ISL6455IRZ-TK [ROCHESTER]

1.3 A SWITCHING REGULATOR, 880 kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, GREEN, PLASTIC, MO-220VGGD-2, QFN-24;
ISL6455IRZ-TK
型号: ISL6455IRZ-TK
厂家: Rochester Electronics    Rochester Electronics
描述:

1.3 A SWITCHING REGULATOR, 880 kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, GREEN, PLASTIC, MO-220VGGD-2, QFN-24

开关
文件: 总16页 (文件大小:1086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL6455, ISL6455A  
®
Data Sheet  
December 21, 2005  
FN9196.0  
Triple Output Regulator with Single  
Synchronous Buck and Dual LDO  
Features  
• Fully integrated synchronous buck regulator + dual LDO  
The ISL6455 is a highly integrated triple output regulator  
which provides a single chip solution for FPGAs and wireless  
chipset power management. The device integrates a high  
efficiency synchronous buck regulator (adjustable) with two  
ultra low noise LDO regulators (adjustable). Either the  
ISL6455 or ISL6455A can be selected based on whether  
3.3V ±10% or 5V ±10% is required as an input voltage.  
• PWM output voltage adjustable.  
- 0.8V to 2.5V with ISL6455 (VIN = 3.3V)  
- 0.8V to 3.3V with ISL6455A (VIN = 5.0V)  
• High output current. . . . . . . . . . . . . . . . . . . . . . . . . 600mA  
• Dual LDO adjustable options  
- LDO1, 1.2V to Vin-0.3V (3.3Vmax). . . . . . . . . . . 300mA  
- LDO2, 1.2V to Vin-0.3V (3.3Vmax). . . . . . . . . . . 300mA  
The synchronous current mode control PWM regulator with  
integrated N- and P-channel power MOSFET provides  
adjustable voltages based on external resistor setting.  
Synchronous rectification with internal MOSFETs is used to  
achieve higher efficiency and reduced number of external  
components. Operating frequency is typically 750kHz  
allowing the use of smaller inductor and capacitor values.  
The device can be synchronized to an external clock signal  
in the range of 500kHz to 1MHz. The PG_PWM output  
indicates loss of regulation on PWM output.  
• Ultra-compact DC/DC converter design  
• Stable with small ceramic output capacitors and no load  
• High conversion efficiency  
• Low shutdown supply current  
• Low dropout voltage for LDOs  
- LDO1 . . . . . . . . . . . . . . . . . . 150mV (typical) at 300mA  
- LDO2 . . . . . . . . . . . . . . . . . . 150mV (typical) at 300mA  
• Low output voltage noise  
The ISL6455 also has two LDO adjustable regulators using  
internal PMOS transistors as pass devices. LDO2 features  
- <30µV  
(typical) for LDO2 (VCO supply)  
RMS  
• PG_LDO and PG_PWM (PWM and LDO) outputs  
ultra low noise typically below 30µV  
to aid VCO stability.  
RMS  
The EN_LDO pin controls LDO1 and LDO2 outputs. The  
ISL6455 also integrates a RESET function, which eliminates  
the need for additional RESET IC required in WLAN and  
other applications. The IC asserts a RESET signal whenever  
• Extensive circuit protection and monitoring features  
- PWM overvoltage protection  
- Overcurrent protection  
- Shutdown  
- Thermal shutdown  
the V supply voltage drops below a preset threshold,  
IN  
keeping it asserted for at least 25ms after V has risen  
IN  
• Integrated RESET output for microprocessor reset  
• Proven reference design for total WLAN system solution  
• QFN package  
- Compliant to JEDEC PUB95 MO-220 QFN - Quad Flat  
No Leads - Product Outline  
above the reset threshold. The PG_LDO output indicates  
loss of regulation on either of the two LDO outputs. Other  
features include overcurrent protection and thermal  
shutdown for all the three outputs.  
High integration and the thin Quad Flat No-lead (QFN)  
package makes ISL6455 an ideal choice for powering  
FPGAs and small form factor wireless cards such as  
PCMCIA, mini-PCI and Cardbus-32.  
- Near Chip-Scale package footprint Improves PCB  
efficiency and is thinner in Profile  
• Pb-free plus anneal available (RoHS compliant)  
Ordering Information  
Applications  
• WLAN cards  
PART NUMBER*  
(Note)  
PART  
TEMP.  
PACKAGE  
PKG.  
MARKING RANGE (°C) (Pb-Free) DWG. #  
- PCMCIA, Cardbus32, MiniPCI cards  
- Compact flash cards  
ISL6455IRZ  
6455IRZ  
-40 to 85 24 Ld QFN L24.4x4B  
-40 to 85 24 Ld QFN L24.4x4B  
ISL6455AIRZ  
6455AIRZ  
• Hand-held instruments  
Add “-TK” or T5K suffix for tape and reel.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
Related Literature  
• TB363 - Guidelines for Handling and Processing Moisture  
Sensitive Surface Mount Devices (SMDs)  
• TB389 - PCB Land Pattern Design and Surface Mount  
Guidelines for QFN Packages  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL6455, ISL6455A  
Pinout  
ISL6455, ISL6455A (QFN)  
TOP VIEW  
24 23 22 21 20 19  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
SGND  
GND  
CT  
FB_LDO2  
FB_LDO1  
CC1  
VOUT  
RESET  
EN  
GND_LDO  
VOUT1  
SYNC  
7
8
9
10 11 12  
Typical Application Schematic  
3.3V  
C9  
1.0µF  
C10  
10µF  
L1  
C8  
Vopwm  
8.2µH  
C7  
10µF  
0.1µF  
R1  
10k  
Re  
Rf  
1
22 21 20  
ISL6455  
19 18  
FB_PWM  
PG_PWM  
VOUT  
16  
11  
12  
13  
EN_LDO  
VOUT2  
24  
9
SYNC  
CC1  
EN  
Vout2  
Vout1  
C4  
10µF  
33nF  
3.3V  
C2  
GND_LDO  
Ra  
Rb  
5
6
3
4
VOUT1  
14  
23  
R3  
10k  
Rc  
FB_LDO1  
PG_LDO  
C3  
10µF  
15 17  
7
8
10  
2
Rd  
C1  
3.3V  
10nF  
C6  
C5  
4.7µF  
NOTE: All capacitors are ceramic.  
33nF  
FN9196.0  
December 21, 2005  
2
ISL6455, ISL6455A  
Functional Block Diagram  
VIN_LDO  
VIN_LDO  
Gm  
10nF  
CT  
VIN_LDO  
BAND  
GAP  
REF  
VOUT1  
RESET  
RESET  
+
-
1.2V  
VOUT1  
LDO1  
0
3.3V  
10k  
WINDOW  
COMP.  
R
c
POR  
POR  
10µF  
FB_LDO1  
PG_LDO  
R
d
EN  
CC1  
CC2  
33nF  
33nF  
Gm  
CONTROL  
LOGIC  
EN_LDO  
VOUT2  
+
-
GND_LDO  
VOUT2  
LDO2  
THERMAL  
0
SHUTDOWN  
R
R
a
WINDOW  
COMP.  
150°C  
10µF  
FB_LDO2  
b
VIN  
VIN  
PVCC  
3.3V  
CURRENT  
SENSE  
RTN  
SGND  
SLOPE  
SOFT-  
START  
COMPENSATION  
8.2µH  
EN  
VOUT  
PWM  
LX  
GATE  
OVERCURRENT,  
OVERVOLTAGE  
LOGIC  
FB_PWM  
EA  
GM  
DRIVE  
10µF  
COMPENSATION  
PGND  
750kHz  
OSCILLATOR  
R
e
EN  
POWER GOOD  
PWM  
R
f
GND  
V
OUT  
UVLO  
PWM  
REFERENCE  
0.45V  
VOUT  
SYNC EN  
10k  
PG_PWM  
3.3V  
10k  
3.3V  
10k  
FN9196.0  
December 21, 2005  
3
ISL6455, ISL6455A  
Absolute Maximum Ratings (Note 1)  
Thermal Information  
Thermal Resistance (Typical)  
24 Ld QFN (Note 1) . . . . . . . . . . . . . . .  
Supply Voltage V , PV , V _LDO. . . . . . . .GND -0.3V to +6.0V  
θ
(°C/W)  
42  
θ
(°C/W)  
6
CC  
JA  
JC  
IN  
IN  
Max Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . 600mA  
Maximum Junction Temperature (Plastic Package) .-55°C to 150°C  
Maximum Storage Temperature Range. . . . . . . . . . .-65°C to 150°C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300°C  
(Lead Tips Only)  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to 85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
2. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Recommended operating conditions unless otherwise noted. V = V _LDO = PV = 3.3V for ISL6455 and  
IN  
IN  
CC  
5.0V for the ISL6455A, Compensation Capacitors = 33nF for LDO1 and LDO2. T = -40°C to 85° (Note 2), typical  
A
values are at T = 25°C.  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
SUPPLY  
CC  
VIN_PWM Supply Voltage Range  
ISL6455  
3.0  
4.2  
3.0  
-
3.3  
5.0  
-
3.6  
5.5  
5.5  
3.1  
V
V
ISL6455A  
VIN_LDO Supply Voltage Range  
V
Operating Supply Current (Note 3) for ISL6455  
Operating Supply Current (Note 3) for ISL6455A  
V
SW  
= V _LDO = PV  
IN CC  
= 3.3V  
2.5  
mA  
IN  
f
= 750kHz, C = 10µF, I = 0mA  
OUT  
L
V
SW  
= V _LDO = PV  
= 5.0V  
-
-
3.5  
5
4.5  
10  
mA  
IN  
IN CC  
f
= 750kHz, C = 10µF, I = 0mA  
OUT  
L
Shutdown Supply Current  
ISL6455 and ISL6455A  
EN = EN_LDO = GND  
µA  
Input Bias Current (EN pin)  
EN = EN_LDO = GND/V  
-1.5  
2.55  
2.51  
3.94  
3.78  
2.46  
2.53  
-
1.0  
2.65  
2.56  
4.05  
3.89  
2.64  
2.59  
150  
20  
1.5  
2.71  
2.61  
4.13  
3.97  
2.82  
2.66  
-
µA  
V
IN  
VIN_PWM UVLO Threshold for ISL6455  
V
V
V
V
V
V
TR  
TF  
TR  
TF  
TR  
TF  
V
VIN_PWM UVLO Threshold for ISL6455A  
V
V
VIN_LDO UVLO Threshold for ISL6455 and  
ISL6455A  
V
V
Thermal Shutdown Temperature (Note 6)  
Thermal Shutdown Hysteresis (Note 6)  
SYNCHRONOUS BUCK PWM REGULATOR  
Output Voltage  
Rising Threshold  
°C  
°C  
-
-
ISL6455  
0.8  
0.8  
-
-
-
-
2.5  
3.3  
0.9  
0.5  
V
V
ISL6455A  
FB_PWM Initial Voltage Accuracy (Note 7)  
FB_PWM Line Regulation  
V
= 0.45V, I  
OUT  
= 3mA, T = -40°C to 85°C  
-0.9  
-0.5  
%
%
REF  
A
I
= 3mA, V = PV  
IN  
= 3.0-3.6V (ISL6455)  
CC  
O
or 4.2-5.5V (6455A)  
FB_PWM Load Regulation  
Peak Output Current Limit  
I
= 3mA to 500mA, V = PV = 3.0-3.6V (ISL6455)  
CC  
-1.1  
-
+1.1  
%
O
IN  
or 4.2-5.5V (ISL6455A)  
700mA  
-
1300  
mA  
mΩ  
mΩ  
PMOS r  
NMOS r  
I
I
= 200mA  
= 200mA  
-
-
170  
50  
-
-
DS(ON)  
OUT  
OUT  
DS(ON)  
FN9196.0  
4
December 21, 2005  
ISL6455, ISL6455A  
Electrical Specifications Recommended operating conditions unless otherwise noted. V = V _LDO = PV = 3.3V for ISL6455 and  
IN  
IN  
CC  
5.0V for the ISL6455A, Compensation Capacitors = 33nF for LDO1 and LDO2. T = -40°C to 85° (Note 2), typical  
A
values are at T = 25°C. (Continued)  
A
PARAMETER  
TEST CONDITIONS  
= 200mA, V = 3.3V, V = 1.8V  
MIN  
TYP  
93  
MAX  
UNITS  
%
Efficiency  
I
-
-
-
-
OUT  
IN  
OUT  
Soft-Start Time  
OSCILLATOR  
4096 Clock Cycles @ 750kHz  
5.5  
ms  
Oscillator Frequency  
T
= -40°C to +85°C  
620  
500  
70  
-
750  
880  
kHz  
kHz  
%
A
Frequency Synchronization Range (f  
SYNC High Level Input Voltage  
SYNC Low Level Input Voltage  
Sync Input Leakage Current  
)
Clock signal on SYNC pin  
-
-
1000  
SYNC  
As % of V  
As % of V  
-
30  
1.0  
-
IN  
IN  
-
%
SYNC = GND or V  
-1.0  
-
-
µA  
%
IN  
Min Duty Cycle of External Clock Signal (Note 6)  
Max Duty Cycle of External Clock Signal (Note 6)  
PG_PWM  
20  
80  
-
-
%
Rising Threshold  
1.2mA source/sink, FB_PWM vs 0.45V V  
+5.5  
-10.5  
-
8.0  
-8.0  
0.01  
+10.5  
-5.5  
0.1  
%
%
REF  
Falling Threshold  
FB_PWM vs 0.45V V  
REF  
Leakage Current  
PG_PWM = GND or V  
µA  
IN  
LDO1 SPECIFICATIONS  
Output Voltage Range  
VIN_VLDO > 3.0V  
VIN_VLDO > 3.6V  
1.2  
1.2  
-1.5  
300  
350  
-
-
2.7  
3.3  
1.5  
-
V
V
Output Voltage Range  
-
FB_LDO1 Voltage Accuracy (Note 7)  
Maximum Output Current (Note 6)  
Output Current Limit (Note 6)  
Dropout Voltage (Note 4)  
FB_LDO1 Line Regulation  
FB_LDO1 Load Regulation  
Output Voltage Noise (Note 6)  
I
= 10mA  
= 3.6V  
-
%
OUT  
V
-
420  
150  
-
mA  
mA  
mV  
%/V  
%
IN  
600  
300  
0.5  
0.5  
I
I
I
= 300mA  
OUT  
OUT  
OUT  
= 10mA, VIN_LDO = 3.0-5.5V  
= 10mA to 300mA  
-0.5  
-0.5  
-
10Hz < f < 100kHz, I  
= 10mA  
OUT  
C
C
= 2.2µF  
= 10µF  
-
-
65  
60  
-
-
µV  
µV  
OUT  
RMS  
RMS  
OUT  
LDO2 SPECIFICATIONS  
Output Voltage Range  
VIN_VLDO > 3.0V  
VIN_VLDO > 3.6V  
1.2  
1.2  
-1.5  
300  
350  
-
-
2.7  
3.3  
1.5  
-
V
V
Output Voltage Range  
-
FB_LDO2 Voltage Accuracy (Note 7)  
Maximum Output Current (Note 6)  
Output Current Limit (Note 6)  
Dropout Voltage (Note 4)  
I
= 10mA  
= 3.6V  
-
%
mA  
mA  
mV  
%/V  
%
OUT  
V
-
420  
150  
-
IN  
600  
300  
0.5  
0.5  
I
I
I
= 300mA  
OUT  
OUT  
OUT  
FB_LDO2 Line Regulation  
FB_LDO2 Load Regulation  
Output Voltage Noise (Note 6)  
= 10mA, VIN_LDO = 3.0-5.5V  
= 10mA to 300mA  
-0.5  
-0.5  
-
10Hz < f < 100kHz, I  
= 10mA  
OUT  
C
C
= 2.2µF  
= 10µF  
-
-
30  
20  
-
-
µV  
OUT  
RMS  
RMS  
µV  
OUT  
FN9196.0  
December 21, 2005  
5
ISL6455, ISL6455A  
Electrical Specifications Recommended operating conditions unless otherwise noted. V = V _LDO = PV = 3.3V for ISL6455 and  
IN  
IN  
CC  
5.0V for the ISL6455A, Compensation Capacitors = 33nF for LDO1 and LDO2. T = -40°C to 85° (Note 2), typical  
A
values are at T = 25°C. (Continued)  
A
PARAMETER  
ENABLE (EN and (EN_LDO)  
EN High Level Input Voltage  
EN Low Level Input Voltage  
RESET BLOCK SPECIFICATIONS  
RESET (reset released)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
As % of VIN  
As % of VIN  
70  
-
-
-
-
%
%
30  
ISL6455, ISOURCE = 500µA, VIN = 2.90V  
0.8 x  
-
-
V
V
CC  
RESET (reset asserted)  
RESET Rising Threshold  
RESET Falling Threshold  
RESET (reset released)  
ISL6455, ISINK = 1.2mA, VIN = 2.50V  
-
-
0.3  
2.84  
2.81  
-
V
V
V
V
ISL6455  
2.71  
2.69  
0.8 x  
2.77  
2.75  
-
ISL6455  
ISL6455A, ISOURCE = 800µA, VIN = 4.70V  
V
CC  
RESET (reset asserted)  
ISL6455A, ISINK = 3.2mA, VIN = 4.10V  
-
-
0.4  
V
V
RESET Rising Threshold  
ISL6455A  
ISL6455A  
ISL6455  
4.19  
4.27  
4.24  
20  
4.35  
RESET Falling Threshold  
4.16  
4.32  
V
RESET Threshold Hysteresis  
RESET Threshold Hysteresis  
RESET Active Timeout Period (Note 5)  
POWER GOOD (PG_LDO)  
Minimum Input Voltage for Valid PG_LDO  
PGOOD Threshold (Rising)  
PGOOD Threshold (Falling)  
PGOOD Output Voltage Low  
PGOOD Output Leakage Current  
PWM OUTPUT OVERVOLTAGE  
Overvoltage Threshold  
-
-
-
-
-
-
mV  
mV  
ms  
ISL6455A  
30  
C
= 0.01µF  
25  
T
-
+11  
-17  
-
1.2  
+15  
-15  
-
-
V
%
%
V
+17  
-11  
0.4  
0.1  
FB_LDO vs 1.184V Vref  
I
= 1.2mA  
OL  
PG_LDO = GND or VIN  
-
0.01  
µA  
28  
31  
34  
%
FB_PWM vs 0.45V Vref  
NOTES:  
3. Specifications at -40°C and +85°C are guaranteed by 25°C test with margin limits.  
4. This is the V current consumed when the device is active but not switching. Does not include gate drive current.  
IN  
5. The dropout voltage is defined as V - V  
, when V  
is 50mV below the value of V  
for V = V  
+ 0.5V.  
IN  
OUT OUT  
OUT  
IN  
OUT  
6. The RESET timeout period is linear with CT at the slope of 2.5ms/nF. Thus, at 10nF (0.01µF) the RESET time is 25ms; at 1000nF (0.1µF) the  
RESET time would be 250ms.  
7. Guaranteed by design, not production tested.  
8. Add the external feedback resistor mismatch error to get initial V  
accuracy.  
OUT  
FN9196.0  
6
December 21, 2005  
ISL6455, ISL6455A  
PG_LDO Timing Diagram  
V
IN  
V
V
V
UVLO  
UVLO  
V
PG  
PG  
t
t
RISING  
VFB_LDO  
PG_LDO  
THRESHOLD  
VOLTAGE  
MAX +18%  
FALLING  
MIN -17%  
PG_LDO  
OUTPUT  
OUTPUT  
OUTPUT  
UNDEFINED  
UNDEFINED  
t
NOTE:  
9. V  
is the minimum input voltage for a valid PG_LDO.  
PG  
FN9196.0  
December 21, 2005  
7
ISL6455, ISL6455A  
PG_PWM - This pin is an active pull-up/pull-down able to  
Pin Descriptions  
source/sink 1mA (min.) at 0.4V from V /SGND. This output  
IN  
PVCC - Positive supply for the power (internal FET) stage of  
is HIGH when V  
is within ±8% (typical).  
OUT  
the PWM section.  
FB_LDO1 and FB_LDO2 - These pins are used to set the  
LDO output with the proper selection of resistors. i.e. Ra and  
Rb for LDO1 and Rc and Rd for LDO2. Resistors should be  
chosen to provide a minimum current of 200µA load for each  
LDO output.  
SGND - Analog ground for the PWM. All internal control  
circuits are referenced to this pin.  
EN - The PWM controller is enabled when this pin is HIGH,  
and disabled when the pin is pulled LOW. It is a CMOS logic-  
level input (referenced to V ).  
IN  
LX - The LX pin is the switching node of synchronous buck  
converter, connected internally at the junction point of the  
upper MOSFET source and lower MOSFET drain. Connect  
this pin to the output inductor.  
V
_LDO - This is the input voltage pin for LDO1 and LDO2.  
IN  
EN_LDO - LDO1 and LDO2 are enabled when this pin is  
HIGH, and disabled when the pin is pulled LOW. It is a  
CMOS logic-level input (referenced to V ).  
V
- This pin is the power supply for the PWM controller  
IN  
IN  
stage and must be closely decoupled to ground.  
CT - Timing capacitor pin to set the 25ms minimum pulse  
width for the RESET signal.  
SYNC - This is the external clock synchronization input. The  
device can be synchronized to 500kHz to 1MHz switching  
frequency. If unused then it should be tied to GND or VCC  
RESET - This pin is the output of the reset supervisory  
circuit, which monitors VIN_PWM. The IC asserts a RESET  
signal whenever the supply voltage drops below a preset  
threshold. It is kept asserted for a minimum of 25ms after  
GND - Tie this pin to the ground plane with a low impedance,  
shortest possible path.  
V
(V ) has risen above the reset threshold. The output is  
CC IN  
FB_PWM- This is used to set the value of the output voltage  
of the PWM with external resistors Re and Rf.  
push-pull. The device will continue to operate until V drops  
IN  
below the UVLO threshold.  
When EN = LOW then RESET = HIGH and the moment EN  
is made HIGH the RESET will pulse LOW for a period of  
25ms minimum (VIN > Reset threshold). If VIN < reset  
threshold then it will switch low and stay low for a period of  
25ms after VIN_PWM crosses the reset threshold.  
Functional Description  
The ISL6455 is a 3-in-1 multi-output regulator designed for  
FPGA and wireless chipset power applications. The device  
integrates a single synchronous buck regulator with dual  
LDOs. The PWM output can be set by choosing appropriate  
values for Re and Rf. At a setting of 1.8V the synchronous  
buck regulator provides for an efficiency greater than 92%.  
The LDO1 can be set with resistor pair Rc and Rd. The  
LDO2 can be set with the resistor pair Ra and Rb.  
PG_LDO - This is a high impedance open drain output that  
provides the status of both LDOs. When either of the outputs  
are out of regulation, PG_LDO goes LOW.  
CC1 - This is the compensation capacitor connection for  
LDO1. Connect a 0.033µF capacitor from CC1 to  
GND_LDO.  
Undervoltage lock-out (UVLO) prevents the converter from  
turning on when the input voltage is less than 2.6V typical.  
Additional blocks include output overcurrent protection,  
thermal sensor, PGOOD detectors, RESET function and  
shutdown logic.  
CC2 - This is the compensation capacitor connection for  
LDO2. Connect a 0.033µF capacitor from CC2 to  
GND_LDO.  
Synchronous Buck Regulator  
V
- This pin is the output of LDO2. Bypass with a  
minimum 2.2µF, low ESR capacitor to GND_LDO for stable  
operation.  
OUT2  
The synchronous buck regulator with integrated N- and  
P-channel power MOSFETs and external voltage setting  
resistors provides for adjustable voltages from the PWM.  
Synchronous rectification with internal MOSFETs is used to  
achieve higher efficiency and reduced number of external  
components. Operating frequency is typically 750kHz  
allowing the use of smaller inductor and capacitor values.  
The device can be synchronized to an external clock signal  
in the range of 500kHz to 1MHz. The PG_PWM output  
indicates loss of regulation on PWM output.  
GND_LDO - Ground pin for LDO1 and LDO2.  
V
- This pin is the output of LDO1. Bypass with a  
minimum 2.2µF, low ESR capacitor to GND_LDO for stable  
operation.  
OUT1  
PGND - Power ground for the PWM controller stage.  
V
- This I/O pin senses the output voltage of the PWM  
converter for the purpose of detecting the over and  
undervoltage conditions.  
OUT  
The PWM architecture uses a peak current mode control  
scheme with internal slope compensation. At the beginning  
of each clock cycle, the high side P-channel MOSFET is  
turned on. The current in the inductor ramps up and is  
FN9196.0  
8
December 21, 2005  
ISL6455, ISL6455A  
sensed via an internal circuit. The error amplifier sets the  
and the PWM output is shut down and the soft-start counter  
is reset. After 16 clocks the PWM output is enabled and the  
SS cycle is started.  
threshold for the PWM comparator. The high side switch is  
turned off when the sensed inductor current reaches this  
threshold. After a minimum dead time preventing shoot  
through current, the low side N-channel MOSFET will be  
turned on and the current ramps down again. As the clock  
cycle is completed, the low side switch will be turned off and  
the next clock cycle starts.  
If V  
OUT  
exceeds the overvoltage limit for 32 consecutive  
clock cycles, the PWM output is shut off and the SS counters  
reset. The chip waits for the output voltage to go below  
undervoltage (8% below nominal) the goes through two  
dummy soft-start cycles (PWM disabled for 2 SS cycles =  
11ms) and then starts a normal soft-start cycle.  
The control loop is internally compensated reducing the  
amount of external components.  
PG_LDO  
The switch current is internally sensed and the maximum  
peak current limit is 1300mA.  
PG_LDO is an open drain pulldown NMOS output that will  
sink 1mA at 0.4V maximum. It goes to the active low state if  
either LDO output is out of regulation by a value greater than  
15%. When the LDO is disabled, the output is active low.  
Synchronization  
The typical operating frequency for the converter is 750kHz  
if no clock signal is applied to SYNC pin. It is possible to  
synchronize the converter to an external clock within a  
frequency range from 500kHz to 1MHz. The device  
automatically detects the rising edge of the first clock and  
will synchronize immediately to the external clock. If the  
clock signal is stopped, the converter automatically switches  
back to the internal clock and continues operation without  
interruption. The switch over will be initiated if no rising edge  
on the SYNC pin is detected for a duration of two internal  
1.3µs clock cycles.  
LDO Regulators  
Each LDO consists of a 1.184V reference, error amplifier,  
MOSFET driver, P-Channel pass transistor, dual-mode  
comparator. The voltage is set by means of two resistors the  
Ra and Rb for LDO2 and Rc and Rd for LDO1. The 1.184V  
band gap reference is connected to the error amplifier’s  
inverting input. The error amplifier compares this reference  
to the selected feedback voltage and amplifies the  
difference. The MOSFET driver reads the error signal and  
applies the appropriate drive to the P-Channel pass  
transistor. If the feedback voltage is lower than the reference  
voltage, the pass transistor gate is pulled lower, allowing  
more current to pass and increasing the output voltage. If the  
feedback voltage is higher then the reference voltage, the  
pass transistor gate is driven higher, allowing less current to  
pass to the output.  
Soft-Start  
As the EN (Enable) pin goes high, the soft-start function will  
generate an internal voltage ramp. This causes the start-up  
current to slowly rise preventing output voltage overshoot  
and high inrush currents. The soft-start duration is typically  
5.5ms with 750kHz switching frequency. When the soft-start  
is completed, the error amplifier will be connected directly to  
the internal voltage reference. The SYNC input is ignored  
during soft-start.  
Internal P-Channel Pass Transistors  
Both the LDO Regulators in ISL6455 feature a typical 0.5  
r
P-channel MOSFET pass transistor. This provides  
DS(on)  
several advantages over similar designs using PNP bipolar  
pass transistors. The P-Channel MOSFET requires no base  
drive, which reduces quiescent current considerably. PNP  
based regulators waste considerable current in dropout  
when the pass transistor saturates. They also use high base  
drive currents under large loads. The ISL6455 does not have  
these drawbacks.  
Enable PWM  
Logic low on EN pin forces the PWM section into shutdown.  
In shutdown all the major blocks of the PWM including power  
switches, drivers, voltage reference, and oscillator are  
turned off.  
Power Good (PG_PWM)  
When chip is enabled, this output is asserted HIGH, when  
Integrated RESET for MAC/Baseband Processors  
V
is within 8% of Vopwm value and active low outside  
OUT  
The ISL6455 includes a microprocessor supervisory block.  
This block eliminates an extra RESET IC and external  
components needed in wireless chipset applications. This  
block performs a single function; it asserts a RESET signal  
whenever the VIN_PWM supply voltage decreases below a  
preset threshold, and keeps it asserted for a programmable  
time period set by the external capacitor CT.  
this range. When the PWM is disabled, the output is active  
low.  
Leave the PG_PWM pin unconnected when not used.  
PWM Overvoltage and Overcurrent Protection  
The PWM output current is sampled at the end of each PWM  
cycle. Should it exceed the overcurrent limit, a 4 bit up/down  
counter counts up two LSB. Should it not be in overcurrent  
the counter counts down one LSB (but the counter will not  
"rollover" or count below 0000). If >33% of the PWM cycles  
go into overcurrent, the counter rapidly reaches count 1111  
UVLO Reset threshold is always lower than the RESET  
threshold. This insures that as V falls, the reset goes low  
IN  
before the LDOs and PWM are shut off.  
FN9196.0  
December 21, 2005  
9
ISL6455, ISL6455A  
Where T  
= 150°C, T = ambient temperature, and θ is  
A JA  
Integrator Circuitry  
jmax  
the thermal resistance from the junction to the surrounding  
environment.  
Both ISL6455 LDO Regulators use external 33nF  
compensation capacitors for minimizing load and line  
regulation errors and for lowering output noise. When the  
output voltage shifts due to varying load current or input  
voltage, the integrator capacitor voltage is raised or lowered  
to compensate for the systematic offset at the error amplifier.  
Compensation is limited to ±5% to minimize transient  
overshoot when the device goes out of dropout, current limit,  
or thermal shutdown.  
The ISL6455, ISL6455A package feature an exposed  
thermal pad on its underside. This pad lowers the thermal  
resistance of the package by providing a direct heat  
conduction path from the die to the PC board. Additionally,  
the ISL6455 and ISL6455A ground (GND_LDO and PGND)  
performs the dual function of providing an electrical  
connection to system ground and channeling heat away.  
Connect the exposed bottom pad direct to the GND_LDO  
ground plane.  
Shutdown  
Driving the EN_LDO pin low will put LDO1 and LDO2 into  
the shutdown mode. Driving the EN pin low will put the PWM  
into shutdown mode. Pulling the EN and EN_LDO both pins  
low simultaneously, puts the ISL6455, ISL6455A in a  
shutdown mode, and supply current drops to 15µA typical.  
Application Information  
LDO Regulator Capacitor Selection and Regulator  
Stability  
Capacitors are required at the ISL6455, ISL6455A LDO  
regulators’ input and output for stable operation over the  
entire load range and the full temperature range. Use >1µF  
Protection Features for the LDOs  
Current Limit  
The ISL6455 and ISL6455A monitor and control the pass  
transistor’s gate voltage to limit the output current. The  
current limit for both LDO1 and LDO2 is 330mA. The output  
can be shorted to ground without damaging the part due to  
the current limit and thermal protection features.  
capacitor at the input of LDO regulators, V _LDO pins. The  
IN  
input capacitor lowers the source impedance of the input  
supply. Larger capacitor values and lower ESR provide  
better PSRR and line transient response. The input  
capacitor must be located at a distance of not more than 0.5  
inches from the V pins of the IC and returned to a clean  
IN  
analog ground. Any good quality ceramic capacitor can be  
used as an input capacitor.  
Thermal Overload Protection  
Thermal overload protection limits total power dissipation in  
the ISL6455, ISL6455A. When the junction temperature (T )  
J
The output capacitor must meet the requirements of  
minimum amount of capacitance and ESR for both LDOs.  
The ISL6455 is specifically designed to work with small  
ceramic output capacitors. The output capacitor’s ESR  
affects stability and output noise. Use an output capacitor  
with an ESR of 50mor less to insure stability and optimum  
transient response. For stable operation, a ceramic  
capacitor, with a minimum value of 3.3µF, is recommended  
exceeds +150°C, the thermal sensor sends a signal to the  
shutdown logic, turning off the pass transistor and allowing  
the IC to cool. The pass transistor turns on again after the  
IC’s junction temperature typically cools by 20°C, resulting in  
an intermittent output condition during continuous thermal  
overload. Thermal overload protection protects the ISL6455,  
ISL6455A against fault conditions. For continuous operation,  
the absolute maximum junction temperature rating of  
+150°C in not to be exceeded.  
for V  
for 300mA output current, and 3.3µF is  
recommended for V at 300mA load current. There is no  
OUT1  
OUT2  
upper limit to the output capacitor value. A larger capacitor  
can reduce noise and improve load transient response,  
stability and PSRR. A higher value output capacitor (10µF) is  
recommended for LDO2 when used to power VCO circuitry  
in wireless chipsets. The output capacitor should be located  
Operating Region and Power Dissipation  
The maximum power dissipation of ISL6455 depends on the  
thermal resistance of the IC package and circuit board, the  
temperature difference between the die junction and ambient  
air, and the rate of air flow. The power dissipated in the  
device is:  
very close to V  
pins to minimize impact of PC board  
OUT  
inductances and the other end of the capacitor should be  
returned to a clean analog ground.  
PT = P1 + P2 + P3, where  
P1 = I  
P2 = I  
P3 = I  
x V x n, n is the efficiency of the PWM  
OUT1  
PWM Regulator Component Selection  
INDUCTOR SELECTION  
A 8.2µH typical output inductor is used with the ISL6455 and  
a 12µH typical with the ISL6455A PWM section. Values less  
than this may cause stability problems because of the  
internal compensation of the regulator. The important  
parameters of the inductor that need to be considered are  
the current rating of the inductor and the DC resistance of  
OUT1  
(V – V  
)
OUT2 IN OUT2  
(V - V  
)
OUT3 IN OUT3  
The maximum power dissipation is:  
= (T – T )/θ  
P
max  
jmax  
A
JA  
FN9196.0  
10  
December 21, 2005  
ISL6455, ISL6455A  
the inductor. The DC resistance of the inductor will influence  
The input capacitor should have a minimum value of 10µF  
and can be increased without any limit for better input  
voltage filtering. The input capacitor should be rated for the  
maximum input ripple current calculated as:  
directly the efficiency of the converter. Therefore, an inductor  
with lowest DC resistance should be selected for highest  
efficiency.  
In order to avoid saturation of the inductor, the inductor  
should be rated at least for the maximum output current plus  
the inductor ripple current.  
V
V
V
V
O
O
-------  
I
= I  
×
× 1 -------  
RMS  
O(max)  
I
I
TABLE 1. RECOMMENDED INDUCTORS  
OUTPUT INDUCTOR  
The worst case RMS ripple current occurs at D = 0.5.  
Ceramic capacitors show good performance because of  
their low ESR value, and because they are less sensitive to  
voltage transients, compared to tantalum capacitors.  
CURRENT  
VALUE  
VENDOR PART #  
COMMENTS  
600mA  
8.2µH  
Coilcraft  
MSS6122-822MX  
ISL6455  
Place the input capacitor as close as possible to the input pin  
of the IC for best performance.  
600mA  
12µH  
Coilcraft  
MSS6122-123MX  
ISL6455A  
Output Voltage Setting  
The equations for the Output voltages are given below:  
OUTPUT CAPACITOR SELECTION  
For the best performance, a low ESR output capacitor is  
needed. If an output capacitor is selected with an ESR value  
120m, its RMS ripple current rating will always meet the  
application requirements. The RMS ripple current is  
calculated as:  
0.45  
-----------  
VOUT =  
VOUT1 =  
VOUT2 =  
(Re + Rf)  
Rf  
1.184  
--------------  
(Ra + Rb)  
(Rc + Rd)  
Rb  
V
O
1 -------  
V
1.184  
1
2 ×  
I
--------------  
----------------- ----------------  
I
= V  
×
×
Rd  
RMS(C)  
O
L × f  
O
3
The output resistors should be selected so that the minimum  
The overall output ripple voltage is the sum of the voltage  
output load is about 200µA.  
spike caused by the output capacitor ESR plus the voltage  
Layout Considerations  
ripple caused by charge and discharging the output  
As for all switching power supplies, the layout is an important  
step in the design of ISL6455, ISL6455A based power  
supply due to the high switching frequency and low noise  
LDO implementations.  
capacitor:  
V
O
1 -------  
V
I
1
O
-----------------  
V = V  
×
×
------------------------- + ESR  
   
O
O
L × f  
8 × C × f  
Allocate two board levels as ground planes, with many vias  
between them to create a low impedance, high-frequency  
plane. Tie all the device ground pins through multiple vias  
each to this ground plane, as close to the device as possible.  
Also tie the exposed pad on the bottom of the device to this  
ground plane.  
Where the highest output voltage ripple occurs at the highest  
input voltage.  
TABLE 2. RECOMMENDED CAPACITORS  
CAPACITOR  
VALUE  
ESR/mΩ  
VENDOR PART #  
COMMENTS  
Use wide and short traces for the high current paths. The  
input capacitor should be placed as close as possible to the  
IC pins as well as the inductor and output capacitor. Use a  
common ground node to minimize the effects of ground  
noise.  
10µF  
<50  
TDK  
Ceramic  
C2012X5R0J106M  
INPUT CAPACITOR SELECTION  
Because of the nature of the buck converter having a  
pulsating input current, a low ESR input capacitor is required  
for best input voltage filtering and minimizing the  
interference with other circuits caused by high input voltage  
spikes.  
FN9196.0  
11  
December 21, 2005  
ISL6455, ISL6455A  
Quad Flat No-Lead Plas tic Package (QFN)  
Micro Lead Frame Plas tic Package (MLFP)  
L24.4x4B  
24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
(COMPLIANT TO JEDEC MO-220VGGD-2 ISSUE C)  
MILLIMETERS  
SYMBOL  
MIN  
NOMINAL  
MAX  
1.00  
0.05  
1.00  
NOTES  
A
A1  
A2  
A3  
b
0.80  
0.90  
-
-
-
-
-
-
9
0.20 REF  
9
0.18  
2.19  
2.19  
0.23  
0.30  
2.49  
2.49  
5, 8  
D
4.00 BSC  
-
D1  
D2  
E
3.75 BSC  
9
2.34  
7, 8  
4.00 BSC  
-
E1  
E2  
e
3.75 BSC  
9
2.34  
7, 8  
0.50 BSC  
-
k
0.25  
0.30  
-
-
-
-
L
0.40  
0.50  
0.15  
8
L1  
N
-
24  
6
6
-
10  
2
Nd  
Ne  
P
3
3
-
-
0.60  
12  
9
θ
-
9
Rev. 0 10/03  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on each D and E.  
4. All dimensions are in millimeters. Angles are in degrees.  
5. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Dimensions D2 and E2 are for the exposed pads which provide  
improved electrical and thermal performance.  
8. Nominal dimensions are provided to assist with PCB Land  
Pattern Design efforts, see Intersil Technical Brief TB389.  
9. Features and dimensions A2, A3, D1, E1, P & θ are present when  
Anvil singulation method is used and not present for saw  
singulation.  
10. Depending on the method of lead termination at the edge of the  
package, a maximum 0.15mm pull back (L1) maybe present. L  
minus L1 to be equal to or greater than 0.3mm.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN9196.0  
12  
December 21, 2005  
P r i n t e r F r i e n d l y V e r s i o n  
IS L6 4 55A  
0 .6 A P W M Re gu l at o r a n d D u al 0 .3 A L DO s an d Re se t  
D a t a s h e e t s ,  
R e l a t e d D o c s  
& S i m u l a t i o n s  
D e s c r i p t i o n  
K ey  
F e a t u r e s  
P a r a m e t r i c  
D a t a  
A p p l i c a t i o n  
D i a g r a m s  
R e l a t e d  
D e v i c e s  
Or d er in g I nf o r m at io n  
De s ig n - In  
P r i c e  
Pa r t N o.  
S t a t u s Te m p.  
P a c k a g e  
M SL US $  
A ct i v e  
E v a l B o a r d  
N/ A  
I SL 6 4 55 A EVA L 1 Z  
IS L 645 5A I RZ  
A ct i v e  
A ct i v e  
A ct i v e  
I n d  
I n d  
I n d  
2 4 L d Q F N  
2
2
2
1 . 8 1  
1 . 8 1  
1 . 8 1  
24 Ld QF N T+ R  
24 Ld QF N T+ R  
IS L6455AI RZ -T5K  
I SL 6 4 5 5 AI R Z-TK  
T h e p r ic e li st e d i s t h e m an uf a ct ur e r 's sugg ested r et ail pr i ce f or q uant it i es bet w ee n 1 00 a n d  
9 9 9 un its . Ho we v e r, pri c es i n to da y' s ma rk et a re fl u i d a n d m ay ch an ge w i th o ut n o t ice .  
MS L = M o i s t u r e S e n s i t i v i t y L e v e l - p e r I P C / J E D E C J - S T D - 0 2 0  
SMD = S t a n d a r d M i c r o c i r c u i t D r a w i n g  
D esc rip ti on  
T h e I S L 6 4 5 5 i s a h i g h l y i n t e g r a t e d t r i p l e o u t p u t r e g u l a t o r w h i c h p r o v i d e s a s i n g l e c h i p s o l u t i o n f o r  
F P G A s a n d w i r e l e s s c h i p s e t p o w e r m a n a g e m e n t . T h e d e v i c e i n t e g r a t e s a h i g h e f f i c i e n c y  
s y n c h r o n o u s b u c k r e g u l a t o r ( a d j u s t a b l e ) w i t h t w o u l t r a l o w n o i s e L D O r e g u l a t o r s ( a d j u s t a b l e ) .  
E i t h e r t h e I S L 6 4 5 5 o r I S L 6 4 5 5 A c a n b e s e l e c t e d b a s e d o n w h e t h e r 3 . 3 V ± 1 0 % o r 5 V ± 1 0 % i s  
r e q u i r e d a s a n i n p u t v o l t a g e .  
T h e s y n c h r o n o u s c u r r e n t m o d e c o n t r o l P W M r e g u l a t o r w i t h i n t e g r a t e d N - a n d P - c h a n n e l p o w e r  
M O S F E T p r o v i d e s a d j u s t a b l e v o l t a g e s b a s e d o n e x t e r n a l r e s i s t o r s e t t i n g . S y n c h r o n o u s r e c t i f i c a t i o n  
w i t h i n t e r n a l M O S F E T s i s u s e d t o a c h i e v e h i g h e r e f f i c i e n c y a n d r e d u c e d n u m b e r o f e x t e r n a l  
c o m p o n e n t s . O p e r a t i n g f r e q u e n c y i s t y p i c a l l y 7 5 0 k H z a l l o w i n g t h e u s e o f s m a l l e r i n d u c t o r a n d  
c a p a c i t o r v a l u e s . T h e d e v i c e c a n b e s y n c h r o n i z e d t o a n e x t e r n a l c l o c k s i g n a l i n t h e r a n g e o f 5 0 0 k H z  
t o 1 M H z . T h e P G _ P W M o u t p u t i n d i c a t e s l o s s o f r e g u l a t i o n o n P W M o u t p u t .  
T h e I S L 6 4 5 5 a l s o h a s t w o L D O a d j u s t a b l e r e g u l a t o r s u s i n g i n t e r n a l P M O S t r a n s i s t o r s a s p a s s  
d e v i c e s . L D O 2 f e a t u r e s u l t r a l o w n o i s e t y p i c a l l y b e l o w 3 0 µ V R M S t o a i d V C O s t a b i l i t y . T h e E N _ L D O  
p i n c o n t r o l s L D O 1 a n d L D O 2 o u t p u t s . T h e I S L 6 4 5 5 a l s o i n t e g r a t e s a RE S E T f u n c t i o n , w h i c h  
e l i m i n a t e s t h e n e e d f o r a d d i t i o n a l R E S E T I C r e q u i r e d i n W L A N a n d o t h e r a p p l i c a t i o n s . T h e I C  
a s s e r t s a RE S E T s i g n a l w h e n e v e r t h e V s u p p l y v o l t a g e d r o p s b e l o w a p r e s e t t h r e s h o l d , k e e p i n g  
I N  
i t a s s e r t e d f o r a t l e a s t 2 5 m s a f t e r V h a s r i s e n a b o v e t h e r e s e t t h r e s h o l d . T h e P G _ L D O o u t p u t  
I N  
i n d i c a t e s l o s s o f r e g u l a t i o n o n e i t h e r o f t h e t w o L D O o u t p u t s . O t h e r f e a t u r e s i n c l u d e o v e r c u r r e n t  
p r o t e c t i o n a n d t h e r m a l s h u t d o w n f o r a l l t h e t h r e e o u t p u t s .  
H i g h i n t e g r a t i o n a n d t h e t h i n Q u a d F l a t N o - l e a d ( Q F N ) p a c k a g e m a k e s I S L 6 4 5 5 a n i d e a l c h o i c e f o r  
p o w e r i n g F P G A s a n d s m a l l f o r m f a c t o r w i r e l e s s c a r d s s u c h a s P C M C I A , m i n i - P C I a n d C a r d b u s - 3 2 .  
K ey Fe a t u r e s  
F u l l y i n t e g r a t e d s y n c h r o n o u s b u c k r e g u l a t o r + d u a l L D O  
P W M o u t p u t v o l t a g e a d j u s t a b l e .  
0 .8 V to 2.5 V wit h IS L 6 4 55 (V = 3. 3V)  
I N  
0 .8 V to 3. 3V w it h IS L6 455 A ( V = 5. 0V)  
I N  
H i g h o u t p u t c u r r e n t 6 0 0 m A  
D u a l L D O a d j u s t a b l e o p t i o n s  
L D O1 , 1 . 2V t o V -0 .3 V (3. 3 Vma x) 3 00 mA  
I N  
L D O2 , 1 . 2V t o V -0 .3 V (3. 3 Vma x) 3 00 mA  
I N  
U l t r a - c o m p a c t D C / D C c o n v e r t e r d e s i g n  
S t a b l e w i t h s m a l l c e r a m i c o u t p u t c a p a c i t o r s a n d n o l o a d  
H i g h c o n v e r s i o n e f f i c i e n c y  
L o w s h u t d o w n s u p p l y c u r r e n t  
L o w d r o p o u t v o l t a g e f o r L D O s  
L D O 1 1 5 0 m V ( t y p i c a l ) a t 3 0 0 m A  
L D O 2 1 5 0 m V ( t y p i c a l ) a t 3 0 0 m A  
L o w o u t p u t v o l t a g e n o i s e  
< 3 0 µVR MS (ty pi ca l ) f o r L D O 2 (V CO su ppl y)  
P G_ LDO an d P G_ P W M ( P WM a nd L DO) o ut pu ts  
E x t e n s i v e c i r c u i t p r o t e c t i o n a n d m o n i t o r i n g f e a t u r e s  
PWM o ve rv o lta g e p r ot ec t io n  
O v e r c u r r e n t p r o t e c t i o n  
S h u t d o w n  
T h e r m a l s h u t d o w n  
I n t e g r a t e d RE S E T o u t p u t f o r m i c r o p r o c e s s o r r e s e t  
P r o v e n r e f e r e n c e d e s i g n f o r t o t a l W L A N s y s t e m s o l u t i o n  
Q F N p a c k a g e  
C o m p l i a n t t o J E D E C P U B 9 5 M O - 2 2 0 Q F N - Q u a d F l a t N o L e a d s - P r o d u c t O u t l i n e  
N e a r C h i p - S c a l e p a c k a g e f o o t p r i n t I m p r o v e s P C B e f f i c i e n c y a n d i s t h i n n e r i n P r o f i l e  
P b - f r e e p l u s a n n e a l a v a i l a b l e ( R o H S c o m p l i a n t )  
Re la t ed Do cu m e n ta t io n  
A p p l i c a t i o n N o t e ( s ) :  
I n t e r s i l I n t e g r a t e d F E T D C / D C C o n v e r t e r s  
I n t e r s i l I n t e g r a t e d F E T D C / D C C o n v e r t e r s ( S i m p l i f i e d C h i n e s e )  
D a t a s h e e t ( s ) :  
T r i p l e O u t p u t R e g u l a t o r w i t h S i n g l e S y n c h r o n o u s B u c k a n d D u a l L D O  
E v a l u a t i o n B o a r d ( s ) :  
I S L 6 4 5 5 E V A L 1 Z : 6 0 0 m A S y n c h r o n o u s B u c k R e g u l a t o r w i t h I n t e g r a t e d M O S F E T s  
i - S i m :  
G e t t i n g S t a r t e d w i t h i S i m a n d i S i m : P E  
I S L 6 4 5 5 A i S i m  
J a v a ™ P l u g - i n S e t u p I n s t r u c t i o n s f o r W i n d o w s ® 2 0 0 0 S y s t e m s  
P a r a m e t r i c D a t a  
V
( m in) ( V )  
(ma x) (V)  
4 . 5  
5 . 5  
.8  
I N  
V
I N  
V
OU T  
( m in) ( V )  
(ma x) (V)  
V
OU T  
3 . 3  
.6  
I
(ma x) (A)  
OU T  
I q (µA )  
2 5 0 0  
. 7 5  
9 3  
S witc hin g F re que nc y ( M Hz )  
P ea k E f f i cien cy ( %)  
P O R  
Y
A pp licat ion B loc k D iag ram s  
D V D R e c o r d e r  
D i g i t a l P r o j e c t o r  
F i n g e r p r i n t B i o m e t r i c s  
I PT V Se t- T o p Bo x  
To x i c G a s Mo n it o r  
Ap pli cat io n s  
W L A N c a r d s  
P C M C I A , C a r d b u s 3 2 , M i n i P C I c a r d s  
C o m p a c t f l a s h c a r d s  
H a n d - h e l d i n s t r u m e n t s  
R e l a te d D e v i ce s  
P a r a m e t r i c T a b l e  
E L 7 5 3 0  
E L 7 5 3 1  
E L 7 5 3 2  
E L 7 5 3 4  
E L 7 5 3 6  
E L 7 5 5 4  
E L 7 5 6 6  
M o n o l i t h i c 6 0 0 m A S t e p - D o w n R e g u l a t o r w i t h L o w Q u i e s c e n t C u r r e n t  
M o n o l i t h i c 1 A S t e p - D o w n R e g u l a t o r w i t h L o w Q u i e s c e n t C u r r e n t  
M o n o l i t h i c 2 A S t e p - D o w n R e g u l a t o r  
M o n o l i t h i c 6 0 0 m A S t e p - D o w n R e g u l a t o r  
M o n o l i t h i c 1 A S t e p - D o w n R e g u l a t o r  
M o n o l i t h i c 4 A D C / D C S t e p - D o w n R e g u l a t o r  
M o n o l i t h i c 6 A D C / D C S t e p - D o w n R e g u l a t o r  
1 . 2 A L o w Q u i e s c e n t C u r r e n t 1 . 6 M H z H i g h E f f i c i e n c y S y n c h r o n o u s B u c k  
R e g u l a t o r  
I S L 6 2 7 3  
I S L 6 4 1 0  
I S L 6 4 1 0 A  
I S L 6 4 1 2  
I S L 6 4 1 3  
I S L 6 4 1 6  
I S L 6 4 5 5  
S i n g l e S y n c h r o n o u s B u c k R e g u l a t o r w i t h I n t e g r a t e d F E T f o r W L A N C h i p s e t s  
S i n g l e S y n c h r o n o u s B u c k R e g u l a t o r w i t h I n t e g r a t e d F E T f o r W L A N C h i p s e t s  
T r i p l e O u t p u t , L o w - N o i s e L D O R e g u l a t o r w i t h I n t e g r a t e d R e s e t C i r c u i t  
T r i p l e O u t p u t R e g u l a t o r w i t h S i n g l e S y n c h r o n o u s B u c k a n d D u a l L D O  
T r i p l e O u t p u t , L o w - N o i s e L D O R e g u l a t o r w i t h I n t e g r a t e d R e s e t C i r c u i t  
0 . 6 A P W M R e g u l a t o r a n d D u a l 0 . 3 A L D O s a n d R e s e t  
1 . 5 A L o w Q u i e s c e n t C u r r e n t 1 . 6 M H z H i g h E f f i c i e n c y S y n c h r o n o u s B u c k  
R e g u l a t o r  
I S L 8 0 0 9  
I S L 8 0 1 0  
I S L 8 0 1 1  
I S L 8 5 0 2  
I S L 8 5 4 0  
I S L 8 5 6 0  
M o n o l i t h i c 6 0 0 m A S t e p - D o w n R e g u l a t o r w i t h L o w Q u i e s c e n t C u r r e n t  
1 . 2 A I n t e g r a t e d F E T s , H i g h E f f i c i e n c y S y n c h r o n o u s B u c k R e g u l a t o r  
2 . 5 A S y n c h r o n o u s B u c k R e g u l a t o r w i t h I n t e g r a t e d M O S F E T s  
D C / D C P o w e r S w i t c h i n g R e g u l a t o r  
D C / D C P o w e r S w i t c h i n g R e g u l a t o r  
6 0 0 m A L o w Q u i e s c e n t C u r r e n t 1 . 6 M H z H i g h E f f i c i e n c y S y n c h r o n o u s B u c k  
R e g u l a t o r  
I S L 9 1 0 5  
I S L 9 7 5 3 6  
M o n o l i t h i c 1 A S t e p - D o w n R e g u l a t o r w i t h L o w Q u i e s c e n t C u r r e n t  
A b o u t U s | C a r e e r s | C o n t a c t U s | I n v e s t o r s | L e g a l | Pr iv a c y | S ite M ap | S u b s c r i b e | I n t r a n e t  
© 2 0 0 7 . A l l r i g h t s r e s e r v e d .  

相关型号:

ISL6504

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504A

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACB

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACB-T

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACBN

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACBN-T

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACBNZ

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACBNZ-T

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACBZ

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACBZ

4-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, LEAD FREE, PLASTIC, MS-013-AA, SOIC-16
RENESAS

ISL6504ACBZ-T

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL

ISL6504ACR

Multiple Linear Power Controller with ACPI Control Interface
INTERSIL