AD876JR-8 [ROCHESTER]

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28;
AD876JR-8
型号: AD876JR-8
厂家: Rochester Electronics    Rochester Electronics
描述:

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28

光电二极管 转换器
文件: 总17页 (文件大小:1018K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit 20 MSPS 160 mW  
CMOS A/D Converter  
a
AD876  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
CMOS 10-Bit 20 MSPS Sam pling A/ D Converter  
Pin-Com patible 8-Bit Option  
AV  
DV  
DD  
DRV  
CLK  
DD  
DD  
Pow er Dissipation: 160 m W  
+5 V Single Supply Operation  
Differential Nonlinearity: 0.5 LSB  
Guaranteed No Missing Codes  
Pow er Dow n (Standby) Mode  
Three-State Outputs  
Digital I/ Os Com patible w ith +5 V or +3.3 V Logic  
Adjustable Reference Input  
Sm all Size: 28-Lead SOIC, 28-Lead SSOP, or 48-Lead  
Thin Quad Flatpack (TQFP)  
SHA  
SHA  
GAIN  
SHA  
GAIN  
SHA  
GAIN  
STBY  
A/D  
AIN  
D/A  
A/D  
D/A  
A/D  
D/A  
A/D  
THREE-  
STATE  
REFTF  
REFTS  
CORRECTION LOGIC  
OUTPUT BUFFERS  
REFBS  
REFBF  
(MSB)  
D9  
AD876  
D0  
(LSB)  
AV  
DV  
DRV  
SS  
CML  
SS  
SS  
P RO D UCT D ESCRIP TIO N  
T he AD876 comes in a space saving 28-lead SOIC and 48-lead  
thin quad flatpack (T QFP) and is specified over the commercial  
(0°C to +70°C) temperature range.  
T he AD876 is a CMOS, 160 mW, 10-bit, 20 MSPS analog-to-  
digital converter (ADC). T he AD876 has an on-chip input  
sample-and-hold amplifier. By implementing a multistage pipe-  
lined architecture with output error correction logic, the AD876  
offers accurate performance and guarantees no missing codes  
over the full operating temperature range. Force and sense con-  
nections to the reference inputs minimize external voltage drops.  
P RO D UCT H IGH LIGH TS  
Low P ower  
T he AD876 at 160 mW consumes a fraction of the power of  
presently available 8- or 10-bit, video speed converters. Power-  
down mode and single-supply operation further enhance its  
desirability in low power, battery operated applications such  
as electronic still cameras, camcorders and communication  
systems.  
T he AD876 can be placed into a standby mode of operation  
reducing the power below 50 mW. T he AD876’s digital I/O  
interfaces to either +5 V or +3.3 V logic. Digital output pins  
can be placed in a high impedance state; the format of the out-  
put is straight binary coding.  
Ver y Sm all P ackage  
T he AD876 comes in a 28-lead SOIC, 28-lead SSOP, and 48-  
lead surface mount, thin quad flat package. T he T QFP package  
is ideal for very tight, low headroom designs.  
T he AD876s speed, resolution and single-supply operation  
ideally suit a variety of applications in video, multimedia, imag-  
ing, high speed data acquisition and communications. T he  
AD876s low power and single-supply operation satisfy require-  
ments for high speed portable applications. Its speed and reso-  
lution ideally suit charge coupled device (CCD) input systems  
such as color scanners, digital copiers, electronic still cameras  
and camcorders.  
D igital I/O Functionality  
T he AD876 offers three-state output control.  
P in Com patible Upgr ade P ath  
T he AD876 offers the option of laying out designs for eight  
bits and migrating to 10-bit resolution if prototype results  
warrant.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1998  
(TMIN to TMAX with AV = +5.0 V, DV = +5.0 V, DRV = +3.3 V, VREFB = +4.0 V, V =  
REFB  
DD  
DD  
DD  
+2.0 V, fCLOCK = 20 MSPS, unless otherwise noted)  
AD876–SPECIFICATIONS  
AD 876JR-8  
AD 876  
Typ  
P aram eter  
Min  
Typ  
Max  
Min  
Max  
Units  
RESOLUT ION  
8
10  
Bits  
DC ACCURACY  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
No Missing Codes  
Offset Error  
±0.3  
±0.1  
GUARANT EED  
±1.0  
±0.75  
±1.0  
±0.5  
GUARANT EED  
LSB  
LSB  
±1  
0.1  
0.1  
0.4  
0.2  
% FSR  
% FSR  
Gain Error  
ANALOG INPUT  
Input Range  
2
2
V p-p  
pF  
Input Capacitance  
5.0  
5.0  
REFERENCE INPUT  
Reference T op Voltage  
Reference Bottom Voltage  
Reference Input Resistance  
Reference Input Current  
Reference T op Offset  
3.5  
1.6  
4.0  
2.0  
250  
8.0  
35  
4.5  
2.5  
3.5  
1.6  
4.0  
2.0  
250  
8.0  
35  
4.5  
2.5  
V
V
mA  
mV  
mV  
Reference Bottom Offset  
35  
35  
DYNAMIC PERFORMANCE  
Effective Number of Bits  
fIN = 1 MHz  
fIN = 3.58 MHz  
fIN = 10 MHz  
Signal-to-Noise and Distortion (S/N+D) Ratio  
fIN = 1 MHz  
fIN = 3.58 MHz  
7.8  
7.8  
7.5  
9.0  
9.0  
8.2  
Bits  
Bits  
Bits  
7.4  
46  
8.2  
51  
49  
49  
47  
56  
56  
51  
dB  
dB  
dB  
fIN = 10 MHz  
T otal Harmonic Distortion (T HD)  
fIN =1 MHz  
fIN = 3.58 MHz  
–62  
–62  
–60  
–65  
150  
0.5  
1
–62  
–62  
–60  
–65  
150  
0.5  
1
dB  
dB  
dB  
dB  
MHz  
Degree  
%
–56  
–56  
fIN =10 MHz  
Spurious Free Dynamic Range2  
Full Power Bandwidth  
Differential Phase  
Differential Gain  
POWER SUPPLIES  
Operating Voltage  
