CY7C1354A-133BGC [ROCHESTER]

ZBT SRAM, 256KX36, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119;
CY7C1354A-133BGC
型号: CY7C1354A-133BGC
厂家: Rochester Electronics    Rochester Electronics
描述:

ZBT SRAM, 256KX36, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119

静态存储器 内存集成电路
文件: 总29页 (文件大小:1083K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1354A  
CY7C1356A  
256K x 36/512K x 18 Pipelined SRAM  
with NoBL™ Architecture  
All synchronous inputs are gated by registers controlled by a  
positive-edge-triggered clock input (CLK). The synchronous  
Features  
• Zero Bus Latency™, no dead cycles between Write and  
inputs include all addresses, all data inputs, depth-expansion  
Chip Enables (CE, CE2, and CE3), Cycle Start Input (ADV/LD),  
Clock Enable (CEN), Byte Write Enables (BWa, BWb, BWc,  
and BWd), and Read-Write Control (WEN). BWc and BWd  
apply to CY7C1354A only.  
Address and control signals are applied to the SRAM during  
one clock cycle, and two cycles later, its associated data  
occurs, either Read or Write.  
Read cycles  
• Fast clock speed: 200, 166, 133, 100 MHz  
• Fast access time: 3.2, 3.6, 4.2, 5.0 ns  
• Internally synchronized registered outputs eliminate  
the need to control OE  
• Single 3.3V –5% and +5% power supply VCC  
• Separate VCCQ for 3.3V or 2.5V I/O  
A
clock enable (CEN) pin allows operation of the  
CY7C1354A/CY7C1356A to be suspended as long as  
necessary. All synchronous inputs are ignored when (CEN) is  
HIGH and the internal device registers will hold their previous  
values.  
• Single WEN (Read/Write) control pin  
• Positive clock-edge triggered, address, data, and  
control signal registers for fully pipelined applications  
• Interleaved or linear four-word burst capability  
There are three chip enable pins (CE, CE2, CE3) that allow the  
user to deselect the device when desired. If any one of these  
three are not active when ADV/LD is LOW, no new memory  
operation can be initiated and any burst cycle in progress is  
stopped. However, any pending data transfers (Read or Write)  
will be completed. The data bus will be in high-impedance  
state two cycles after chip is deselected or a Write cycle is  
initiated.  
The CY7C1354A and CY7C1356A have an on-chip two-bit  
burst counter. In the burst mode, the CY7C1354A and  
CY7C1356A provide four cycles of data for a single address  
presented to the SRAM. The order of the burst sequence is  
defined by the MODE input pin. The MODE pin selects  
between linear and interleaved burst sequence. The ADV/LD  
signal is used to load a new external address (ADV/LD = LOW)  
or increment the internal burst counter (ADV/LD = HIGH)  
Output Enable (OE), Sleep Enable (ZZ) and burst sequence  
select (MODE) are the asynchronous signals. OE can be used  
to disable the outputs at any given time. ZZ may be tied to  
LOW if it is not used.  
Four pins are used to implement JTAG test capabilities. The  
JTAG circuitry is used to serially shift data to and from the  
device. JTAG inputs use LVTTL/LVCMOS levels to shift data  
during this testing mode of operation.  
• Individual byte Write (BWa–BWd) control (may be tied  
LOW)  
• CEN pin to enable clock and suspend operations  
• Three chip enables for simple depth expansion  
• Automatic power-down feature available using ZZ  
mode or CE select  
• JTAG boundary scan  
• Low-profile 119-bump, 14-mm × 22-mm BGA (Ball Grid  
Array), and 100-pin TQFP packages  
Functional Description  
The CY7C1354A and CY7C1356A SRAMs are designed to  
eliminate dead cycles when transitioning from Read to Write  
or vice versa. These SRAMs are optimized for 100% bus utili-  
zation and achieve Zero Bus Latency(ZBL)/No Bus  
Latency(NoBL). They integrate 262,144 × 36 and 524,288  
× 18 SRAM cells, respectively, with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. These employ high-speed, low-power CMOS  
designs using advanced triple-layer polysilicon, double-layer  
metal technology. Each memory cell consists of four  
transistors and two high-valued resistors.  
Selection Guide  
7C1354A-166  
7C1356A-166  
7C1354A-133  
7C1356A-133  
7C1354A-200  
3.2  
7C1356A-100 Unit  
Maximum Access Time  
3.6  
480  
30  
4.2  
410  
30  
5.0  
350  
30  
ns  
mA  
mA  
Maximum Operating Current  
Commercial  
560  
30  
Maximum CMOS Standby Current Commercial  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05161Rev. *E  
Revised April 5, 2004  
[+] Feedback  
CY7C1354A  
CY7C1356A  
.
Functional Block Diagram—256K × 36[1]  
ZZ  
MODE  
CKE#  
CEN  
Address  
Control  
ADV/LD  
WEN  
BWa, BWb,  
BWc, BWd  
Input  
Registers  
C2  
CE, CE , CE  
2
3
CEN  
Control Logic  
Mux  
A0, A1, A  
Sel  
CLK  
Output Registers  
Output Buffers  
OE  
DQa-DQd  
Functional Block Diagram—512K × 18[1]  
ZZ  
MODE  
Address  
CKE#  
CEN  
ADV/LD  
WEN  
Control  
BWa, BWb  
Input  
Registers  
2  
CE, CE , CE  
2
3
CEN  
Control Logic  
A0, A1, A  
Sel  
Mux  
CLK  
Output Registers  
Output Buffers  
OE  
DQa, DQb  
Note:  
1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions, and timing diagrams for detailed information.  
Document #: 38-05161Rev. *E  
Page 2 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Pin Configurations  
100-lead TQFP Packages  
DQc  
DQc  
DQc  
1
DQb  
NC  
NC  
NC  
CCQ  
1
A
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
2
2
NC  
DQb  
79  
3
DQb  
3
NC  
78  
V
V
CCQ  
4
4
VCCQ  
VSS  
V
V
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
CCQ  
SS  
V
SS  
DQc  
DQc  
DQc  
DQc  
5
V
5
SS  
6
NC  
6
NC  
DQb  
7
DQb  
NC  
7
DQa  
DQa  
DQa  
8
DQb  
DQb  
VSS  
DQb  
DQb  
8
9
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
V
V
V
CCQ  
DQc  
DQc  
CCQ  
VDDQ  
DQb  
DQb  
VSS  
VCC  
VCC  
ZZ  
DQa  
DQa  
CCQ  
DQb  
DQb  
V
DQa  
DQa  
V
CC  
VCC  
V
CY7C1356A  
(512K × 18)  
CY7C1354A  
(256K × 36)  
SS  
V
CC  
CC  
V
CC  
V
V
V
CC  
SS  
VCC  
CC  
V
SS  
ZZ  
DQd  
DQd  
DQb  
DQb  
CCQ  
DQa  
DQa  
V
V
V
CCQ  
VCCQ  
VSS  
CCQ  
V
V
SS  
SS  
V
SS  
DQd  
DQa  
DQa  
DQa  
DQa  
VSS  
DQb  
DQb  
DPb  
NC  
DQa  
DQa  
NC  
DQd  
DQd  
DQd  
NC  
V
SS  
V
V
CCQ  
SS  
SS  
V
V
DDQ  
DQd  
DQd  
DQd  
VCCQ  
CCQ  
V
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05161Rev. *E  
Page 3 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Pin Configurations (continued)  
119-ball Bump BGA  
CY7C1354A (256K × 36)–7 × 17 BGA  
Table 1.  
1
2
A
3
A
4
NC  
5
A
6
7
A
B
C
D
E
F
G
H
J
VCCQ  
NC  
NC  
A
VCCQ  
CE2  
A
A
A
ADV/LD  
VCC  
NC  
CE  
OE  
A
A
CE3  
A
NC  
NC  
DQc  
DQc  
VCCQ  
DQc  
DQc  
VCCQ  
DQd  
DQd  
VCCQ  
DQd  
DQd  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
VCC  
DQd  
DQd  
DQd  
DQd  
DQd  
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
VSS  
A
DQb  
DQb  
DQb  
DQb  
DQb  
VCC  
DQa  
DQa  
DQa  
DQa  
DQa  
A
DQb  
DQb  
VCCQ  
DQb  
DQb  
VCCQ  
DQa  
DQa  
VCCQ  
DQa  
DQa  
NC  
A
WEN  
VCC  
CLK  
NC  
CEN  
A1  
A0  
VCC  
A
K
L
M
N
P
R
T
NC  
NC  
NC  
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
CY7C1356A (512K × 18)–7 × 17 BGA  
Table 1.  
1
2
A
3
A
4
NC  
5
A
6
A
7
A
B
C
D
E
F
G
H
J
VCCQ  
VCCQ  
NC  
NC  
DQb  
NC  
VCCQ  
NC  
DQb  
VCCQ  
NC  
DQb  
VCCQ  
DQb  
NC  
CE2  
A
A
A
ADV/LD  
VCC  
NC  
CE  
OE  
A
A
CE3  
A
NC  
NC  
NC  
NC  
DQb  
NC  
DQb  
NC  
VCC  
DQb  
NC  
DQb  
NC  
DQb  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
VCC  
A
DQa  
NC  
DQa  
NC  
DQa  
VCC  
NC  
DQa  
NC  
DQa  
NC  
A
DQa  
VCCQ  
DQa  
NC  
VCCQ  
DQa  
NC  
VCCQ  
NC  
DQa  
NC  
A
WEN  
VCC  
CLK  
NC  
CEN  
A1  
A0  
VCC  
NC  
K
L
M
N
P
R
T
NC  
NC  
A
A
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
Document #: 38-05161Rev. *E  
Page 4 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Pin Descriptions—256K × 36  
256K × 36  
256K × 36  
Pin  
TQFP Pins  
PBGA Pins Name  
Type  
Input-  
Pin Description  
Synchronous Address Inputs: The address register is triggered by a  
37,  
36,  
4P  
4N  
A0,  
A1, Synchronous combination of the rising edge of CLK, ADV/LD LOW, CEN LOW and  
32, 33, 34, 35, 2A, 3A, 5A, 6A,  
44, 45, 46, 47, 3B, 5B, 2C, 3C,  
48, 49, 50, 81, 5C, 6C, 4G, 2R,  
82, 83, 99, 100 6R, 3T, 4T, 5T  
A
true chip enables. A0 and A1 are the two least significant bits (LSBs) of  
the address field and set the internal burst counter if burst cycle is  
initiated.  
93,  
94,  
95,  
96  
5L  
5G  
3G  
3L  
BWa,  
Input-  
Synchronous Byte Write Enables: Each nine-bit byte has its own  
BWb, Synchronous active LOW byte Write enable. On load Write cycles (when WEN and  
BWc,  
BWd  
ADV/LD are sampled LOW), the appropriate byte Write signal (BWx)  
must be valid. The byte Write signal must also be valid on each cycle of  
a burst Write. Byte Write signals are ignored when WEN is sampled  
HIGH. The appropriate byte(s) of data are written into the device two  
cycles later. BWa controls DQa pins; BWb controls DQb pins; BWc  
controls DQc pins; BWd controls DQd pins. BWx can all be tied LOW if  
always doing Writes to the entire 36-bit word.  
87  
88  
4M  
4H  
CEN  
Input-  
Synchronous Clock Enable Input: When CEN is sampled HIGH, all  
Synchronous other synchronous inputs, including clock are ignored and outputs  
remain unchanged. The effect of CEN sampled HIGH on the device  
outputs is as if the LOW-to-HIGH clock transition did not occur. For  
normal operation, CEN must be sampled LOW at rising edge of clock.  
WEN  
Input-  
Read Write: WEN signal is a synchronous input that identifies whether  
Synchronous the current loaded cycle and the subsequent burst cycles initiated by  
ADV/LD is a Read or Write operation. The data bus activity for the  
current cycle takes place two clock cycles later.  
89  
4K  
CLK  
CE,  
Input-  
Clock: This is the clock input to CY7C1354A. Except for OE, ZZ and  
Synchronous MODE, all timing references for the device are made with respect to the  
rising edge of CLK.  
98, 92  
4E, 6B  
Input-  
Synchronous Active LOW Chip Enable: CE and CE3 are used with  
CE3 Synchronous CE2 to enable the CY7C1354A. CE or CE3 sampled HIGH or CE2  
sampled LOW, along with ADV/LD LOW at the rising edge of clock,  
initiates a deselect cycle. The data bus will be High-Z two clock cycles  
after chip deselect is initiated.  
97  
86  
2B  
4F  
CE2  
Input-  
Synchronous Active High Chip Enable: CE2 is used with CE and CE3  
Synchronous to enable the chip. CE2 has inverted polarity but otherwise is identical  
to CE and CE3.  
OE  
Input  
Asynchronous Output Enable: OE must be LOW to Read data. When  
OE is HIGH, the I/O pins are in high-impedance state. OE does not need  
to be actively controlled for Read and Write cycles. In normal operation,  
OE can be tied LOW.  
85  
4B  
ADV/  
Input-  
Advance/Load: ADV/LD is a synchronous input that is used to load the  
LD Synchronous internal registers with new address and control signals when it is  
sampled LOW at the rising edge of clock with the chip is selected. When  
ADV/LD is sampled HIGH, then the internal burst counter is advanced  
for any burst that was in progress. The external addresses and WEN  
are ignored when ADV/LD is sampled HIGH.  
31  
64  
3R  
7T  
MOD  
Input-  
Burst Mode: When MODE is HIGH or NC, the interleaved burst  
sequence is selected. When MODE is LOW, the linear burst sequence  
is selected. MODE is a static DC input.  
Sleep Enable: This active HIGH input puts the device in low power  
E
Static  
ZZ  
Input-  
Asynchronous consumption standby mode. For normal operation, this input has to be  
either LOW or NC.  
Document #: 38-05161Rev. *E  
Page 5 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Pin Descriptions—256K × 36 (continued)  
256K × 36  
256K × 36  
Pin  
TQFP Pins  
PBGA Pins Name  
Type  
Pin Description  
51, 52, 53,  
(a) 6P, 7P, 7N, DQa  
Input/  
Data Inputs/Outputs: Both the data input path and data output path are  
registered and triggered by the rising edge of CLK. Byte “a” is DQa pins;  
Byte “b” is DQb pins; Byte “c” is DQc pins; Byte “d” is DQd pins.  
56-59, 62, 63 6N, 6M, 6L, 7L, DQb  
Output  
68, 69, 72-75,  
78, 79, 80  
6K, 7K,  
DQc  
(b) 7H, 6H, 7G, DQd  
1, 2, 3, 6-9, 12, 6G, 6F, 6E, 7E,  
13  
7D, 6D,  
18, 19, 22-25, (c) 2D, 1D, 1E,  
28, 29, 30  
2E, 2F, 1G, 2G,  
1H, 2H,  
(d) 1K, 2K, 1L,  
2L, 2M, 1N, 2N,  
1P, 2P  
38  
39  
43  
2U  
3U  
4U  
TMS  
TDI  
Input  
IEEE 1149.1 Test Inputs: LVTTL-level inputs. If Serial Boundary Scan  
(JTAG) is not used, these pins can be floating (i.e., No Connect) or be  
TCK  
connected to VCC.  
42  
5U  
TDO  
Output  
Supply  
Ground  
IEEE 1149.1 Test Output: LVTTL-level output. If Serial Boundary Scan  
(JTAG) is not used, these pins can be floating (i.e., No Connect).  
14, 15, 16, 41, 4C, 2J, 4J, 6J, VCC  
65, 66, 91 4R, 5R  
Power Supply: +3.3V –5% and +5%.  
5, 10, 17, 21, 3D, 5D, 3E, 5E, VSS  
Ground: GND.  
26, 40, 55, 60, 3F, 5F, 3H, 5H,  
67, 71, 76, 90  
3K, 5K, 3M,  
5M, 3N, 5N, 3P,  
5P  
4, 11, 20, 27, 1A, 7A, 1F, 7F, VCCQ I/O Supply Output Buffer Supply: +3.3V –0.165V and +0.165V for 3.3V I/O. +2.5V  
54, 61, 70, 77 1J, 7J, 1M, 7M,  
1U, 7U  
–0.125V and +0.4V for 2.5V I/O.  
84  
4A, 1B, 7B, 1C, NC  
No Connect: These signals are not internally connected. It can be left  
7C, 4D, 3J, 5J,  
4L, 1R, 7R, 1T,  
2T, 6T, 6U  
floating or be connected to VCC or to GND.  
Pin Descriptions—512K × 18  
512K × 18  
512K × 18  
Pin  
TQFP Pins  
PBGA Pins Name  
Type  
Pin Description  
37,  
36,  
4P  
4N  
A0,  
Input-  
Synchronous Address Inputs: The address register is triggered by a  
A1, Synchronous combination of the rising edge of CLK, ADV/LD LOW, CEN LOW, and  
32, 33, 34, 35, 2A, 3A, 5A, 6A,  
44, 45, 46, 47, 3B, 5B, 6B, 2C,  
48, 49, 50, 80, 3C, 5C, 6C, 4G,  
81, 82, 83, 99, 2R, 6R, 2T, 3T,  
A
true chip enables. A0 and A1 are the two least significant bits of the  
address field and set the internal burst counter if burst cycle is initiated.  
100  
5T, 6T  
93,  
