CY7C1338B-100AC [ROCHESTER]

128KX32 CACHE SRAM, 8ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
CY7C1338B-100AC
型号: CY7C1338B-100AC
厂家: Rochester Electronics    Rochester Electronics
描述:

128KX32 CACHE SRAM, 8ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总19页 (文件大小:1051K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
338B  
CY7C1338B  
128K x 32 Synchronous-Flow-Through 3.3V Cache RAM  
Features  
Functional Description  
• Supports117-MHzmicroprocessorcachesystemswith  
The CY7C1338B is a 3.3V, 128K by 32 synchronous cache  
RAM designed to interface with high-speed microprocessors  
with minimum glue logic. Maximum access delay from clock  
rise is 7.5 ns (117-MHz version). A 2-bit on-chip counter cap-  
tures the first address in a burst and increments the address  
automatically for the rest of the burst access.  
zero wait states  
• 128K by 32 common I/O  
• Fast clock-to-output times  
— 7.5 ns (117-MHz version)  
• Two-bit wraparound counter supporting either inter-  
leaved or linear burst sequence  
• Separate processor and controller address strobes  
providedirectinterfacewiththeprocessorandexternal  
cache controller  
• Synchronous self-timed write  
• Asynchronous output enable  
• 3.3V/ 2.5V I/Os  
• JEDEC-standard pinout  
• 100-pin TQFP packaging  
• ZZ “sleep” mode  
The CY7C1338B allows both interleaved and linear burst se-  
quences, selected by the MODE input pin. A HIGH selects an  
interleaved burst sequence, while a LOW selects a linear burst  
sequence. Burst accesses can be initiated with the Processor  
Address Strobe (ADSP) or the cache Controller Address  
Strobe (ADSC) inputs. Address advancement is controlled by  
the Address Advancement (ADV) input.  
A synchronous self-timed write mechanism is provided to sim-  
plify the write interface. A synchronous chip enable input and  
an asynchronous output enable input provide easy control for  
bank selection and output three-state control.  
• Available in Commercial and Industrial Temperatures  
Logic Block Diagram  
MODE  
2
(A ,A )  
0
1
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
15  
17  
ADDRESS  
REGISTER  
CE  
D
128K X 32  
MEMORY  
ARRAY  
A
[16:0]  
17  
15  
GW  
Q
Q
Q
Q
DQ[31:24]  
D
BYTEWRITE  
REGISTERS  
BWE  
BW  
3
D
D
D
DQ[23:16]  
BYTEWRITE  
REGISTERS  
BW  
2
DQ[15:8]  
BYTEWRITE  
REGISTERS  
BW  
1
DQ[7:0]  
BW  
BYTEWRITE  
REGISTERS  
0
32  
32  
CE  
1
CE  
2
D
CE  
ENABLE  
REGISTER  
CLK  
Q
CE  
3
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
[31:0]  
Selection Guide  
-117  
7.5  
-100  
Maximum Access Time (ns)  
8.0  
325  
2.0  
Maximum Operating Current (mA)  
Maximum Standby Current (mA)  
350  
2.0  
Cypress Semiconductor Corporation  
Document #: 38-05143 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised January 18, 2003  
CY7C1338B  
Pin Configurations  
100-Pin TQFP  
NC  
NC  
DQ  
DQ  
V
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQ  
DQ  
16  
17  
15  
14  
V
V
DDQ  
DDQ  
SSQ  
SSQ  
V
DQ  
DQ  
DQ  
DQ  
18  
19  
DQ  
DQ  
DQ  
DQ  
V
13  
12  
11  
10  
BYTE2  
BYTE1  
20  
21  
9
V
V
SSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SSQ  
DDQ  
DDQ  
V
DQ  
DQ  
22  
23  
DQ  
DQ  
V
9
8
NC  
SS  
V
DD  
NC  
CY7C1338B  
NC  
V
DD  
V
SS  
ZZ  
DQ  
DQ  
V
DQ  
DQ  
24  
25  
7
6
V
V
DDQ  
DDQ  
SSQ  
SSQ  
V
DQ  
DQ  
DQ  
DQ  
26  
27  
DQ  
DQ  
DQ  
DQ  
V
5
4
3
2
BYTE3  
BYTE0  
28  
29  
V
V
SSQ  
SSQ  
DDQ  
DDQ  
V
DQ  
DQ  
30  
31  
DQ  
