OUTPUT.  
SINAD SETTLES WITHIN 1dB  
DAODA7  
DAC ANALOG OUTPUT. OUTPUT  
SETTLES TO 10 LSB ERROR  
ID/QD  
t
OR t  
T
ENABLE, X  
WAKE, SD, ST_ (Tx)  
Figure 6. MAX5864 Mode Recovery Timing Diagram  
Mode Recovery Timing  
Figure 6 shows the mode recovery timing diagram.  
is the wake-up time when exiting shutdown, idle,  
System Clock Input (CLK)  
CLK input is shared by both the ADCs and DACs. It  
T
accepts a CMOS-compatible signal level set by OV  
DD  
from 1.8V to V . Since the interstage conversion of the  
DD  
WAKE  
or standby mode and entering into Rx, Tx, or Xcvr  
mode. t is the recovery time when switching  
device depends on the repeatability of the rising and  
falling edges of the external clock, use a clock with low  
jitter and fast rise and fall times (<2ns). Specifically,  
sampling occurs on the rising edge of the clock signal,  
requiring this edge to provide the lowest possible jitter.  
Any significant clock jitter limits the SNR performance  
of the on-chip ADCs as follows:  
ENABLE  
between any Rx, Tx, or Xcvr mode. t  
or t  
is  
WAKE  
ENABLE  
the time for the ADC to settle within 1dB of specified  
SINAD performance and DAC settling to 10 LSB error.  
t
or t  
times are measured after the 8-bit  
ENABLE  
WAKE  
serial command is latched into the MAX5864 by CS  
transition high. t for Xcvr mode is dominated by  
ENABLE  
the DAC wake-up time. The recovery time is 10µs to  
switch between Xcvr, Tx, or Rx modes. The recovery  
time is 40µs to switch from shutdown or standby mode  
to Xcvr mode.  
1
SNR = 20 × log  
2 × π × t × t  
IN  
AJ  
where f represents the analog input frequency and  
IN  
t
AJ  
is the time of the clock jitter.  
18 ______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Clock jitter is especially critical for undersampling  
Applications Information  
applications. Consider the clock input as an analog  
input and route away from any analog input or other  
digital signal lines. The MAX5864 clock input operates  
Using Balun Transformer AC-Coupling  
An RF transformer (Figure 7) provides an excellent  
solution to convert a single-ended signal source to a  
fully differential signal for optimum ADC performance.  
Connecting the center tap of the transformer to COM  
with an OV /2 voltage threshold and accepts a 50%  
DD  
15% duty cycle.  
Reference Configurations  
The MAX5864 features an internal precision 1.024V  
bandgap reference is stable over the entire power sup-  
ply and temperature range. The REFIN input provides  
two modes of reference operation. The voltage at REFIN  
provides a V /2 DC level shift to the input. A 1:1 trans-  
DD  
former can be used, or a step-up transformer can be  
selected to reduce the drive requirements. In general,  
the MAX5864 provides better SFDR and THD with fully  
differential input signals than single-ended signals,  
especially for high-input frequencies. In differential  
mode, even-order harmonics are lower as both inputs  
(IA+, IA-, QA+, QA-) are balanced, and each of the  
ADC inputs only requires half the signal swing com-  
pared to single-ended mode. Figure 8 shows an RF  
transformer converting the MAX5864 DACsdifferential  
analog outputs to single ended.  
(V ) sets reference operation mode (Table 4).  
REFIN  
In internal reference mode, connect REFIN to V  
REF  
.
DD  
V
is an internally generated 0.512V. COM, REFP,  
and REFN are low-impedance outputs with V  
=
COM  
= V /2 -  
V
V
/2, V  
= V /2 + V  
/2, and V  
DD  
REF  
REFP  
DD  
REF  
REFN DD  
/2. Bypass REFP, REFN, and COM each with a  
0.33µF capacitor. Bypass REFIN to GND with a 0.1µF  
capacitor.  
In buffered external reference mode, apply 1.024V  
10% at REFIN. In this mode, COM, REFP, and REFN  
25  
IA+  
are low-impedance outputs with V  
= V /2, V  
DD REFP  
COM  
0.1µF  
22pF  
= V /2 + V  
/4, and V  
= V /2 - V  
/4.  
REFIN  
DD  
REFIN  
REFN  
DD  
V
Bypass REFP, REFN, and COM each with a 0.33µF  
capacitor. Bypass REFIN to GND with a 0.1µF capaci-  
tor. In this mode, the DACs full-scale output voltage  
and common-mode voltage are proportional to the  
IN  
COM  
IA-  
0.33µF  
0.1µF  
external reference. For example, if the V  
is  
REFIN  
increased by 10% (max), the DACsfull-scale output  
voltage is also increased by 10% or 440mV, and the  
common-mode voltage increases by 10%.  
25Ω  
25Ω  
22pF  
22pF  
MAX5864  
QA+  
0.1µF  
Table 4. Reference Modes  
V
IN  
V
REFERENCE MODE  
REFIN  
Internal reference mode. V is internally  
0.33µF  
0.1µF  
REF  
generated to be 0.512V. Bypass REFP,  
REFN, and COM each with a 0.33µF  
capacitor.  
>0.8 x V  
DD  
QA-  
Buffered external reference mode. An  
external 1.024V 10% reference voltage  
25Ω  
22pF  
is applied to REFIN. V  
is internally  
REF  
1.024V 10%  
generated to be V /2. Bypass REFP,  
REFIN  
REFN, and COM each with a 0.33µF  
capacitor. Bypass REFIN to GND with a  
0.1µF capacitor.  
Figure 7. Balun-Transformer Coupled Single-Ended to  
Differential Input Drive for ADCs  
______________________________________________________________________________________ 19  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Using Op-Amp Coupling  
ID+  
V
Drive the MAX5864 ADCs with op amps when a balun  
transformer is not available. Figures 9 and 10 show the  
ADCs being driven by op amps for AC-coupled single-  
ended, and DC-coupled differential applications.  
Amplifiers such as the MAX4354/MAX4454 provide  
high speed, high bandwidth, low noise, and low distor-  
tion to maintain the input signal integrity. Figure 10 can  
also be used to interface with the DAC differential ana-  
log outputs to provide gain or buffering. The DAC dif-  
ferential analog outputs cannot be used in single-  
ended mode because of the internally generated  
1.4VDC common-mode level. Also, the DAC analog  
outputs are designed to drive a differential input stage  
with input impedance 70k. If single-ended outputs  
are desired, use an amplifier to provide differential to  
single-ended conversion and select an amplifier with  
proper input common-mode voltage range.  
OUT  
MAX5864  
ID-  
QD+  
V
OUT  
QD-  
Figure 8. Balun-Transformer Coupled Differential to Single-  
Ended Output Drive for DACs  
FDD and TDD Modes  
The MAX5864 can be used in diverse applications  
operating FDD or TDD modes. The MAX5864 operates  
in Xcvr mode for FDD applications such as WCDMA-  
3GPP (FDD) and 4G technologies. Also, the MAX5864  
can switch between Tx and Rx modes for TDD applica-  
tions like TD-SCDMA, WCDMA-3GPP (TDD),  
IEEE802.11a/b/g, and IEEE802.16.  
REFP  
1kΩ  
1kΩ  
R
ISO  
50Ω  
V
IN  
0.1µF  
INA+  
COM  
INA-  
C
IN  
22pF  
100Ω  
100Ω  
In FDD mode, the ADC and DAC operate simultaneous-  
ly. The ADC bus and DAC bus are dedicated and must  
be connected in 18-bit parallel (8-bit ADC and 10-bit  
DAC) to the digital baseband processor. Select Xcvr  
mode through the 3-wire serial interface and use the  
conversion clock to latch data. In FDD mode, the  
REFN  
0.1µF  
R
ISO  
50Ω  
C
22pF  
IN  
MAX5864 uses 34mW power at f  
= 15.36MHz. This  
CLK  
is the total power of the ADC and DAC operating simul-  
taneously.  
REFP  
MAX5864  
In TDD mode, the ADC and DAC operate independent-  
ly. The ADC and DAC bus are shared and can be con-  
nected together, forming a single 10-bit parallel bus to  
the digital baseband processor. Using the 3-wire serial  
interface, select between Rx mode to enable the ADC  