1
AVDD  
+4.5  
+4.5  
+3.0  
+5.25  
+5.25  
+5.25  
+4.5  
+4.5  
+3.0  
+5.25  
+5.25  
+5.25  
Volts  
Volts  
Volts  
1
DVDD  
DRVDD  
Operating Current  
IAVDD  
IDVDD  
IDRVDD  
20  
12  
0.1  
25  
16  
1
20  
12  
0.1  
25  
16  
1
mA  
mA  
mA  
POWER CONSUMPT ION  
160  
190  
160  
190  
mW  
T EMPERAT URE RANGE  
Specified  
0
+70  
0
+70  
°C  
NOT ES  
1AVDD and DVDD must be within 0.5 V of each other to maintain specified performance levels.  
23.58 MHz Input Frequency.  
Specifications subject to change without notice. See Definition of Specifications for additional information.  
–2–  
REV. B  
AD876  
MIN to TMAX with AV = +5.0 V, DV = +5.0 V, DRV = +3.3 V, VREFT = +4.0 V, VREFB = +2.0 V,  
DIGITAL SPECIFICATIONS f(TCLOCK = 20 MSPS, C = 20 pF unless otherwise noted)  
DD  
DD  
DD  
L
AD 876  
Typ  
P aram eter  
Sym bol  
D RVD D  
Min  
Max  
Units  
LOGIC INPUT  
High Level Input Voltage  
VIH  
3.0  
5.0  
5.25  
3.0  
5.0  
5.25  
5.0  
5.0  
5.0  
2.4  
4.0  
4.2  
V
V
V
V
V
V
µA  
µA  
µA  
pF  
Low Level Input Voltage  
VIL  
0.6  
1.0  
1.05  
+10  
+50  
+10  
High Level Input Current  
Low Level Input Current  
Low Level Input Current (CLK Only)  
Input Capacitance  
IIH  
IIL  
IIL  
–10  
–50  
–10  
CIN  
5
LOGIC OUT PUT S  
High Level Output Voltage  
(IOH = 50 µA)  
VOH  
3.0  
5.0  
5.0  
2.4  
3.8  
2.4  
V
V
V
(IOH = 0.5 mA)  
Low Level Output Voltage  
(IOL = 50 µA)  
VOL  
3.6  
0.7  
V
5.25  
5.25  
1.05  
0.4  
V
V
(IOL = 0.6 mA)  
Output Capacitance  
Output Leakage Current  
COUT  
IOZ  
5
pF  
µA  
–10  
10  
Specifications subject to change without notice.  
TIMING SPECIFICATIONS  
Sym bol  
Min  
Typ  
Max  
Units  
Maximum Conversion Rate1  
Clock Period  
Clock High  
Clock Low  
Output Delay  
20  
MHz  
ns  
ns  
ns  
tC  
50  
25  
25  
20  
tCH  
tCL  
tOD  
23  
23  
10  
ns  
Pipeline Delay (Latency)  
Aperture Delay T ime  
Aperture Jitter  
3.5  
Clock Cycles  
ns  
ps  
4
22  
NOT E  
1Conversion rate is operational down to 10 kHz without degradation in specified performance.  
SAMPLE N  
SAMPLE N+1 SAMPLE N+2  
AIN  
tCH tCL  
CLK  
tOD  
tC  
OUT  
DATA N-4  
DATA N-3  
DATA N-2  
DATA N-1  
DATA N  
Figure 1. Tim ing Diagram  
REV. B  
–3–  
AD876  
P IN FUNCTIO N D ESCRIP TIO NS  
SO IC  
TQFP  
Sym bol  
P in No.  
P in No.  
Type  
Nam e and Function  
D0 (LSB)  
D1–D4  
3
1
DO  
DO  
Least Significant Bit.  
Data Bits 1 through 4.  
Data Bits 5 through 8.  
Most Significant Bit.  
T HREE-ST AT E = LOW  
or N/C  
4–7  
8–11  
12  
2–5  
8–11  
12  
D5–D8  
D9 (MSB)  
T HREE-  
ST AT E  
DO  
DI  
16  
23  
T HREE-ST AT E = HIGH  
Normal Operating Mode  
ST BY = LOW or N/C  
Normal Operating Mode  
Clock Input.  
H igh Impedance Outputs  
ST BY = HIGH  
Standby Mode  
ST BY  
17  
24  
DI  
CLK  
15  
22  
DI  
AO  
AI  
AI  
AI  
AI  
AI  
P
CML  
26  
38  
Bypass Pin for an Internal Bias Point.  
Reference T op Force.  
REFT F  
REFBF  
REFT S  
REFBS  
AIN  
22  
30  
24  
34  
Reference Bottom Force.  
Reference T op Sense.  
21  
29  
25  
35  
Reference Bottom Sense.  
Analog Input.  
27  
39  
AVDD  
28  
42  
+5 V Analog Supply.  
AVSS  
1
44  
P
Analog Ground.  
DVDD  
DVSS  
18  
26  
P
+5 V Digital Supply.  
14, 19, 20  
2
17, 27, 28  
45  
P
Digital Ground.  
DRVDD  
P
+3.3 V/+5 V Digital Supply. Supply for digital  
input and output buffers.  
+3.3 V/+5 V Digital Ground. Ground for digital  
input and output buffers.  
DRVSS  
13  
16  
P
T ype: AI = Analog Input; AO = Analog Output; DI = Digital Input; DO = Digital Output; P = Power.  
P IN CO NFIGURATIO NS  
SO IC/SSO P  
TQFP  
AV  
1
2
3
4
5
28  
AV  
DD  
SS  
48 47 46 45 44 43 42  
39 38 37  
41 40  
DRV  
27 AIN  
DD  
26  
25  
CML  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
D0  
D1  
D2  
D3  
D4  
*D0  
*D1  
D2  
REFBS  
REFBS  
REFBF  
24 REFBF  
3
23  
D3  
D4  
D5  
D6  
6
7
8
4
NC  
AD876  
TOP VIEW  
REFTF  
REFTS  
22  
21  
5
AD876  
(Not to Scale)  
6
TOP VIEW  
20 DV  
19 DV  
18 DV  
9
7
SS  
SS  
DD  
(Not to Scale)  
REFTF  
REFTS  
D7 10  
8
D5  
D6  
D7  
D8  
D9  
D8  
D9  
11  
12  
13  
14  
9
DV  
SS  
17 STBY  
10  
11  
12  
DV  
SS  
DRV  
THREE-STATE  
16  
15  
SS  
SS  
DV  
DD  
DV  
CLK  
13 14 15 16 17 18 19 20 21 22 23 24  
*
PINS D0 AND D1 ARE LEFT OPEN  
FOR THE AD876JR-8  
NC = NO CONNECT  
–4–  
REV. B  
AD876  
ABSO LUTE MAXIMUM RATINGS*  
O RD ERING GUID E  
P aram eter  
With Respect to Min  
Max Units  
Tem perature  
P ackage  
P ackage  
Model  
Range  
D escription  
O ptions  
AVDD  
DVDD, DRVDD  
AVSS  
AVSS  
–0.5  
–0.5  
–0.5  
–0.5  
+6.5 Volts  
+6.5 Volts  
+0.5 Volts  
+6.5 Volts  
DVSS, DRVSS  
DVSS, DRVSS  
AVSS  
AD876JR  
AD876JST -Reel 0°C to +70°C  
0°C to +70°C  
28-Lead SOIC  
48-Lead T QFP  
(Tape and Reel 13")  
28-Lead SOIC  
R-28  
ST -48  
AIN  
REFT S, REFT F  
REFBS, REFBF  
Digital Inputs, CLK  
Junction T emperature  