DQ  
NC  
1
0
NC  
Document #: 38-05143 Rev. *B  
Page 2 of 18  
CY7C1338B  
Pin Configurations (continued)  
119-Ball BGA  
CY7C1338B (128K x 32)  
1
2
A
3
A
A
A
4
5
A
A
A
6
A
7
A
VDDQ  
NC  
ADSP  
ADSC  
VDD  
VDDQ  
NC  
B
C
CE2  
A
NC  
A
NC  
NC  
D
E
F
DQc  
DQc  
NC  
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
NC  
DQb  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQc  
DQc  
DQc  
DQc  
VDD  
DQd  
DQb  
DQb  
DQb  
DQb  
VDD  
DQa  
VDDQ  
DQc  
ADV  
GW  
VDD  
CLK  
G
H
J
DQc  
VDDQ  
DQd  
VSS  
VSS  
K
L
M
N
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
BWd  
VSS  
VSS  
NC  
BWE  
A1  
BWa  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
VDDQ  
DQa  
DQd  
NC  
NC  
A
VSS  
MODE  
A
A0  
VDD  
A
VSS  
VDD  
A
NC  
A
DQa  
NC  
P
R
T
NC  
NC  
TMS  
NC  
NC  
ZZ  
U
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
Pin Descriptions  
Name  
I/O  
Input-  
Description  
Address Strobe from Controller, sampled on the rising edge of CLK. When asserted LOW, A[16:0] is  
ADSC  
Synchronous captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ADSP  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK. When asserted LOW, A[16:0] is  
Synchronous captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
A[1:0]  
Input-  
A1, A0 Address Inputs. These inputs feed the on-chip burst counter as the LSBs as well as being  
Synchronous used to access a particular memory location in the memory array.  
A[16:2]  
Input- Address Inputs used in conjunction with A[1:0] to select one of the 64K address locations. Sampled  
Synchronous at the rising edge of the CLK, if CE1, CE2, and CE3 are sampled active, and ADSP or ADSC is active  
LOW.  
BW[3:0] Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes. Sampled on the  
Synchronous rising edge. BW0 controls DQ[7:0] and DP0, BW1 controls DQ[15:8] and DP1, BW2 controls DQ[23:16]  
and DP2, and BW3 controls DQ[31:24] and DP3. See Write Cycle Descriptions table for further details.  
ADV  
BWE  
GW  
Input-  
Advance Input used to advance the on-chip address counter. When LOW the internal burst counter  
Synchronous is advanced in a burst sequence. The burst sequence is selected using the MODE input.  
Input- Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be  
Synchronous asserted LOW to conduct a byte write.  
Input-  
Global Write Input, active LOW. Sampled on the rising edge of CLK. This signal is used to conduct  
Synchronous a global write, independent of the state of BWE and BW[3:0]. Global writes override byte writes.  
CLK  
CE1  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
Synchronous and CE3 to select/deselect the device. CE1 gates ADSP.  
Document #: 38-05143 Rev. *B  
Page 3 of 18  
CY7C1338B  
Pin Descriptions (continued)  
Name  
I/O  
Input-  
Synchronous and CE3 to select/deselect the device.  
Description  
CE2  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
CE3  
OE  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE2 to select/deselect the device.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW,  
Asynchronous the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input  
data pins.  
ZZ  
Input-  
Snooze Input. Active HIGH asynchronous. When HIGH, the device enters a low-power standby  
Asynchronous mode in which all other inputs are ignored, but the data in the memory array is maintained. Leaving  
ZZ floating or NC will default the device into an active state. ZZ pin has an internal pull-down.  
MODE  
-
Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. When left floating or NC, defaults to interleaved burst  
order. Mode Pin has an internal pull-up.  
DQ[31:0] I/O-  
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by  
Synchronous the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified  
by A[16:0] during the previous clock rise of the read cycle. The direction of the pins is controlled by  
OE in conjunction with the internal control logic. When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQ[31:0] and DP[3:0] are placed in a three-state condition. The outputs are  
automatically three-stated when a WRITE cycle is detected.  
VDD  
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V power supply.  
VSS  
Ground  
Ground  
Ground for the I/O circuitry of the device. Should be connected to ground of the system.  
Ground for the device. Should be connected to ground of the system.  
VSSQ  
VDDQ  
I/O Power  
Supply  
Power supply for the I/O circuitry. Should be connected to a 3.3V power supply.  
NC  
-
-
No connects.  
DNU  
Do not use pins. Should be left unconnected or tied LOW.  
Single Read Accesses  
Functional Overview  
A single read access is initiated when the following conditions  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tCDV) is 7.5 ns (117-MHz device).  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all as-  
serted active, and (2) ADSP or ADSC is asserted LOW (if the  
access is initiated by ADSC, the write inputs must be deassert-  
ed during this first cycle). The address presented to the ad-  
dress inputs is latched into the address register and the burst  
counter/control logic and presented to the memory core. If the  
OE input is asserted LOW, the requested data will be available  
at the data outputs a maximum to tCDV after clock rise. ADSP  
is ignored if CE1 is HIGH.  
The CY7C1338B supports secondary cache in systems utiliz-  
ing either a linear or interleaved burst sequence. The inter-  
leaved burst order supports Pentium and i486 processors. The  
linear burst sequence is suited for processors that utilize a  
linear burst sequence. The burst order is user selectable, and  
is determined by sampling the MODE input. Accesses can be  
initiated with either the Processor Address Strobe (ADSP) or  
the Controller Address Strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first ad-  
dress in a burst sequence and automatically increments the  
address for the rest of the burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are sat-  
isfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, and (2) ADSP is asserted LOW. The addresses pre-  
sented are loaded into the address register and the burst  
counter/control logic and delivered to the RAM core. The write  
inputs (GW, BWE, and BW[3:0]) are ignored during this first  
clock cycle. If the write inputs are asserted active (see Write  
Cycle Descriptions table for appropriate states that indicate a  
write) on the next clock rise, the appropriate data will be  
latched and written into the device. Byte writes are allowed.  
During byte writes, BW0 controls DQ[7:0], BW1 controls  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[3:0]) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip synchro-  
nous self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank se-  
lection and output three-state control. ADSP is ignored if CE1  
is HIGH.  
DQ[15:8], BW2 controls DQ[23:16], and BW3 controls DQ[31:24]  
.
All I/Os are three-stated during a byte write. Since this is a  
common I/O device, the asynchronous OE input signal must  
be deasserted and the I/Os must be three-stated prior to the  
presentation of data to DQ[31:0]. As a safety precaution, the  
Document #: 38-05143 Rev. *B  
Page 4 of 18  
CY7C1338B  
data lines are three-stated once a write cycle is detected, re-  
gardless of the state of OE.  
Table 1. Counter Implementation for the Intel  
Pentium®/80486 Processors Sequence  
First  
Second  
Third  
Fourth  
Single Write Accesses Initiated by ADSC  
Address  
Address  
Address  
Address  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BW[3:0]  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
AX + 1,Ax  
AX + 1,Ax  
AX + 1,Ax  
AX + 1,Ax  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
)
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the RAM  
core. The information presented to DQ[31:0] will be written into  
the specified address location. Byte writes are allowed. During  
byte writes, BW0 controls DQ[7:0], BW1 controls DQ[15:8], BW2  
controls DQ[23:16], and BWS3 controls DQ[31:24]. All I/Os are  
three-stated when a write is detected, even a byte write. Since  
this is a common I/O device, the asynchronous OE input signal  
must be deasserted and the I/Os must be three-stated prior to  
the presentation of data to DQ[31:0]. As a safety precaution, the  
data lines are three-stated once a write cycle is detected, re-  
gardless of the state of OE.  
Table 2. Counter Implementation for a Linear Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
AX + 1, Ax  
AX + 1, Ax  
AX + 1, Ax  
AX + 1, Ax  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Burst Sequences  
The CY7C1338B provides an on-chip 2-bit wraparound burst  
Sleep Mode  
counter inside the SRAM. The burst counter is fed by A[1:0]  
,
The ZZ input pin is an asynchronous input. Asserting ZZ HIGH  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed. Ac-  
cesses pending when entering the sleepmode are not con-  
sidered valid nor is the completion of the operation guaran-  
teed. The device must be deselected prior to entering the  
sleepmode. CE1, CE2, CE3, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW. Leaving ZZ unconnected defaults the device into an ac-  
tive state.  
and can follow either a linear or interleaved burst order. The  
burst order is determined by the state of the MODE input. A  
LOW on MODE will select a linear burst sequence. A HIGH on  
MODE will select an interleaved burst order. Leaving MODE  
unconnected will cause the device to default to an interleaved  
burst sequence.  
ZZ Mode Electrical Characteristics  
Parameter  
ICCZZ  
Description  
Test Conditions  
Min.  
Max.  
Unit  
Snooze mode  
standby current  
ZZ > VDD 0.2V  
10  
mA  
tZZS  
Deviceoperationto  
ZZ  
ZZ > VDD 0.2V  
2tCYC  
ns  
ns  
tZZREC  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
Document #: 38-05143 Rev. *B  
Page 5 of 18  
CY7C1338B  
Cycle Description Table[1, 2, 3]  
ADD  
Used  
Cycle Description  
CE1 CE3 CE2 ZZ ADSP ADSC ADV WE  
OE CLK  
DQ  
Deselected Cycle, Pow-  
er-down  
None  
H
L
L
L
X
X
X
H
X
X
X
L
L
L
L
L
X
L
X
X
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H High-Z  
Deselected Cycle, Pow-  
er-down  
None  
None  
None  
None  
L
L
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
Deselected Cycle, Pow-  
er-down  
X
L
L
Deselected Cycle, Pow-  
er-down  
H
H
Deselected Cycle, Pow-  
er-down  
X
Snooze Mode, Power-down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
None  
External  
External  
External  
External  
External  
Next  
X
L
X
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
X
X
X
L
X
X
X
X
X
X
L
X
X
X
L
X
L
X
High-Z  
Q
L-H  
L
L
L
H
X
L
L-H High-Z  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
L-H  
L-H High-Z  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H High-Z  
L-H  
L-H High-Z  
Q
H
X
X
L-H  
L-H  
D
D
Write Cycle, Suspend Burst  
L
Notes:  
1. X = Don't Care,1 = Logic HIGH, 0 = Logic LOW.  
2. The SRAM always initiates a read cycle when ADSP asserted, regardless of the state of GW, BWE, or BWS[3:0]. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state. OE  
is a Don't Carefor the remainder of the write cycle.  
3. OE is asynchronous and is not sampled with the clock rise. During a read cycle DQ = High-Z when OE is inactive, and DQ = data when OE is active.  
Document #: 38-05143 Rev. *B  
Page 6 of 18  
CY7C1338B  
Write Cycle Descriptions[1, 2, 3, 4]  
Function  
Read  
GW  
1
BWE  
1
BW3  
X
1
BW2  
X
1
BW1  
BW0  
X
1
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
Read  
1
0
Write Byte 0 - DQ[7:0]  
Write Byte 1 - DQ[15:8]  
Write Bytes 1, 0  
Write Byte 2 - DQ[23:16]  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 - DQ[31:24]  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
0
1
1
0
1
0
1
1
1
1
0
1
1
0
1
0
1
0
1
1
0
1
0
0
1
0
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
1
0
0
0
0
Write All Bytes  
0
X
X
X
X
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature ...................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied...............................................55°C to +125°C  
Ambient  
Range Temperature[6]  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND................ 0.5V to +4.6V  
Coml  
Indl  
0°C to +70°C  
3.135V to 3.6V 2.375V to VDD  
DC Voltage Applied to Outputs  
in High Z State[5] ...............................................0.5V to VDD + 0.5V  
40°C to +85°C  
DC Input Voltage[5]...........................................0.5V to VDD + 0.5V  
Notes:  
4. When a write cycle is detected, all I/Os are three-stated, even during byte writes.  
5. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
6.  
TA is the case temperature.  
Document #: 38-05143 Rev. *B  
Page 7 of 18  
CY7C1338B  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
VDDQ = 3.3V, VDD = Min., IOH = 4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = 2.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 2.0 mA  
VDDQ = 3.3V  
Min. Max. Unit  
VOH  
Output HIGH Voltage  
2.4  
2.0  
V
V
V
V
V
VOL  
Output LOW Voltage  
0.4  
0.7  
VIH  
VIH  
Input HIGH Voltage  
Input HIGH Voltage  
2.0  
1.7  
VDD +  
0.3V  
VDDQ = 2.5V  
VDD  
+
V
0.3V  
VIL  
VIL  
IX  
Input LOW Voltage[5]  
Input LOW Voltage[5]  
VDDQ = 3.3V  
0.3  
0.3  
1  
0.8  
0.7  
1
V
V
VDDQ = 2.5V  
Input Load Current  
(except ZZ and MODE)  
GND VI VDDQ  
µA  
Input Current of MODE  
Input = VSS  
30  
5  
µA  
µA  
µA  
µA  
µA  
Input = VDDQ  
5
Input Current of ZZ  
Input = VSS  
Input = VDDQ  
30  
5
IOZ  
IOS  
IDD  
Output Leakage Current  
Output Short Circuit Current[7]  
GND VI VDD, Output Disabled  
VDD = Max., VOUT = GND  
5  
300 mA  
VDD Operating Supply Current  
VDD = Max., IOUT = 0 mA,  
f = fMAX =1/tCYC  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
350  
325  
125  
110  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE Power-Down  
CurrentTTL Inputs  
Max. VDD, Device Deselected, 8.5-ns cycle, 117 MHz  
IN VIH or VIN VIL,  
V
10-ns cycle, 100 MHz  
f = fMAX = 1/tCYC  
,
inputs switching  
ISB2  
Automatic CE Power-Down  
Current CMOS Inputs  
Max. VDD, Device Deselected, All speeds  
IN 0.3V or VIN > VDDQ 0.3V,  
10  
mA  
V
f = 0, inputs static  
ISB3  
Automatic CE Power-Down  
CurrentCMOS Inputs  
Max. VDD, Device Deselected,  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
95  
85  
mA  
mA  
VIN VDDQ0.3V or VIN 0.3V,  
f = fMAX, inputs switching  
ISB4  
Automatic CE Power-Down Cur- Max. VDD, Device Deselected,  
rent CMOS Inputs IN VDD 0.3V or VIN 0.3V,  
f = 0, inputs static  
All speeds  
30  
mA  
V
Note:  
7. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.  
Document #: 38-05143 Rev. *B  
Page 8 of 18  
CY7C1338B  
Capacitance[8]  
Parameter  
Description  
Input Capacitance  
I/O Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
VDD = 5.0V  
Max.  
5.0  
Unit  
pF  
CIN  
CI/O  
8.0  
pF  
AC Test Loads and Waveforms [9]  
R1=317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
Z =50Ω  
0
3.0V  
GND  
90%  
10%  
R =50Ω  
L
10%  
R2=351Ω  
5 pF  
V =1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
3.0 ns  
3.0 ns  
(a)  
(b)  
Switching Characteristics Over the Operating Range[10]  
-117  
-100  
Parameter  
tCYC  
Description  
Min.  
8.5  
3.0  
3.0  
1.5  
0.5  
Max.  
Min.  
10  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Time  
Clock HIGH  
tCH  
4.0  
4.0  
1.5  
0.5  
tCL  
Clock LOW  
tAS  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWS[1:0], GW,BWE Set-Up Before CLK Rise  
BWS[1:0], GW,BWE Hold After CLK Rise  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
tAH  
tCDV  
tDOH  
tADS  
tADH  
tWES  
tWEH  
tADVS  
tADVH  
tDS  
7.5  
8.0  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
1.5  
0.5  
2.0  
0.5  
2.0  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
1.5  
0.5  
2.0  
0.5  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Set-Up  
tDH  
tCES  
tCEH  
tCHZ  
tCLZ  
tEOHZ  
tEOLZ  
Chip Enable Hold After CLK Rise  
Clock to High-Z[11, 12]  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
Clock to Low-Z[11, 12]  
0
0
0
0
OE HIGH to Output High-Z[11, 13]  
OE LOW to Output Low-Z[11, 13]  
OE LOW to Output Valid  
tEOV  
Notes:  
8. Tested initially and after any design or process changes that may affect these parameters.  
9. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot: VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for  
t < 200 ms  
10. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a) and (b) of AC test loads.  
11. tCHZ, tCLZ, tEOHZ, and tEOLZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
12. At any given voltage and temperature, tCHZ (max) is less than tCLZ (min).  
13. This parameter is sampled and not 100% tested.  
Document #: 38-05143 Rev. *B  
Page 9 of 18  
CY7C1338B  
Timing Diagrams  
Write Cycle Timing[14, 15]  
Single Write  
Burst Write  
Pipelined Write  
t
Unselected  
CH  
t
CYC  
CLK  
t
ADH  
t
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
ADSC  
ADV  
t
ADH  
t
ADSC initiated write  
ADS  
t
t
ADVH  
ADVS  
t
ADV Must Be Inactive for ADSP Write  
WD2  
AS  
WD3  
ADD  
GW  
WE  
WD1  
t
AH  
t
WH  
t
WH  
t
WS  
t
WS  
t
t
CES  
CE masks ADSP  
CEH  
1
CE  
1
t
t
CEH  
CES  
Unselected with CE  
2
CE  
2
CE  
3
t
CES  
t
CEH  
OE  
t
DH  
t
DS  
High-Z  
High-Z  
Data  
In  
3a  
2a  
= UNDEFINED  
1a  
2b  
2c  
2d  
= DONT CARE  
Notes:  
14. WE is the combination of BWE, BW[3:0], and GW to define a write cycle (see Write Cycle Descriptions table).  
15. WDx stands for Write Data to Address X.  
Document #: 38-05143 Rev. *B  
Page 10 of 18  
CY7C1338B  
Timing Diagrams (continued)  
Read Cycle Timing[14, 16]  
Burst Read  
Single Read  
tCYC  
Unselected  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
ADSP  
tCL  
ADSP ignored with CE1 inactive  
tADS  
ADSC initiated read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD1  
RD3  
RD2  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCEH  
tEOV  
tCES  
tOEHZ  
tDOH  
tCDV  
3a  
Data Out  
2d  
2a  
2b  
2c  
1a  
tCLZ  
tCHZ  
= DONT CARE  
= UNDEFINED  
Note:  
16. RDx stands for Read Data from Address X.  
Document #: 38-05143 Rev. *B  
Page 11 of 18  
CY7C1338B  
Timing Diagrams (continued)  
Read/Write Cycle Timing  
tCYC  
tCL  
tCH  
CLK  
tAH  
tAS  
A
D
B
C
ADD  
tADH  
tADS  
ADSP  
tADH  
tADS  
ADSC  
ADV  
tADVH  
tADVS  
tCEH  
tCES  
CE1  
tCEH  
tCES  
CE  
tWES  
tWEH  
WE  
OE  
ADSP ignored  
with CE1 HIGH  
tEOHZ  
tCLZ  
Data  
In/Out  
Q
(B+3)  
D
(C+1)  
D
(C+2)  
D
(C+3)  
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
D(C)  
Q(D)  
Q(A)  
tCDV  
tDOH  
tCHZ  
Device originally  
deselected  
WE is the combination of BWE, BWS[1:0], and GW to define a write cycle (see Write Cycle Descriptions table).  
CE is the combination of CE2 and CE3. All chip selects need to be active in order to select  
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
Document #: 38-05143 Rev. *B  
Page 12 of 18  
CY7C1338B  
Timing Diagrams (continued)  
Pipeline Timing  
tCYC  
tCL  
tCH  
CLK  
tAS  
C
E
F
G
H
B
D
A
ADD  
tADH  
tADS  
ADSP  
ADSC  
ADV  
tCEH  
tCES  
CE1  
CE  
tWES  
tWEH  
WE  
OE  
ADSP ignored  
with CE1 HIGH  
tCLZ  
Data  
D (E)  
D (F)  
D (H)  
Q(A)  
D (G)  
Q(B)  
Q(C)  
Q(D)  
In/Out  
tCDV  
tDOH  
tCHZ  
Device originally  
deselected  
WE is the combination of BWE, BW[1:0], and GW to define a write cycle (see Write Cycle Descriptions table).  
CE is the combination of CE2 and CE3. All chip selects need to be active in order to select  
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DONT CARE  
Document #: 38-05143 Rev. *B  
Page 13 of 18  
CY7C1338B  
Timing Diagrams (continued)  
OE Switching Waveforms  
OE  
tEOV  
tEOHZ  
three-state  
I/Os  
tEOLZ  
Document #: 38-05143 Rev. *B  
Page 14 of 18  
CY7C1338B  
Timing Diagrams (continued)  
ZZ Mode Timing [17, 18]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
ICC  
ICC(active)  
tZZREC  
ICCZZ  
I/Os  
Three-state  
Notes:  
17. Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
18. I/Os are in three-state when exiting ZZ sleepmode.  
Document #: 38-05143 Rev. *B  
Page 15 of 18  
CY7C1338B  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Package Type  
100-Lead Thin Quad Flat Pack  
119-Ball BGA  
117  
CY7C1338B-117AC  
CY7C1338B-117BGC  
CY7C1338B-100AC  
CY7C1338B-100BGC  
CY7C1338B-100AI  
CY7C1338B-100BGI  
A101  
BG119  
A101  
Commercial  
Industrial  
100  
100-Lead Thin Quad Flat Pack  
119-Ball BGA  
BG119  
A101  
100-Lead Thin Quad Flat Pack  
119-Ball BGA  
BG119  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05143 Rev. *B  
Page 16 of 18  
CY7C1338B  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Pentium is a registered trademark of Intel Corporation. All product and company names mentioned in this document may be the  
trademarks of their respective holders.  
Document #: 38-05143 Rev. *B  
Page 17 of 18  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1338B  
Document History Page  
Document Title: CY7C1338B 128K x 32 Synchronous-Flow-Through 3.3V Cache RAM  
Document Number: 38-05143  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
109887  
121471  
123113  
Description of Change  
Change from Spec number 38-00939 to 38-05143  
Update package diagram 51-85115 (BG119) to rev. *B  
09/15/01  
11/14/02  
01/18/03  
SZV  
DSG  
RBI  
*A  
*B  
Added power up requirements to AC Test loads and waveforms information  
Document #: 38-05143 Rev. *B  
Page 18 of 18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY