ADP151AUJZ-1.8-R7 [ROCHESTER]

1.8 V FIXED POSITIVE LDO REGULATOR, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5;
ADP151AUJZ-1.8-R7
型号: ADP151AUJZ-1.8-R7
厂家: Rochester Electronics    Rochester Electronics
描述:

1.8 V FIXED POSITIVE LDO REGULATOR, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5

光电二极管 输出元件 调节器
文件: 总25页 (文件大小:1494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise, 200 mA,  
CMOS Linear Regulator  
Data Sheet  
ADP151  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
V
= 2.3V  
V
= 1.8V  
IN  
OUT  
Ultralow noise: 9 µV rms  
1
2
3
VIN  
GND  
EN  
VOUT  
5
1µF  
No noise bypass capacitor required  
Stable with 1 µF ceramic input and output capacitors  
Maximum output current: 200 mA  
Input voltage range: 2.2 V to 5.5 V  
Low quiescent current  
1µF  
ON  
4
NC  
OFF  
NC = NO CONNECT  
Figure 1. TSOT ADP151 with Fixed Output Voltage, 1.8 V  
I
I
GND = 10 µA with 0 load  
GND = 265 μA with 200 mA load  
1
2
Low shutdown current: <1 µA  
Low dropout voltage: 140 mV at 200 mA load  
Initial accuracy: 1%  
Accuracy over line, load, and temperature: 2.5%  
16 fixed output voltage options: 1.1 V to 3.3 V  
PSRR performance of 70 dB at 10 kHz  
Current-limit and thermal overload protection  
Logic controlled enable  
V
= 1.8V  
OUT  
V
= 2.3V  
OUT  
IN  
VIN  
VOUT  
A
B
C
C
IN  
1µF  
TOP VIEW  
(Not to Scale)  
ON  
EN  
GND  
OFF  
Figure 2. WLCSP ADP151 with Fixed Output Voltage, 1.8 V  
V
= 2.3V  
1µF  
V
= 1.8V  
IN  
OUT  
6
1
2
3
Internal pull-down resistor on EN input  
5-lead TSOT package  
6-lead LFCSP package  
VIN  
NC  
VOUT  
1µF  
ADP151  
TOP VIEW  
5
4
NC  
ON  
(Not to Scale)  
EN  
GND  
OFF  
4-ball, 0.4 mm pitch WLCSP  
NC = NO CONNECT. DO NOT  
CONNECT TO THIS PIN.  
APPLICATIONS  
RF, VCO, and PLL power supplies  
Mobile phones  
Figure 3. LFCSP ADP151 with Fixed Output Voltage, 1.8 V  
Digital camera and audio devices  
Portable and battery-powered equipment  
Post dc-to-dc regulation  
Portable medical devices  
GENERAL DESCRIPTION  
The ADP151 is an ultralow noise, low dropout linear regulator  
that operates from 2.2 V to 5.5 V and provides up to 200 mA  
of output current. The low 140 mV dropout voltage at 200 mA  
load improves efficiency and allows operation over a wide input  
voltage range.  
The ADP151 is specifically designed for stable operation with  
tiny 1 µF, 30% ceramic input and output capacitors to meet  
the requirements of high performance, space constrained  
applications.  
The ADP151 is capable of 16 fixed output voltage options,  
ranging from 1.1 V to 3.3 V.  
Using an innovative circuit topology, the ADP151 achieves  
ultralow noise performance without the necessity of a bypass  
capacitor, making it ideal for noise-sensitive analog and RF  
applications. The ADP151 also achieves ultralow noise per-  
formance without compromising PSRR or transient line and  
load performance. The low 265 μA of quiescent current at  
200 mA load makes the ADP151 suitable for battery-operated  
portable equipment.  
Short-circuit and thermal overload protection circuits prevent  
damage in adverse conditions. The ADP151 is available in tiny  
5-lead TSOT, 6-lead LFCSP, and 4-ball, 0.4 mm pitch, halide-free  
WLCSP packages for the smallest footprint solution to meet a  
variety of portable power application requirements.  
The ADP151 also includes an internal pull-down resistor on the  
EN input.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP151  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information.............................................................. 12  
Capacitor Selection .................................................................... 12  
Enable Feature ............................................................................ 13  
Adjustable Output Voltage Operation..................................... 13  
Current-Limit and Thermal Overload Protection................. 15  
Thermal Considerations............................................................ 15  
Printed Circuit Board Layout Considerations............................ 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor, Recommended Specifications.. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
4/12—Rev. D to Rev. E  
Added Figure 51 to Figure 56 ....................................................... 18  
Added Figure 59 ............................................................................. 19  
Added Figure 62 ............................................................................. 20  
Added Figure 65 ............................................................................. 21  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide.......................................................... 23  
Changes to Figure 33...................................................................... 13  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 22  
3/11—Rev. C to Rev. D  
Changes to Current-Limit Threshold Temperature Range......... 4  
Added EPAD Notation .................................................................... 6  
Changes to Ordering Guide .......................................................... 22  
8/10—Rev. 0 to Rev. A  
Changes to Figure 8...........................................................................7  
Changes to Figure 15 Caption and Figure 16 Caption .................8  
Changes to Figure 17 Caption and Figure 18 Caption .................9  
Changes to Ordering Guide.......................................................... 21  
1/11—Rev. B to Rev. C  
Changes to Figure 23........................................................................ 9  
12/10—Rev. A to Rev. B  
3/10—Revision 0: Initial Version  
Added LFCSP Package.......................................................Universal  
Added Figure 3; Renumbered Sequentially .................................. 1  
Added Table 2 Caption; Renumbered Sequentially ..................... 4  
Changes to Table 4............................................................................ 5  
Added Figure 6, Changes to Table 5............................................... 6  
Changes to Figure 23........................................................................ 9  
Changes to Figure 37 and Figure 38............................................. 14  
Rev. E | Page 2 of 24  
 
Data Sheet  
ADP151  
SPECIFICATIONS  
VIN = (VOUT + 0.4 V) or 2.2 V, whichever is greater; EN = VIN, IOUT = 10 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
10  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = −40°C to +125°C  
IOUT = 0 µA  
IOUT = 0 µA, TJ = −40°C to +125°C  
IOUT = 100 µA  
IOUT = 100 µA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 200 mA  
2.2  
5.5  
IGND  
µA  
µA  
µA  
µA  
µA  
µA  
μA  
μA  
µA  
µA  
20  
20  
40  
60  
90  
265  
0.2  
IOUT = 200 mA, TJ = −40°C to +125°C  
EN = GND  
EN = GND, TJ = −40°C to +125°C  
350  
1.0  
+1  
SHUTDOWN CURRENT  
OUTPUT VOLTAGE ACCURACY  
TSOT/LFCSP  
IGND-SD  
VOUT  
VOUT  
IOUT = 10 mA  
TJ = −40°C to +125°C  
−1  
%
VOUT < 1.8 V  
100 µA < IOUT < 200 mA, VIN = (VOUT + 0.4 V) to 5.5 V  
VOUT ≥1.8 V  
100 µA < IOUT < 200 mA, VIN = (VOUT + 0.4 V) to 5.5 V  
TJ = −40°C to +125°C  
−3  
+2  
%
%
−2.5  
+1.5  
WLCSP  
VOUT  
VOUT < 1.8 V  
100 µA < IOUT < 200 mA, VIN = (VOUT + 0.4 V) to 5.5 V  
VOUT ≥1.8 V  
100 µA < IOUT < 200 mA, VIN = (VOUT + 0.4 V) to 5.5 V  
−2.5  
−2  
+2  
%
%
+1.5  
REGULATION  
Line Regulation  
Load Regulation (TSOT/LFCSP)1  
∆VOUT/∆VIN VIN = (VOUT + 0.4 V) to 5.5 V, TJ = −40°C to +125°C  
∆VOUT/∆IOUT VOUT < 1.8 V  
−0.05  
+0.05 %/V  
%/mA  
IOUT = 100 µA to 200 mA  
IOUT = 100 µA to 200 mA, TJ = −40°C to +125°C  
VOUT ≥ 1.8 V  
0.006  
0.003  
0.004  
%/mA  
%/mA  
0.012  
0.008  
0.009  
IOUT = 100 µA to 200 mA  
%/mA  
%/mA  
%/mA  
%/mA  
%/mA  
IOUT = 100 µA to 200 mA, TJ = −40°C to +125°C  
∆VOUT/∆IOUT VOUT < 1.8 V  
Load Regulation (WLCSP)1  
IOUT = 100 µA to 200 mA  
IOUT = 100 µA to 200 mA, TJ = −40°C to +125°C  
VOUT ≥1.8 V  
IOUT = 100 µA to 200 mA  
IOUT = 100 µA to 200 mA, TJ = −40°C to +125°C  
0.002  
10  
%/mA  
%/mA  
mV  
mV  
mV  
mV  
mV  
mV  
0.006  
30  
DROPOUT VOLTAGE2  
TSOT/LFCSP  
WLCSP  
VDROPOUT  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 200 mA  
IOUT = 200 mA, TJ = −40°C to +125°C  
IOUT = 200 mA  
IOUT = 200 mA, TJ = −40°C to +125°C  
150  
135  
230  
200  
Rev. E | Page 3 of 24  
 
ADP151  
Data Sheet  
Parameter  
START-UP TIME3  
Symbol  
tSTART-UP  
ILIMIT  
Conditions  
Min  
Typ  
180  
300  
Max  
Unit  
µs  
VOUT = 3.3 V  
CURRENT-LIMIT THRESHOLD4  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
TJ = 0°C to +125°C  
TJ = −40°C to +125°C  
220  
400  
mA  
UVLORISE  
UVLOFALL  
UVLOHYS  
1.96  
V
V
mV  
1.28  
1.2  
120  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
EN INPUT  
EN Input Logic High  
EN Input Logic Low  
EN Input Pull-Down Resistance  
OUTPUT NOISE  
VIH  
VIL  
REN  
2.2 V ≤ VIN ≤ 5.5 V  
2.2 V ≤ VIN ≤ 5.5 V  
VIN = VEN = 5.5 V  
V
V
MΩ  
0.4  
2.6  
9
9
OUTNOISE  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 1.1 V  
µV rms  
µV rms  
µV rms  
9
POWER SUPPLY REJECTION RATIO  
VIN = VOUT + 0.5 V  
PSRR  
10 kHz, VIN = 3.8 V, VOUT = 3.3 V, IOUT = 10 mA  
100 kHz, VIN = 3.8 V, VOUT = 3.3 V, IOUT = 10 mA  
10 kHz, VIN = 4.3 V, VOUT = 3.3 V, IOUT = 10 mA  
100 kHz, VIN = 4.3 V, VOUT = 3.3 V, IOUT = 10 mA  
10 kHz, VIN = 2.2 V, VOUT = 1.1 V, IOUT = 10 mA  
100 kHz, VIN = 2.2 V, VOUT = 1.1 V, IOUT = 10 mA  
70  
55  
70  
55  
70  
55  
dB  
dB  
dB  
dB  
dB  
dB  
VIN = VOUT + 1V  
1 Based on an end-point calculation using 0.1 mA and 200 mA loads. See Figure 8 for typical load regulation performance for loads less than 1 mA.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.2 V.  
3 Start-up time is defined as the time between the rising edge of EN and VOUT being at 90% of its nominal value.  
4 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V (that is, 2.7 V).  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Minimum Input and Output  
Capacitance1  
CMIN  
TA = −40°C to +125°C  
0.7  
µF  
Capacitor ESR  
RESR  
TA = −40°C to +125°C  
0.001  
0.2  
Ω
1 The minimum input and output capacitance should be greater than 0.7 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. E | Page 4 of 24  
 
 
 
Data Sheet  
ADP151  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit  
board. See JESD51-7 and JESD51-9 for detailed information  
on the board construction. For additional information, see the  
AN-617 Application Note, MicroCSPWafer Level Chip Scale  
Package, available at www.analog.com.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
−0.3 V to +6.5 V  
−0.3 V to VIN  
EN to GND  
−0.3 V to +6.5V  
−65°C to +150°C  
−40°C to +125°C  
−40°C to +125°C  
JEDEC J-STD-020  
Storage Temperature Range  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Soldering Conditions  
ΨJB is the junction-to-board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer board. The JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information, states  
that thermal characterization parameters are not the same as  
thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation from  
the package, factors that make ΨJB more useful in real-world  
applications. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
Stresses above those listed under absolute maximum ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP151 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
have to be derated.  
TJ = TB + (PD × ΨJB)  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction-to-ambient  
thermal resistance of the package (θJA).  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
43  
58  
Unit  
°C/W  
°C/W  
°C/W  
5-Lead TSOT  
4-Ball, 0.4 mm Pitch WLCSP  
6-Lead 2 mm × 2 mm LFCSP  
170  
260  
63.6  
28.3  
The maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
ESD CAUTION  
TJ = TA + (PD × θJA)  
The junction-to-ambient thermal resistance (θJA) of the package  
is based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending  
Rev. E | Page 5 of 24  
 
 
 
 
ADP151  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
VOUT 1  
6 VIN  
1
2
3
5
VIN  
GND  
EN  
VOUT  
ADP151  
TOP VIEW  
(Not to Scale)  
ADP151  
TOP VIEW  
(Not to Scale)  
2
5
NC  
NC  
A
VIN  
VOUT  
TOP VIEW  
(Not to Scale)  
4 EN  
GND 3  
4
NC  
NOTES  
B
EN  
GND  
NC = NO CONNECT  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.  
Figure 4. 5-Lead TSOT Pin Configuration  
Figure 5. 4-Ball WLCSP Pin Configuration  
Figure 6. 6-Lead LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
TSOT  
WLCSP LFCSP  
Mnemonic  
VIN  
GND  
Description  
1
2
3
A1  
B2  
B1  
6
3
4
Regulator Input Supply. Bypass VIN to GND with a 1 µF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator.  
For automatic startup, connect EN to VIN.  
EN  
4
5
N/A  
N/A  
N/A  
A2  
N/A  
N/A  
2
1
5
NC  
VOUT  
NC  
No Connect. Not connected internally.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 µF or greater capacitor.  
No Connect. Not connected internally.  
Exposed Pad. The exposed pad must be connected to ground. The exposed pad enhances  
the thermal performance of the package.  
EPAD  
Rev. E | Page 6 of 24  
 
Data Sheet  
ADP151  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 5 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
1k  
100  
10  
LOAD = 10µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 10µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
1
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 7. Output Voltage vs. Junction Temperature  
Figure 10. Ground Current vs. Junction Temperature  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
1k  
100  
10  
0.01  
0.1  
1
10  
(mA)  
100  
1000  
0.01  
0.1  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 8. Output Voltage vs. Load Current  
Figure 11. Ground Current vs. Load Current  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
1k  
100  
10  
LOAD = 10µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 10µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
(V)  
4.8  
5.0  
5.2  
5.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
(V)  
4.8  
5.0  
5.2  
5.4  
V
V
IN  
IN  
Figure 9. Output Voltage vs. Input Voltage  
Figure 12. Ground Current vs. Input Voltage  
Rev. E | Page 7 of 24  
 
 
ADP151  
Data Sheet  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 1mA  
= 5mA  
= 10mA  
= 50mA  
= 100mA  
= 200mA  
V
V
V
V
V
V
= 3.6V  
= 3.8V  
= 4.2V  
= 4.4V  
= 4.8V  
= 5.5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
I
I
I
I
I
0
–50  
–25  
0
25  
50  
75  
100  
125  
3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55  
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 13. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 16. Ground Current vs. Input Voltage (in Dropout)  
0
120  
100  
80  
60  
40  
20  
0
200mA  
100mA  
10mA  
1mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100µA  
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
FREQUENCY (Hz)  
I
(mA)  
LOAD  
Figure 14. Dropout Voltage vs. Load Current  
Figure 17. Power Supply Rejection Ratio vs. Frequency, VOUT = 1.2 V, VIN = 2.2 V  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
0
200mA  
100mA  
10mA  
1mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100µA  
I
I
I
I
I
I
= 1mA  
= 5mA  
= 10mA  
= 50mA  
= 100mA  
= 200mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
(V)  
FREQUENCY (Hz)  
IN  
Figure 18. Power Supply Rejection Ratio vs. Frequency, VOUT = 2.8 V, VIN = 3.3 V  
Figure 15. Output Voltage vs. Input Voltage (in Dropout)  
Rev. E | Page 8 of 24  
Data Sheet  
ADP151  
0
14  
13  
12  
11  
10  
9
200mA  
3.3V  
2.8V  
1.2V  
1.1V  
100mA  
10mA  
1mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100µA  
8
7
6
5
4
3
2
1
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
100  
1k  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 19. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V, VIN = 3.8 V  
Figure 22. Output Noise vs. Load Current and Output Voltage,  
VIN = 5 V, COUT = 1 μF  
0
1000  
100  
10  
3.3V  
2.8V  
1.2V  
1.1V  
V
V
V
V
V
V
= 3.3V, I  
= 3.3V, I  
= 2.8V, I  
= 2.8V, I  
= 1.1V, I  
= 1.1V, I  
= 200mA  
= 10mA  
= 200mA  
= 10mA  
= 200mA  
= 10mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Power Supply Rejection Ratio vs. Frequency at Various Output Voltages  
and Load Currents, VOUT − VIN = 0.5 V, except for VOUT = 1.1 V, VIN = 2.2 V  
Figure 23. Output Noise Spectral Density vs. Frequency,  
VIN = 5 V, ILOAD = 10 mA, COUT = 1 μF  
0
T
I
I
I
I
= 200mA, V = 3.3V  
IN  
= 10mA, V =3.3V  
IN  
= 200mA, V = 3.8V  
IN  
= 10mA, V = 3.8V  
IN  
OUT  
OUT  
OUT  
OUT  
LOAD CURRENT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
2
V
OUT  
CH1 200mA CH2 50mV  
M20µs  
T
A
CH1  
64.0mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10.00%  
FREQUENCY (Hz)  
Figure 21. Power Supply Rejection Ratio vs. Frequency at Various Voltages  
and Load Currents, VOUT = 2.8 V  
Figure 24. Load Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA to 200 mA  
Rev. E | Page 9 of 24  
ADP151  
Data Sheet  
T
T
INPUT VOLTAGE  
INPUT VOLTAGE  
2
1
2
1
V
V
OUT  
OUT  
CH1 1V  
CH2 2mV  
M10µs  
A
CH1  
4.56V  
CH1 1V  
CH2 2mV  
M10µs  
A
CH1  
4.56V  
T
10.80%  
T 10.80%  
Figure 25. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 200 mA  
Figure 26. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA  
Rev. E | Page 10 of 24  
Data Sheet  
ADP151  
THEORY OF OPERATION  
The ADP151 is an ultralow noise, low quiescent current, low  
dropout linear regulator that operates from 2.2 V to 5.5 V and  
can provide up to 200 mA of output current. Drawing a low  
265 μA of quiescent current (typical) at full load makes the  
ADP151 ideal for battery-operated portable equipment.  
Shutdown current consumption is typically 200 nA.  
Internally, the ADP151 consists of a reference, an error amplifier, a  
feedback voltage divider, and a PMOS pass transistor. Output  
current is delivered via the PMOS pass device, which is controlled  
by the error amplifier. The error amplifier compares the reference  
voltage with the feedback voltage from the output and amplifies  
the difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device is pulled lower, allowing  
more current to pass and increasing the output voltage. If the  
feedback voltage is higher than the reference voltage, the gate of  
the PMOS device is pulled higher, allowing less current to pass  
and decreasing the output voltage.  
Using new innovative design techniques, the ADP151 provides  
superior noise performance for noise-sensitive analog and RF  
applications without the need for a noise bypass capacitor. The  
ADP151 is also optimized for use with small 1 µF ceramic  
capacitors.  
An internal pull-down resistor on the EN input holds the input  
low when the pin is left open.  
VIN  
GND  
EN  
VOUT  
The ADP151 is available in 16 output voltage options, ranging  
from 1.1 V to 3.3 V. The ADP151 uses the EN pin to enable and  
disable the VOUT pin under normal operating conditions. When  
EN is high, VOUT turns on; when EN is low, VOUT turns off.  
For automatic startup, EN can be tied to VIN.  
R1  
SHORT-CIRCUIT,  
UVLO, AND  
THERMAL  
PROTECT  
SHUTDOWN  
R2  
REFERENCE  
R
EN  
Figure 27. Internal Block Diagram  
Rev. E | Page 11 of 24  
 
ADP151  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 29 depicts the capacitance vs. voltage bias characteristic  
of an 0402, 1 µF, 10 V X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is ~ 15% over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
1.2  
CAPACITOR SELECTION  
Output Capacitor  
The ADP151 is designed for operation with small, space-saving  
ceramic capacitors but can function with most commonly used  
capacitors as long as care is taken with regard to the effective  
series resistance (ESR) value. The ESR of the output capacitor  
affects the stability of the LDO control loop. A minimum of 1 µF  
capacitance with an ESR of 1 Ω or less is recommended to ensure  
the stability of the ADP151. Transient response to changes in load  
current is also affected by output capacitance. Using a larger value  
of output capacitance improves the transient response of the  
ADP151 to large changes in load current. Figure 28 shows the  
transient responses for an output capacitance value of 1 µF.  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
LOAD CURRENT  
1
0
2
4
6
8
10  
VOLTAGE BIAS  
2
Figure 29. Capacitance vs. Voltage Bias Characteristic  
V
OUT  
Use Equation 1 to determine the worst-case capacitance, accounting  
for capacitor variation over temperature, component tolerance,  
and voltage.  
CH1 200mA CH2 50mV  
M20µs  
A
CH1  
64mA  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
T
10.00%  
where:  
Figure 28. Output Transient Response, COUT = 1 µF  
C
BIAS is the effective capacitance at the operating voltage.  
Input Bypass Capacitor  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Connecting a 1 µF capacitor from VIN to GND reduces  
the circuit sensitivity to the printed circuit board (PCB) layout,  
especially when long input traces or high source impedance  
are encountered. If greater than 1 µF of output capacitance is  
required, the input capacitor should be increased to match it.  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
C
BIAS is 0.94 μF at 1.8 V, as shown in Figure 29.  
Substituting these values in Equation 1 yields  
EFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
Input and Output Capacitor Properties  
C
Any good quality ceramic capacitor can be used with the  
ADP151, as long as it meets the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufac-  
tured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have an  
adequate dielectric to ensure the minimum capacitance over the  
necessary temperature range and dc bias conditions. X5R or X7R  
dielectrics with a voltage rating of 6.3 V or 10 V are recommended.  
Y5V and Z5U dielectrics are not recommended, due to their  
poor temperature and dc bias characteristics.  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over tempera-  
ture and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP151, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Rev. E | Page 12 of 24  
 
 
 
Data Sheet  
ADP151  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ENABLE FEATURE  
The ADP151 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. As shown in Figure 30,  
when a rising voltage on EN crosses the active threshold, VOUT  
turns on. When a falling voltage on EN crosses the inactive  
threshold, VOUT turns off.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ENABLE  
3.3V  
2.8V  
1.1V  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
TIME (µs)  
Figure 32. Typical Start-Up Behavior  
ADJUSTABLE OUTPUT VOLTAGE OPERATION  
The unique architecture of the ADP151 makes an adjustable  
version difficult to implement in silicon. However, it is possible  
to create an adjustable regulator at the expense of increasing the  
quiescent current of the regulator circuit.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
ENABLE VOLTAGE  
Figure 30. ADP151 Typical EN Pin Operation  
The ADP151, and similar LDOs, are designed to regulate the  
output voltage, VOUT, appearing at the VOUT pin with respect  
to the GND pin. If the GND pin is at a potential other than 0 V  
(for example, at VOFFSET), the ADP151 output voltage is VOUT  
OFFSET. By taking advantage of this behavior, it is possible to  
As shown in Figure 30, the EN pin has hysteresis built in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
+
V
The EN pin active/inactive thresholds are derived from the VIN  
voltage. Therefore, these thresholds vary with changing input  
voltage. Figure 31 shows typical EN active/inactive thresholds  
when the input voltage varies from 2.2 V to 5.5 V.  
1200  
create an adjustable ADP151 circuit that retains most of the  
desirable characteristics of the ADP151.  
V
V
IN  
OUT  
1
2
3
VIN  
GND  
EN  
VOUT  
U1  
5
C1  
C2  
1000  
4
NC  
V
OFFSET  
R2  
V
RISE  
EN  
800  
600  
400  
200  
0
R1  
C3  
V
FALL  
EN  
V
= V × (1 + R2/R1)  
LDO  
OUT  
Figure 33. Adjustable LDO Using the ADP151  
The circuit shown in Figure 33 is an example of an adjustable  
LDO using the ADP151. A stable VOFFSET voltage is created by  
passing a known current through R2. The current through R2 is  
determined by the voltage across R1. Because the voltage across  
R1 is set by the voltage between VOUT and GND, the current  
passing through R2 is fixed, and VOFFSET is stable.  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE  
To minimize the effect variation of the ADP151 ground current  
(IGND) with load, it is best to keep R1 as small as possible. It is  
also best to size the current passing through R2 to at least 20×  
greater than the maximum expected ground current.  
Figure 31. Typical EN Pin Thresholds vs. Input Voltage  
The ADP151 uses an internal soft start to limit the inrush current  
when the output is enabled. The start-up time for the 3.3 V  
option is approximately 160 μs from the time the EN active  
threshold is crossed to when the output reaches 90% of its final  
value. As shown in Figure 32, the start-up time is dependent on  
the output voltage setting.  
To create a 4 V LDO circuit, start with the 3.3 V version of the  
ADP151 to minimize the value of R2. Because VOUT is 4 V,  
V
OFFSET must be 0.7 V, and the current through R2 must be 7 mA.  
R1 is, therefore, 3.3 V/7 mA or 471 Ω. A 470 Ω standard value  
introduces less than 1% error. Capacitor C3 is necessary to stabilize  
the LDO; a value of 1 μF is adequate.  
Rev. E | Page 13 of 24  
 
 
 
 
 
ADP151  
Data Sheet  
11  
10  
9
Figure 34 through Figure 38 show the typical performance of the  
4 V LDO circuit.  
The noise performance of the 4 V LDO circuit is only about 1 μV  
worse than the same LDO used at 3.3 V because the output noise of  
the circuit is almost solely determined by the LDO and not the  
external components. The small difference may be attributed to the  
internally generated noise in the LDO ground current working with  
R2. By keeping R2 small, this noise contribution can be minimized.  
The PSRR of the 4 V circuit is as much as 10 dB poorer than the  
3.3 V LDO with 500 mV of headroom because the ground current  
of the LDO varies slightly with input voltage. This, in turn,  
modulates VOFFSET and reduces the PSRR of the regulator. By  
increasing the headroom to 1 V, the PSRR performance is  
nearly restored to the performance of the fixed output LDO.  
4.04  
8
1
10  
100  
1k  
LOAD CURRENT (mA)  
Figure 36. 4 V LDO Circuit, Typical RMS Output Noise, 10 Hz to 100 kHz  
0
200mA  
100mA  
50mA  
10mA  
–10  
4.03  
4.02  
4.01  
4.00  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3.99  
LOAD = 10mA  
LOAD = 20mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 200mA  
3.98  
3.97  
3.96  
–40  
–5  
25  
85  
125  
10  
100  
1k  
10k  
100k  
1M  
10M  
JUNCTION TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 34. 4 V LDO Circuit, Typical Load Regulation over Temperature  
Figure 37. 4 V LDO Circuit, Typical PSRR vs. Load Current, 1 V Headroom  
4.040  
0
LOAD = 10mA  
200mA  
100mA  
50mA  
10mA  
LOAD = 20mA  
4.035  
–10  
LOAD = 50mA  
LOAD = 100mA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
4.030  
LOAD = 150mA  
LOAD = 200mA  
4.025  
4.020  
4.015  
4.010  
4.005  
4.000  
4.4  
4.6  
4.8  
5.0  
(V)  
5.2  
5.4  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
IN  
FREQUENCY (Hz)  
Figure 35. 4 V LDO Circuit, Typical Line Regulation over Load Current  
Figure 38. 4 V LDO Circuit, Typical PSRR vs. Load Current, 500 mV Headroom  
Rev. E | Page 14 of 24  
 
 
Data Sheet  
ADP151  
To guarantee reliable operation, the junction temperature of  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
the ADP151 must not exceed 125°C. To ensure that the junction  
temperature stays below this maximum value, the user must be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances between  
the junction and ambient air (θJA). The θJA number is dependent  
on the package assembly compounds that are used and the amount  
of copper used to solder the package GND pins to the PCB.  
The ADP151 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP151 is designed to current limit when the  
output load reaches 300 mA (typical). When the output load  
exceeds 300 mA, the output voltage is reduced to maintain a  
constant current limit.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and  
power dissipation) when the junction temperature starts to  
rise above 150°C, the output is turned off, reducing the output  
current to 0. When the junction temperature drops below  
135°C, the output is turned on again, and output current is  
restored to its nominal value.  
Table 6 shows typical θJA values of the 5-lead TSOT, 6-lead  
L F C SP, a n d 4 -ball WLCSP packages for various PCB copper sizes.  
Table 7 shows the typical ΨJB values of the 5-lead TSOT, 6-lead  
LFCSP, and 4-ball WLCSP.  
Table 6. Typical θJA Values  
θ
JA (°C/W)  
Copper Size (mm2)  
01  
TSOT  
170  
152  
146  
134  
131  
WLCSP  
260  
159  
157  
153  
LFCSP  
231.2  
161.8  
150.1  
111.5  
91.8  
Consider the case where a hard short from VOUT to ground  
occurs. At first, the ADP151 current limits, so that only 300 mA  
is conducted into the short. If self-heating of the junction  
causes its temperature to rise above 150°C, thermal shutdown  
activates, turning off the output and reducing the output current  
to 0. As the junction temperature cools and drops below  
135°C, the output turns on and conducts 300 mA into the  
short, again causing the junction temperature to rise above  
150°C. This thermal oscillation between 135°C and 150°C causes a  
current oscillation between 300 mA and 0 mA that continues  
as long as the short remains at the output.  
50  
100  
300  
500  
151  
1 Device soldered to minimum size pin traces.  
Table 7. Typical ΨJB Values  
Model  
ΨJB (°C/W)  
TSOT  
43  
WLCSP  
LFCSP  
58  
28.3  
Current- and thermal-limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so that junction temperatures do not exceed 125°C.  
The junction temperature of the ADP151 can be calculated  
from the following equation:  
TJ = TA + (PD × θJA)  
(2)  
(3)  
where:  
THERMAL CONSIDERATIONS  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
In most applications, the ADP151 does not dissipate much heat  
due to its high efficiency. However, in applications with a high  
ambient temperature and a high supply voltage to output voltage  
differential, the heat dissipated in the package can cause the  
junction temperature of the die to exceed the maximum junction  
temperature of 125°C.  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
)
I
LOAD is the load current.  
IGND is the ground current.  
V
IN and VOUT are input and output voltages, respectively.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the tempera-  
ture rise of the package due to the power dissipation, as shown  
in Equation 2.  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature, input-to-  
output voltage differential, and continuous load current, there  
exists a minimum copper size requirement for the PCB to ensure  
that the junction temperature does not rise above 125°C. Figure 39  
through Figure 59 show junction temperature calculations for  
various ambient temperatures, load currents, VIN-to-VOUT  
differentials, and areas of PCB copper.  
Rev. E | Page 15 of 24  
 
 
 
 
 
ADP151  
Data Sheet  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
4.8  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
4.8  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 39. WLCSP 500 mm2 of PCB Copper, TA = 25°C  
Figure 42. WLCSP 500 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
V
V
IN  
OUT  
IN  
OUT  
Figure 40. WLCSP 100 mm2 of PCB Copper, TA = 25°C  
Figure 43. WLCSP 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
V
V
IN  
OUT  
IN  
OUT  
Figure 41. WLCSP 50 mm2 of PCB Copper, TA = 25°C  
Figure 44. WLCSP 50 mm2 of PCB Copper, TA = 50°C  
Rev. E | Page 16 of 24  
 
Data Sheet  
ADP151  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 45. TSOT 500 mm2 of PCB Copper, TA = 25°C  
Figure 48. TSOT 500 mm2 of PCB Copper, TA = 50°C  
140  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 46. TSOT 100 mm2 of PCB Copper, TA = 25°C  
Figure 49. TSOT 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 47. TSOT 50 mm2 of PCB Copper, TA = 25°C  
Figure 50. TSOT 50 mm2 of PCB Copper, TA = 50°C  
Rev. E | Page 17 of 24  
ADP151  
Data Sheet  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 51. LFCSP 500 mm2 of PCB Copper, TA = 25°C  
Figure 54. LFCSP 500 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 52. LFCSP 100 mm2 of PCB Copper, TA = 25°C  
Figure 55. LFCSP 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM  
JUNCTION  
TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 53. LFCSP 50 mm2 of PCB Copper, TA = 25°C  
Figure 56. LFCSP 50 mm2 of PCB Copper, TA = 50°C  
Rev. E | Page 18 of 24  
Data Sheet  
ADP151  
140  
120  
100  
80  
In the case where the board temperature is known, use the  
thermal characterization parameter, ΨJB, to estimate the  
junction temperature rise (see Figure 57 and Figure 58).  
Maximum junction temperature (TJ) is calculated from the  
board temperature (TB) and power dissipation (PD) using the  
following formula:  
MAXIMUM JUNCTION TEMPERATURE  
60  
TJ = TB + (PD × ΨJB)  
(5)  
The typical value of ΨJB is 58°C/W for the 4-ball WLCSP package,  
43°C/W for the 5-lead TSOT package, and 28.3°C/W for the 6-lead  
LFCSP package.  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
140  
0
0.3  
MAXIMUM JUNCTION TEMPERATURE  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
120  
100  
80  
IN  
OUT  
Figure 58. TSOT, TA = 85°C  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
60  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
60  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
40  
V
IN  
OUT  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
Figure 57. WLCSP, TA = 85°C  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
1.3  
2.3  
3.3  
(V)  
4.3  
5.3  
V
– V  
OUT  
IN  
Figure 59. LFCSP, TA = 85°C  
Rev. E | Page 19 of 24  
 
 
ADP151  
Data Sheet  
PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP151.  
However, as listed in Table 6, a point of diminishing returns  
is eventually reached, beyond which an increase in the copper  
size does not yield significant heat dissipation benefits.  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0402 or 0603 size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
Figure 61. Example WLCSP PCB Layout  
Figure 60. Example TSOT PCB Layout  
Figure 62. Example LFCSP PCB Layout  
Rev. E | Page 20 of 24  
 
Data Sheet  
ADP151  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
0.95 BSC  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 63. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions show in millimeters  
0.660  
0.600  
0.800  
0.760 SQ  
0.430  
0.540  
0.400  
0.720  
0.370  
SEATING  
PLANE  
2
1
A
B
0.280  
0.260  
0.240  
BALL A1  
IDENTIFIER  
0.40  
BALL PITCH  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.230  
0.200  
0.170  
0.050 NOM  
COPLANARITY  
Figure 64. 4-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-4-3)  
Dimensions show in millimeters  
1.70  
1.60  
2.00  
BSC SQ  
1.50  
0.65 BSC  
6
4
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
0.425  
0.350  
0
.275  
3
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.35  
0.30  
0.25  
0.20 REF  
Figure 65. 6-Lead Lead Frame Chip Scale Package [LFCSP_UD]  
2.00 mm × 2.00 mm Body, Ultra Thin, Dual Lead  
(CP-6-3)  
Dimensions show in millimeters  
Rev. E | Page 21 of 24  
 
ADP151  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Output Voltage (V)2  
Package Description  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
Package Option3  
Branding  
8R  
4R  
4S  
4T  
4U  
8Q  
4V  
4X  
4Y  
4Z  
50  
5E  
LF6  
LF7  
LF8  
LF9  
LFG  
LFH  
LFJ  
LF6  
LF7  
LF8  
LF9  
LKZ  
LFG  
LFH  
LFJ  
ADP151ACBZ-1.1-R7  
ADP151ACBZ-1.2-R7  
ADP151ACBZ-1.5-R7  
ADP151ACBZ-1.8-R7  
ADP151ACBZ-2.5-R7  
ADP151ACBZ-2.6-R7  
ADP151ACBZ-2.75-R7  
ADP151ACBZ-2.8-R7  
ADP151ACBZ-2.85-R7  
ADP151ACBZ-3.0-R7  
ADP151ACBZ-3.3-R7  
ADP151ACBZ-2.1-R7  
ADP151AUJZ-1.2-R7  
ADP151AUJZ-1.5-R7  
ADP151AUJZ-1.8-R7  
ADP151AUJZ-2.5-R7  
ADP151AUJZ-2.8-R7  
ADP151AUJZ-3.0-R7  
ADP151AUJZ-3.3-R7  
ADP151ACPZ-1.2-R7  
ADP151ACPZ-1.5-R7  
ADP151ACPZ-1.8-R7  
ADP151ACPZ-2.5-R7  
ADP151ACPZ-2.7-R7  
ADP151ACPZ-2.8-R7  
ADP151ACPZ-3.0-R7  
ADP151ACPZ-3.3-R7  
ADP151UJZ-REDYKIT  
ADP151CPZ-REDYKIT  
ADP151CB-3.3-EVALZ  
1.1  
1.2  
1.5  
1.8  
2.5  
2.6  
2.75  
2.8  
2.85  
3.0  
3.3  
2.1  
1.2  
1.5  
1.8  
2.5  
2.8  
3.0  
3.3  
1.2  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.3  
CB-4-1  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
CB-4-3  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
6-Lead LFCSP_UD  
6-Lead LFCSP_UD  
6-Lead LFCSP_UD  
6-Lead LFCSP_UD  
6-Lead LFCSP_UD  
6-Lead LFCSP_UD  
6-Lead LFCSP_UD  
6-Lead LFCSP_UD  
Evaluation Board Kit  
Evaluation Board Kit  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 For additional voltage options for the ADP151ACBZ package option, contact a local Analog Devices, Inc., sales or distribution representative.  
3 The ADP151ACBZ package option is halide free.  
Rev. E | Page 22 of 24  
 
 
Data Sheet  
NOTES  
ADP151  
Rev. E | Page 23 of 24  
ADP151  
NOTES  
Data Sheet  
©2010–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08627-0-4/12(E)  
Rev. E | Page 24 of 24  

相关型号:

ADP151AUJZ-2.5-R7

Ultralow Noise,200 mA, CMOS Linear Regulator
ADI

ADP151AUJZ-2.5-R7

2.5 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADP151AUJZ-2.8-R7

Ultralow Noise,200 mA, CMOS Linear Regulator
ADI

ADP151AUJZ-2.8-R7

2.8 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADP151AUJZ-3.0-R7

Ultralow Noise,200 mA, CMOS Linear Regulator
ADI

ADP151AUJZ-3.0-R7

3 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADP151AUJZ-3.3-R7

Ultralow Noise,200 mA, CMOS Linear Regulator
ADI

ADP151CB-3.3-EVALZ

Ultralow Noise, 200 mA, CMOS Linear Regulator
ADI

ADP151CPZ-REDYKIT

Ultralow Noise, 200 mA, CMOS Linear Regulator
ADI

ADP151UJZ-REDYKIT

Ultralow Noise, 200 mA, CMOS Linear Regulator
ADI

ADP151_VD

Ultralow Noise, 200 mA, CMOS Linear Regulator
ADI

ADP160

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
ADI