Storage T emperature  
Lead T emperature  
(10 sec)  
AD876JR-8  
AD876AR  
AD876ARS  
AD876JRS  
AD876JRS-8  
0°C to +70°C  
–40°C to +85°C 28-Lead SOIC  
–40°C to +85°C 28-Lead SSOP  
0°C to +70°C  
0°C to +70°C  
R-28  
R-28  
RS-28  
RS-28  
RS-28  
AVSS  
DVSS, DRVSS  
–0.5  
–0.5  
+6.5 Volts  
+6.5 Volts  
+150 °C  
28-Lead SSOP  
28-Lead SSOP  
–65  
+150 °C  
+300 °C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum  
ratings for extended periods may effect device reliability.  
DV  
DD  
DV  
DD  
DRV  
DD  
DRV  
DD  
DV  
DRV  
DD  
DD  
DV  
SS  
DRV  
SS  
DV  
SS  
DV  
SS  
DRV  
SS  
DRV  
SS  
DV  
SS  
a) D0–D9  
b) Three-State, Standby  
c) CLK  
AV  
DD  
REFTF  
REFTS  
AV  
AV  
SS  
AV  
DD  
AV  
DD  
INTERNAL  
REFERENCE  
VOLTAGE  
SS  
AV  
SS  
AV  
AV  
DD  
DD  
d) AIN  
INTERNAL  
REFERENCE  
VOLTAGE  
REFBS  
REFBF  
AV  
SS  
AV  
SS  
Figure 2. Equivalent Circuits  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD876 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
Typical Performance Characteristics  
AD876  
1
0
–10  
–20  
–30  
–40  
–50  
0.5  
0
THD  
2ND  
–60  
–70  
–80  
–90  
–0.5  
–1  
3RD  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960  
CODE OFFSET  
10  
1
FREQUENCY – MHz  
Figure 3. AD876 Typical DNL  
Figure 6. THD vs. Input Frequency 2nd, 3rd Harm onics  
2
60  
0
–2  
–4  
55  
50  
45  
40  
35  
30  
–6  
–8  
–10  
1
10  
100  
FREQUENCY – MHz  
1000  
5
10  
15  
20  
25  
30  
CLOCK FREQUENCY – MHz  
Figure 4. Full Power Bandwidth  
Figure 7. SINAD vs. CLK Frequency (AIN = –0.5 dB)  
180  
170  
160  
60  
55  
50  
150  
140  
130  
120  
45  
40  
35  
30  
110  
100  
0
5
10  
15  
20  
25  
0
1
2
10  
10  
10  
CLOCK FREQUENCY – MHz  
INPUT FREQUENCY – MHz  
Figure 8. Power Consum ption vs. Sam ple Rate  
Figure 5. SINAD vs. Input Frequency  
(fCLK = 20 MSPS, AIN = –0.5 dB)  
–6–  
REV. B  
AD876  
1
P IP ELINE D ELAY (LATENCY)  
T he number of clock cycles between conversion initiation and  
the associated output data being made available. New output  
data is provided every clock cycle.  
HARMONICS (dBc)  
2ND –68.02  
6TH –77.74  
7TH –75.62  
8TH –75.98  
9TH –81.20  
3RD –72.85  
4TH –70.68  
5TH –78.09  
REFERENCE TO P /BO TTO M O FFSET  
THD = –64.12  
Resistance between the reference input and comparator input  
tap points causes offset errors. T hese errors can be nulled out  
by using the force-sense connection as shown in the Reference  
Input section.  
SNR = 48.73  
SINAD = 48.61  
SFDR = –68.02  
2
4
3
6
7
8
5
9
TH EO RY O F O P ERATIO N  
T he AD876 implements a pipelined multistage architecture to  
achieve high sample rate with low power. T he AD876 distrib-  
utes the conversion over several smaller A/D subblocks, refining  
the conversion with progressively higher accuracy as it passes  
the results from stage to stage. As a consequence of the distrib-  
uted conversion, the AD876 requires a small fraction of the 1023  
comparators used in a traditional flash type A/D. A sample-and-  
hold function within each of the stages permits the first stage to  
operate on a new input sample while the second and third stages  
operate on the two preceding samples.  
Figure 9. AD876J R-8 Typical FFT (fIN = 3.58 MHz,  
AIN = –0.5 dB, fCLOCK = 20 MSPS)  
1
HARMONICS (dBc)  
2ND –68.91  
3RD –73.92  
4TH –68.67  
5TH –73.26  
6TH –80.55  
7TH –82.02  
8TH –81.02  
9TH –88.94  
THD = –64.24  
SNR = 55.71  
AP P LYING TH E AD 876  
SINAD = 55.14  
SFDR = –68.67  
D RIVING TH E ANALO G INP UT  
Figure 11 shows the equivalent analog input of the AD876, a  
sample-and-hold amplifier (SHA). Bringing CLK to a logic low  
level closes Switches 1 and 2 and opens Switch 3. T he input  
source connected to AIN must charge capacitor CH during this  
time. When CLK transitions from logic “low” to logic “high,”  
Switch 1 opens first, placing the SHA in hold mode. Switch 2  
opens subsequently. Switch 3 then closes, connects the feed-  
back loop around the op amp, and forces the output of the op  
amp to equal the voltage stored on CH. When CLK transitions  
from logic “high” to logic “low”, Switch 3 opens first. Switch 2  
closes and reconnects the input to CH. Finally, Switch 1 closes  
and places the SHA in track mode.  
2
4
5
3
6
7
8
9
Figure 10. AD876 Typical FFT (fIN = 3.58 MHz, AIN = –0.5 dB,  
CLOCK = 20 MSPS)  
f
D EFINITIO NS O F SP ECIFICATIO NS  
INTEGRAL NO NLINEARITY (INL)  
Integral nonlinearity refers to the deviation of each individual  
code from a line drawn from “zero” through “full scale”. T he  
point used as “zero” occurs 1/2 LSB before the first code transi-  
tion. “Full scale” is defined as a level 1 1/2 LSB beyond the last  
code transition. T he deviation is measured from the center of  
each particular code to the true straight line.  
T he structure of the input SHA places certain requirements on  
the input drive source. T he combination of the pin capacitance,  
CP, and the hold capacitance, CH, is typically less than 5 pF.  
T he input source must be able to charge or discharge this ca-  
pacitance to 10-bit accuracy in one half of a clock cycle. When  
the SHA goes into track mode, the input source must charge or  
discharge capacitor CH from the voltage already stored on CH  
(the previously captured sample) to the new voltage. In the  
worst case, a full-scale voltage step on the input, the input  
source must provide the charging current through the RON (50 )  
of Switch 2 and quickly settle (within 1/2 CLK period). T his  
situation corresponds to driving a low input impedance. On the  
other hand, when the source voltage equals the value previously  
stored on CH , the hold capacitor requires no input current and  
the equivalent input impedance is extremely high.  
D IFFERENTIAL NO NLINEARITY (D NL, NO MISSING  
CO D ES)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. It is often  
specified in terms of the resolution for which no missing codes  
(NMC) are guaranteed.  
O FFSET ERRO R  
T he first transition should occur at a level 1/2 LSB above  
“zero.” Offset is defined as the deviation of the actual first code  
transition from that point.  
Adding series resistance between the output of the source and  
the AIN pin reduces the drive requirements placed on the  
source. Figure 12 shows this configuration. T he bandwidth of  
the particular application limits the size of this resistor. T o  
maintain the performance outlined in the data sheet specifica-  
tions, the resistor should be limited to 200 or less. For appli-  
cations with signal bandwidths less than 10 MHz, the user may  
increase the size of the series resistor proportionally. Alterna-  
tively, adding a shunt capacitance between the AIN pin and  
GAIN ERRO R  
T he first code transition should occur for an analog value 1/2 LSB  
above nominal negative full scale. T he last transition should  
occur for an analog value 1 1/2 LSB below the nominal positive  
full scale. Gain error is the deviation of the actual difference  
between first and last code transitions and the ideal difference  
between the first and last code transitions.  
REV. B  
–7–  
AD876  
analog ground can lower the ac source impedance. T he value  
of this capacitance will depend on the source resistance and the  
required signal bandwidth.  
20 kHz. At a sample clock frequency of 20 MHz, the dc bias  
current at 3 V dc is approximately 30 µA. If we choose R2 equal  
to 1 kand R1 equal to 50 , the parallel capacitance should  
be a minimum of 0.008 µF to avoid attenuating signals close to  
20 kHz. Note that the bias current will cause a 31.5 mV offset  
from the 3 V bias.  
T he input span of the AD876 is a function of the reference  
voltages. For more information regarding the input range, see  
the DRIVING T HE REFERENCE T ERMINALS section of  
the data sheet.  
In systems that must use dc-coupling, use an op amp to level-  
shift a ground-referenced signal to comply with the input  
requirements of the AD876. Figure 14 shows an AD817  
configured in inverting mode with ac signal gain of –1. T he dc  
voltage at the noninverting input of the op amp controls the  
amount of dc level shifting. A resistive voltage divider attenu-  
ates the REFBF signal. T he op amp then multiplies the attenu-  
ated signal by 2. In the case where REFBF = 1.6 V, the dc  
output level will be 2.6 V. T he AD817 is a low cost, fast settling,  
single supply op amp with a G = –1 bandwidth of 29 MHz. T he  
AD818 is similar to the AD817 but has a 50 MHz bandwidth.  
Other appropriate op amps include the AD8011, AD812 (a dual),  
and the AD8001.  
3
AD876  
1
AIN  
2
C
H
C
P
Figure 11. AD876 Equivalent Input Structure  
< Ϸ 200  
AIN  
V
S
R = 4.99k⍀  
f
+V  
CC  
0.1F  
Figure 12. Sim ple AD876 Drive Requirem ents  
AD876  
AIN  
NC  
In many cases, particularly in single-supply operation, ac-  
coupling offers a convenient way of biasing the analog input  
signal at the proper signal range. Figure 13 shows a typical  
configuration for ac-coupling the analog input signal to the  
AD876. Maintaining the specifications outlined in the data  
sheet requires careful selection of the component values. T he  
most important concern is the f-3 dB high-pass corner that is a  
function of R2, and the parallel combination of C1 and C2.  
T he f-3 dB point can be approximated by the equation  
2V p-p  
REFBF  
0Vdc  
R
= 4.99k⍀  
IN  
AD817 OR  
AD818  
3k⍀  
14.7k⍀  
NC  
Figure 14. Bipolar Level Shift  
An integrated difference amplifier such as the AD830 is an  
alternate means of providing dc level shifting. T he AD830  
provides a great deal of flexibility with control over offset and  
gain. Figure 15 shows the AD830 precisely level-shifting a  
unipolar, ground-referenced signal. T he reference voltage,  
REFBS, determines the amount of level-shifting. T he ac gain  
is 1. T he AD830 offers the advantages of high CMRR, precise  
gain, offset, and high-impedance inputs when compared with a  
discrete implementation. For more information regarding the  
AD830, see the AD830 data sheet.  
1
f 3 dB  
=
[2 × π ×( R2) Ceq]  
where Ceq is the parallel combination of C1 and C2. Note that  
C1 is typically a large electrolytic or tantalum capacitor that  
becomes inductive at high frequencies. Adding a small ceramic  
or polystyrene capacitor on the order of 0.01 µF that does not  
become inductive until negligibly higher frequencies maintains  
a low impedance over a wide frequency range.  
+12V  
AD876  
0.1  
R1  
C1  
C2  
2V  
V
+2V  
B
V
AIN  
IN  
0
AD876  
R2  
V
V
I
B
B
AIN  
AD830  
–12V  
3V  
BIAS  
V
B
0.1  
Figure 13. AC-Coupled Inputs  
T here are additional considerations when choosing the resistor  
values. T he ac-coupling capacitors integrate the switching  
transients present at the input of the AD876 and cause a net dc  
bias current, IB, to flow into the input. T he magnitude of this  
bias current increases with increasing dc signal level and also  
increases with sample frequency. T his bias current will result in  
an offset error of (R1 + R2) × IB. If it is necessary to compen-  
sate this error, consider making R2 negligibly small or modify-  
ing VBIAS to account for the resultant offset.  
REFBS  
Figure 15. Level Shifting with the AD830  
REFERENCE INP UT D RIVING TH E REFERENCE  
TERMINALS  
T he AD876 requires an external reference on pins REFT F and  
REFBF. T he AD876 provides reference sense pins, REFT S  
and REFBS, to minimize voltage drops caused by external and  
internal wiring resistance. A resistor ladder, nominally 250 ,  
connects pins REFT F and REFBF.  
As an example, assume that the input to the AD876 must have  
a dc bias of 3 V and the minimum expected signal frequency is  
–8–  
REV. B  
AD876  
ance changes associated with the reference inputs. T he simpli-  
fied diagram of Figure 16 shows that the reference pins connect  
to a capacitor for one-half of the clock period. T he size of the  
capacitor is a function of the analog input voltage.  
Figure 16 shows the equivalent input structure for the AD876  
reference pins. T here is approximately 5 of resistance between  
both the REFT F and REFBT pins and the reference ladder. If  
the force-sense connections are not used, the voltage drop  
across the 5 resistors will result in a reduced voltage appear-  
ing across the ladder resistance. T his reduces the input span of  
the converter. Applying a slightly larger span between the REFT F  
and REFBF pins compensates this error. Note that the tem-  
perature coefficients of the 5 resistors are 1350 ppm. T he  
user should consider the effects of temperature when not using  
a force-sense reference configuration.  
T he external reference must be able to maintain a low imped-  
ance over all frequencies of interest in order to provide the charge  
required by the capacitance. By supplying the requisite charge,  
the reference voltages will be relatively constant and perfor-  
mance will not degrade. For some reference configurations,  
voltage transients will be present on the reference lines; this  
is particularly true during the falling edge of CLK. It is impor-  
tant that the reference recovers from the transients and settles to  
the desired level of accuracy prior to the rising edges of CLK.  
AD876  
5⍀  
REFTF  
T here are several reference configurations suitable for the  
AD876 depending on the application, desired level of accuracy,  
and cost trade-offs. T he simplest configuration, shown in Fig-  
ure 18, utilizes a resistor string to generate the reference volt-  
ages from the converter’s analog power supply. T he 0.1 µF  
bypass capacitors effectively reduce high-frequency transients.  
T he 10 µF capacitors act to reduce the impedances at the  
REFT F and REFBF pins at lower frequencies. As input fre-  
quencies approach dc, the capacitors become ineffective, and  
small voltage deviations will appear across the biasing resistors.  
T his application can maintain 10-bit accuracy for input frequen-  
cies above approximately 200 Hz. 8-bit applications can use this  
circuit for input frequencies above approximately 50 Hz.  
CLK  
REFTS  
V1  
R
LADDER  
C (V  
)
DACS  
IN  
250⍀  
REFBS  
REFBF  
V2  
CLK  
5⍀  
Figure 16. AD876 Equivalent Reference Structure  
Do not connect the REFT S and REFBS pins in configurations  
that do not use a force-sense reference. Connecting the force  
and sense lines together allows current to flow in the sense lines.  
Any current allowed to flow through these lines must be negligi-  
bly small. Current flow causes voltage drops across the resis-  
tance in the sense lines. Because the internal D/As of the  
AD876 tap different points along the sense lines, each D/A  
would receive a slightly different reference voltage if current  
were flowing in these wires. T o avoid this undesirable condition,  
leave the sense lines unconnected. Any current allowed to flow  
through these lines must be negligibly small (<100 µA).  
AD876  
REFTS  
NC  
140(؎1%)  
4V  
REFTF  
+5V  
0.1F  
10F  
10F  
250⍀  
(؎15%)  
10F  
T he voltage drop across the internal resistor ladder determines  
the input span of the AD876. T he driving voltages required at  
the V1 and V2 points are respectively +4 V and +2 V. Calculate  
the full-scale input span from the equation  
250(؎1%)  
2V  
REFBF  
REFBS  
0.1F  
NC  
Input Span (V ) = REFTS REFBS  
NC = NO CONNECT  
T his results in a full-scale input span of approximately +2 V  
when REFT S = +4 V and REFBS = +2 V In order to maintain  
the requisite 2 V drop across the internal ladder, the external  
reference must be capable of providing approximately 8.0 mA.  
Figure 18. Low Cost Reference Circuit  
T his reference configuration provides the lowest cost but has  
several disadvantages. T hese disadvantages include poor dc  
power supply rejection and poor accuracy due to the variability  
of the internal and external resistors.  
T he user has flexibility in determining both the full-scale span of  
the analog input and where to center this voltage. Figure 17  
shows the range over which the AD876 can operate without  
degrading the typical performance.  
T he AD876 offers force-sense reference connections to elimi-  
nate the voltage drops associated with the internal connections  
to the reference ladder. Figure 19 shows a suggested circuit  
using an AD826 dual, high speed op amp. T his configuration  
uses 3.6 V and 1.6 V reference voltages for REFT and REFB,  
respectively. T he connections shown in Figure 19 configure the  
op amps as voltage followers.  
(2.5, 4.5)  
(2.5, 3.5)  
2.5  
(1.6, 4.5)  
4.5  
4.0  
3.5  
3.0  
2.5  
(1.6, 3.5)  
1.0  
1.5  
2.0  
3.0  
REFBF, REFBS  
Figure 17. AD876 Reference Ranges  
While the previous issues address the dc aspects of the AD876  
reference, the user must also be aware of the dynamic imped-  
REV. B  
–9–  
AD876  
common ground, are effectively removed by the AD876’s high  
common-mode rejection.  
C3  
0.1F  
AD876  
High frequency noise sources, VN1 and VN2, are shunted to  
ground by decoupling capacitors. Any voltage drops between  
the analog input ground and the reference bypassing points will  
be treated as input signals by the converter via the reference  
inputs. Consequently, the reference decoupling capacitors  
should be connected to the same analog ground point used to  
define the analog input voltage. (For further suggestions, see  
the “Grounding and Layout Rules” section of the data sheet.)  
REFTS  
+5V  
8
C4  
0.1F  
6
5
7
REFTF  
REFT  
1/2  
C2  
0.1F  
AD826  
REFBS  
REFBF  
C5  
0.1F  
2
3
6
C1  
0.1F  
REFB  
4
1/2  
AD826  
V
4V  
N1  
REFTF  
REFBF  
AD876  
Figure 19. Kelvin Connected Reference Using the AD826  
By connecting the op amp feedback through the sense connec-  
tions of the AD876, the outputs of the op amps automatically  
adjust to compensate for the voltage drops that occur within  
the converter. T he AD826 has the advantage of being able to  
maintain stability while driving unlimited capacitive loads. As a  
result, 0.1 µF capacitors C1, C2, and C3 can connect directly  
to the outputs of the op amps. T hese decoupling capacitors  
reduce high frequency transients. Capacitors C4 and C5 shunt  
across the internal resistors of the force sense connections and  
prevent instability.  
V
2V  
N2  
AIN  
Figure 21. Recom m ended Bypassing for the Reference  
Inputs  
CLO CK INP UT  
T his configuration provides excellent performance and a mini-  
mal number of components. T he circuit also offers the advan-  
tage of operating from a single +5 V supply. While alternative  
op amps may also be suitable, consider the stability of these op  
amps while driving capacitive loads.  
T he AD876 clock input is buffered internally with an inverter  
powered from the DRVDD pin. T his feature allows the AD876  
to accommodate either +5 V or +3.3 V CMOS logic input sig-  
nal swings with the input threshold for the CLK pin nominally  
at DRVDD /2.  
T he circuit shown in Figure 20 allows a wider selection of op  
amps when compared with the previous configuration. An  
T he AD876s pipelined architecture operates on both rising and  
falling edges of the input clock. T o minimize duty cycle varia-  
tions the recommended logic family to drive the clock input is  
high speed or advanced CMOS (HC/HCT , AC/ACT ) logic.  
CMOS logic provides both symmetrical voltage threshold levels  
and sufficient rise and fall times to support 20 MSPS operation.  
T he AD876 is designed to support a conversion rate of 20 MSPS;  
running the part at slightly faster clock rates may be possible,  
although at reduced performance levels. Conversely, some  
slight performance improvements might be realized by clocking  
the AD876 at slower clock rates.  
AD876  
20k⍀  
REFTS  
47nF  
22F  
10⍀  
REFTF  
REFT  
1/2  
OP-295  
10F  
20k⍀  
0.1F  
REFBS  
REFBF  
47nF  
T he power dissipated by the correction logic and output buffers  
is largely proportional to the clock frequency; running at reduced  
clock rates provides a reduction in power consumption. Figure  
8 illustrates this trade-off.  
10⍀  
10F  
REFB  
1/2  
OP-295  
0.1F  
D IGITAL INP UTS AND O UTP UTS  
Figure 20. Kelvin Connected Reference Using the OP295  
Each of the AD876 digital control inputs, T HREE-ST AT E and  
ST BY, has an input buffer powered from the DRVDD supply  
pins. With DRVDD set to +5 V, all digital inputs readily inter-  
face with +5 V CMOS logic. For interfacing with lower voltage  
CMOS logic, DRVDD can be set to 3.3 V, effectively lowering  
the nominal input threshold of all digital inputs to 3.3 V/2 =  
1.65 V.  
OP295 dual, single-supply op amp provides stable 3.6 V and  
1.6 V reference voltages. T he AD822 dual op amp is also suit-  
able for single-supply applications. Each half of the OP295 is  
compensated to drive the 10 µF and 0.1 µF decoupling capaci-  
tors at the REFT F and REFBF pins and maintain stability.  
Like any high resolution converter, the layout and decoupling of  
the reference is critical. T he actual voltage digitized by the  
AD876 is relative to the reference voltages. In Figure 21, for  
example, the reference return and the bypass capacitors are  
connected to the shield of the incoming analog signal. Distur-  
bances in the ground of the analog input, that will be common-  
mode to the REFT , REFB, and AIN pins because of the  
T he format of the digital output is straight binary. T able I shows  
the output format for the case where REFT S = 4 V and REFBS  
= 2 V.  
–10–  
REV. B  
AD876  
Table I. O utput D ata Form at  
For DRVDD = 5 V, the AD876 output signal swing is compat-  
ible with both high speed CMOS and T T L logic families. For  
T T L, the AD876 on-chip, output drivers were designed to  
support several of the high speed T T L families (F, AS, S). For  
applications where the clock rate is below 20 MSPS, other T T L  
families may be appropriate. For interfacing with lower voltage  
CMOS logic, the AD876 sustains 20 MSPS operation with  
DRVDD = 3.3 V. In all cases, check your logic family data  
sheets for compatibility with the AD876 Digital Specification  
table.  
Approx.  
AIN (V)  
TH REE- D ATA  
STATE D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0  
>4  
4
0
0
0
0
0
1
1
1
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
3
2
<2  
X
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
TH REE-STATE O UTP UTS  
A low power mode feature is provided such that for ST BY =  
HIGH and the clock disabled, the static power of the AD876  
will drop below 50 mW.  
T he digital outputs of the AD876 can be placed in a high im-  
pedance state by setting the T HREE-ST AT E pin to HIGH.  
T his feature is provided to facilitate in-circuit testing or  
evaluation. Note that this function is not intended for enabling/  
disabling the ADC outputs from a bus at 20 MSPS. Also, to  
avoid corruption of the sampled analog signal during conversion  
(3.5 clock cycles), it is highly recommended that the AD876  
outputs be enabled on the bus prior to the first sampling. For  
the purpose of budgetary timing, the maximum access and float  
delay times (tDD, tHL shown in Figure 15) for the AD876 are  
150 ns.  
GRO UND ING AND LAYO UT RULES  
As is the case for any high performance device, proper ground-  
ing and layout techniques are essential in achieving optimal  
performance. T he analog and digital grounds on the AD876  
have been separated to optimize the management of return  
currents in a system. It is recommended that a printed circuit  
board (PCB) of at least 4 layers employing a ground plane and  
power planes be used with the AD876. T he use of ground and  
power planes offers distinct advantages:  
THREE-STATE  
1. T he minimization of the loop area encompassed by a signal  
and its return path.  
tDD  
tHL  
D0–D9  
2. T he minimization of the impedance associated with ground  
and power paths.  
HIGH IMPEDANCE  
ACTIVE  
3. T he inherent distributed capacitor formed by the power  
plane, PCB insulation, and ground plane.  
Figure 22. High-Im pedance Output Tim ing Diagram  
T hese characteristics result in both a reduction of electro-  
magnetic interference (EMI) and an overall improvement in  
performance.  
It is important to design a layout which prevents noise from  
coupling onto the input signal. Digital signals should not be run  
in parallel with the input signal traces and should be routed  
away from the input circuitry. Separate analog and digital  
grounds should be joined together directly under the AD876. A  
solid ground plane under the AD876 is also acceptable if the  
power and ground return currents are managed carefully. A  
general rule of thumb for mixed signal layouts dictates that the  
return currents from digital circuitry should not pass through  
critical analog circuitry. For further layout suggestions, see the  
AD876 Evaluation Board data sheet.  
D IGITAL O UTP UTS  
Each of the on-chip buffers for the AD876 output bits (D0–D9)  
is powered from the DRVDD supply pins, separate from AVDD or  
DVDD. T he output drivers are sized to handle a variety of logic  
families while minimizing the amount of glitch energy gener-  
ated. In all cases, a fan-out of one is recommended to keep the  
capacitive load on the output data bits below the specified 20 pF  
level.  
REV. B  
–11–  
AD876  
TP3  
TP4  
1
2
U4  
74F04  
CLK_IN  
TP1  
U4  
74F04  
J1  
4
3
3ST  
VP5  
STBY  
VP6  
+5VD  
+5VD  
R1  
51⍀  
C50  
10F  
+
JP4  
JP1  
JP2  
U1  
AD876  
P1  
P1  
P1  
P1  
P1  
1
3
5
7
9
P1  
P1  
P1  
P1  
2
4
6
8
U2  
74ALS541  
1
19  
9
8
7
6
5
4
3
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
G1  
D9  
R2  
*
CLK  
DV  
SS  
11  
G2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
VP8  
13  
12  
11  
10  
9
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
3_STATE  
STBY  
R3*  
R4*  
R5*  
R6*  
12  
13  
14  
15  
16  
DRV  
C62  
0.1F  
SS  
9
8
7
6
5
4
3
2
1
0
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
P1 10  
P1 12  
P1 14  
P1 16  
P1 18  
P1 20  
P1 22  
P1 24  
P1 26  
P1 28  
P1 30  
P1 32  
P1 34  
P1 36  
P1 38  
P1 40  
D5  
D6  
D7  
D8  
D9  
DV  
DD  
5
6
7
8
9
P1 11  
P1 13  
P1 15  
P1 17  
P1 19  
P1 21  
P1 23  
P1 25  
P1 27  
P1 29  
P1 31  
P1 33  
P1 35  
P1 37  
P1 39  
SUBST  
NC  
REFTS  
VP3  
Y1 17  
Y0  
R7*  
18  
REFTS  
REFTF  
NC  
8
2
REFTS  
REFTF  
R8*  
7
R9*  
U3  
6
REFBF  
REFBS  
CML  
1
19  
9
8
7
6
5
4
3
R10*  
R11*  
G1  
G2  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
5
11  
12  
13  
14  
15  
16  
17  
18  
REFBF  
REFBS  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
4
3
AIN  
DRV  
DD  
D0  
D1  
D2  
D3  
D4  
2
AV  
DD  
VP4  
REFBS  
AV  
0
1
2
3
4
SS  
1
C64  
0.1F  
REFTF  
VP1  
REFBF  
VP2  
R12*  
2
74ALS541  
C56  
0.1F  
C4  
10F  
+
+
+
C49  
10F  
C2  
10F  
+5VD  
R16  
1k⍀  
R17  
1.13k⍀  
+5VA  
*R2–R12 = 20⍀  
C54  
0.1F  
DC_IN  
R18  
R14  
1k⍀  
100⍀  
2
3 INT_CM  
EXT_CM  
TP18  
JP5  
1
AIN  
J2  
C1  
0.1F  
R15  
51⍀  
TP2  
+
C3  
47F  
Figure 23. AD876 Evaluation Board Schem atic  
–12–  
REV. B  
AD876  
Figure 24. Silkscreen Layer, Com ponent Side PCXB Layout  
Figure 25. Silkscreen Layer, Circuit Side PCB Layout  
–13–  
REV. B  
AD876  
Figure 26. Com ponent Side PCB Layout  
Figure 27. Circuit Side PCB Layout  
–14–  
REV. B  
AD876  
Figure 28. Ground Layer PCB Layout  
Figure 29. Power Layer PCB Layout  
–15–  
REV. B  
AD876  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
R-28  
28-Lead Wide Body (SO IC)  
0.7125 (18.10)  
0.6969 (17.70)  
28  
15  
1
14  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
PIN 1  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
ST-48  
28-Lead P lastic Thin Quad Flatpack (TQFP )  
0.059 +0.008 –0.004  
(1.50 +0.2 –0.1)  
0.354 ± 0.008 (9.00 ± 0.2) SQ  
0.055 ± 0.002  
(1.40 ± 0.05)  
0.039 (1.00)  
REF  
0.02 ± 0.008  
(0.5 ± 0.2)  
36  
25  
37  
24  
SEATING  
PLANE  
0.276 ± 0.004  
(7.0 ± 0.1)  
SQ  
TOP VIEW  
(PINS DOWN)  
48  
13  
0.004 ± 0.002  
(0.1 ± 0.05)  
1
12  
0° MIN  
(3.5° ± 3.5°)  
0.02 ± 0.003 0.007 +0.003 –0.001  
(0.50 ± 0.08) (0.18 +0.08 –0.03)  
0.005 +0.002 –0.0008  
(0.127 +0.05 –0.02)  
RS-28  
28-Lead Shrink Sm all O utline P ackage (SSO P )  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
14  
1
0.07 (1.79)  
0.078 (1.98)  
PIN 1  
0.066 (1.67)  
0.068 (1.73)  
0.03 (0.762)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
–16–  
REV. B  

相关型号:

AD876JR-8-REEL

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28
ROCHESTER

AD876JR-8-REEL

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28, Analog to Digital Converter
ADI

AD876JR-REEL

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28, Analog to Digital Converter
ADI

AD876JRS

10-Bit 20 MSPS 160 mW CMOS A/D Converter
ADI

AD876JRS

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SSOP-28
ROCHESTER

AD876JRS-8

10-Bit 20 MSPS 160 mW CMOS A/D Converter
ADI

AD876JRS-REEL

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SSOP-28, Analog to Digital Converter
ADI

AD876JRS-REEL

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SSOP-28
ROCHESTER

AD876JST

10-Bit 20 MSPS 160 mW CMOS A/D Converter
ADI

AD876JST-REEL

10-Bit 20 MSPS 160 mW CMOS A/D Converter
ADI

AD878AP

IC 1-CH 14-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC44, PLASTIC, LCC-44, Analog to Digital Converter
ADI

AD878JP

Analog-to-Digital Converter, 14-Bit
ETC