MAX497CSE [ROCHESTER]

QUAD BUFFER AMPLIFIER, PDSO16, 0.150 INCH, SOIC-16;
MAX497CSE
型号: MAX497CSE
厂家: Rochester Electronics    Rochester Electronics
描述:

QUAD BUFFER AMPLIFIER, PDSO16, 0.150 INCH, SOIC-16

放大器 光电二极管
文件: 总13页 (文件大小:900K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0373; Rev 1; 12/98  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
6/MAX497  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
MAX496 Fixed Gain: +1V/V  
The MAX496 and MAX497 are quad, closed-loop, ±5V  
video buffers that feature extremely high bandwidth and  
slew rate for both component video (RGB or YUV) and  
composite video (NTSC, PAL, SECAM). The MAX496 is  
a unity-gain (0dB) buffer with a 375MHz -3dB bandwidth  
and a 1600V/µs slew rate. The MAX497 gain of +2 (6dB)  
buffer, optimized for driving back-terminated coaxial  
c a b le , fe a ture s a 275MHz -3d B b a nd wid th a nd a  
1500V/µs slew rate. The MAX496/MAX497 are not slew-  
rate limited, thus providing a high full-power bandwidth  
of 230MHz and 215MHz, respectively.  
MAX497 Fixed Gain: +2V/V  
High Speed:  
Small-Signal -3dB Bandwidth: 375MHz (MAX496)  
275MHz (MAX497)  
Full-Power -3dB Bandwidth: 230MHz (MAX496)  
215MHz (MAX497)  
0.1dB Gain Flatness: 65MHz (MAX496)  
120MHz (MAX497)  
1600V/µs Slew Rate (MAX496)  
1500V/µs Slew Rate (MAX497)  
The MAX496/MAX497 incorporate a unique two-stage  
architecture that combines the low offset and noise  
benefits of voltage feedback with the high bandwidth  
and slew-rate advantages of current-mode-feedback.  
Fast Settling Time: 12ns to 0.1%  
Lowest Differential Phase/Gain Error: 0.01°/0.01%  
2pF Input Capacitance  
5.6nV/Hz Input-Referred Voltage Noise  
Low Distortion: 64dBc (f = 10MHz)  
Directly Drives 50or 75Back-Terminated Cables  
High ESD Protection: 5000V  
________________________Ap p lic a t io n s  
Computer Workstations  
Surveillance Video  
Output Short-Circuit Protected  
Broadcast and High-Definition TV Systems  
Multimedia Products  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
Dice*  
Medical Imaging  
MAX496CPE  
MAX496CSE  
MAX496C/D  
MAX497CPE  
MAX497CSE  
MAX497C/D  
High-Speed Signal Processing  
Video Switching and Routing  
16 Plastic DIP  
16 Narrow SO  
Dice*  
_______________Fre q u e n c y Re s p o n s e  
* Dice are specified at T = +25°C, DC parameters only.  
A
___________________P in Co n fig u ra t io n  
MAX497  
SMALL-SIGNAL GAIN vs. FREQUENCY  
9
TOP VIEW  
8
7
6
GND  
IN0  
OUT0  
V
1
2
3
4
5
6
7
8
16  
15 CC  
5
4
3
2
1
GND  
IN1  
OUT1  
14  
13  
12  
11  
10  
9
V
EE  
MAX496  
MAX497  
GND  
IN2  
OUT2  
V
EE  
GND  
IN3  
OUT3  
0
V
CC  
-1  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
DIP/SO  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )................................................. 12V  
Operating Temperature Range ...............................0°C to +70°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
Voltage on Any Input Pin to GND ....(V + 0.3V) to (V - 0.3V)  
CC  
EE  
Output Short-Circuit Current Duration ...............................60sec  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ..........842mW  
Narrow SO (derate 8.70mW/°C above +70°C) ............696mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, V = 0V, R = 150, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
EE  
L
A
MIN  
IN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
±2.8  
±1.4  
TYP  
±3.2  
±1.6  
±1  
MAX  