5L  
BWa,  
Input-  
Synchronous Byte Write Enables: Each nine-bit byte has its own  
94,  
3G  
BWb Synchronous active LOW byte Write enable. On load Write cycles (when WEN and  
ADV/LD are sampled LOW), the appropriate byte Write signal (BWx)  
must be valid. The byte Write signal must also be valid on each cycle of  
a burst Write. Byte Write signals are ignored when WEN is sampled  
HIGH. The appropriate byte(s) of data are written into the device two  
cycles later. BWa controls DQa pins; BWb controls DQb pins. BWx can  
all be tied LOW if always doing Write to the entire 18-bit word.  
87  
4M  
CEN  
Input-  
Synchronous Clock Enable Input: When CEN is sampled HIGH, all  
Synchronous other synchronous inputs, including clock are ignored and outputs  
remain unchanged. The effect of CEN sampled HIGH on the device  
outputs is as if the LOW-to-HIGH clock transition did not occur. For  
normal operation, CEN must be sampled LOW at rising edge of clock.  
Document #: 38-05161Rev. *E  
Page 6 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Pin Descriptions—512K × 18 (continued)  
512K × 18  
512K × 18  
Pin  
TQFP Pins  
PBGA Pins Name  
Type  
Pin Description  
88  
89  
4H  
WEN  
Input-  
Read Write: WEN signal is a synchronous input that identifies whether  
Synchronous the current loaded cycle and the subsequent burst cycles initiated by  
ADV/LD is a Read or Write operation. The data bus activity for the current  
cycle takes place two clock cycles later.  
4K  
CLK  
CE,  
Input-  
Clock: This is the clock input to CY7C1356A. Except for OE, ZZ, and  
Synchronous MODE, all timing references for the device are made with respect to the  
rising edge of CLK.  
98,  
92  
4E, 6B  
Input-  
Synchronous Active LOW Chip Enable: CE and CE3 are used with  
CE3 Synchronous CE2 to enable the CY7C1356A. CE or CE3 sampled HIGH or CE2  
sampled LOW, along with ADV/LD LOW at the rising edge of clock,  
initiates a deselect cycle. The data bus will be High-Z two clock cycles  
after chip deselect is initiated.  
97  
86  
2B  
4F  
CE2  
Input-  
Synchronous Active HIGH Chip Enable: CE2 is used with CE and CE3  
Synchronous to enable the chip. CE2 has inverted polarity but otherwise is identical to  
CE and CE3.  
OE  
Input  
Asynchronous Output Enable: OE must be LOW to Read data. When  
OE is HIGH, the I/O pins are in high-impedance state. OE does not need  
to be actively controlled for Read and write cycles. In normal operation,  
OE can be tied LOW.  
85  
4B  
ADV  
Input-  
Advance/Load: ADV/LD is a synchronous input that is used to load the  
/LD Synchronous internal registers with new address and control signals when it is  
sampled LOW at the rising edge of clock with the chip is selected. When  
ADV/LD is sampled HIGH, then the internal burst counter is advanced  
for any burst that was in progress. The external addresses and WEN are  
ignored when ADV/LD is sampled HIGH.  
31  
64  
3R  
7T  
MOD  
Input-  
Burst Mode: When MODE is HIGH or NC, the interleaved burst  
sequence is selected. When MODE is LOW, the linear burst sequence  
is selected. MODE is a static DC input.  
Sleep Enable: This active HIGH input puts the device in low power  
E
Static  
ZZ  
Input-  
Asynchronou consumption standby mode. For normal operation, this input has to be  
s
either LOW or NC.  
58, 59, 62, 63, (a) 6D, 7E, 6F, DQa  
68, 69, 72, 73, 7G, 6H, 7K, 6L, DQb  
Input/  
Data Inputs/Outputs: Both the data input path and data output path are  
registered and triggered by the rising edge of CLK. Byte “a” is DQa pins;  
Byte “b” is DQb pins.  
Output  
74  
6N, 7P  
8, 9, 12, 13, 18, (b) 1D, 2E, 2G,  
19, 22, 23, 24 1H, 2K, 1L, 2M,  
1N, 2P  
38  
39  
43  
2U  
3U  
4U  
TMS  
TDI  
Input  
IEEE 1149.1 Test Inputs: LVTTL-level inputs. If Serial Boundary Scan  
(JTAG) is not used, these pins can be floating (i.e., No Connect) or be  
TCK  
connected to VCC.  
42  
5U  
TDO  
Output  
Supply  
Ground  
IEEE 1149.1 Test Inputs: LVTTL-level output. If Serial Boundary Scan  
(JTAG) is not used, these pins can be floating (i.e., No Connect).  
14, 15, 16, 41, 4C, 2J, 4J, 6J, VCC  
65, 66, 91 4R, 5R  
5, 10, 17, 21, 3D, 5D, 3E, 5E, VSS  
26, 40, 55, 60, 3F, 5F, 5G, 3H,  
67, 71, 76, 90 5H, 3K, 5K, 3L,  
3M, 5M, 3N,  
Power Supply: +3.3V –5% and +5%.  
Ground: GND.  
5N, 3P, 5P  
4, 11, 20, 27, 1A, 7A, 1F, 7F, VCCQ I/O Supply Output Buffer Supply: +3.3V –0.165V and +0.165V for 3.3V I/O. +2.5V  
54, 61, 70, 77 1J, 7J, 1M, 7M,  
1U, 7U  
–0.125V and +0.4V for 2.5V I/O.  
Document #: 38-05161Rev. *E  
Page 7 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Pin Descriptions—512K × 18 (continued)  
512K × 18  
512K × 18  
Pin  
TQFP Pins  
PBGA Pins Name  
Type  
Pin Description  
1-3, 6, 7, 25, 4A, 1B, 7B, 1C, NC  
No Connect: These signals are not internally connected. It can be left  
28-30,  
7C, 2D, 4D, 7D,  
floating or be connected to VCC or to GND.  
51-53, 56, 57, 1E, 6E, 2F, 1G,  
75, 78, 79, 84, 6G, 2H, 7H, 3J,  
95, 96  
5J, 1K, 6K, 2L,  
4L, 7L, 6M, 2N,  
7N, 1P, 6P, 1R,  
7R, 1T, 4T, 6U  
Partial Truth Table for Read/Write[2]  
Function  
Read  
WEN  
BWa  
X
H
L
H
H
H
L
BWb  
X
H
H
L
H
H
L
BWc[4]  
BWd[4]  
H
L
L
L
L
L
L
X
H
H
H
L
X
H
H
H
H
L
No Write  
Write Byte a (DQa)[3]  
Write Byte b (DQb)[3]  
Write Byte c (DQc)[3]  
Write Byte d (DQd}[3]  
Write all bytes  
H
L
L
Interleaved Burst Address Table  
(MODE = VCC or NC)  
Linear Burst Address Table  
(MODE = VSS)  
First  
Second  
Address  
(internal)  
Third  
Fourth  
(internal)[5]  
First  
Second  
Address  
(internal)  
Third  
Fourth  
Address  
Address  
(external)  
Address  
(internal)  
Address  
Address  
(external)  
Address  
(internal)  
(internal)[5]  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A00  
A...A11  
A...A10  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A10  
A...A01  
A...A00  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A10  
A...A11  
A...A00  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A00  
A...A01  
A...A10  
Notes:  
2. L means logic LOW. H means logic HIGH. X means Don’t Care.  
3. Multiple bytes may be selected during the same cycle.  
4. BWc and BWd apply to 256K × 36 device only.  
5. Upon completion of the Burst sequence, the counter wraps around to its initial state and continues counting.  
Document #: 38-05161Rev. *E  
Page 8 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs must remain inactive for the duration of  
tZZREC after the ZZ input returns LOW. CEN needs to active  
before going into the ZZ mode and before you want to come  
back out of the ZZ mode.  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
Min.  
Max.  
10  
2tCYC  
Unit  
mA  
ns  
IDDZZ  
tZZS  
tZZREC  
2tCYC  
ns  
Truth Table[9, 10, 11, 12, 13, 14, 15, 16, 17]  
Previous Address  
DQ  
OE (2 cycles later)  
Operation  
Cycle  
Used  
X
WEN ADV/LD CE CEN  
BWx  
X
X
X
X
X
X
L
L
Deselect Cycle  
X
Deselect  
X
Read  
X
Read  
X
Write  
X
X
X
H
X
H
X
L
L
H
L
H
L
H
X
L
X
L
L
L
L
L
L
L
L
L
L
L
H
X
X
X
X
H
H
X
X
X
X
X
High-Z  
High-Z  
Q
Continue Deselect/NOP[18]  
X
Read Cycle (Begin Burst)  
External  
Next  
External  
Next  
External  
Next  
External  
Next  
Read Cycle (Continue Burst)[18]  
Dummy Read (Begin Burst)[19]  
Dummy Read (Continue Burst)[18, 19]  
Write Cycle (Begin Burst)  
Q
High-Z  
High-Z  
D
H
L
X
L
Write Cycle (Continue Burst)[18]  
Abort Write (Begin Burst)[19]  
Abort Write (Continue Burst)[18, 19]  
Ignore Clock Edge/NOP[20]  
X
L
H
L
X
L
D
H
H
X
High-Z  
High-Z  
Write  
X
X
X
H
H
X
X
X
Notes:  
6. This assumes that CEN, CE, CE and CE are all True.  
2
3
7. All addresses, control and data-in are only required to meet set-up and hold time with respect to the rising edge of clock. Data out is valid after a clock-to-data  
delay from the rising edge of clock.  
8. DQc and DQd apply to 256K × 36 device only.  
9. L means logic LOW. H means logic HIGH. X means Don’t Care. High-Z means High Impedance. BWx = L means [BWa*BWb*BWc*BWd] = LOW. BWx = H means  
[BWa*BWb*BWc*BWd] = HIGH. BWc and BWd apply to 256K × 36 device only.  
10. CE = H means CE and CE are LOW along with CE HIGH. CE = L means CE or CE are HIGH or CE is LOW. CE = X means CE, CE , and CE are Don’t Care.  
3
2
3
2
3
2
11. BWa enables Write to byte “a” (DQa pins). BWb enables Write to byte “b” (DQb pins). BWc enables Write to byte “c” (DQc pins). BWd enables Write to byte “d”  
(DQd pins). DQc, DQd, BWc, and BWd apply to 256K × 36 device only.  
12. The device is not in Sleep Mode, i.e., the ZZ pin is LOW.  
13. During Sleep Mode, the ZZ pin is HIGH and all the address pins and control pins are “Don’t Care.” The SNOOZE MODE can only be entered two cycles after the  
Write cycle, otherwise the Write cycle may not be completed.  
14. All inputs, except OE, ZZ, and MODE pins, must meet set-up time and hold time specification against the clock (CLK) LOW-to-HIGH transition edge.  
15. OE may be tied to LOW for all the operation. This device automatically turns off the output driver during Write cycle.  
16. Device outputs are ensured to be in High-Z during device power-up.  
17. This device contains a two-bit burst counter. The address counter is incremented for all Continue Burst cycles. Address wraps to the initial address every fourth  
burst cycle.  
18. Continue Burst cycles, whether Read or Write, use the same control signals. The type of cycle performed, Read or Write, depends upon the WEN control signal  
at the Begin Burst cycle. A Continue Deselect cycle can only be entered if a DESELECT cycle is executed first.  
19. Dummy Read and Abort Write cycles can be entered to set up subsequent Read or Write cycles or to increment the burst counter.  
20. When an Ignore Clock Edge cycle enters, the output data (Q) will remain the same if the previous cycle is Read cycle or remain High-Z if the previous cycle is  
Write or DESELECT cycle.  
Document #: 38-05161Rev. *E  
Page 9 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Overview  
The TAP circuitry does not have a reset pin (TRST, which is  
optional in the IEEE 1149.1 specification). A RESET can be  
This device incorporates a serial boundary scan access port  
(TAP). This port is designed to operate in a manner consistent  
with IEEE Standard 1149.1–1990 (commonly referred to as  
JTAG), but does not implement all of the functions required for  
IEEE 1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the critical speed path of the device. Never-  
theless, the device supports the standard TAP controller archi-  
tecture (the TAP controller is the state machine that controls  
the TAPs operation) and can be expected to function in a  
manner that does not conflict with the operation of devices with  
IEEE Standard 1149.1-compliant TAPs. The TAP operates  
using LVTTL/LVCMOS logic level signaling.  
performed for the TAP controller by forcing TMS HIGH (VCC)  
for five rising edges of TCK and pre-loads the instruction  
register with the IDCODE command. This type of reset does  
not affect the operation of the system logic. The reset affects  
test logic only.  
At power-up, the TAP is reset internally to ensure that TDO is  
in a High-Z state.  
TAP Registers  
Overview  
The various TAP registers are selected (one at a time) via the  
sequences of ones and zeros input to the TMS pin as the TCK  
is strobed. Each of the TAP registers is a serial shift register  
that captures serial input data on the rising edge of TCK and  
pushes serial data out on subsequent falling edge of TCK.  
When a register is selected, it is connected between the TDI  
and TDO pins.  
Disabling the JTAG Feature  
It is possible to use this device without using the JTAG feature.  
To disable the TAP controller without interfering with normal  
operation of the device, TCK should be tied LOW (VSS) to  
prevent clocking the device. TDI and TMS are internally pulled  
up and may be unconnected. They may alternately be pulled  
up to VCC through a resistor. TDO should be left unconnected.  
Upon power-up the device will come up in a reset state which  
will not interfere with the operation of the device.  
Instruction Register  
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The parallel outputs of  
the instruction register are automatically preloaded with the  
IDCODE instruction upon power-up or whenever the controller  
is placed in the test-logic reset state. When the TAP controller  
is in the Capture-IR state, the two least significant bits of the  
serial instruction register are loaded with a binary “01” pattern  
to allow for fault isolation of the board-level serial test data  
path.  
Test Access Port  
TCK–Test Clock (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMS–Test Mode Select (INPUT)  
The TMS input is sampled on the rising edge of TCK. This is  
the command input for the TAP controller state machine. It is  
allowable to leave this pin unconnected if the TAP is not used.  
The pin is pulled up internally, resulting in a logic HIGH level.  
Bypass Register  
The bypass register is a single-bit register that can be placed  
between TDI and TDO. It allows serial test data to be passed  
through the device TAP to another device in the scan chain  
TDI–Test Data In (INPUT)  
with minimum delay. The bypass register is set LOW (VSS  
)
The TDI input is sampled on the rising edge of TCK. This is the  
input side of the serial registers placed between TDI and TDO.  
The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the  
instruction that is currently loaded in the TAP instruction  
register (refer to Figure 1, TAP Controller State Diagram). It is  
allowable to leave this pin unconnected if it is not used in an  
application. The pin is pulled up internally, resulting in a logic  
HIGH level. TDI is connected to the most significant bit (MSB)  
of any register (see Figure 2).  
when the BYPASS instruction is executed.  
Boundary Scan Register  
The Boundary Scan register is connected to all the input and  
bidirectional I/O pins (not counting the TAP pins) on the device.  
This also includes a number of NC pins that are reserved for  
future needs. There are a total of 70 bits for x36 device and 51  
bits for x18 device. The boundary scan register, under the  
control of the TAP controller, is loaded with the contents of the  
device I/O ring when the controller is in Capture-DR state and  
then is placed between the TDI and TDO pins when the  
controller is moved to Shift-DR state. The EXTEST, SAMPLE/  
PRELOAD and SAMPLE-Z instructions can be used to  
capture the contents of the I/O ring.  
The Boundary Scan Order table describes the order in which  
the bits are connected. The first column defines the bit’s  
position in the boundary scan register. The MSB of the register  
is connected to TDI, and LSB is connected to TDO. The  
second column is the signal name and the third column is the  
bump number. The third column is the TQFP pin number and  
the fourth column is the BGA bump number.  
TDO–Test Data Out (OUTPUT)  
The TDO output pin is used to serially clock data-out from the  
registers. The output that is active depending on the state of  
the TAP state machine (refer to Figure 1, TAP Controller State  
Diagram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed  
between TDI and TDO. TDO is connected to the LSB of any  
register (see Figure 2).  
Document #: 38-05161Rev. *E  
Page 10 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Identification (ID) Register  
IDCODE  
The ID Register is a 32-bit register that is loaded with a device  
and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the  
instruction register. The register is then placed between the  
TDI and TDO pins when the controller is moved into Shift-DR  
state. Bit 0 in the register is the LSB and the first to reach TDO  
when shifting begins. The code is loaded from a 32-bit on-chip  
ROM. It describes various attributes of the device as described  
in the Identification Register Definitions table.  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the ID register when the controller is in  
Capture-DR mode and places the ID register between the TDI  
and TDO pins in Shift-DR mode. The IDCODE instruction is  
the default instruction loaded in the instruction upon power-up  
and at any time the TAP controller is placed in the test-logic  
reset state.  
SAMPLE-Z  
If the High-Z instruction is loaded in the instruction register, all  
output pins are forced to a High-Z state and the boundary scan  
register is connected between TDI and TDO pins when the  
TAP controller is in a Shift-DR state.  
TAP Controller Instruction Set  
Overview  
There are two classes of instructions defined in the IEEE  
Standard 1149.1-1990; the standard (public) instructions and  
device specific (private) instructions. Some public instructions  
are mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1-compliant because  
some of the mandatory instructions are not fully implemented.  
The TAP on this device may be used to monitor all input and  
I/O pads, but can not be used to load address, data, or control  
signals into the device or to preload the I/O buffers. In other  
words, the device will not perform IEEE 1149.1 EXTEST,  
INTEST, or the preload portion of the SAMPLE/PRELOAD  
command.  
When the TAP controller is placed in Capture-IR state, the two  
least significant bits of the instruction register are loaded with  
01. When the controller is moved to the Shift-IR state the  
instruction is serially loaded through the TDI input (while the  
previous contents are shifted out at TDO). For all instructions,  
the TAP executes newly loaded instructions only when the  
controller is moved to Update-IR state. The TAP instruction  
sets for this device are listed in the following tables.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is an IEEE 1149.1-mandatory  
instruction. The PRELOAD portion of the command is not  
implemented in this device, so the device TAP controller is not  
fully IEEE 1149.1-compliant.  
When the SAMPLE/PRELOAD instruction is loaded in the  
instruction register and the TAP controller is in the Capture-DR  
state, a snap shot of the data in the device’s input and I/O  
buffers is loaded into the boundary scan register. Because the  
device system clock(s) are independent from the TAP clock  
(TCK), it is possible for the TAP to attempt to capture the input  
and I/O ring contents while the buffers are in transition (i.e., in  
a metastable state). Although allowing the TAP to sample  
metastable inputs will not harm the device, repeatable results  
can not be expected. To guarantee that the boundary scan  
register will capture the correct value of a signal, the device  
input signals must be stabilized long enough to meet the TAP  
controller’s capture set-up plus hold time (tCS plus tCH). The  
device clock input(s) need not be paused for any other TAP  
operation except capturing the input and I/O ring contents into  
the boundary scan register.  
Moving the controller to Shift-DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not imple-  
mented in this device, moving the controller to the Update-DR  
state with the SAMPLE/PRELOAD instruction loaded in the  
instruction register has the same effect as the Pause-DR  
command.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is  
to be executed whenever the instruction register is loaded with  
all 0s. EXTEST is not implemented in this device.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the device responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between two instruc-  
tions. Unlike SAMPLE/PRELOAD instruction, EXTEST places  
the device outputs in a High-Z state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP controller is in the Shift-DR state, the  
bypass register is placed between TDI and TDO. This allows  
the board level scan path to be shortened to facilitate testing  
of other devices in the scan path.  
Reserved  
Do not use these instructions. They are reserved for future  
use.  
Document #: 38-05161Rev. *E  
Page 11 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
REUN-TEST/  
IDLE  
SELECT  
SELECT  
DR-SCAN  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Figure 1. TAP Controller State Diagram[21]  
Note:  
21. The “0”/”1” next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05161Rev. *E  
Page 12 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
[22]  
Boundary Scan Register  
TDI  
TDI  
TAP Controller  
Figure 2. TAP Controller Block Diagram  
TAP Electrical Characteristics (20°C < Tj < 110°C; VCC = 3.3V –0.2V and +0.3V unless otherwise noted)  
Parameter  
VIH  
VIl  
ILI  
ILI  
ILO  
Description  
Test Conditions  
Min.  
2.0  
–0.3  
–5.0  
–30  
–5.0  
Max.  
VCC + 0.3  
0.8  
Unit  
V
V
µA  
µA  
µA  
Input High (Logic 1) Voltage[23, 24]  
Input Low (Logic 0) Voltage[23, 24]  
Input Leakage Current  
0V < VIN < VCC  
5.0  
30  
5.0  
TMS and TDI Input Leakage Current 0V < VIN < VCC  
Output Leakage Current  
Output disabled,  
0V < VIN < VCCQ  
VOLC  
VOHC  
VOLT  
LVCMOS Output Low Voltage[23, 25] IOLC = 100 µA  
LVCMOS Output High Voltage[23, 25] IOHC = 100 µA  
0.2  
0.4  
V
V
V
V
VCC – 0.2  
2.4  
LVTTL Output Low Voltage[23]  
LVTTL Output High Voltage[23]  
IOLT = 8.0 mA  
IOHT = 8.0 mA  
VOHT  
Notes:  
22. X = 69 for the x36 configuration;  
X = 50 for the x18 configuration.  
23. All voltage referenced to V (GND).  
SS  
24. Overshoot: V (AC) < V + 1.5V for t < t  
/2; undershoot: V (AC) <–0.5V for t < t  
/2; power-up: V < 3.6V and V < 3.135V and V < 1.4V for t <  
CCQ  
IH  
CC  
KHKH  
IL  
KHKH  
IH  
CC  
200 ms. During normal operation, V  
25. This parameter is sampled.  
must not exceed V . Control input signals (such as WEN and ADV/LD) may not have pulse widths less than t  
(min.).  
KHKL  
CCQ  
CC  
Document #: 38-05161Rev. *E  
Page 13 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
TAP AC Switching Characteristics Over the Operating Range[26, 27]  
Parameter  
Description  
Min.  
Max.  
Unit  
Clock  
tTHTH  
fTF  
tTHTL  
tTLTH  
Clock Cycle Time  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
20  
ns  
MHz  
ns  
50  
8
8
ns  
Output Times  
tTLQX  
tTLQV  
tDVTH  
tTHDX  
TCK LOW to TDO Unknown  
TCK LOW to TDO Valid  
TDI Valid to TCK HIGH  
TCK HIGH to TDI Invalid  
0
ns  
ns  
ns  
ns  
10  
5
5
Set-up Times  
tMVTH  
tTDIS  
TMS Set-up  
TDI Set-up  
Capture Set-up  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTHMX  
tTDIH  
TMS Hold  
TDI Hold  
Capture Hold  
5
5
5
ns  
ns  
ns  
tCH  
Notes:  
26. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
27. Test conditions are specified using the load in TAP AC test conditions.  
Document #: 38-05161Rev. *E  
Page 14 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
TAP Timing and Test Conditions  
1.5V  
50Ω  
ALL INPUT PULSES  
1.5V  
TDO  
3.0V  
1.5 ns  
Z = 50Ω  
0
C = 20 pF  
L
VSS  
1.5 ns  
GND  
(a)  
t
t
THTL  
TLTH  
t
THTH  
TEST CLOCK  
(TCK)  
t
t
MVTH  
THMX  
TEST MODE SELECT  
(TMS)  
t
t
DVTH  
THDX  
TEST DATA IN  
(TDI)  
t
TLQV  
t
TLQX  
TEST DATA OUT  
(TDO)  
Identification Register Definitions  
Instruction Field  
Revision Number(31:28)  
Device Depth (27:23)  
Device Width (22:18)  
Reserved (17:12)  
256K x 36  
XXXX  
00110  
00100  
XXXXXX  
00011100100  
1
512K x 18  
XXXX  
00111  
00011  
XXXXXX  
Description  
Reserved for revision number.  
Defines depth of 256K or 512K words.  
Defines width of x36 or x18 bits.  
Reserved for future use.  
Cypress Jedec ID Code (11:1)  
ID Register Presence Indicator (0)  
00011100100 Allows unique identification of DEVICE vendor.  
Indicates the presence of an ID register.  
1
Scan Register Sizes  
Register Name  
Instruction  
Bypass  
Bit Size (x36)  
Bit Size (x18)  
3
1
3
1
ID  
32  
70  
32  
51  
Boundary Scan  
Document #: 38-05161Rev. *E  
Page 15 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state. This instruction is not  
IEEE 1149.1-compliant.  
IDCODE  
001  
010  
Preloads ID register with vendor ID code and places it between TDI and  
TDO. This instruction does not affect device operations.  
SAMPLE-Z  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state.  
RESERVED  
SAMPLE/PRELOAD  
011  
100  
Do not use these instructions; they are reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. This instruction does not affect device operations. This instruction  
does not implement IEEE 1149.1 PRELOAD function and is therefore not  
1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Places the bypass register between TDI and TDO. This instruction does  
not affect device operations.  
Boundary Scan Order (256K × 36)  
Boundary Scan Order (256K × 36) (continued)  
Bit#  
1
2
3
4
5
6
7
Signal Name  
TQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
56  
57  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
75  
78  
79  
80  
81  
82  
Bump ID  
2R  
3T  
Bit#  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
Signal Name  
TQFP  
83  
84  
85  
86  
87  
88  
89  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
2
3
6
7
8
9
12  
13  
14  
18  
19  
Bump ID  
4G  
4A  
4B  
4F  
A
A
A
A
A
A
A
A
NC  
ADV/LD  
OE  
4T  
5T  
6R  
3B  
5B  
6P  
7N  
6M  
7L  
6K  
7P  
6N  
6L  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
CEN  
WEN  
CLK  
CE3  
BWa  
BWb  
BWc  
BWd  
CE2  
CE  
4M  
4H  
4K  
6B  
5L  
5G  
3G  
3L  
2B  
4E  
3A  
2A  
2D  
1E  
2F  
1G  
2H  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
8
9
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
A
A
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
DQd  
DQd  
A
Document #: 38-05161Rev. *E  
Page 16 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Boundary Scan Order (256K × 36) (continued)  
Boundary Scan Order (512K × 18) (continued)  
Bit#  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Signal Name  
TQFP  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Bump ID  
2M  
1N  
Bit#  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Signal Name  
CE3  
BWa  
BWb  
CE2  
CE  
TQFP  
92  
93  
94  
97  
98  
99  
100  
8
Bump ID  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
A
A
A
A1  
6B  
5L  
3G  
2B  
4E  
2P  
1K  
2L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
A
3A  
2A  
DQb  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
1D  
2E  
2G  
1H  
5R  
2K  
9
12  
13  
14  
18  
19  
22  
23  
24  
31  
32  
33  
34  
35  
36  
37  
A0  
1L  
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
Boundary Scan Order (512K × 18)  
Bit#  
1
2
3
4
5
6
7
Signal Name  
TQFP  
44  
45  
46  
47  
48  
49  
50  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Bump ID  
2R  
2T  
A
A
A
A
A
A
A
DQa  
DQa  
DQa  
DQa  
ZZ  
DQa  
DQa  
DQa  
DQa  
DQa  
A
3T  
5T  
A
A
A
A1  
6R  
3B  
5B  
7P  
6N  
6L  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
6T  
6A  
5A  
4G  
4A  
4B  
4F  
A0  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
A
A
A
NC  
ADV/LD  
OE  
CEN  
WEN  
CLK  
4M  
4H  
4K  
Document #: 38-05161Rev. *E  
Page 17 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Short Circuit Output Current ....................................... 50 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Voltage on VCC Supply Relative to VSS ......... –0.5V to +4.6V  
Operating Range  
V
IN ...........................................................–0.5V to VCC+0.5V  
Storage Temperature (plastic) ...................... –55°C to +125°  
Junction Temperature ..................................................+125°  
Power Dissipation .........................................................2.0W  
Ambient  
Temperature[28]  
0°C to +70°C  
–40°C to +85°C  
VCC  
VCCQ  
[29,30]  
[29,30]  
Range  
Commercial  
Industrial  
3.3V ± 5% 2.5V-5%/  
3.3V+10%  
Electrical Characteristics Over the Operating Range  
Parameter  
VIHD  
VIH  
Description  
Test Conditions  
All other Inputs  
Min.  
2.0  
2.0  
1.7  
–0.3  
–0.3  
-
Max.  
VCC + 0.3  
Unit  
V
V
V
V
Input High (Logic 1) Voltage[23, 31]  
3.3V I/O  
2.5V I/O  
3.3V I/O  
2.5V I/O  
VIL  
Input Low (Logic 0) Voltage[23, 31]  
Input Leakage Current  
0.8  
0.7  
5
30  
5
V
ILI  
ILI  
ILO  
VOH  
0V < VIN < VCC  
µA  
µA  
µA  
V
V
V
V
V
V
V
MODE and ZZ Input Leakage Current[32] 0V < VIN < VCC  
-
-
Output Leakage Current  
Output(s) disabled, 0V < VOUT < VCC  
Output High Voltage[23]  
I0H = –5.0 mA for 3.3V I/O  
I0H = –1.0 mA for 2.5V I/O  
I0L=8.0 mA for 3.3V I/O  
I0L = 1.0 mA for 2.5V I/O  
I0H=1.0 mA  
2.4  
2.0  
VOL  
Output Low Voltage[23]  
0.4  
0.4  
3.465  
3.465  
2.9  
VCC  
VCCQ  
Supply Voltage[23]  
3.135  
3.135  
2.375  
I/O Supply Voltage[23]  
3.3V I/O  
2.5V I/O  
200  
MHz/  
-5  
560  
166  
133  
100  
MHz/  
-10  
350  
MHz/  
-6  
MHz/  
-7.5  
Parameter  
ICC  
Description  
Conditions  
Typ.  
Unit  
mA  
Power Supply Current: Device selected; all inputs < VILor > 200  
480  
410  
Operating[33, 34, 35, 36]  
VIH; cycle time > tKC min.; VCC =Max.;  
2
outputs open, ADV/LD = X, f = fMAX  
ISB1  
ISB2  
ISB3  
Automatic CE  
Device deselected;  
mA  
mA  
mA  
mA  
Power-down  
all inputs < VIL or > VIH; VCC = Max.;  
CLK cycle time > tKC Min.  
Current—TTL Inputs  
CMOS Standby[34, 35, 36] Device deselected; VCC = Max.;  
all inputs < VSS + 0.2 or > VCC – 0.2;  
15  
20  
50  
30  
50  
30  
50  
30  
50  
30  
50  
all inputs static; CLK frequency = 0  
TTL Standby[34, 35, 36]  
Device deselected; all inputs < VIL  
or > VIH; all inputs static;  
VCC = Max.; CLK frequency = 0  
ISB4  
Clock Running[34, 35, 36] Device deselected;  
all inputs < VIL or > VIH; VCC = MAX;  
CLK cycle time > tKC Min.  
230  
200  
190  
170  
Notes:  
28. T is the case temperature.  
A
29. Please refer to waveform (d).  
30. Power Supply ramp up should be monotonic.  
31. Overshoot: V < +6.0V for t < t /2; undershoot: V < –2.0V for t < t /2.  
IH  
KC  
IL  
KC  
32. MODE pin has an internal pull-up and ZZ pin has an internal pull-down. These two pins exhibit an input leakage current of ±50 µA.  
33. I is given with no output current. I increases with greater output loading and faster cycle times.  
CC  
CC  
34. “Device Deselected” means the device is in power-down mode as defined in the truth table. “Device Selected” means the device is active.  
35. Typical values are measured at 3.3V, 25°C, and 20-ns cycle time.  
36. At f = f  
, inputs are cycling at the maximum frequency of Read cycles of 1/t  
; f = 0 means no input lines are changing.  
CYC  
MAX  
Document #: 38-05161Rev. *E  
Page 18 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Capacitance[25]  
Parameter  
Description  
Input Capacitance  
Input/Output Capacitance (DQ)  
Test Conditions  
Typ.  
4
7
Max.  
4
6.5  
Unit  
pF  
pF  
CI  
CI/O  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
Thermal Resistance  
Parameter  
Description  
Test Conditions  
TQFP Typ.  
Unit  
ΘJA  
Thermal Resistance  
Still Air, soldered on a 4.25 x 1.125 inch,  
4-layer PCB  
25  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
9
°C/W  
AC Test Loads and Waveforms  
tPU  
=
200us  
317Ω  
DQ  
ALL INPUT PULSES  
90%  
VCCQ  
Vcctyp  
Vccmin  
VCCQ  
DQ  
For proper RESET  
bring Vcc down to 0V  
90%  
10%  
Z0 = 50  
50  
10%  
0V  
5 pF  
351Ω  
1.0 ns  
V = 1.5V  
t
1.0 ns  
(a)  
(c)  
(b)  
(d)  
Switching Characteristics Over the Operating Range[17]  
-5/  
-6/  
-7.5/  
-10/  
100 MHz  
200 MHz  
166 MHz  
133 MHz  
Parameter  
Clock  
tKC  
tKH  
Description  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
5.0  
1.8  
1.8  
6.0  
2.1  
2.1  
7.5  
2.6  
2.6  
10  
3.5  
3.5  
ns  
ns  
ns  
tKL  
Output Times  
tKQ  
tKQX  
Clock to Output Valid  
Clock to Output Invalid  
3.2  
3.6  
4.2  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
tKQLZ  
tKQHZ  
tOEQ  
tOELZ  
tOEHZ  
Set-up Times  
tS  
Clock to Output in Low-Z[25, 38, 39]  
Clock to Output in High-Z[25, 38, 39]  
OE to Output Valid  
3.0  
3.2  
3.0  
3.6  
3.0  
4.2  
3.0  
5.0  
OE to Output in Low-Z[25, 38, 39]  
OE to Output in High-Z[25, 38, 39]  
0
0
0
0
3.5  
3.5  
3.5  
3.5  
Address and Controls[40]  
Data In[40]  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
2.0  
2.0  
ns  
ns  
tSD  
Hold Times  
tH  
tHD  
Address and Controls[40]  
Data In[40]  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
Notes:  
37. Test conditions as specified with the output loading as shown in (a) of AC Test Loads unless otherwise noted.  
38. Output loading is specified with C =5 pF as in (a) of AC Test Loads.  
L
39. At any given temperature and voltage condition, t  
is less than t  
and t  
is less than t  
.
KQHZ  
KQLZ  
OEHZ  
OELZ  
40. This is a synchronous device. All synchronous inputs must meet specified set-up and hold time, except for “don’t care” as defined in the truth table.  
Document #: 38-05161Rev. *E  
Page 19 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Switching Waveforms  
Read Timing[41, 42, 43, 44, 45]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
tH  
tH  
CEN  
tS  
WEN  
tS  
ADDRESS A1  
A2  
BWa, BWb,  
BWc, BWd  
tS  
tH  
CE  
tS  
tH  
V#  
ADV/LD  
OE  
tKQHZ  
(Burst Wraps around  
to initial state)  
(CKE#HIGH, eliminates  
current L-H clock edge)  
tKQ  
tKQX  
tKQLZ  
Q(A)  
Q(A)  
Q(A+1)  
Q(A+2)  
Q(A+3)  
Q(A)  
2
DQ  
1
2
2
2
2
Pipeline Read  
Pipeline Read  
BURST PIPELINE READ  
Notes:  
41. Q(A ) represents the first output from the external address A . Q(A ) represents the first output from the external address A ; Q(A +1) represents the next output  
1
1
2
2
2
data in the burst sequence of the base address A , etc., where address bits A0 and A1 are advancing for the four word burst in the sequence defined by the state  
2
of the MODE input.  
42. CE timing transitions are identical to the CE signal. For example, when CE is LOW on this waveform, CE is LOW. CE timing transitions are identical but inverted  
3
3
2
to the CE signal. For example, when CE is LOW on this waveform, CE is HIGH.  
2
43. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW.  
44. WEN is “Don’t Care” when the SRAM is bursting (ADV/LD sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the WEN signal  
when new address and control are loaded into the SRAM.  
45. BWc and BWd apply to 256K × 36 device only.  
Document #: 38-05161Rev. *E  
Page 20 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Switching Waveforms (continued)  
Write Timing[42, 43, 44, 45, 46, 47]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
CEN  
tS  
tS  
tS  
tS  
tS  
tH  
tH  
tH  
tH  
tH  
WEN  
ADDRESS A1  
A2  
BW(A)  
BW(A)  
BW(A+1)  
BW(A+2)  
BW(A+3)  
BW(A)  
BWa, BWb,  
1
2
2
2
2
2
#  
BWc, BWd  
CE  
ADV/LD  
OE#  
OE  
(CKE#HIGH, eliminates  
current L-H clock edge)  
(Burst Wraps around  
to initial state)  
tHD  
tSD  
D(A)  
D(A)  
D(A+1)  
D(A+2)  
D(A+3)  
D(A)  
2
DQ  
1
2
2
2
2
Pipeline Write  
Pipeline Write  
Burst Pipeline Write  
Notes:  
46. D(A ) represents the first input to the external address A1. D(A ) represents the first input to the external address A ; D(A + 1) represents the next input data in  
1
2
2
2
the burst sequence of the base address A , etc., where address bits A0 and A1 are advancing for the four-word burst in the sequence defined by the state of the  
2
MODE input.  
47. Individual Byte Write signals (BWx) must be valid on all Write and burst-Write cycles. A Write cycle is initiated when WEN signal is sampled LOW when ADV/LD  
is sampled LOW. The byte Write information comes in one cycle before the actual data is presented to the SRAM.  
Document #: 38-05161Rev. *E  
Page 21 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Switching Waveforms (continued)  
Read/Write Timing[42, 45, 47, 48]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
CEN  
tS  
tS  
tS  
tS  
tS  
tH  
tH  
tH  
tH  
tH  
WEN  
ADDRESS A1  
A2  
A3  
A
A
A
A
A
A
9
4
5
6
7
8
BW(A)  
BW(A)  
BW(A)  
5
BWa, BWb,  
2
4
BWc, BWd  
CE  
ADV/LD  
E
OE  
tKQ  
tKQHZ  
tKQLZ  
Q(A)  
tKQX  
Q(A)  
Q(A)  
Q(A)  
7
DATA Out (Q)  
DATA In (D)  
1
3
6
Read  
Read  
Read  
D(A)  
D(A)  
D(A)  
5
2
4
Write  
Write  
Note:  
48. Q(A ) represents the first output from the external address A . D(A ) represents the input data to the SRAM corresponding to address A .  
1
1
2
2
Document #: 38-05161Rev. *E  
Page 22 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Switching Waveforms (continued)  
CEN Timing[42, 45, 47, 48, 49]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
CEN  
tS  
tH  
WEN  
tS  
tH  
ADDRESS  
A
A2  
A
A4  
A5  
1
3
tS  
tS  
tS  
tH  
tH  
tH  
BWa, BWb,  
BWc, BWd  
CE  
ADV/LD  
OE  
tKQ  
tKQHZ  
Q(A)  
Q(A)  
DATA Out (Q)  
1
3
tSD tHD  
tKQLZ  
tKQX  
D(A)  
DATA In (D)  
2
Note:  
49. CEN when sampled HIGH on the rising edge of clock will block that L-H transition of the clock from propagating into the SRAM. The part will behave as if the L-H  
clock transition did not occur. All internal registers in the SRAM will retain their previous states.  
Document #: 38-05161Rev. *E  
Page 23 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Switching Waveforms (continued)  
CE Timing[42, 45, 47, 50, 51]  
tKC  
tKH  
tKL  
CLK  
tS  
tH  
CEN  
tS  
tH  
WEN  
tS  
tH  
ADDRESS  
A
A
A
A4  
A
1
2
3
5
tS  
tH  
BWa, BWb,  
BWc, BWd  
tS  
tH  
CE  
tS  
tH  
ADV/LD  
tOEQ  
OE  
tKQHZ  
tOEHZ  
tOELZ  
Q(A)  
Q(A)  
Q(A)  
4
DATA Out (Q)  
DATA In (D)  
1
2
tKQLZ  
tSD tHD  
tKQX  
tKQ  
D(A)  
3
Notes:  
50. Q(A ) represents the first output from the external address A . D(A ) represents the input data to the SRAM corresponding to address A , etc.  
1
1
3
3
51. When either one of the Chip Enables (CE, CE , or CE ) is sampled inactive at the rising clock edge, a chip deselect cycle is initiated. The data-bus High-Z one  
2
3
cycle after t  
Document #: 38-05161Rev. *E  
Page 24 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Switching Waveforms (continued)  
ZZ Mode Timing [ 50, 51]  
CLK  
CE  
1
LOW  
HIGH  
CE  
2
CE  
ZZ  
3
tZZS  
I
DD  
I
(active)  
DD  
tZZREC  
I/Os  
I
DDZZ  
Three-state  
Ordering Information  
Speed  
Package  
Operating  
Range  
Commercial  
(MHz)  
Ordering Code  
CY7C1354A-200AC[52]  
CY7C1354A-200BGC[52]  
CY7C1354A-166AC[52]  
CY7C1354A-166BGC[52]  
CY7C1356A-166AC  
Name  
A101  
Package Type  
100-lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-ball BGA (14 x 22 x 2.4 mm)  
100-lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-ball BGA (14 x 22 x 2.4 mm)  
100-lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-ball BGA (14 x 22 x 2.4 mm)  
100-lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-ball BGA (14 x 22 x 2.4 mm)  
200  
BG119  
A101  
BG119  
A101  
BG119  
A101  
A101  
166  
133  
100  
CY7C1354A-133BGC[52]  
CY7C1356A-133AC  
CY7C1356A-100AC  
CY7C1356A-100BGC  
BG119  
Speed  
(MHz)  
166  
Package  
Name  
BG119  
BG119  
A101  
Operating  
Range  
Industrial  
Ordering Code  
CY7C1354A-166BGI[52]  
CY7C1354A-133BGI  
CY7C1356A-133AI  
Package Type  
119-ball BGA (14 x 22 x 2.4 mm)  
119-ball BGA (14 x 22 x 2.4 mm)  
100-lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
133  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
50.Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
51. I/Os are in three-state when exiting ZZ sleep mode  
52. EOL (End of Life)  
Document #: 38-05161Rev. *E  
Page 25 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Package Diagrams  
100-lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05161Rev. *E  
Page 26 of 28  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
No Bus Latency, NoBL, Zero Bus Latency, and ZBL are trademarks of Cypress Semiconductor Corporation. All product and  
company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05161Rev. *E  
Page 27 of 28  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
[+] Feedback  
CY7C1354A  
CY7C1356A  
Document History Page  
Document Title: CY7C1354A/CY7C1356A 256K x 36/512K x 18 Pipelined SRAM  
with NoBL™ Architecture  
Document Number: 38-05161  
Orig. of  
REV.  
**  
*A  
ECN No. Issue Date Change  
Description of Change  
3000  
4/21/00  
03/12/02  
05/30/02  
CXV  
GLC  
GLC  
New Data Sheet  
114095  
114095  
Updated VIH, VIL, separate VIH and VIL for 3.3V and 2.5V I/O.  
*B  
Added “I” temp  
Added automatic power down to features  
Added ZZ mode to characteristics  
Added ZZ mode timing waveform  
Changed nomenclature for ISB  
Updated latch-up current  
Added static discharge voltage  
*C  
*D  
121473  
123143  
11/14/02  
01/18/03  
DSG  
RBI  
Updated package diagram 51-85115 (BG119) to rev. *B  
Added power-up requirements to AC Test Loads and Waveforms and  
Operating Range  
*E  
216628  
03/24/04  
VBL  
Deleted Galvantech info–Title and contents  
Updated ordering info to match devmaster  
Document #: 38-05161Rev. *E  
Page 28 of 28  
[+] Feedback  

相关型号:

CY7C1354A-133BGCI

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1354A-133BGCT

ZBT SRAM, 256KX36, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1354A-133BGI

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354A-133BGI

ZBT SRAM, 256KX36, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
ROCHESTER

CY7C1354A-166AC

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354A-166AC

ZBT SRAM, 256KX36, 3.6ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
ROCHESTER

CY7C1354A-166ACI

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1354A-166ACT

ZBT SRAM, 256KX36, 3.6ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1354A-166BGC

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354A-166BGCI

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1354A-166BGCT

ZBT SRAM, 256KX36, 3.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1354A-166BGI

256K x 36/512K x 18 Pipelined SRAM with NoBL⑩ Architecture
CYPRESS