and Tx mode to enable the DAC. When operating in Rx  
mode, the DAC does not transmit because the core is  
disabled and in Tx mode, the ADC bus is tri-state. This  
eliminates any unwanted spurious emissions and pre-  
vents bus contention. In TDD mode, the MAX5864 uses  
R
1kΩ  
ISO  
50Ω  
V
IN  
0.1µF  
INB+  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
REFN  
0.1µF  
R
50Ω  
ISO  
24.7mW power in Rx mode at f  
= 15.36MHz, and  
CLK  
INB-  
C
22pF  
the DAC uses 24mW in Tx mode.  
IN  
Figure 9. Single-Ended Drive for ADCs  
20 ______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
R4  
600Ω  
R5  
600Ω  
MAX5864  
R
ISO  
22Ω  
R1  
600Ω  
INA-  
C
IN  
5pF  
R2  
600Ω  
R6  
600Ω  
R7  
600Ω  
COM  
R3  
600Ω  
R8  
600Ω  
R9  
600Ω  
R
ISO  
22Ω  
INA+  
C
IN  
5pF  
R10  
600Ω  
R11  
600Ω  
Figure 10. ADC DC-Coupled Differential Drive  
CLK  
ADC  
MAX2391  
ADC  
OUTPUT  
MUX  
QUADRATURE  
DEMODULATOR  
ADC  
T/R  
CLK  
DAC  
DAC  
MAX2395  
QUADRATURE  
TRANSMITTER  
DAC  
INPUT  
MUX  
SERIAL BUS  
MAX5864  
Figure 11. Typical Application Circuit for TDD  
_______________________________________________________________________________________ 21  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Figure 11 illustrates the MAX5864 working with the  
MAX2391 and MAX2395 in TDD mode to provide a  
complete radio front-end solution. Because the  
MAX5864 DAC has full differential analog outputs with  
a common-mode level of 1.4V, it can interface directly  
with RF quadrature modulators while eliminating dis-  
crete components and amplifiers used for level-shifting  
circuits. Also, the DACs full dynamic range is pre-  
served because the internally generated common-  
mode level eliminates code-generated level shifting or  
attenuation due to resistor level shifting. The MAX5864  
ceramic capacitor in parallel with a 2.2µF capacitor.  
Bypass REFP, REFN, and COM each to GND with a  
0.33µF ceramic capacitor. Bypass REFIN to GND with  
a 0.1µF capacitor.  
Multilayer boards with separated ground and power  
planes yield the highest level of signal integrity. Use a  
split ground plane arranged to match the physical loca-  
tion of the analog ground (GND) and the digital output  
driver ground (OGND) on the device package. Connect  
the MAX5864 exposed backside paddle to the GND  
plane. Join the two ground planes at a single point  
such that the noisy digital ground currents do not inter-  
fere with the analog ground plane. The ideal location  
for this connection can be determined experimentally at  
a point along the gap between the two ground planes.  
Make this connection with a low-value, surface-mount  
resistor (1to 5), a ferrite bead, or a direct short.  
Alternatively, all ground pins could share the same  
ground plane, if the ground plane is sufficiently isolated  
from any noisy digital systems ground plane (e.g.,  
downstream output buffer or DSP ground plane).  
ADC has 1V  
full-scale range and accepts input com-  
P-P  
mon-mode levels of V /2 ( 200mV). These features  
DD  
simplify the analog interface between RF quadrature  
demodulator and ADC while eliminating discrete gain  
amplifiers and level-shifting components.  
Grounding, Bypassing, and  
Board Layout  
The MAX5864 requires high-speed board layout design  
techniques. Refer to the MAX5865 EV kit data sheet for  
a board layout reference. Locate all bypass capacitors  
as close to the device as possible, preferably on the  
same side of the board as the device, using surface-  
Route high-speed digital signal traces away from sensi-  
tive analog traces. Make sure to isolate the analog  
input lines to each respective converter to minimize  
channel-to-channel crosstalk. Keep all signal lines short  
and free of 90° turns.  
mount devices for minimum inductance. Bypass V  
to  
DD  
GND with a 0.1µF ceramic capacitor in parallel with a  
2.2µF capacitor. Bypass OV  
to OGND with a 0.1µF  
DD  
7
6
6
1 LSB  
5
4
5
4
3
2
DIFFERENTIAL LINEARITY  
ERROR (-1/4 LSB)  
AT STEP  
011 (1/2 LSB )  
3
2
1 LSB  
DIFFERENTIAL  
LINEARITY ERROR (+1/4 LSB)  
AT STEP  
001 (1/4 LSB )  
1
0
1
0
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
000  
001  
010  
011  
100  
101  
DIGITAL INPUT CODE  
Figure 12a. Integral Nonlinearity  
Figure 12b. Differential Nonlinearity  
22 _______________________________________________________________________________________
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
ADC Dynamic Parameter Definitions  
Dynamic Parameter Definitions  
Aperture Jitter  
ADC and DAC Static Parameter Definitions  
Figure 13 depicts the aperture jitter (t ), which is the  
AJ  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best-straight-line fit or a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the device are measured using  
the end-point method (DAC Figure 12a).  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 13).  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error) and results directly  
from the ADCs resolution (N bits):  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes (ADC) and a monotonic transfer function  
(ADC and DAC) (DAC Figure 12b).  
SNR(max) = 6.02dB x N + 1.76dB (in dB)  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
fundamental, the first five harmonics, and the DC offset.  
ADC Offset Error  
Ideally, the midscale transition occurs at 0.5 LSB above  
midscale. The offset error is the amount of deviation  
between the measured transition point and the ideal  
transition point.  
DAC Offset Error  
Offset error (Figure 12a) is the difference between the  
ideal and actual offset point. The offset point is the out-  
put value when the digital input is midscale. This error  
affects all codes by the same amount and usually can  
be compensated by trimming.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise. RMS noise includes all spectral  
components to the Nyquist frequency excluding the  
fundamental and the DC offset.  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADCs error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
ADC Gain Error  
Ideally, the ADC full-scale transition occurs at 1.5 LSB  
below full scale. The gain error is the amount of devia-  
tion between the measured transition point and the  
ideal transition point with the offset error removed.  
ENOB = (SINAD - 1. 76) / 6.02  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first five  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
CLK  
ANALOG  
INPUT  
2
2
2
3
2
2
5
2
6
(V +V +V +V +V )  
4
t
AD  
THD = 20log  
t
AJ  
V
1
SAMPLED  
DATA (T/H)  
where V is the fundamental amplitude and V V are  
1
2
6
the amplitudes of the 2nd- through 6th-order harmonics.  
HOLD  
TRACK  
TRACK  
T/H  
Figure 13. T/H Aperture Timing  
______________________________________________________________________________________ 23  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Third Harmonic Distortion (HD3)  
HD3 is defined as the ratio of the RMS value of the third  
harmonic component to the fundamental input signal.  
DAC Dynamic Parameter Definitions  
Total Harmonic Distortion  
THD is the ratio of the RMS sum of the output harmonics  
up to the Nyquist frequency divided by the fundamental:  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest spurious  
component, excluding DC offset.  
(V2 +V2 +... +V2)  
2
3
n
THD = 20log  
V
1
where V is the fundamental amplitude and V through  
n
up to the Nyquist frequency.  
1
2
Intermodulation Distortion (IMD)  
V are the amplitudes of the 2nd through nth harmonic  
IMD is the total power of the intermodulation products  
relative to the total input power when two tones, f and  
1
f , are present at the inputs. The intermodulation prod-  
2
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component up to the Nyquist frequency excluding DC.  
ucts are (f  
f ), (2 f ), (2 f ), (2 f  
f ), (2 f  
2 2  
1
2
1
2
1
f ). The individual input tone levels are at -7dBFS.  
1
3rd-Order Intermodulation (IM3)  
IM3 is the power of the worst third-order intermodula-  
tion product relative to the input power of either input  
tone when two tones, f and f , are present at the  
1
2
inputs. The 3rd-order intermodulation products are (2 x  
f ), (2 f f ). The individual input tone levels are  
Pin Configuration  
f
1
2
2
1
at -7dBFS.  
TOP VIEW  
Power-Supply Rejection  
Power-supply rejection is defined as the shift in offset  
and gain error when the power supply is changed  
5%.  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
REFP  
1
2
3
4
5
6
7
8
9
CS  
V
SCLK  
DIN  
DD  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in such a way that the signals slew rate does not  
limit the ADCs performance. The input frequency is  
then swept up to the point where the amplitude of the  
digitized conversion result has decreased by 3dB. Note  
that the T/H performance is usually the limiting factor  
for the small-signal input bandwidth.  
IA+  
IA-  
V
DD  
GND  
CLK  
GND  
DD9  
DD8  
DD7  
DD6  
DD5  
DD4  
DD3  
DD2  
MAX5864  
V
DD  
QA-  
QA+ 10  
V
11  
DD  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as the full-  
power bandwidth frequency.  
GND 12  
QFN  
Chip Information  
TRANSISTOR COUNT: 16,765  
PROCESS: CMOS  
24 ______________________________________________________________________________________  
Ultra-Low-Power, High Dynamic-  
Performance, 22Msps Analog Front End  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
b
L
D2/2  
D/2  
k
E/2  
E2/2  
C
(NE-1) X  
e
E
E2  
L
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
A
A1  
A2  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48L QFN THIN, 7x7x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0144  
B
2
______________________________________________________________________________________ 25  
Ultra-Low-Power, High-Dynamic-  
Performance, 22Msps Analog Front End  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
** NOTE: T4877-1 IS A CUSTOM 48L PKG. WITH 4 LEADS DEPOPULATED.  
TOTAL NUMBER OF LEADS ARE 44.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48L QFN THIN, 7x7x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0144  
B
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
26 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5864ETM+

RF and Baseband Circuit, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, TQFN-48
MAXIM

MAX5864ETM+D

Codec, 2-Channel, CMOS, PQCC48
MAXIM

MAX5864ETM+TD

Codec, 2-Channel, CMOS, PQCC48
MAXIM

MAX5864ETM-D

Codec, 2-Channel, CMOS, PQCC48
MAXIM

MAX5864ETM-T

暂无描述
MAXIM

MAX5865

Ultra-Low-Power, High-Dynamic- Performance, 40Msps Analog Front End
MAXIM

MAX5865E/D

Ultra-Low-Power, High-Dynamic- Performance, 40Msps Analog Front End
MAXIM

MAX5865ETM

Ultra-Low-Power, High-Dynamic- Performance, 40Msps Analog Front End
MAXIM

MAX5865ETM+

RF and Baseband Circuit, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, TQFN-48
MAXIM

MAX5865ETM+T

RF and Baseband Circuit, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, TQFN-48
MAXIM

MAX5865ETM-T

RF and Baseband Circuit, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, TQFN-48
MAXIM

MAX5865EVKIT

Evaluation Kit for the MAX5865
MAXIM