UNITS  
MAX496  
MAX497  
6/MAX497  
Input Voltage Range  
V
IN  
V
Input Offset Voltage  
V
OS  
V
OUT  
= 0V  
±3  
±5  
mV  
µV/°C  
µA  
Input Offset Voltage Drift  
Input Bias Current  
TCV  
V
= 0V  
= 0V  
-10  
OS  
OUT  
I
B
V
OUT  
±1  
MAX496: -2V V +2V,  
IN  
Input Resistance  
R
IN  
C
IN  
0.5  
1.2  
2
MΩ  
MAX497: -1V V +1V  
IN  
Input Capacitance  
pF  
R
R
R
R
= 150Ω  
= 50Ω  
= 150Ω  
= 50Ω  
0.988  
0.983  
1.975  
1.965  
1.00  
1.00  
2.01  
2.01  
L
L
L
L
MAX496 (Note 1)  
MAX497 (Note 2)  
Voltage Gain  
A
V/V  
dB  
V
Positive Power-Supply Rejection  
Ratio (Change in V  
PSRR+  
PSRR-  
V
CC  
= ±4.5V to ±5.5V, V = -5.0V  
55  
60  
74  
78  
EE  
)
OS  
Negative Power-Supply  
Rejection Ratio (Change in V  
V
EE  
= ±4.5V to ±5.5V, V = 5.0V  
dB  
%
CC  
)
OS  
Gain Linearity  
A
VLIN  
A
VCL  
= +2, V = ±1mV to ±2V  
OUT  
0.01  
31  
T
A
= +25°C  
36  
45  
Positive Quiescent Supply  
Current (Total)  
I
+
mA  
SY  
T
A
= T to T  
MIN MAX  
T
= +25°C  
32  
37  
A
Negative Quiescent Supply  
Current (Total)  
I
-
mA  
V
SY  
T
A
= T  
to T  
MAX  
45  
MIN  
Operating Supply Voltage Range  
Output Voltage Swing  
V
±4.50  
±2.8  
±2.5  
±5.50  
S
R
R
= 150Ω  
= 50Ω  
±3.7  
±3.3  
0.1  
L
L
V
OUT  
V
Output Resistance  
Output Impedance  
R
Z
DC  
f = 10MHz  
OUT  
1.5  
OUT  
Short-Circuit Output Current  
I
SC  
Short to ground or either supply voltage  
170  
mA  
2
_______________________________________________________________________________________  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
6/MAX497  
AC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, V = 0V, R = 100, T = +25°C.)  
CC  
EE  
IN  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
375  
375  
275  
275  
230  
215  
1600  
1500  
12  
MAX  
UNITS  
MAX496CSE  
Small-Signal -3dB Bandwidth  
MAX496CPE  
MAX497CSE  
MAX497CPE  
BW  
MHz  
-3dB  
MAX496  
MAX497  
Full-Power Bandwidth  
Slew Rate  
FPBW  
SR  
V
OUT  
= ±2V  
MHz  
V/µs  
V
OUT  
= 4V step, MAX496  
= 4V step, MAX497  
V
OUT  
Settling Time  
t
s
0.1% (VOUT = 2V step)  
f = 3.58MHz (Note 3)  
f = 3.58MHz (Note 3)  
f = 10MHz  
ns  
%
Differential Gain Error  
Differential Phase Error  
Input Noise Voltage Density  
Input Noise Current Density  
DG  
DP  
0.01  
0.01  
5.6  
2
degrees  
nVHz  
pAHz  
f = 10MHz  
MAX496CPE  
MAX496CSE  
MAX497CPE  
MAX497CSE  
MAX496  
80  
80  
Gain Flatness  
±0.1dB  
MHz  
100  
120  
78  
Adjacent Channel Crosstalk  
All-Hostile Crosstalk  
(Note 4)  
(Note 4)  
dB  
dB  
MAX497  
72  
MAX496  
72  
MAX497  
65  
MAX496  
-64  
-58  
58  
f
V
= 10MHz,  
C
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
THD  
dBc  
dBc  
= 2Vp-p  
OUT  
MAX497  
MAX496  
SFDR  
f = 5MHz  
C
MAX497  
60  
Note 1: Voltage Gain = (V  
- V ) / V , measured at V = ±1V.  
OS IN IN  
OUT  
Note 2: Voltage Gain = (V  
- V ) / V , measured at V = ±2V.  
OS IN IN  
OUT  
Note 3: Input test signal is a 3.58MHz sine wave of amplitude 40 IRE superimposed on a linear ramp (0 IRE to 100 IRE).  
= 150, see Figure 2.  
R
L
Note 4: Input of channel under test grounded through 75. Adjacent channel driven at f = 10MHz (Figure 4a). For All-Hostile  
Crosstalk, all inputs are driven except the channel under test (Figure 4b).  
_______________________________________________________________________________________  
3
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V = -5V, R = 100, T = +25°C, unless otherwise noted.)  
EE  
L
A
CC  
MAX496  
MAX496  
MAX496  
SMALL-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
2
1
0
0.2  
0.1  
2
1
0
-0.1  
-0.2  
0
-1  
-2  
-1  
-2  
-3  
-4  
-0.3  
-0.4  
-3  
-4  
-5  
-6  
-7  
-8  
-0.5  
-0.6  
-0.7  
-0.8  
-5  
-6  
-7  
-8  
6/MAX497  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX497  
SMALL-SIGNAL GAIN vs. FREQUENCY  
MAX497  
MAX497  
GAIN FLATNESS vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
8
9
8
7
6
5
6.2  
6.1  
6.0  
5.9  
DIP  
SO  
7
6
5
4
5.8  
4
3
2
5.7  
5.6  
3
2
1
0
5.5  
5.4  
1
0
-1  
-2  
5.3  
5.2  
-1  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX496  
MAX497  
SMALL-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
TOTAL HARMONIC DISTORTION (THD)  
vs. FREQUENCY  
DRIVING A 50LOAD  
DRIVING A 50LOAD  
2
1
8
7
6
0
V
= 2Vp-p  
OUT  
-10  
-20  
-30  
-40  
0
-1  
-2  
5
4
3
2
1
MAX497  
-3  
-4  
-50  
-60  
-70  
-80  
MAX496  
-5  
-6  
-7  
-8  
0
-1  
-2  
-90  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
6/MAX497  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100, T = +25°C, unless otherwise noted.)  
EE  
L
A
CC  
MAX497  
CROSSTALK vs. FREQUENCY  
MAX496  
CROSSTALK vs. FREQUENCY  
POWER-SUPPLY REJECTION (PSR)  
vs. FREQUENCY  
-10  
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
MAX497  
ALL-HOSTILE  
ADJACENT CHANNEL  
ALL-HOSTILE  
-50  
-60  
-70  
-80  
ADJACENT CHANNEL  
-90  
-100  
-110  
-90  
MAX496  
-100  
-100  
1
10  
100 200  
1M  
10M  
100M  
1G  
20k  
100k  
1M  
10M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX496  
MAX496  
MAX497  
GAIN MATCH vs. FREQUENCY  
GAIN vs. TEMPERATURE  
GAIN MATCH vs. FREQUENCY  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
0.994  
0.993  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
CH 2CH 1  
CH 2CH 0  
CH 2CH 0  
CH 1CH 0  
V = -1.0V  
IN  
CH 3CH 1  
CH 3CH 1  
V
IN  
= -1.0V  
-0.1  
0.1  
CH 3CH 2  
-0.2  
-0.3  
0
CH 1CH 0  
-0.1  
CH 3CH 0  
CH 3CH 0  
CH 3CH 2  
CH 2CH 1  
-0.4  
-0.5  
-0.2  
-0.3  
0.992  
0.991  
0.990  
-0.6  
-0.7  
-0.4  
-0.5  
1M  
10M  
100M  
1G  
-40 -20  
0
20  
40 60  
80 100  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
SUPPLY CURRENT  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
MAX497  
GAIN vs. TEMPERATURE  
2.05  
0.30  
40  
38  
36  
34  
32  
30  
28  
26  
24  
R = NO LOAD  
L
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
1.95  
0.20  
I
EE  
0.10  
0
V
= +1.0V  
IN  
I
CC  
-0.10  
-0.20  
-0.30  
V
= -1.0V  
IN  
22  
20  
-40 -20  
0
20  
40 60  
80 100  
-10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
-40 -20  
0
20  
40 60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100, T = +25°C, unless otherwise noted.)  
EE  
L
A
CC  
MAX496  
MAX497  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
0.05  
IN  
to 0.50  
IN  
-0.05  
-0.50  
to 0.10  
OUT  
6/MAX497  
0.05  
OUT  
-0.05  
-0.10  
TIME (10ns/div)  
TIME (10ns/div)  
MAX496  
MAX497  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
1.0  
1.0  
IN  
IN  
-1.0  
-1.0  
2.0  
OUT  
-2.0  
1.0  
OUT  
-1.0  
TIME (10ns/div)  
TIME (10ns/div)  
6
_______________________________________________________________________________________  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
6/MAX497  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100, T = +25°C, unless otherwise noted.)  
EE  
L
A
CC  
MAX496  
SMALL-SIGNAL PULSE RESPONSE  
MAX497  
SMALL-SIGNAL PULSE RESPONSE  
(C = 47pF  
L
(C = 47pF)  
L
0.05  
IN  
0.50  
IN  
-0.05  
-0.50  
0.10  
OUT  
-0.10  
0.05  
OUT  
-0.05  
10ns/div  
10ns/div  
MAX497  
MAX496  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(C = 47pF)  
L
(C = 47pF)  
L
1.0  
1.0  
IN  
IN  
-1.0  
-1.0  
2.0  
1.0  
OUT  
-2.0  
OUT  
-1.0  
10ns/div  
10ns/div  
_______________________________________________________________________________________  
7
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
_____________________P in De s c rip t io n  
_______________De t a ile d De s c rip t io n  
The MAX496/MAX497 are quad, high-speed, closed-loop  
voltage-feedback video amplifiers with fixed gain settings  
of +1 and +2, respectively (Figure 1). These amplifiers  
use a unique two-stage voltage-feedback architecture  
that combines the benefits of conventional voltage-feed-  
ba c k a nd c urre nt-mod e -fe e db a c k top ologie s. The y  
achieve wide bandwidths and high slew rates while main-  
taining precision. A resistively loaded first stage provides  
low input-referred noise even with low supply currents of  
8mA per amplifier. The above features, along with the  
ability to drive 50or 75back-terminated cables to  
±2.8V and low differential phase and gain errors, make  
these amplifiers ideal for the most demanding component  
and composite video applications.  
PIN  
NAME  
FUNCTION  
Ground. All ground pins are internally  
connected. Connect all ground pins  
externally to minimize the ground  
impedance.  
1, 3,  
5, 7  
GND  
2
4
6
8
IN0  
IN1  
IN2  
IN3  
Channel 0 Input  
Channel 1 Input  
Channel 2 Input  
Channel 3 Input  
Positive Power Supply. Connect to +5V.  
V
CC  
pins are internally connected.  
Connect both pins to +5V externally to  
minimize the supply impedance.  
9, 15  
10  
V
CC  
OUT3  
Channel 3 Output  
6/MAX497  
__________Ap p lic a t io n s In fo rm a t io n  
Negative power supply. Connect to -5V.  
V
pins are internally connected.  
The feedback elements of the MAX496/MAX497 are  
included internally in the device to set the closed-loop  
EE  
11, 13  
V
EE  
Connect both pins to -5V externally to  
minimize the supply impedance.  
gain to A = +1 and A = +2, respectively. Closing the  
V
V
12  
14  
16  
OUT2  
OUT1  
OUT0  
Channel 2 Output  
Channel 1 Output  
Channel 0 Output  
loop internally on the chip minimizes problems associ-  
ated with the board and package parasitics influencing  
the amplifiers frequency response.  
V
CC  
V
EE  
0.10µF  
0.10µF  
-5V  
+5V  
0.10µF  
9
15  
11  
13  
10µF  
10µF  
0.10µF  
75CABLE  
75CABLE  
75Ω  
75Ω  
75Ω  
2
IN0  
IN1  
OUT0 16  
RED  
75Ω  
75Ω  
75Ω  
75Ω  
MAX496*  
MAX497*  
75CABLE  
75CABLE  
75Ω  
4
OUT1 14  
GREEN  
75CABLE  
75CABLE  
75CABLE  
75CABLE  
75Ω  
75Ω  
75Ω  
75Ω  
6
8
IN2  
IN3  
OUT2  
12  
BLUE  
SYNC  
75Ω  
75Ω  
75Ω  
75Ω  
OUT3 10  
GND  
*A = +1 (MAX496)  
*A = +2 (MAX497)  
V
V
3
5
7
Figure 1. Typical Operating Circuit  
8
_______________________________________________________________________________________  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
6/MAX497  
75CABLE  
a)  
75Ω  
MAX497  
75CABLE  
75CABLE  
75Ω  
DUT  
75Ω  
SOURCE:  
TEKTRONIX  
75Ω  
MEASUREMENT:  
TEKTRONIX VM700  
VIDEO MEASUREMENT  
SET  
1910 DIGITAL GENERATOR  
b)  
75CABLE  
75Ω  
MAX496  
DUT  
75Ω  
150Ω  
Figure 2. Differential Phase and Gain Error Test Circuits: a) MAX497, Gain of +2 Amplifier; b) MAX496 Unity-Gain Amplifier  
P o w e r Dis s ip a t io n  
The maximum output current of the MAX496/MAX497 is  
limited by the packages maximum allowable power dis-  
sipation. The maximum junction temperature should not  
exceed +150°C. The power dissipation increases with  
load, and this increase can be approximated by the fol-  
lowing:  
MAX496/MAX497  
IN0  
75Ω  
75Ω  
OUT1  
OUT2  
75Ω  
For V  
> 0V: |V - VOUT| I  
OUT  
CC  
LOAD  
75Ω  
OR  
For V  
< 0V: |V - VOUT| I  
.
OUT  
EE  
LOAD  
These devices can drive 100loads connected to  
each of the outputs over the entire rated output swing  
and temperature range. When driving 50loads with  
each of the four outputs simultaneously, the output  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
OUT3  
OUT4  
swing must be limited to ±1.25V at T = +70°C. While  
A
the output is short-circuit protected to 170mA, this does  
not necessarily guarantee that, under all conditions, the  
maximum junction temperature will not be exceeded.  
Do not e xc e e d the d e ra ting va lue s g ive n in the  
absolute maximum ratings.  
Figure 3. One-to-Four Distribution Amplifier  
_______________________________________________________________________________________  
9
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
MAX496/MAX497  
MAX496/MAX497  
50Ω  
50Ω  
100Ω  
100Ω  
V = 4Vp-p,  
IN  
f = 10MHz,  
R = 75Ω  
S
50Ω  
50Ω  
50Ω  
100Ω  
100Ω  
50Ω  
100Ω  
100Ω  
100Ω  
50Ω  
50Ω  
6/MAX497  
V = 4Vp-p,  
IN  
f = 10MHz,  
100Ω  
R = 75Ω  
S
a) ADJACENT CHANNEL  
b) ALL-HOSTILE  
Figure 4. Crosstalk: a) Adjacent Channel; b) All-Hostile  
To t a l No is e  
The MAX496/MAX497s low inp ut c urre nt nois e of  
2pA/Hz and voltage noise of 5.6nV/Hz provide for  
lower total noise compared to typical current-mode-  
feedback amplifiers, which usually have significantly  
higher input current noise. The input current noise mul-  
tiplied by the feedback resistor is the dominant noise  
source of current-mode-feedback amplifiers.  
Co a x ia l Ca b le Drive rs  
Hig h-s p e e d p e rforma nc e , e xc e lle nt outp ut c urre nt  
capability, and an internally fixed gain of +2 make the  
MAX497 ideal for driving back-terminated 50or 75Ω  
coaxial cables to ±2.8V.  
In a typical application, the MAX497 drives a back-ter-  
minated 75video cable (Figure 1). The back-termina-  
tion re s is tor (a t the MAX497s outp ut) ma tc he s the  
impedance of the cables driven end to the cables  
impedance, to eliminate signal reflections. This, along  
with the loa d -te rmina tion re s is tor, forms a volta g e  
divider with the load impedance, which attenuates the  
signal at the cable output by one-half. The MAX497  
operates with an internal +2V/V closed-loop gain to pro-  
vide unity gain at the cables output.  
Diffe re n t ia l Ga in a n d P h a s e Erro rs  
Differential gain and phase errors are critical specifica-  
tions for a buffer in composite (NTSC, PAL, SECAM) video  
applications, because these errors correspond directly to  
color changes in the displayed picture of composite video  
systems. The MAX496/MAX497s ultra-low differential gain  
and phase errors (0.01%/ 0.01°) make them ideal in  
broadcast-quality composite video applications.  
Ca p a c it ive Lo a d Drivin g  
In most amplifier circuits, driving large capacitive loads  
increases the likelihood of oscillation. This is especially  
true for circuits with high loop gains, such as voltage  
followers. The amplifiers output resistance and the  
capacitive load form an RC filter that adds a pole to the  
loop response. If the pole frequency is low enough (as  
when driving a large capacitive load), the circuit phase  
margin is degraded and oscillation may occur.  
Dis t rib u t io n Am p lifie r  
The circuit in Figure 3 is a one-to-four distribution amplifier  
using a single MAX496 or MAX497 IC. A one-to-eight dis-  
tribution amplifier can be implemented with a MAX496 or  
MAX497 by driving an additional cable from each of the  
four outputs. When driving more than four outputs from a  
single device, see the Continuous Power Dissipation  
specifications in the Absolute Maximum Ratings.  
10 ______________________________________________________________________________________  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
6/MAX497  
5
8
6
4
C
= 60pF  
= 22pF  
L
C
= 47pF  
L
4
3
2
R
L
= 50Ω  
R
= 50Ω  
= 0Ω  
L
R
ISO  
= 20Ω  
R
ISO  
C
L
C
= 10pF  
L
2
C
L
= 22pF  
1
0
0
-2  
-4  
-6  
-8  
C
L
= 10pF  
C
L
= 0pF  
-1  
-2  
-3  
C
= 47pF  
= 60pF  
L
C
L
-4  
-5  
-10  
-12  
* -3dB ATTENUATION DUE  
TO R NOT SHOWN  
ISO  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5a. MAX496 Small-Signal Gain vs. Frequency and Load  
Figure 5b. MAX496 Small-Signal Gain vs. Frequency and  
Capacitor (R = 50, R  
= 0)  
Load Capacitor (R = 50, R  
= 20)  
L
ISO  
L
ISO  
20  
20  
C
= 68pF  
C
L
= 47pF  
L
15  
10  
5
15  
10  
5
R
=
R =  
L
L
C
= 20pF  
L
R
ISO  
= 0Ω  
R
ISO  
= 20Ω  
C
L
= 47pF  
0
-5  
0
-5  
C = 68pF  
L
C
= 10pF  
L
C
L
= 22pF  
-10  
-15  
-20  
-10  
-15  
-20  
C
L
= 0pF  
C
= 10pF  
L
-25  
-30  
-25  
-30  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5d. MAX496 Small-Signal Gain vs. Frequency and  
Load Capacitor (R = , R = 20)  
Figure 5c. MAX496 Small-Signal Gain vs. Frequency and Load  
Capacitor (R = , R = 0)  
L
ISO  
L
ISO  
The MAX496/MAX497 drive capacitive loads up to 75pF  
without sustained oscillation, although some peaking  
may occur. When driving larger capacitive loads, or to  
Connect both positive power-supply pins together and  
bypass with a 0.10µF ceramic capacitor at each power  
supply pin, as close to the device as possible. Repeat  
the s a me for the ne g a tive p owe r-s up p ly p ins . The  
capacitor lead lengths should be as short as possible  
to minimize le a d ind uc ta nc e ; s urfa c e -mount c hip  
capacitors are ideal. A large-value (4.7µF or greater)  
tantalum or electrolytic bypass capacitor on each sup-  
ply may be required for high-current loads. The location  
of this capacitor is not critical.  
reduce peaking, add an isolation resistor (R ) between  
ISO  
the output and the capacitive load (Figures 5a–5d).  
Gro u n d in g a n d La yo u t  
The MAX496/MAX497 bandwidths are in the RF fre-  
quency range. Depending on the size of the PC board  
used and the frequency of operation, it may be neces-  
sary to use Micro-strip or Stripline techniques.  
The MAX496/MAX497s analog input pins are isolated  
with ground pins to minimize parasitic coupling, which can  
degrade crosstalk and/or amplifier stability. Keep signal  
paths as short as possible to minimize inductance. Ensure  
that all input channel traces are the same length to main-  
tain the phase relationship between the four channels. To  
further reduce crosstalk, connect the coaxial-cable shield  
to the ground side of the 75terminating resistor at the  
ground plane, and terminate all unused inputs ground and  
outputs with a 100or 150resistor to ground.  
To realize the full AC performance of these high-speed  
buffers, pay careful attention to power-supply bypassing  
and board layout. The PC board should have at least two  
layers (wire-wrap boards are too inductive, bread boards  
are too capacitive), with one side a signal layer and the  
other a large, low-impedance ground plane. With multilay-  
er boards, locate the ground plane on the layer that is not  
dedicated to a specific signal trace. The ground plane  
should be as free from voids as possible. Connect all  
ground pins to the ground plane.  
______________________________________________________________________________________ 11  
3 7 5 MHz Qu a d Clo s e d -Lo o p  
Vid e o Bu ffe rs , A = +1 a n d +2  
V
___________________Ch ip To p o g ra p h y  
GND  
IN0  
OUT0 V  
CC  
GND  
IN1  
OUT1  
V
EE  
0. 101"  
(2. 56mm)  
OUT2  
GND  
IN2  
V
EE  
6/MAX497  
IN3  
OUT3  
GND  
V
CC  
0. 076"  
(1. 930mm)  
TRANSISTOR COUNT: 544  
SUBSTRATE CONNECTED TO V  
EE  
________________________________________________________P a c k a g e In fo rm a t io n  
12 ______________________________________________________________________________________  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY