LT1013DIDR [ROCHESTER]

DUAL OP-AMP, 1000uV OFFSET-MAX, 1MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8;
LT1013DIDR
型号: LT1013DIDR
厂家: Rochester Electronics    Rochester Electronics
描述:

DUAL OP-AMP, 1000uV OFFSET-MAX, 1MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8

放大器 光电二极管
文件: 总31页 (文件大小:1230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
LT1013, LT1013D . . . D PACKAGE  
(TOP VIEW)  
D
Single-Supply Operation  
− Input Voltage Range Extends to Ground  
− Output Swings to Ground While Sinking  
Current  
1
2
3
4
8
7
6
5
1IN+  
1IN−  
1OUT  
V
CC−  
D
D
D
D
D
D
D
Input Offset Voltage  
− 150 µV Max at 25°C for LT1013A  
Offset-Voltage Temperature Coefficient  
− 2.5 µV/°C Max for LT1013A  
Input Offset Current  
− 0.8 nA Max at 25°C for LT1013A  
2IN+  
2IN−  
V
CC+  
2OUT  
LT1013, LT1013A . . . FK PACKAGE  
(TOP VIEW)  
High Gain . . . 1.5 V/µV Min (R = 2 k),  
L
0.8 V/µV Min (R = 600 k) for LT1013A  
L
3
2
1
20 19  
18  
NC  
NC  
4
5
6
7
8
Low Supply Current . . . 0.5 mA Max at  
2OUT  
NC  
1IN−  
NC  
17  
16  
15  
14  
T = 25°C for LT1013A  
A
Low Peak-to-Peak Noise Voltage . . . 0.55 µV  
Typ  
2IN−  
NC  
1IN+  
NC  
Low Current Noise . . . 0.07 pA/Hz Typ  
9 10 11 12 13  
description/ordering information  
The LT1013 devices are dual precision  
operational amplifiers, featuring high gain, low  
supply current, low noise, and low-offset-voltage  
temperature coefficient.  
NC − No internal connection  
LT1013, LT1013D . . . JG OR P PACKAGE  
(TOP VIEW)  
The LT1013 devices can be operated from a  
single 5-V power supply; the common-mode input  
voltage range includes ground, and the output can  
also swing to within a few millivolts of ground.  
Crossover distortion is eliminated. The LT1013  
can be operated with both dual 15-V and single  
5-V supplies.  
1OUT  
1IN−  
1IN+  
V
CC+  
1
2
3
4
8
7
6
5
2OUT  
2IN−  
2IN+  
V
CC−  
The LT1013C, LT1013AC, and LT1013D are characterized for operation from 0°C to 70°C. The LT1013I,  
LT1013AI, and LT1013DI are characterized for operation from −40°C to 105°C. The LT1013M, LT1013AM, and  
LT1013DM are characterized for operation over the full military temperature range of −55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2004, Texas Instruments Incorporated  
ꢏ ꢔ ꢟ ꢗ ꢖꢢ ꢝꢜ ꢚꢛ ꢜꢖ ꢘꢟ ꢡꢓ ꢙꢔ ꢚ ꢚꢖ ꢑꢍ ꢀꢩ ꢉꢊ ꢒ ꢩꢄꢪꢫ ꢄꢫꢅ ꢙꢡꢡ ꢟꢙ ꢗ ꢙ ꢘꢞ ꢚꢞꢗ ꢛ ꢙ ꢗ ꢞ ꢚꢞ ꢛꢚꢞ ꢢ  
ꢚ ꢞ ꢛ ꢚꢓ ꢔꢨ ꢖꢕ ꢙ ꢡꢡ ꢟꢙ ꢗ ꢙ ꢘ ꢞ ꢚ ꢞ ꢗ ꢛ ꢣ  
ꢝ ꢔꢡ ꢞꢛꢛ ꢖ ꢚꢤꢞ ꢗ ꢦꢓ ꢛꢞ ꢔ ꢖꢚꢞ ꢢꢣ ꢏ ꢔ ꢙꢡ ꢡ ꢖ ꢚꢤꢞ ꢗ ꢟꢗ ꢖ ꢢꢝꢜ ꢚꢛ ꢅ ꢟꢗ ꢖ ꢢꢝꢜ ꢚꢓꢖ ꢔ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢆꢁ  
ꢀꢍ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
ORDERING INFORMATION  
V
max  
IO  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
PACKAGE  
T
A
AT 25°C  
(µV)  
P−DIP (P)  
Tube of 50  
Tube of 75  
LT1013CP  
LT1013CD  
LT1013P  
300  
800  
800  
SOIC (D)  
P−DIP (P)  
1013C  
Reel of 2500 LT1013CDR  
0°C to 70°C  
Tube of 50  
Tube of 75  
LT1013DP  
LT1013DD  
LT1013DP  
SOIC (D)  
P−DIP (P)  
1013D  
Reel of 2500 LT1013DDR  
Tube of 50  
Tube of 75  
LT1013DIP  
LT1013DID  
LT1013DIP  
−40°C to 105°C  
SOIC (D)  
1013DI  
Reel of 2500 LT1013DIDR  
C−DIP (JG)  
C−DIP (JGB)  
LCCC (FK)  
LCCC (FKB)  
C−DIP (JG)  
C−DIP (JGB)  
LCCC (FKB)  
SOIC (D)  
Tube of 50  
Tube of 50  
Tube of 55  
Tube of 55  
Tube of 50  
Tube of 50  
Tube of 55  
Tube of 75  
LT1013AMJG  
LT1013AMJGB  
LT1013AMFK  
LT1013AMFKB  
LT1013MJG  
LT1013AMJG  
LT1013AMJGB  
LT1013AMFK  
LT1013AMFKB  
LT1013MJG  
LT1013MJGB  
LT1013MFKB  
1013DM  
150  
−55°C to 125°C  
LT1013MJGB  
LT1013MFKB  
LT1013DMD  
300  
800  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are  
available at www.ti.com/sc/package.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢬꢀꢁ ꢂ ꢃ ꢂꢄ ꢆ ꢅ ꢬꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀꢬꢉ ꢊꢋꢌ ꢍꢎꢍ ꢏꢐ ꢬꢏ ꢉꢋ ꢊꢆꢁ ꢍꢏ ꢐꢆꢀꢬꢆꢑꢉ ꢀꢍ ꢒ ꢍꢋ ꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢇ ꢈꢆꢀ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐ ꢏ ꢉꢋ ꢊꢆꢁꢍ ꢏ ꢐꢆ ꢀ ꢆꢑ ꢉ ꢀꢍ ꢒ ꢍꢋꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (see Note 1): V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −22 V  
CC+  
CC−  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
− 5 V to V  
I
CC−  
CC+  
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Package thermal impedance, θ (see Notes 4 and 5): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W  
JA  
P package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85°C/W  
Operating virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
2. Differential voltages are at IN+ with respect to IN−.  
and V .  
CC−  
CC+  
3. The output may be shorted to either supply.  
4. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
J
JA  
A
ambient temperature is P = (T (max) − T )/θ . Operating at the absolute maximum T of 150°C can affect reliability. Due to  
D
J
A
JA  
J
variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be  
activated at power levels slightly above or below the rated dissipation.  
5. The package thermal impedance is calculated in accordance with JESD 51-7.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢬꢀꢁ ꢂ ꢃ ꢂꢄ ꢆ ꢅ ꢬꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀꢬꢉ ꢊꢋꢌ ꢍꢎꢍ ꢏꢐ ꢬꢏ ꢉꢋ ꢊꢆꢁ ꢍꢏ ꢐꢆꢀꢬꢆꢑꢉ ꢀꢍ ꢒ ꢍꢋ ꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Template Release Date: 7−11−94  
ꢀꢁ ꢂ ꢃꢂ ꢄ ꢅꢬ ꢀꢁ ꢂ ꢃꢂ ꢄ ꢆꢅ ꢬ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢈ ꢆ ꢀꢬ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐꢬ ꢏ ꢉ ꢋꢊ ꢆꢁꢍ ꢏ ꢐꢆ ꢀꢬꢆꢑ ꢉꢀ ꢍꢒ ꢍꢋ ꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢬꢀꢁ ꢂ ꢃ ꢂꢄ ꢆ ꢅ ꢬꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀꢬꢉ ꢊꢋꢌ ꢍꢎꢍ ꢏꢐ ꢬꢏ ꢉꢋ ꢊꢆꢁ ꢍꢏ ꢐꢆꢀꢬꢆꢑꢉ ꢀꢍ ꢒ ꢍꢋ ꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Template Release Date: 7−11−94  
ꢀꢁ ꢂ ꢃꢂ ꢄ ꢅꢬ ꢀꢁ ꢂ ꢃꢂ ꢄ ꢆꢅ ꢬ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢈ ꢆ ꢀꢬ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐꢬ ꢏ ꢉ ꢋꢊ ꢆꢁꢍ ꢏ ꢐꢆ ꢀꢬꢆꢑ ꢉꢀ ꢍꢒ ꢍꢋ ꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢬꢀꢁ ꢂ ꢃ ꢂꢄ ꢆ ꢅ ꢬꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀꢬꢉ ꢊꢋꢌ ꢍꢎꢍ ꢏꢐ ꢬꢏ ꢉꢋ ꢊꢆꢁ ꢍꢏ ꢐꢆꢀꢬꢆꢑꢉ ꢀꢍ ꢒ ꢍꢋ ꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Template Release Date: 7−11−94  
ꢀꢁ ꢂ ꢃꢂ ꢄ ꢅꢬ ꢀꢁ ꢂ ꢃꢂ ꢄ ꢆꢅ ꢬ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢈ ꢆ ꢀꢬ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐꢬ ꢏ ꢉ ꢋꢊ ꢆꢁꢍ ꢏ ꢐꢆ ꢀꢬꢆꢑ ꢉꢀ ꢍꢒ ꢍꢋ ꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
vs Supply voltage  
1
2
3
4
5
V
Input offset voltage  
IO  
vs Temperature  
vs Time  
V  
IO  
Change in input offset voltage  
Input offset current  
I
IO  
I
IB  
vs Temperature  
vs Temperature  
Input bias current  
V
Common-mode input voltage  
vs Input bias current  
vs Load resistance  
vs Frequency  
vs Frequency  
vs Temperature  
vs Frequency  
vs Frequency  
vs Temperature  
vs Time  
6
7, 8  
9, 10  
11  
IC  
A
VD  
Differential voltage amplification  
Channel separation  
Output saturation voltage  
12  
CMRR Common-mode rejection ratio  
13  
k
Supply-voltage rejection ratio  
Supply current  
14  
SVR  
I
I
15  
CC  
Short-circuit output current  
Equivalent input noise voltage  
Equivalent input noise current  
Peak-to-peak input noise voltage  
16  
OS  
V
n
vs Frequency  
vs Frequency  
vs Time  
17  
I
n
17  
V
18  
N(PP)  
Small signal  
19, 21  
20, 22, 23  
9
Pulse response  
Phase shift  
Large signal  
vs Frequency  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢇ ꢈꢆꢀ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐ ꢏ ꢉꢋ ꢊꢆꢁꢍ ꢏ ꢐꢆ ꢀ ꢆꢑ ꢉ ꢀꢍ ꢒ ꢍꢋꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
OF REPRESENTATIVE UNITS  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
10  
250  
200  
150  
100  
50  
V
CC  
= 15 V  
V
T
A
= 5 V, V  
= −55°C to 125°C  
= 0  
CC+  
CC−  
V
T
=
15 V  
CC  
A
= −55°C to 125°C  
1
V
V
T
A
= 5 V  
= 0  
= 25°C  
CC+  
CC−  
0
−50  
−100  
−150  
0.1  
R
S
+
V
T
A
=
15V  
−200  
−250  
CC  
= 25°C  
R
S
0.01  
1 k  
3 k 10 k 30 k 100 k 300 k 1 M 3 M 10 M  
|V | − Supply Voltage − V  
−50  
−25  
0
25  
50  
75  
100  
125  
T
A
− Free-Air Temperature − °C  
CC  
Figure 1  
Figure 2  
WARM-UP CHANGE  
IN INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET CURRENT  
vs  
TIME AFTER POWER-ON  
FREE-AIR TEMPERATURE  
1
5
4
V
IC  
= 0  
V
T
A
=
15 V  
CC  
= 25°C  
0.8  
0.6  
0.4  
0.2  
3
2
1
V
= 2.5 V  
CC  
V
CC+  
= 5 V, V  
CC−  
= 0  
JG Package  
V
CC  
= 15 V  
0
−50  
0
0
25  
50  
75  
100  
125  
−25  
0
1
2
3
4
5
T
A
− Free-Air Temperature − °C  
t − Time After Power-On − min  
Figure 3  
Figure 4  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
vs  
INPUT BIAS CURRENT  
−30  
15  
10  
5
5
4
V
IC  
= 0  
T
= 25°C  
A
−25  
−20  
−15  
−10  
−5  
3
2
V
V
= 5 V  
= 0  
V
=
15 V  
CC  
CC−  
CC  
V
CC  
= 5 V, V = 0  
CC−  
(left scale)  
(right scale)  
0
V
CC  
= 2.5 V  
1
0
−5  
−10  
−15  
V
CC  
= 15 V  
−1  
0
−50  
−25  
0
25  
50  
100  
125  
0
−5  
−10  
−15  
−20  
−25  
−30  
75  
I
IB  
− Input Bias Current − nA  
T
A
− Free-Air Temperature − °C  
Figure 5  
Figure 6  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
10  
4
10  
4
V
V
=
10 V  
15 V  
CC  
O
V
V
= 5 V, V  
= 0  
= 20 mV to 3.5 V  
CC  
O
CC−  
=
T
A
= 25°C  
T
A
= −55°C  
T
A
= −55°C  
1
1
T
A
= 25°C  
T
A
= 125°C  
T
A
= 125°C  
0.4  
0.4  
0.1  
100  
0.1  
100  
400  
1 k  
4 k  
10 k  
400  
1 k  
4 k  
10 k  
R
− Load Resistance − Ω  
R
− Load Resistance − Ω  
L
L
Figure 7  
Figure 8  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢇ ꢈꢆꢀ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐ ꢏ ꢉꢋ ꢊꢆꢁꢍ ꢏ ꢐꢆ ꢀ ꢆꢑ ꢉ ꢀꢍ ꢒ ꢍꢋꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
AND PHASE SHIFT  
vs  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
FREQUENCY  
FREQUENCY  
80°  
25  
20  
140  
120  
V
C
T
A
= 0  
= 100 pF  
= 25°C  
IC  
L
C
T
= 100 pF  
= 25°C  
L
A
100°  
120°  
V
CC  
=
15 V  
15  
10  
5
100  
80  
Phase Shift  
V
V
= 5 V  
CC+  
− = 0  
V
CC  
=
15 V  
V
V
= 5 V  
= 0  
CC+  
CC−  
CC  
140°  
160°  
180°  
200°  
AVD  
60  
V
V
= 5 V  
CC+  
CC−  
40  
20  
0
−5  
= 0  
VCC  
= 15 V  
−10  
−15  
220°  
240°  
0
−20  
0.01 0.1  
1
10 100 1 k 10 k 100 k 1 M 10 M  
f − Frequency − Hz  
0.01  
0.3  
1
3
10  
f − Frequency − MHz  
Figure 9  
Figure 10  
OUTPUT SATURATION VOLTAGE  
vs  
CHANNEL SEPARATION  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
10  
160  
140  
120  
V
CC+  
V
CC−  
= 5 V to 30 V  
= 0  
V
V
R
=
15 V  
CC  
= 20 V to 5 kHz  
= 2 kΩ  
I(PP)  
L
T
A
= 25°C  
Isink = 10 mA  
1
Limited by  
Thermal  
Interaction  
Isink = 5 mA  
Isink = 1 mA  
R
= 100 Ω  
L
R
= 1 kΩ  
L
100  
80  
Isink = 100 µA  
0.1  
Limited by  
Pin-to-Pin  
Capacitance  
Isink = 10 µA  
Isink = 0  
60  
0.01  
10  
100  
1 k  
10 k  
100 k  
1 M  
−50  
−25  
0
25  
50  
75  
100  
125  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
120  
100  
80  
T
= 25°C  
A
V
T
A
= 15 V  
= 25°C  
CC  
V
= 15 V  
CC  
V
= 5 V  
CC+  
Positive  
Supply  
V
= 0  
CC−  
Negative  
Supply  
60  
60  
40  
40  
20  
0
20  
0
10  
0.1  
1
10  
100  
1 k  
10 k 100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 13  
Figure 14  
SHORT-CIRCUIT OUTPUT CURRENT  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
ELAPSED TIME  
40  
460  
420  
380  
340  
300  
V
CC+  
= + 15 V  
T
= −55°C  
= 25°C  
A
T
30  
20  
A
T
A
= 125°C  
10  
0
V
= + 15 V  
CC+  
T
= 125°C  
A
−10  
−20  
−30  
−40  
T
= 25°C  
A
T
= −55°C  
A
V
CC+  
= 5 V, V  
25  
= 0  
CC−  
260  
0
1
2
3
0
50  
75  
100  
125  
−50  
−25  
t − Elapsed Time − min  
T
A
− Free-Air Temperature − °C  
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢇ ꢈꢆꢀ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐ ꢏ ꢉꢋ ꢊꢆꢁꢍ ꢏ ꢐꢆ ꢀ ꢆꢑ ꢉ ꢀꢍ ꢒ ꢍꢋꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
AND EQUIVALENT INPUT NOISE CURRENT  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
OVER A  
vs  
FREQUENCY  
10-SECOND PERIOD  
1000  
2000  
1600  
1200  
V
T
=
2 V to 18 V  
V
=
2 V to 18 V  
CC  
A
CC  
= 25°C  
f = 0.1 Hz to 10 Hz  
T
A
= 25°C  
300  
100  
I
n
800  
400  
0
V
n
30  
10  
1/f Corner = 2 Hz  
10  
1
100  
f − Frequency − Hz  
1k  
0
2
4
6
8
10  
t − Time − s  
Figure 17  
Figure 18  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
80  
60  
40  
20  
0
20  
15  
V
= 15 V  
CC  
= 1  
V
=
= 1  
= 25°C  
15 V  
A
CC  
V
A
A
T
= 25°C  
V
A
T
10  
5
0
−20  
−40  
−60  
−80  
−5  
−10  
−15  
−20  
0
2
4
6
8
10 12 14  
0
50 100 150 200 250 300 350  
t − Time − µs  
t − Time − µs  
Figure 19  
Figure 20  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
6
5
4
3
160  
140  
V
= 5 V, V  
CC−  
= 0  
CC+  
V = 0 to 4 V  
V
= 5 V, V = 0  
CC−  
CC+  
V = 0 to 100 mV  
I
R
I
R
= 4.7 kto 5 V  
= 1  
= 25°C  
L
= 600 to GND  
= 1  
= 25°C  
L
A
V
A
A
V
A
120  
100  
80  
60  
40  
20  
0
T
T
2
1
0
−1  
−2  
−20  
0
10 20 30 40 50 60 70  
0
20 40 60 80 100 120 140  
t − Time − µs  
t − Time − µs  
Figure 21  
Figure 22  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
6
5
4
3
2
1
0
V
= 5 V, V = 0  
CC−  
CC+  
V = 0 to 4 V  
I
R
= 0  
= 1  
= 25°C  
L
A
V
A
T
−1  
−2  
0
10 20 30 40 50 60 70  
t − Time − µs  
Figure 23  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢇ ꢈꢆꢀ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐ ꢏ ꢉꢋ ꢊꢆꢁꢍ ꢏ ꢐꢆ ꢀ ꢆꢑ ꢉ ꢀꢍ ꢒ ꢍꢋꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
single-supply operation  
The LT1013 is fully specified for single-supply operation (V  
includes ground, and the output swings to within a few millivolts of ground.  
= 0). The common-mode input voltage range  
CC−  
Furthermore, the LT1013 has specific circuitry that addresses the difficulties of single-supply operation, both  
at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a  
transient basis. If the input is more than a few hundred millivolts below ground, the LT1013 is designed to deal  
with the following two problems that can occur:  
1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited  
current flows from the substrate (V  
terminal) to the input, which can destroy the unit. On the LT1013,  
CC−  
the 400-resistors in series with the input [see schematic (each amplifier)] protect the device, even  
when the input is 5 V below ground.  
2. When the input is more than 400 mV below ground (at T = 25°C), the input stage of similar operational  
A
amplifiers saturates, and phase reversal occurs at the output. This can cause lockup in servo systems.  
Because of unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the LT1013 outputs  
do not reverse, even when the inputs are at −1.5 V (see Figure 24).  
This phase-reversal protection circuitry does not function when the other operational amplifier on the LT1013  
is driven hard into negative saturation at the output. Phase-reversal protection does not work on amplifier 1  
when amplifier 2 output is in negative saturation nor on amplifier 2 when amplifier 1 output is in negative  
saturation.  
At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more  
than a few microamperes while swinging to ground. The all-npn output stage of the LT1013 maintains its low  
output resistance and high-gain characteristics until the output is saturated. In dual-supply operations, the  
output stage is free of crossover distortion.  
5
4
3
5
4
3
2
5
4
3
2
2
1
1
0
1
0
0
−1  
−2  
−1  
−1  
(a) V  
I(PP)  
= −1.5 V TO 4.5 V  
(b) OUTPUT PHASE REVERSAL  
EXHIBITED BY LM358  
(c) NO PHASE REVERSAL  
EXHIBITED BY LT1013  
Figure 24. Voltage-Follower Response With Input Exceeding  
the Negative Common-Mode Input Voltage Range  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
comparator applications  
The single-supply operation of the LT1013 is well suited for use as a precision comparator with TTL-compatible  
output. In systems using both operational amplifiers and comparators, the LT1013 can perform multiple duties  
(see Figures 25 and 26).  
5
5
4
3
2
1
V
V
T
= 5 V  
= 0  
= 25°C  
CC+  
CC−  
A
4
3
2
2 mV  
10 mV  
5 mV  
5 mV  
Overdrive  
Overdrive  
2 mV  
10 mV  
1
0
0
V
V
T
A
= 5 V  
= 0  
= 25°C  
100 mV  
100 mV  
CC+  
CC−  
0
50 100 150 200 250 300 350 400 450  
0
50 100 150 200 250 300 350 400 450  
t − Time − µs  
t − Time − µs  
Figure 25. Low-to-High-Level Output  
Response for Various Input Overdrives  
Figure 26. High-to-Low-Level Output  
Response for Various Input Overdrives  
low-supply operation  
The minimum supply voltage for proper operation of the LT1013 is 3.4 V (three NiCad batteries). Typical supply  
current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier.  
offset voltage and noise testing  
The test circuit for measuring input offset voltage and its temperature coefficient is shown in Figure 30. This  
circuit, with supply voltages increased to 20 V, also is used as the burn-in configuration.  
The peak-to-peak equivalent input noise voltage of the LT1013 is measured using the test circuit shown in  
Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one  
zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as  
an additional zero to eliminate noise contribution from the frequency band below 0.1 Hz.  
An input noise voltage test is recommended when measuring the noise of a large number of units. A 10-Hz input  
noise voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are  
determined by the white noise and the location of the 1/f corner frequency.  
Current noise is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is  
subtracted.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢇ ꢈꢆꢀ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐ ꢏ ꢉꢋ ꢊꢆꢁꢍ ꢏ ꢐꢆ ꢀ ꢆꢑ ꢉ ꢀꢍ ꢒ ꢍꢋꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
0.1 µF  
100 kΩ  
+
2 kΩ  
10 Ω  
+
LT1013  
22 µF  
4.3 kΩ  
Oscilloscope  
= 1 MΩ  
LT1001  
4.7 µF  
R
in  
2.2 µF  
A
VD  
= 50,000  
100 kΩ  
0.1 µF  
110 kΩ  
24.3 kΩ  
NOTE A: All capacitor values are for nonpolarized capacitors only.  
Figure 27. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit  
50 kΩ  
(see Note A)  
10 kΩ  
10 MΩ  
10 MΩ  
15 V  
+
+
100 Ω  
LT1013  
V
n
100 Ω  
(see Note A)  
V = 1000 V  
O IO  
LT1013  
10 M10 MΩ  
50 kΩ  
(see Note A)  
−15 V  
2 1ń2  
–(820 nV) ]  
[V  
2
no  
I
+
n
40 MW   100  
Metal-film resistor  
NOTE A: Resistors must have low thermoelectric potential.  
Figure 28. Noise-Current Test Circuit  
and Formula  
Figure 29. Test Circuit for V and aV  
IO  
IO  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
typical applications  
5 V  
Q3  
2N2905  
820 Ω  
Q1  
2N2905  
T1  
1N4002 (4)  
+
+
68 Ω  
SN74HC04 (6)  
10 µF  
10 µF  
0.002 µF  
Q2  
2N2905  
10 k10 kΩ  
820 Ω  
0.33 µF  
5 V  
1/2  
Q4  
2N2222  
100 kΩ  
10 kΩ  
100 Ω  
10 kΩ  
20-mA Trim  
LT1013  
+
4 kΩ  
2 kΩ  
100 pF  
1 kΩ  
4-mA  
Trim  
10 kΩ  
80 kΩ  
4 mA to 20 mA  
to Load  
2.2 kMax  
4.3 kΩ  
1/2  
LT1013  
+
5 V  
LT1004  
1.2 V  
IN  
0 to 4 V  
1% film resistor. Match 10-kresistors to within 0.05%.  
T1 = PICO-31080  
Figure 30. 5-V 4-mA to 20-mA Current-Loop Transmitter With 12-Bit Accuracy  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃꢂ ꢄꢆ ꢅ ꢀꢁꢂ ꢃ ꢂ ꢄ ꢇ  
ꢇ ꢈꢆꢀ ꢉꢊ ꢋꢌ ꢍ ꢎꢍ ꢏꢐ ꢏ ꢉꢋ ꢊꢆꢁꢍ ꢏ ꢐꢆ ꢀ ꢆꢑ ꢉ ꢀꢍ ꢒ ꢍꢋꢊꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
T1  
1N4002 (4)  
0.1 Ω  
+
5 V  
+
100 kΩ  
1/2  
LT1013  
10 µF  
+
1/2  
LT1013  
To Inverter  
Drive  
68 kΩ  
4 mA to 20 mA  
Fully Floating  
10 kΩ  
4.3 kΩ  
4 kΩ  
301 Ω  
5 V  
1 kΩ  
20-mA  
Trim  
2 kΩ  
4-mA  
Trim  
LT1004  
1.2 V  
IN  
0 to 4 V  
1% film resistor  
Figure 31. Fully Floating Modification to 4-mA to 20-mA Current-Loop Transmitter With 8-Bit Accuracy  
5 V  
1/2 LTC1043  
6
5
5
6
8
+
1/2  
IN+  
IN−  
7
OUT A  
R2  
1 µF  
2
3
1 µF  
LT1013  
4
15  
18  
R1  
1/2 LTC1043  
7
3
8
+
IN+  
IN−  
1
1/2  
LT1013  
OUT B  
1 µF  
1 µF  
11  
12  
2
R2  
13  
14  
0.01 µF  
R1  
NOTE A: V = 150 µV, A  
IO VD  
= (R1/R2) + 1, CMRR = 120 dB, V = 0 to 5 V  
ICR  
Figure 32. 5-V Single-Supply Dual Instrumentation Amplifier  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢂꢄ ꢅ ꢀꢁ ꢂ ꢃ ꢂꢄ ꢆꢅ ꢀꢁꢂ ꢃꢂ ꢄꢇ  
ꢇꢈꢆ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢍꢏ ꢐ ꢏ ꢉꢋꢊ ꢆꢁ ꢍꢏ ꢐꢆꢀ ꢆꢑ ꢉ ꢀꢍ ꢒꢍ ꢋꢊ ꢎ  
SLOS018H − MAY 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
10  
+
To Input  
Cable Shields  
8
200 kΩ  
LT1013  
9
5 V  
2
3
10 kΩ  
1
LT1013  
20 kW  
10 kΩ  
IN−  
+
5 V  
10 kΩ  
4
13  
12  
RG (2 kTyp)  
14  
LT1013  
OUT  
+
1 µF  
11  
200 kΩ  
10 kΩ  
6
7
LT1013  
20 kW  
5
10 kΩ  
10 kΩ  
IN+  
+
5 V  
1% film resistor. Match 10-kresistors to within 0.05%.  
For high source impedances, use 2N2222 diodes.  
NOTE A:  
A
VD  
= (400,000/RG) + 1  
Figure 33. 5-V Precision Instrumentation Amplifier  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Oct-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
LCCC  
CDIP  
PDIP  
PDIP  
LCCC  
CDIP  
CDIP  
PDIP  
SOIC  
Drawing  
FK  
JG  
FK  
JG  
P
5962-88760012A  
5962-8876001PA  
5962-88760022A  
5962-8876002PA  
LT1013ACP  
ACTIVE  
ACTIVE  
20  
8
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB Level-NC-NC-NC  
POST-PLATE Level-NC-NC-NC  
ACTIVE  
20  
8
ACTIVE  
A42 SNPB  
Call TI  
Level-NC-NC-NC  
Call TI  
OBSOLETE  
OBSOLETE  
ACTIVE  
8
LT1013AIP  
P
8
Call TI  
Call TI  
LT1013AMFKB  
LT1013AMJG  
LT1013AMJGB  
LT1013AMP  
FK  
JG  
JG  
P
20  
8
1
1
1
POST-PLATE Level-NC-NC-NC  
ACTIVE  
A42 SNPB  
A42 SNPB  
Call TI  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
ACTIVE  
8
OBSOLETE  
ACTIVE  
8
LT1013CD  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
LT1013CDE4  
LT1013CDR  
LT1013CDRE4  
LT1013CP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
P
P
D
D
D
D
D
D
D
D
P
P
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
LT1013CPE4  
LT1013DD  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
LT1013DDE4  
LT1013DDR  
LT1013DDRE4  
LT1013DID  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
LT1013DIDE4  
LT1013DIDR  
LT1013DIDRE4  
LT1013DIP  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
LT1013DIPE4  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
LT1013DMD  
LT1013DP  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
D
P
8
8
75  
50  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-NC-NC-NC  
Pb-Free  
(RoHS)  
LT1013DPE4  
ACTIVE  
PDIP  
P
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Oct-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
PDIP  
LCCC  
CDIP  
CDIP  
PDIP  
Drawing  
LT1013IP  
LT1013MFKB  
LT1013MJG  
LT1013MJGB  
LT1013MP  
LT1013Y  
OBSOLETE  
ACTIVE  
P
FK  
JG  
JG  
P
8
20  
8
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
1
1
1
POST-PLATE Level-NC-NC-NC  
ACTIVE  
A42 SNPB  
A42 SNPB  
Call TI  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
ACTIVE  
8
OBSOLETE  
8
OBSOLETE XCEPT  
Y
0
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

LT1013DIDRE4

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DIDRG4

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DIP

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DIP

DUAL OP-AMP, 1000uV OFFSET-MAX, 1MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
ROCHESTER

LT1013DIPE4

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DJG

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DMD

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DMDG4

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DMDR

Voltage-Feedback Operational Amplifier
ETC

LT1013DMDREP

DUAL OP-AMP, 1000uV OFFSET-MAX, 1MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8
TI

LT1013DMJG

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI

LT1013DMP

DUAL PRECISION OPERATIONAL AMPLIFIERS
TI