MAX488ECSA [ROCHESTER]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO8, 0.150 INCH, MS-012A, SOIC-8;
MAX488ECSA
型号: MAX488ECSA
厂家: Rochester Electronics    Rochester Electronics
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO8, 0.150 INCH, MS-012A, SOIC-8

驱动 光电二极管 接口集成电路 驱动器
文件: 总17页 (文件大小:1370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15k ꢀED-ꢁrotected, Elew-Rate-Limited,  
Low-ꢁower, RE-481/RE-422 Transceivers  
General Description  
Next-Generation Device Features  
The MAX481E, MAX483E, MAX485E, MAX487E–  
MAX491E, and MAX1487E are low-power transceivers for  
RS-485 and RS-422 communications in harsh environ-  
ments. Each driver output and receiver input is protected  
against 15ꢀk electro-static discharge ꢁESꢂD shocꢀs,  
without latchup. These parts contain one driver and one  
receiver. The MAX483E, MAX487E, MAX488E, and  
MAX489E feature reduced slew-rate drivers that minimize  
EMI and reduce reflections caused by improperly termi-  
nated cables, thus allowing error-free data transmission  
up to 250ꢀbps. The driver slew rates of the MAX481E,  
MAX485E, MAX490E, MAX491E, and MAX1487E are not  
limited, allowing them to transmit up to 2.5Mbps.  
For Fault-Tolerant Applications:  
MAX3430: ±±0ꢀ Fault-ꢁrotecteꢂd Fail-ꢃaꢄed ꢅ14-  
Unit Loaꢂd +3.3ꢀd Rꢃ-4±5 Transceiver  
MAX30±0–MAX30±9: Fail-ꢃaꢄed High-ꢃpeeꢂ  
(ꢅ0Mbps)d ꢃlew-Rate-Limiteꢂd Rꢃ-4±51Rꢃ-422  
Transceivers  
For ꢃpace-Constraineꢂ Applications:  
MAX3460–MAX3464: +5ꢀd Fail-ꢃaꢄed 20Mbpsd  
ꢁroꢄibusd Rꢃ-4±51Rꢃ-422 Transceivers  
MAX3362: +3.3ꢀd High-ꢃpeeꢂd Rꢃ-4±51Rꢃ-422  
Transceiver in a ꢃOT23 ꢁackage  
MAX32±0E–MAX32±4E: ±ꢅ5kꢀ EꢃS-ꢁrotecteꢂd  
52Mbpsd +3ꢀ to +5.5ꢀd ꢃOT23d Rꢃ-4±51Rꢃ-422  
True Fail-ꢃaꢄe Receivers  
MAX3030E–MAX3033E: ±ꢅ5kꢀ EꢃS-ꢁrotecteꢂd  
+3.3ꢀd Quaꢂ Rꢃ-422 Transmitters  
These transceivers draw as little as 120µA supply cur-  
rent when unloaded or when fully loaded with disabled  
drivers ꢁsee Selector GuideD. Additionally, the MAX481E,  
MAX483E, and MAX487E have a low-current shutdown  
mode in which they consume only 0.5µA. All parts oper-  
ate from a single +5k supply.  
For Multiple Transceiver Applications:  
MAX32931MAX32941MAX3295: 20Mbpsd +3.3ꢀd  
ꢃOT23d Rꢃ-4±51Rꢃ-422 Transmitters  
ꢂrivers are short-circuit current limited, and are protected  
against excessive power dissipation by thermal shutdown  
circuitry that places their outputs into a high-impedance  
state. The receiver input has a fail-safe feature that guar-  
antees a logic-high output if the input is open circuit.  
For Fail-ꢃaꢄe Applications:  
MAX3440E–MAX3444E: ±ꢅ5kꢀ EꢃS-ꢁrotecteꢂd  
±60ꢀ Fault-ꢁrotecteꢂd ꢅ0Mbpsd Fail-ꢃaꢄe  
Rꢃ-4±51Jꢅ70± Transceivers  
The MAX487E and MAX1487E feature quarter-unit-load  
receiver input impedance, allowing up to 128 trans-  
ceivers on the bus. The MAX488E–MAX491E are  
designed for full-duplex communications, while the  
MAX481E, MAX483E, MAX485E, MAX487E, and  
MAX1487E are designed for half-duplex applications.  
For applications that are not ESꢂ sensitive see the pin-  
and function-compatible MAX481, MAX483, MAX485,  
MAX487–MAX491, and MAX1487.  
For Low-ꢀoltage Applications:  
MAX34±3E1MAX34±5E1MAX34±6E1MAX34±±E1  
MAX3490E1MAX349ꢅE: +3.3ꢀ ꢁowereꢂd ±ꢅ5kꢀ  
EꢃS-ꢁrotecteꢂd ꢅ2Mbpsd ꢃlew-Rate-Limiteꢂd  
True Rꢃ-4±51Rꢃ-422 Transceivers  
Ordering Information  
Applications  
ꢁART  
TEMꢁ RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
ꢁIN-ꢁACKAGE  
8 Plastic ꢂIP  
8 SO  
Low-Power RS-485 Transceivers  
Low-Power RS-422 Transceivers  
Level Translators  
MAX4±ꢅECPA  
MAX481ECSA  
MAX481EEPA  
MAX481EESA  
MAX4±3ECPA  
MAX483ECSA  
MAX483EEPA  
MAX483EESA  
8 Plastic ꢂIP  
8 SO  
Transceivers for EMI-Sensitive Applications  
Industrial-Control Local Area Networꢀs  
8 Plastic ꢂIP  
8 SO  
8 Plastic ꢂIP  
8 SO  
Ordering Information continued at end of data sheet.  
Selector Guide appears at end of data sheet.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-0410; Rev 4; 10/03  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
ABꢃOLUTE MAXIMUM RATINGꢃ  
Supply koltage ꢁk D.............................................................12k  
14-Pin Plastic ꢂIP ꢁderate 10.00mW/°C above +70°CD..800mW  
8-Pin SO ꢁderate 5.88mW/°C above +70°CD.................471mW  
14-Pin SO ꢁderate 8.33mW/°C above +70°CD...............667mW  
Operating Temperature Ranges  
MAX4_ _C_ _/MAX1487EC_ A.............................0°C to +70°C  
MAX4_ _E_ _/MAX1487EE_ A...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature ꢁsoldering, 10secD .............................+300°C  
CC  
–  
Control Input koltage ꢁRE, ꢂED...................-0.5k to ꢁk  
ꢂriver Input koltage ꢁꢂID.............................-0.5k to ꢁk  
+ 0.5kD  
+ 0.5kD  
CC  
CC  
ꢂriver Output koltage ꢁY, Z; A, BD ..........................-8k to +12.5k  
Receiver Input koltage ꢁA, BD.................................-8k to +12.5k  
Receiver Output koltage ꢁROD....................-0.5k to ꢁk  
+ 0.5kD  
CC  
Continuous Power ꢂissipation ꢁT = +70°CD  
A
8-Pin Plastic ꢂIP ꢁderate 9.09mW/°C above +70°CD ....727mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
SC ELECTRICAL CHARACTERIꢃTICꢃ  
ꢁk  
= 5k 5ꢃ, T = T  
to T , unless otherwise noted.D ꢁNotes 1, 2D  
MAX  
A
MIN  
CC  
ꢁARAMETER  
ꢃYMBOL  
CONSITIONꢃ  
MIN  
TYꢁ  
MAX  
UNITꢃ  
ꢂifferential ꢂriver Output ꢁno loadD  
k
Oꢂ1  
5
k
R = 50Ω ꢁRS-422D  
2
ꢂifferential ꢂriver Output  
ꢁwith loadD  
k
Oꢂ2  
k
R = 27Ω ꢁRS-485D, Figure 8  
1.5  
5
Change in Magnitude of ꢂriver  
ꢂifferential Output koltage for  
Complementary Output States  
Δk  
R = 27Ω or 50Ω, Figure 8  
R = 27Ω or 50Ω, Figure 8  
R = 27Ω or 50Ω, Figure 8  
0.2  
k
k
k
Oꢂ  
ꢂriver Common-Mode Output  
koltage  
k
3
OC  
Change in Magnitude of ꢂriver  
Common-Mode Output koltage  
for Complementary Output States  
Δk  
0.2  
Oꢂ  
–  
Input High koltage  
Input Low koltage  
Input Current  
k
ꢂE, ꢂI, RE  
2.0  
k
k
IH  
–  
k
ꢂE, ꢂI, RE  
0.8  
2
IL  
–  
I
ꢂE, ꢂI, RE  
µA  
IN1  
ꢂE = 0k;  
k
k
= 12k  
= -7k  
1.0  
IN  
k
= 0k or 5.25k,  
CC  
mA  
all devices except  
MAX487E/MAX1487E  
Input Current  
ꢁA, BD  
-0.8  
IN  
I
IN2  
k
k
= 12k  
= -7k  
0.25  
-0.2  
IN  
MAX487E/MAX1487E,  
mA  
k
ꢂE = 0k, k  
= 0k or 5.25k  
CC  
IN  
Receiver ꢂifferential Threshold  
koltage  
k
TH  
-7k k  
12k  
-0.2  
3.5  
0.2  
CM  
Receiver Input Hysteresis  
Δk  
k
= 0k  
CM  
70  
mk  
k
TH  
Receiver Output High koltage  
Receiver Output Low koltage  
k
I
I
= -4mA, k = 200mk  
Iꢂ  
OH  
O
O
k
= 4mA, k = -200mk  
0.4  
1
k
OL  
Iꢂ  
Three-State ꢁhigh impedanceD  
Output Current at Receiver  
I
0.4k k 2.4k  
µA  
Ω  
Ω  
OZR  
O
-7k k  
12k, all devices except  
CM  
12  
48  
MAX487E/MAX1487E  
Receiver Input Resistance  
R
IN  
-7k k 12k, MAX487E/MAX1487E  
CM  
2
Maxim Integrated  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
SC ELECTRICAL CHARACTERIꢃTICꢃ (continueꢂ)  
ꢁk  
= 5k 5ꢃ, T = T  
to T , unless otherwise noted.D ꢁNotes 1, 2D  
MAX  
A
MIN  
CC  
ꢁARAMETER  
ꢃYMBOL  
CONSITIONꢃ  
MIN  
TYꢁ  
MAX  
UNITꢃ  
MAX488E/MAX489E,  
120  
250  
–  
ꢂE, ꢂI, RE = 0k or k  
CC  
MAX490E/MAX491E,  
–  
ꢂE, ꢂI, RE = 0k or k  
300  
500  
CC  
ꢂE = k  
500  
300  
300  
230  
350  
250  
120  
0.5  
900  
500  
500  
400  
650  
400  
250  
10  
CC  
MAX481E/MAX485E,  
–  
No-Load Supply Current  
ꢁNote 3D  
RE = 0k or k  
CC  
I
µA  
ꢂE = 0k  
ꢂE = k  
CC  
CC  
MAX1487E,  
–  
RE = 0k or k  
CC  
ꢂE = 0k  
MAX483E  
MAX487E  
ꢂE = k  
MAX483E/MAX487E,  
–  
RE = 0k or k  
CC  
CC  
ꢂE = 0k  
–  
Supply Current in Shutdown  
ꢂriver Short-Circuit Current,  
I
MAX481E/483E/487E, ꢂE = 0k, RE = k  
µA  
SHꢂN  
CC  
I
I
-7k k 12k ꢁNote 4D  
35  
250  
mA  
OSꢂ1  
OSꢂ2  
O
k
= High  
O
ꢂriver Short-Circuit Current,  
= Low  
-7k k 12k ꢁNote 4D  
35  
7
250  
95  
mA  
O
k
O
Receiver Short-Circuit Current  
ESꢂ Protection  
I
0k k k  
CC  
mA  
ꢀk  
OSR  
O
A, B, Y and Z pins, tested using Human Body Model  
15  
ꢃWITCHING CHARACTERIꢃTICꢃ—MAX4±ꢅE1MAX4±5Ed MAX490E1MAX49ꢅEd MAXꢅ4±7E  
ꢁk  
= 5k 5ꢃ, T = T  
to T , unless otherwise noted.D ꢁNotes 1, 2D  
MAX  
A
MIN  
CC  
ꢁARAMETER  
ꢃYMBOL  
CONSITIONꢃ  
Figures 10 and 12, R = 54Ω,  
MIN  
10  
10  
TYꢁ  
40  
40  
5
MAX  
60  
60  
UNITꢃ  
ns  
t
t
PLH  
PHL  
ꢂIFF  
ꢂriver Input to Output  
C
= C = 100pF  
L2  
L1  
ꢂriver Output Sꢀew to Output  
ꢂriver Rise or Fall Time  
t
Figures 10 and 12, R  
= 54Ω, C = C = 100pF  
10  
ns  
SKEW  
ꢂIFF  
L1  
L2  
Figures 10 and 12,  
MAX481E, MAX485E, MAX1487E  
MAX490EC/E, MAX491EC/E  
= C = 100pF  
L2  
3
5
20  
20  
40  
25  
t , t  
R = 54Ω,  
L1  
ns  
R
F
ꢂIFF  
C
ꢂriver Enable to Output High  
ꢂriver Enable to Output Low  
ꢂriver ꢂisable Time from Low  
t
Figures 11 and 13, C = 100pF, S2 closed  
45  
45  
45  
45  
70  
70  
70  
70  
ns  
ns  
ns  
ns  
ZH  
L
t
Figures 11 and 13, C = 100pF, S1 closed  
L
ZL  
LZ  
HZ  
t
t
Figures 11 and 13, C = 15pF, S1 closed  
L
ꢂriver ꢂisable Time from High  
Figures 11 and 13, C = 15pF, S2 closed  
L
Figures 10 and 14,  
MAX481E, MAX485E, MAX1487E  
MAX490EC/E, MAX491EC/E  
= C = 100pF  
L2  
20  
20  
60  
60  
200  
150  
Receiver Input to Output  
t
, t  
R
C
= 54Ω,  
ns  
PLH PHL  
ꢂIFF  
L1  
Figures 10 and 14, R  
= 54Ω,  
| t  
- tPHL | ꢂifferential  
ꢂIFF  
PLH  
t
5
ns  
SKꢂ  
C
L1  
= C = 100pF  
L2  
Receiver Sꢀew  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver ꢂisable Time from Low  
Receiver ꢂisable Time from High  
Maximum ꢂata Rate  
t
Figures 9 and 15, C = 15pF, S1 closed  
20  
20  
20  
20  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
Mbps  
ns  
ZL  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
RL  
ZH  
t
LZ  
Figures 9 and 15, C = 15pF, S1 closed  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
RL  
HZ  
f
2.5  
50  
MAX  
Time to Shutdown  
t
MAX481E ꢁNote 5D  
200  
600  
SHꢂN  
Maxim Integrated  
3
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
ꢃWITCHING CHARACTERIꢃTICꢃ—MAX4±ꢅE1MAX4±5Ed MAX490E1MAX49ꢅEd MAXꢅ4±7E  
(continueꢂ)  
ꢁk  
= 5k 5ꢃ, T = T  
to T , unless otherwise noted.D ꢁNotes 1, 2D  
MAX  
A
MIN  
CC  
ꢁARAMETER  
ꢃYMBOL  
CONSITIONꢃ  
Figures 11 and 13, C = 100pF, S2 closed  
MIN  
TYꢁ  
MAX  
UNITꢃ  
ꢂriver Enable from Shutdown to  
Output High ꢁMAX481ED  
t
t
t
t
45  
100  
ns  
ZHꢁSHꢂND  
ZLꢁSHꢂND  
ZHꢁSHꢂND  
ZLꢁSHꢂND  
L
ꢂriver Enable from Shutdown to  
Output Low ꢁMAX481ED  
Figures 11 and 13, C = 100pF, S1 closed  
45  
100  
1000  
1000  
ns  
ns  
ns  
L
Receiver Enable from Shutdown  
to Output High ꢁMAX481ED  
Figures 9 and 15, C = 15pF, S2 closed,  
L
A - B = 2k  
225  
225  
Receiver Enable from Shutdown  
to Output Low ꢁMAX481ED  
Figures 9 and 15, C = 15pF, S1 closed,  
L
B - A = 2k  
ꢃWITCHING CHARACTERIꢃTICꢃ—MAX4±3Ed MAX4±7E1MAX4±±E1MAX4±9E  
ꢁk  
= 5k 5ꢃ, T = T  
to T , unless otherwise noted.D ꢁNotes 1, 2D  
MAX  
A
MIN  
CC  
ꢁARAMETER  
ꢂriver Input to Output  
ꢃYMBOL  
CONSITIONꢃ  
MIN  
250  
250  
TYꢁ  
800  
800  
MAX  
2000  
2000  
UNITꢃ  
t
t
PLH  
PHL  
Figures 10 and 12, R  
= 54Ω,  
= 54Ω,  
= 54Ω,  
ꢂIFF  
ꢂIFF  
ꢂIFF  
ns  
C
= C = 100pF  
L1  
L2  
Figures 10 and 12, R  
= C = 100pF  
ꢂriver Output Sꢀew to Output  
ꢂriver Rise or Fall Time  
t
20  
800  
ns  
ns  
SKEW  
C
L1  
L2  
Figures 10 and 12, R  
= C = 100pF  
t , t  
250  
2000  
R
F
C
L1  
L2  
ꢂriver Enable to Output High  
ꢂriver Enable to Output Low  
ꢂriver ꢂisable Time from Low  
t
Figures 11 and 13, C = 100pF, S2 closed  
250  
250  
300  
300  
250  
250  
2000  
2000  
3000  
3000  
2000  
2000  
ns  
ns  
ns  
ns  
ZH  
L
t
Figures 11 and 13, C = 100pF, S1 closed  
L
ZL  
LZ  
HZ  
t
Figures 11 and 13, C = 15pF, S1 closed  
L
ꢂriver ꢂisable Time from High  
t
Figures 11 and 13, C = 15pF, S2 closed  
L
t
t
PLH  
PHL  
Figures 10 and 14, R  
= 54Ω,  
ꢂIFF  
Receiver Input to Output  
ns  
ns  
C
L1  
= C = 100pF  
L2  
Figures 10 and 14, R  
= C = 100pF  
= 54Ω,  
I t  
- tPHL I ꢂifferential  
ꢂIFF  
PLH  
t
100  
SKꢂ  
C
L1  
L2  
Receiver Sꢀew  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver ꢂisable Time from Low  
Receiver ꢂisable Time from High  
Maximum ꢂata Rate  
t
Figures 9 and 15, C = 15pF, S1 closed  
25  
25  
25  
25  
50  
50  
50  
50  
ns  
ns  
ZL  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
RL  
ZH  
t
LZ  
Figures 9 and 15, C = 15pF, S1 closed  
ns  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
ns  
HZ  
RL  
f
t
, t < 50ꢃ of data period  
PLH PHL  
250  
50  
ꢀbps  
ns  
MAX  
Time to Shutdown  
t
MAX483E/MAX487E ꢁNote 5D  
200  
600  
SHꢂN  
ꢂriver Enable from Shutdown to  
Output High  
MAX483E/MAX487E, Figures 11 and 13,  
C = 100pF, S2 closed  
L
t
t
2000  
ns  
ns  
ns  
ns  
ZHꢁSHꢂND  
ꢂriver Enable from Shutdown to  
Output Low  
MAX483E/MAX487E, Figures 11 and 13,  
C = 100pF, S1 closed  
L
t
2000  
2500  
2500  
ZLꢁSHꢂND  
Receiver Enable from Shutdown  
to Output High  
MAX483E/MAX487E, Figures 9 and 15,  
C = 15pF, S2 closed  
L
ZHꢁSHꢂND  
Receiver Enable from Shutdown  
to Output Low  
MAX483E/MAX487E, Figures 9 and 15,  
C = 15pF, S1 closed  
L
t
ZLꢁSHꢂND  
4
Maxim Integrated  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
NOTEꢃ FOR ELECTRICAL1ꢃWITCHING CHARACTERIꢃTICꢃ  
Note ꢅ: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device  
ground unless otherwise specified.  
Note 2: All typical specifications are given for k  
= 5k and T = +25°C.  
A
CC  
Note 3: Supply current specification is valid for loaded transmitters when ꢂE = 0k.  
Note 4: Applies to peaꢀ current. See Typical Operating Characteristics.  
Note 5: The MAX481E/MAX483E/MAX487E are put into shutdown by bringing RE high and ꢂE low. If the inputs are in this state for  
–  
less than 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are  
guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.  
__________________________________________TypicalVOpePatingVChaPactePistics  
ꢁk  
= 5k, T = +25°C, unless otherwise noted.D  
A
CC  
OUTPUT CURRENT vs.  
RECEIVER OUTPUT LOW VOLTAGE  
OUTPUT CURRENT vs.  
RECEIVER OUTPUT HIGH VOLTAGE  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
50  
-25  
-20  
-15  
-10  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
45  
40  
35  
I
RO  
= 8mA  
30  
25  
20  
15  
3.4  
3.2  
3.0  
10  
5
-5  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT HIGH VOLTAGE (V)  
-60 -40 -20  
0
20 40 60 80 100  
OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
RECEIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
DRIVER OUTPUT CURRENT vs.  
DIFFERENTIAL OUTPUT VOLTAGE  
90  
80  
70  
60  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
I
RO  
= 8mA  
50  
40  
30  
0.2  
0.1  
0
20  
10  
0
-60 -40 -20  
0
20 40 60 80 100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Maxim Integrated  
5
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
____________________________TypicalVOpePatingVChaPactePisticsV(continued)  
ꢁk  
= 5k, T = +25°C, unless otherwise noted.D  
A
CC  
OUTPUT CURRENT vs.  
DRIVER OUTPUT LOW VOLTAGE  
OUTPUT CURRENT vs.  
DRIVER OUTPUT HIGH VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
140  
120  
-100  
-90  
-80  
-70  
2.3  
2.2  
R = 54Ω  
2.1  
2.0  
1.9  
100  
-60  
-50  
80  
60  
-40  
-30  
1.8  
1.7  
40  
20  
0
-20  
-10  
0
1.6  
1.5  
0
2
4
6
8
10  
12  
-8  
-6  
-4  
-2  
0
2
4
6
-60 -40 -20  
0
20 40 60 80 100  
OUTPUT LOW VOLTAGE (V)  
OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
MAX481E/MAX485E/MAX490E/MAX491E  
SUPPLY CURRENT vs. TEMPERATURE  
MAX1487E  
SUPPLY CURRENT vs. TEMPERATURE  
MAX483E/MAX487E–MAX489E  
SUPPLY CURRENT vs. TEMPERATURE  
600  
500  
400  
300  
200  
600  
500  
400  
300  
200  
600  
500  
400  
300  
200  
MAX481E/MAX485E; DE = V , RE = X  
CC  
MAX483E; DE = V , RE = X  
CC  
MAX1487E; DE = V , RE = X  
CC  
MAX487E; DE = V , RE = X  
CC  
MAX485E; DE = 0, RE = X,  
MAX481E; DE = RE = 0  
MAX490E/MAX491E; DE = RE = X  
MAX483E/MAX487E; DE = RE = 0,  
MAX488E/MAX489E; DE = RE = X  
MAX1487E; DE = 0V, RE = X  
100  
0
100  
0
100  
0
MAX483E/MAX487E; DE = 0, RE = V  
MAX481E; DE = 0, RE = V  
CC  
CC  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
Maxim Integrated  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
______________________________________________________________-inVSescPiption  
ꢁIN  
MAX4±ꢅE1MAX4±3E  
MAX4±5E1MAX4±7E  
MAXꢅ4±7E  
NAME  
FUNCTION  
MAX4±±E  
MAX490E  
MAX4±9E  
MAX49ꢅE  
Receiver Output: If A > B by 200mk, RO will be high;  
If A < B by 200mk, RO will be low.  
1
2
2
2
3
RO  
–  
Receiver Output Enable. RO is enabled when RE is  
–  
–  
RE  
low; RO is high impedance when RE is high.  
ꢂriver Output Enable. The driver outputs, Y and Z, are  
enabled by bringing ꢂE high. They are high imped-  
ance when ꢂE is low. If the driver outputs are enabled,  
3
4
4
ꢂE  
ꢂI  
the parts function as line drivers. While they are high  
–—–  
impedance, they function as line receivers if RE is low.  
ꢂriver Input. A low on ꢂI forces output Y low and out-  
put Z high. Similarly, a high on ꢂI forces output Y high  
and output Z low.  
3
5
5
4
5
6
6, 7  
9
GNꢂ  
Ground  
Y
Z
Noninverting ꢂriver Output  
Inverting ꢂriver Output  
10  
Noninverting Receiver Input and Noninverting ꢂriver  
Output  
6
A
7
8
7
12  
A
B
B
Noninverting Receiver Input  
Inverting Receiver Input and Inverting ꢂriver Output  
Inverting Receiver Input  
8
11  
1
14  
k
CC  
Positive Supply: 4.75k k  
5.25k  
CC  
1, 8, 13  
N.C.  
No Connect—not internally connected  
Maxim Integrated  
7
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
MAX481E  
0.1μF  
MAX483E  
TOP VIEW  
DE  
MAX485E  
MAX487E  
MAX1487E  
DI  
R
R
1
2
3
4
RO  
RE  
DE  
DI  
1
2
3
4
RO  
RE  
DE  
DI  
8
7
8
7
6
5
V
V
D
CC  
Rt  
CC  
B
B
A
B
Rt  
6
A
A
RO  
R
D
D
5
GND  
GND  
RE  
SIꢁ1ꢃO  
NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE IS HIGH.  
TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.  
Figure 1. MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E Pin Configuration and Typical Operating Circuit  
0.1μF  
V
CC  
V
1
MAX488E  
MAX490E  
CC  
Y
Z
5
6
TOP VIEW  
3
2
Rt  
DI  
RO  
DI  
D
R
1
2
3
4
R
8
7
6
5
A
B
Z
Y
V
CC  
RO  
DI  
8
7
A
B
Rt  
RO  
R
D
GND  
D
SIꢁ1ꢃO  
4
GND  
GND  
NOTE: TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.  
Figure 2. MAX488E/MAX490E Pin Configuration and Typical Operating Circuit  
V
CC  
DE  
V
CC  
RE  
TOP VIEW  
0.1μF  
4
14  
MAX489E  
MAX491E  
N.C.  
RO  
1
2
3
4
5
6
7
14  
V
CC  
9
Y
R
13 N.C.  
5
Rt  
DI  
RO  
D
R
10  
RE  
12  
11  
10  
9
A
Z
DE  
B
12  
11  
A
2
Rt  
DI  
Z
RO  
NC  
R
D
DI  
D
GND  
GND  
Y
B
1, 8, 13  
8
N.C.  
3
6, 7  
GND  
SIꢁ1ꢃO  
RE  
GND DE  
Figure 3. MAX489E/MAX491E Pin Configuration and Typical Operating Circuit  
8
Maxim Integrated  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
__________FunctionVTablesV(MAX4±ꢅE1MAX4±3E1MAX4±5E1MAX4±7E1MAXꢅ4±7E)  
Table ꢅ. Transmitting  
Table 2. Receiving  
INꢁUTꢃ  
OUTꢁUTꢃ  
INꢁUTꢃ  
OUTꢁUT  
RE  
DE  
A-B  
RO  
RE  
DE  
DI  
Z
Y
0
0
> +0.2k  
1
X
1
1
0
1
0
0
0
0
0
< -0.2k  
Inputs open  
X
0
1
X
0
1
0
0
0
X
X
1
0
High-Z  
High-Z  
1
High-Z  
1
High-Z  
High-Z  
*
*
*
X = ꢂon't care  
X = ꢂon't care  
High-Z = High impedance  
Shutdown mode for MAX481E/MAX483E/MAX487E  
High-Z = High impedance  
Shutdown mode for MAX481E/MAX483E/MAX487E  
*
*
neers developed state-of-the-art structures to protect  
these pins against ESꢂ of 15ꢀk without damage. The  
ESꢂ structures withstand high ESꢂ in all states: normal  
operation, shutdown, and powered down. After an ESꢂ  
event, Maxim’s MAX481E, MAX483E, MAX485E,  
MAX487E–MAX491E, and MAX1487E ꢀeep worꢀing  
without latchup.  
__________ApplicationsVInfoPmation  
The MAX481E/MAX483E/MAX485E/MAX487E–MAX491E  
and MAX1487E are low-power transceivers for RS-485  
and RS-422 communications. These “E” versions of the  
MAX481, MAX483, MAX485, MAX487–MAX491, and  
MAX1487 provide extra protection against ESꢂ. The  
rugged MAX481E, MAX483E, MAX485E, MAX497E–  
MAX491E, and MAX1487E are intended for harsh envi-  
ronments where high-speed communication is important.  
These devices eliminate the need for transient suppres-  
sor diodes and the associated high capacitance loading.  
The standard ꢁnon-“E”D MAX481, MAX483, MAX485,  
MAX487–MAX491, and MAX1487 are recommended for  
applications where cost is critical.  
ESꢂ protection can be tested in various ways; the  
transmitter outputs and receiver inputs of this product  
family are characterized for protection to 15ꢀk using  
the Human Body Model.  
Other ESꢂ test methodologies include IEC10004-2 con-  
tact discharge and IEC1000-4-2 air-gap discharge ꢁfor-  
merly IEC801-2D.  
The MAX481E, MAX485E, MAX490E, MAX491E, and  
MAX1487E can transmit and receive at data rates up to  
2.5Mbps, while the MAX483E, MAX487E, MAX488E,  
and MAX489E are specified for data rates up to  
250ꢀbps. The MAX488E–MAX491E are full-duplex  
transceivers, while the MAX481E, MAX483E, MAX487E,  
and MAX1487E are half-duplex. In addition, driver-  
enable ꢁꢂED and receiver-enable ꢁRED pins are included  
on the MAX481E, MAX483E, MAX485E, MAX487E,  
MAX489E, MAX491E, and MAX1487E. When disabled,  
the driver and receiver outputs are high impedance.  
EꢃS Test Conꢂitions  
ESꢂ performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test set-up, test methodology, and test results.  
Human Boꢂy Moꢂel  
Figure 4 shows the Human Body Model, and Figure 5  
shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESꢂ voltage of inter-  
est, which is then discharged into the test device  
through a 1.5ꢀΩ resistor.  
IECꢅ000-4-2  
The IEC1000-4-2 standard covers ESꢂ testing and per-  
formance of finished equipment; it does not specifically  
refer to integrated circuits ꢁFigure 6D.  
±±15kV ESV-Potection  
As with all Maxim devices, ESꢂ-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The driver outputs and receiver inputs have  
extra protection against static electricity. Maxim’s engi-  
Maxim Integrated  
9
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
R
1M  
R 1500Ω  
D
C
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE CURRENT  
LIMIT RESISTOR  
AMPERES  
HIGH  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
36.8%  
100pF  
SOURCE  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 4. Human Body ESꢂ Test Model  
Figure 5. Human Body Model Current Waveform  
I
100%  
90%  
R
50M to 100M  
R 330Ω  
D
C
DISCHARGE  
RESISTANCE  
CHARGE CURRENT  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
150pF  
SOURCE  
10%  
t
t = 0.7ns to 1ns  
r
30ns  
60ns  
Figure 6. IEC1000-4-2 ESꢂ Test Model  
Figure 7. IEC1000-4-2 ESꢂ Generator Current Waveform  
Y
1k  
TEST POINT  
R
RECEIVER  
OUTPUT  
V
CC  
S1  
S2  
V
C
RL  
OD  
1k  
15pF  
R
V
OC  
Z
Figure 8. ꢂriver ꢂC Test Load  
Figure 9. Receiver Timing Test Load  
10  
Maxim Integrated  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
3V  
DE  
C
L1  
A
B
V
CC  
Y
Z
S1  
S2  
500Ω  
R
RO  
DIFF  
DI  
OUTPUT  
UNDER TEST  
V
ID  
RE  
C
L
C
L2  
Figure 10. ꢂriver/Receiver Timing Test Circuit  
Figure 11. ꢂriver Timing Test Load  
3V  
3V  
DE  
DI  
1.5V  
1.5V  
1.5V  
1.5V  
0V  
0V  
t
t
PHL  
PLH  
1/2 V  
O
t
LZ  
t
, t  
ZL(SHDN) ZL  
Z
Y, Z  
V
2.3V  
V
V
+0.5V  
O
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
V
OL  
Y
1/2 V  
O
V
= V (Y) - V (Z)  
DIFF  
Y, Z  
0V  
V
O
-0.5V  
2.3V  
V
DIFF  
OH  
90%  
90%  
0V  
-V  
10%  
10%  
O
t
, t  
t
HZ  
ZH(SHDN) ZH  
t
R
t
F
t | t - t  
SKEW = PLH PHL  
|
Figure 12. ꢂriver Propagation ꢂelays  
Figure 13. ꢂriver Enable and ꢂisable Times ꢁexcept MAX488E  
and MAX490ED  
3V  
RE  
1.5V  
1.5V  
0V  
V
OH  
t
LZ  
t
, t  
RO  
ZL(SHDN) ZL  
1.5V  
1.5V  
V
OUTPUT  
OL  
V
CC  
RO  
1.5V  
V
V
+ 0.5V  
- 0.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
t
t
PLH  
PHL  
V
ID  
ID  
A-B  
0V  
0V  
-V  
INPUT  
RO  
1.5V  
OH  
0V  
t
, t  
t
HZ  
ZH(SHDN) ZH  
Figure 14. Receiver Propagation ꢂelays  
Figure 15. Receiver Enable and ꢂisable Times ꢁexcept MAX488E  
and MAX490ED  
Maxim Integrated  
11  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
10dB/div  
10dB/div  
0Hz  
5MHz  
0Hz  
5MHz  
500kHz/div  
500kHz/div  
Figure 16. ꢂriver Output Waveform and FFT Plot of  
MAX485E/MAX490E/MAX491E/MAX1487E Transmitting a  
150ꢀHz Signal  
Figure 17. ꢂriver Output Waveform and FFT Plot of  
MAX483E/MAX487E–MAX489E Transmitting a 150ꢀHz Signal  
The major difference between tests done using the  
Human Body Model and IEC1000-4-2 is higher peaꢀ  
current in IEC1000-4-2, because series resistance is  
lower in the IEC1000-4-2 model. Hence, the ESꢂ with-  
stand voltage measured to IEC1000-4-2 is generally  
lower than that measured using the Human Body  
Model. Figure 7 shows the current waveform for the 8ꢀk  
IEC1000-4-2 ESꢂ contact-discharge test.  
MAX483 /MAX487 /MAX488 /MAX489 :  
ReducedV MIVandVReflections  
The MAX483E and MAX487E–MAX489E are slew-rate  
limited, minimizing EMI and reducing reflections  
caused by improperly terminated cables. Figure 16  
shows the driver output waveform and its Fourier analy-  
sis of a 150ꢀHz signal transmitted by a MAX481E,  
MAX485E, MAX490E, MAX491E, or MAX1487E. High-  
frequency harmonics with large amplitudes are evident.  
Figure 17 shows the same information displayed for a  
MAX483E, MAX487E, MAX488E, or MAX489E transmit-  
ting under the same conditions. Figure 17’s high-fre-  
quency harmonics have much lower amplitudes, and  
the potential for EMI is significantly reduced.  
The air-gap test involves approaching the device with a  
charged probe. The contact-discharge method connects  
the probe to the device before the probe is energized.  
Machine Moꢂel  
The Machine Model for ESꢂ tests all pins using a  
200pF storage capacitor and zero discharge resis-  
tance. Its objective is to emulate the stress caused by  
contact that occurs with handling and assembly during  
manufacturing. Of course, all pins require this protec-  
tion during manufacturing—not just inputs and outputs.  
Therefore, after PC board assembly, the Machine Model  
is less relevant to I/O ports.  
LowD-owePVEhutdownVMode  
(MAX48± /MAX483 /MAX487 )  
A low-power shutdown mode is initiated by bringing  
both RE high and ꢂE low. The devices will not shut  
down unless both the driver and receiver are disabled.  
In shutdown, the devices typically draw only 0.5µA of  
supply current.  
MAX487 /MAX±487 :  
±28VTPansceivePsVonVtheVBus  
RE and ꢂE may be driven simultaneously; the parts are  
guaranteed not to enter shutdown if RE is high and ꢂE  
is low for less than 50ns. If the inputs are in this state  
for at least 600ns, the parts are guaranteed to enter  
shutdown.  
The 48ꢀΩ, 1/4-unit-load receiver input impedance of the  
MAX487E and MAX1487E allows up to 128 transceivers  
on a bus, compared to the 1-unit load ꢁ12ꢀΩ input  
impedanceD of standard RS-485 drivers ꢁ32 transceivers  
maximumD. Any combination of MAX487E/MAX1487E  
and other RS-485 transceivers with a total of 32 unit  
loads or less can be put on the bus. The MAX481E,  
MAX483E, MAX485E, and MAX488E–MAX491E have  
standard 12ꢀΩ receiver input impedance.  
For the MAX481E, MAX483E, and MAX487E, the t  
ZH  
and t enable times assume the part was not in the  
ZL  
low-power shutdown state ꢁthe MAX485E, MAX488E–  
MAX491E, and MAX1487E can not be shut downD. The  
t
and t  
enable times assume the  
ZLꢁSHꢂND  
ZHꢁSHꢂND  
parts were shut down ꢁsee Electrical CharacteristicsD.  
12  
Maxim Integrated  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
delay times. Typical propagation delays are shown in  
Figures 19–22 using Figure 18’s test circuit.  
The difference in receiver delay times, t  
- t  
, is  
PHL  
PLH  
typically under 13ns for the MAX481E, MAX485E,  
MAX490E, MAX491E, and MAX1487E, and is typically  
less than 100ns for the MAX483E and MAX487E–  
MAX489E.  
100pF  
Z
B
A
TTL IN  
t , t < 6ns  
RECEIVER  
OUT  
D
R
R
F
R = 54Ω  
Y
The driver sꢀew times are typically 5ns ꢁ10ns maxD for  
the MAX481E, MAX485E, MAX490E, MAX491E, and  
MAX1487E, and are typically 100ns ꢁ800ns maxD for the  
MAX483E and MAX487E–MAX489E.  
100pF  
TypicalVApplications  
The MAX481E, MAX483E, MAX485E, MAX487E–  
MAX491E, and MAX1487E transceivers are designed for  
bidirectional data communications on multipoint bus  
transmission lines. Figures 25 and 26 show typical net-  
worꢀ application circuits. These parts can also be used as  
line repeaters, with cable lengths longer than 4000 feet.  
Figure 18. Receiver Propagation ꢂelay Test Circuit  
It taꢀes the drivers and receivers longer to become  
enabled from the low-power shutdown state ꢁt D,  
ZHꢁSHꢂN  
To minimize reflections, the line should be terminated at  
both ends in its characteristic impedance, and stub  
lengths off the main line should be ꢀept as short as possi-  
ble. The slew-rate-limited MAX483E and MAX487E–  
MAX489E are more tolerant of imperfect termination.  
t
D than from the operating mode ꢁt , t D. ꢁThe  
ZLꢁSHꢂND  
ZH ZL  
parts are in operating mode if the RE, ꢂE inputs equal a  
logical 0,1 or 1,1 or 0, 0.D  
SPivePVOutputV-PotectionV  
Excessive output current and power dissipation caused  
by faults or by bus contention are prevented by two  
mechanisms. A foldbacꢀ current limit on the output stage  
provides immediate protection against short circuits over  
the whole common-mode voltage range ꢁsee Typical  
Operating CharacteristicsD. In addition, a thermal shut-  
down circuit forces the driver outputs into a high-imped-  
ance state if the die temperature rises excessively.  
Bypass the k pin with 0.1µF.  
CC  
IsolatedVRED481  
For isolated RS-485 applications, see the MAX253 and  
MAX1480 data sheets.  
LineVLengthVvs.VSataVRate  
The RS-485/RS-422 standard covers line lengths up to  
4000 feet. Figures 23 and 24 show the system differen-  
tial voltage for the parts driving 4000 feet of 26AWG  
twisted-pair wire at 110ꢀHz into 100Ω loads.  
-PopagationVSelay  
Many digital encoding schemes depend on the differ-  
ence between the driver and receiver propagation  
Maxim Integrated  
13  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
A
B
500mV/div  
500mV/div  
A
B
RO  
5V/div  
RO  
5V/div  
25ns/div  
25ns/div  
Figure 20. MAX481E/MAX485E/MAX490E/MAX491E/  
Figure 19. MAX481E/MAX485E/MAX490E/MAX1487E Receiver  
MAX1487E Receiver t  
PLH  
t
PHL  
B
A
500mV/div  
B
500mV/div  
A
RO  
5V/div  
RO  
5V/div  
200ns/div  
200ns/div  
Figure 21. MAX483E/MAX487E–MAX489E Receiver t  
Figure 22. MAX483E/MAX487E–MAX489E Receiver t  
PHL  
PLH  
DI  
5V  
DI  
5V  
0V  
0V  
1V  
0
0
V - V  
V - V  
A
B
A
B
-1V  
-1V  
DO  
5V  
0V  
5V  
0V  
DO  
2μs/div  
2μs/div  
Figure 23. MAX481E/MAX485E/MAX490E/MAX491E/  
MAX1487E System ꢂifferential koltage at 110ꢀHz ꢂriving  
4000ft of Cable  
Figure 24. MAX483E/MAX1487E–MAX489E System ꢂifferential  
koltage at 110ꢀHz ꢂriving 4000ft of Cable  
14  
Maxim Integrated  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15kV ESD-Potected,VElewDRateDLimited,  
LowD-oweP,VRED481/RED422VTPansceivePs  
120Ω  
120Ω  
DE  
DI  
B
A
B
A
DI  
D
D
DE  
B
A
B
A
RO  
RE  
RO  
RE  
R
R
R
R
D
D
MAX481E  
MAX483E  
MAX485E  
MAX487E  
MAX1487E  
DE  
DI  
RO  
RE  
DI  
RO RE  
DE  
Figure 25. MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E Typical Half-ꢂuplex RS-485 Networꢀ  
A
Y
120Ω  
120Ω  
120Ω  
120Ω  
RO  
RE  
R
D
DI  
B
Z
Z
DE  
DE  
B
RE  
RO  
DI  
R
D
Y
A
Y
Z
B
A
Y
Z
B
A
R
R
D
D
MAX488E  
MAX489E  
MAX490E  
MAX491E  
DI  
DE RE RO  
DI  
DE RE RO  
NOTE: RE AND DE ON MAX489E/MAX491E ONLY.  
Figure 26. MAX488E–MAX491E Full-ꢂuplex RS-485 Networꢀ  
Maxim Integrated  
15  
MAX481E/MAX483E/MAX485E/  
MAX487E–MAX491E/MAX1487E  
±±15k ꢀED-ꢁrotected, Elew-Rate-Limited,  
Low-ꢁower, RE-481/RE-422 Transceivers  
Ordering Information (continued)  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic ꢂIP  
8 SO  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 Plastic ꢂIP  
14 SO  
MAX485ECPA  
MAX485ECSA  
MAX485EEPA  
MAX485EESA  
MAX487ECPA  
MAX487ECSA  
MAX487EEPA  
MAX487EESA  
MAX488ECPA  
MAX488ECSA  
MAX488EEPA  
MAX488EESA  
MAX489ECPꢂ  
MAX489ECSꢂ  
MAX489EEPꢂ  
MAX489EESꢂ  
MAX490ECPA  
MAX490ECSA  
MAX490EEPA  
MAX490EESA  
MAX491ECPꢂ  
MAX491ECSꢂ  
MAX491EEPꢂ  
MAX491EESꢂ  
MAX1487ECPA  
MAX1487ECSA  
MAX1487EEPA  
MAX1487EESA  
8 Plastic ꢂIP  
8 SO  
8 Plastic ꢂIP  
8 SO  
8 Plastic ꢂIP  
8 SO  
8 Plastic ꢂIP  
8 SO  
8 Plastic ꢂIP  
8 SO  
14 Plastic ꢂIP  
14 SO  
8 Plastic ꢂIP  
8 SO  
14 Plastic ꢂIP  
14 SO  
8 Plastic ꢂIP  
8 SO  
8 Plastic ꢂIP  
8 SO  
14 Plastic ꢂIP  
14 SO  
8 Plastic ꢂIP  
8 SO  
Eelector Guide  
DATA  
RATE  
(Mbps)  
SLEW-  
RATE  
LIMITED  
RECEIVER/ QUIESCENT  
NUMBER OF  
HALF/FULL  
DUPLEX  
LOW-POWER  
SHUTDOWN  
PIN  
COUNT  
DRIVER  
ENABLE  
CURRENT TRANSMITTERS  
PART NUMBER  
(μA)  
ON BUS  
MAX481E  
MAX483E  
MAX485E  
MAX487E  
MAX488E  
MAX489E  
MAX490E  
MAX491E  
MAX1487E  
Half  
Half  
Half  
Half  
Full  
Full  
Full  
Full  
Half  
2.5  
0.25  
2.5  
No  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
300  
120  
300  
120  
120  
120  
300  
300  
230  
32  
32  
8
8
32  
8
0.25  
0.25  
0.25  
2.5  
Yes  
Yes  
Yes  
No  
Yes  
No  
128  
32  
8
8
No  
Yes  
No  
32  
14  
8
No  
32  
2.5  
No  
No  
Yes  
Yes  
32  
14  
8
2.5  
No  
No  
128  
ꢁac5age Information  
Chip Information  
For the latest pacꢀage outline information, go to  
TRANSISTOR COUNT: 295  
www.maxim-ic.com/packages.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
16  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
©
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  
2003 Maxim Integrated  

相关型号:

MAX488ECSA+

暂无描述
MAXIM

MAX488ECSA+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012A, SOIC-8
MAXIM

MAX488ECSA-T

暂无描述
MAXIM

MAX488ECUA

Transceiver
MAXIM

MAX488ECUA-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO8, MICRO, SOP-8
MAXIM

MAX488EEPA

【15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers
MAXIM

MAX488EEPA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, MS-001AB, DIP-8
MAXIM

MAX488EESA

【15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers
MAXIM

MAX488EESA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012A, SOIC-8
MAXIM

MAX488EESA+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012A, SOIC-8
MAXIM

MAX488EESA-T

LINE TRANSCEIVER, PDSO8, 0.150 INCH, MS-012A, SOIC-8
ROCHESTER

MAX488EPA

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM