AD8236ARMZ [ROCHESTER]

OP-AMP, 3500 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8;
AD8236ARMZ
型号: AD8236ARMZ
厂家: Rochester Electronics    Rochester Electronics
描述:

OP-AMP, 3500 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8

放大器 光电二极管
文件: 总21页 (文件大小:1350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
40 μA Micropower Instrumentation  
Amplifier with Zero Crossover Distortion  
AD8236  
CONNECTION DIAGRAM  
FEATURES  
Low power: 40 μA supply current (maximum)  
Low input currents  
1 pA input bias current  
0.5 pA input offset current  
High CMRR: 110 dB CMRR, G = 100  
Space-saving MSOP  
–IN  
1
2
3
4
8
7
6
5
+V  
V
S
R
G
OUT  
R
REF  
G
+IN  
–V  
S
AD8236  
TOP VIEW  
(Not to Scale)  
Zero input crossover distortion  
Rail-to-rail input and output  
Gain set with single resistor  
Operates from 1.8 V to 5.5 V  
Figure 1.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = 5  
APPLICATIONS  
V
V
= 5V  
S
= 2.5V  
REF  
Medical instrumentation  
Low-side current sense  
Portable devices  
G = 5  
V
V
= 1.8V  
S
= 0.9V  
REF  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
Figure 2. Wide Common-Mode Voltage Range vs. Output Voltage  
GENERAL DESCRIPTION  
The AD8236 is the lowest power instrumentation amplifier  
in the industry. It has rail-to-rail outputs and can operate on  
voltages as low as 1.8 V. Its 40 μA maximum supply current  
makes it an excellent choice in battery-powered applications.  
Table 1. Instrumentation Amplifiers by Category1  
General  
Purpose Zero Drift  
Military Low  
High Speed  
PGA  
Grade  
AD620  
AD621  
AD624  
AD524  
Power  
AD8220  
AD8221  
AD8222  
AD8228  
AD8295  
AD8230  
AD8231  
AD8290  
AD8293G80  
AD8236 AD8250  
AD627  
AD623  
AD8223  
AD8226  
AD8251  
AD8253  
The AD8236s high input impedance, low input bias current of  
1 pA, high CMRR of 110 dB (G = 100), small size, and low power  
offer tremendous value. It has a wider common-mode voltage  
range than typical three-op-amp instrumentation amplifiers,  
making this a great solution for applications that operate on a  
single 1.8 V or 3 V supply. An innovative input stage allows for  
a wide rail-to-rail input voltage range without the crossover  
distortion common in other designs.  
AD8293G160 AD526  
AD8553  
AD8556  
AD8557  
1 See www.analog.com/inamps for the latest instrumentation amplifiers.  
The AD8236 is available in an 8-lead MSOP and is specified  
over the industrial temperature range of −40°C to +125°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8236  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Layout .......................................................................................... 15  
Reference Terminal .................................................................... 15  
Power Supply Regulation and Bypassing ................................ 15  
Input Bias Current Return Path ............................................... 16  
Input Protection ......................................................................... 16  
RF Interference ........................................................................... 16  
Common-Mode Input Voltage Range..................................... 17  
Applications Information.............................................................. 18  
AC-Coupled Instrumentation Amplifier................................ 18  
Low Power Heart Rate Monitor ............................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Maximum Power Dissipation ..................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 14  
Basic Operation .......................................................................... 14  
Gain Selection............................................................................. 14  
REVISION HISTORY  
5/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD8236  
SPECIFICATIONS  
+VS = 5 V, VS = 0 V (GND), VREF = 2.5 V, TA = 25°C, G = 5, RL = 100 kΩ to GND, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC  
VS = 2.5 V, VREF = 0 V  
VCM = −1.8 V to +1.8 V  
G = 5  
86  
94  
dB  
dB  
dB  
dB  
G = 10  
90  
100  
110  
110  
G = 100  
100  
100  
G = 200  
NOISE  
Voltage Noise Spectral Density, RTI  
RTI, 0.1 Hz to 10 Hz  
G = 5  
f = 1 kHz, G = 5  
76  
nV/√Hz  
4
4
15  
μV p-p  
μV p-p  
fA/√Hz  
G = 200  
Current Noise  
VOLTAGE OFFSET  
Input Offset, VOS  
Average Temperature Coefficient (TC)  
Offset RTI vs. Supply (PSR)  
G = 5  
3.5  
mV  
μV/°C  
−40°C to +125°C  
VS = 1.8 V to 5 V  
2.5  
100  
110  
110  
110  
120  
126  
130  
130  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 200  
INPUT CURRENT  
Input Bias Current  
Overtemperature  
1
10  
pA  
pA  
pA  
pA  
pA  
pA  
−40°C to +85°C  
−40°C to +125°C  
100  
600  
5
50  
130  
Input Offset Current  
Overtemperature  
0.5  
−40°C to +85°C  
−40°C to +125°C  
DYNAMIC RESPONSE  
Small Signal Bandwidth, –3 dB  
G = 5  
23  
9
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
0.8  
0.4  
G = 200  
Settling Time 0.01%  
G = 5  
VOUT = 4 V step  
444  
456  
992  
1816  
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 200  
Slew Rate  
G = 5 to 100  
9
mV/μs  
Rev. 0 | Page 3 of 20  
 
 
AD8236  
Parameter  
GAIN  
Test Conditions  
Min  
Typ  
Max  
Unit  
Gain Range  
Gain Error  
G = 5 + 420 kΩ/RG  
5
2001  
V/V  
VS = 2.5 V, VREF = 0 V, VOUT = −2 V to +2 V  
G = 5  
0.005  
0.03  
0.06  
0.15  
0.05  
0.2  
%
%
%
%
G = 10  
G = 100  
0.2  
G = 200  
0.3  
Nonlinearity  
G = 5  
RL = 10 kΩ or 100 kΩ  
−40°C to +125°C  
2
10  
10  
10  
10  
ppm  
ppm  
ppm  
ppm  
G = 10  
1.2  
0.5  
0.5  
G = 100  
G = 200  
Gain vs. Temperature  
G = 5  
0.25  
1
ppm/°C  
ppm/°C  
G > 10  
−50  
INPUT  
Differential Impedance  
Common-Mode Impedance  
Input Voltage Range  
OUTPUT  
440||1.6  
110||6.2  
GΩ||pF  
GΩ||pF  
V
−40°C to +125°C  
0
+VS  
Output Voltage High, VOH  
RL = 100 kΩ  
4.98  
4.98  
4.9  
4.99  
4.95  
2
V
−40°C to +125°C  
RL = 10 kΩ  
V
V
−40°C to +125°C  
RL = 100 kΩ  
4.9  
V
Output Voltage Low, VOL  
5
mV  
mV  
mV  
mV  
mA  
−40°C to +125°C  
RL = 10 kΩ  
5
10  
25  
30  
−40°C to +125°C  
Short-Circuit Limit, ISC  
REFERENCE INPUT  
RIN  
55  
−IN, +IN = 0 V  
210  
20  
kΩ  
nA  
V
IIN  
Voltage Range  
−VS  
1.8  
+VS  
Gain to Output  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Overtemperature  
TEMPERATURE RANGE  
For Specified Performance  
1
V/V  
5.5  
40  
50  
V
30  
μA  
μA  
−40°C to +125°C  
−40  
+125  
°C  
1 Although the specifications of the AD8236 list only low to midrange gains, gains can be set beyond 200.  
Rev. 0 | Page 4 of 20  
 
AD8236  
+VS = 1.8 V, VS = 0 V (GND), VREF = 0.9 V, TA = 25°C, G = 5, RL = 100 kΩ to GND, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC  
VS = 0.9 V, VREF = 0 V  
VCM = −0.6 V to +0.6 V  
G = 5  
86  
94  
dB  
dB  
dB  
dB  
G = 10  
90  
100  
110  
110  
G = 100  
100  
100  
G = 200  
NOISE  
Voltage Noise Spectral Density, RTI  
RTI, 0.1 Hz to 10 Hz  
G = 5  
f = 1 kHz, G = 5  
76  
nV/√Hz  
4
4
15  
μV p-p  
μV p-p  
fA/√Hz  
G = 200  
Current Noise  
VOLTAGE OFFSET  
Input Offset, VOS  
Average Temperature Coefficient (TC)  
Offset RTI vs. Supply (PSR)  
G = 5  
3.5  
mV  
μV/°C  
−40°C to +125°C  
VS = 1.8 V to 5 V  
2.5  
100  
110  
110  
110  
120  
126  
130  
130  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 200  
INPUT CURRENT  
Input Bias Current  
Overtemperature  
1
10  
pA  
pA  
pA  
pA  
pA  
pA  
−40°C to +85°C  
−40°C to +125°C  
100  
600  
5
50  
130  
Input Offset Current  
Overtemperature  
0.5  
−40°C to +85°C  
−40°C to +125°C  
DYNAMIC RESPONSE  
Small Signal Bandwidth, –3 dB  
G = 5  
23  
9
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
0.8  
0.4  
G = 200  
Settling Time 0.01%  
G = 5  
VOUT = 1.4 V step  
143  
μs  
μs  
μs  
μs  
G = 10  
178  
G = 100  
1000  
1864  
G = 200  
Slew Rate  
G = 5 to 100  
GAIN  
11  
mV/μs  
V/V  
Gain Range  
Gain Error  
G = 5  
G = 5 + 420 kΩ/RG  
5
2001  
VS = 0.9 V, VREF = 0 V, VOUT = −0.6 V to +0.6 V  
0.005  
0.03  
0.06  
0.15  
0.05  
0.2  
%
%
%
%
G = 10  
G = 100  
0.2  
G = 200  
0.3  
Rev. 0 | Page 5 of 20  
 
AD8236  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Nonlinearity  
G = 5  
RL = 10 kΩ or 100 kΩ  
1
10  
10  
10  
10  
ppm  
ppm  
ppm  
ppm  
G = 10  
1
G = 100  
0.5  
0.4  
G = 200  
Gain vs. Temperature  
G = 5  
−40°C to +125°C  
0.25  
1
ppm/°C  
ppm/°C  
G > 10  
−50  
INPUT  
Differential Impedance  
Common-Mode Impedance  
Input Voltage Range  
OUTPUT  
440||1.6  
110||6.2  
GΩ||pF  
GΩ||pF  
V
−40°C to +125°C  
0
+VS  
Output Voltage High, VOH  
RL = 100 kΩ  
1.78  
1.78  
1.65  
1.65  
1.79  
1.75  
2
V
−40°C to +125°C  
RL = 10 kΩ  
V
V
−40°C to +125°C  
RL = 100 kΩ  
V
Output Voltage Low, VOL  
5
mV  
mV  
mV  
mV  
mA  
−40°C to +125°C  
RL = 10 kΩ  
5
12  
6
25  
25  
−40°C to +125°C  
Short-Circuit Limit, ISC  
REFERENCE INPUT  
RIN  
−IN, +IN = 0 V  
210  
20  
kΩ  
nA  
V
IIN  
Voltage Range  
−VS  
1.8  
+VS  
Gain to Output  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Overtemperature  
TEMPERATURE RANGE  
For Specified Performance  
1
V/V  
5.5  
40  
50  
V
33  
μA  
μA  
−40°C to +125°C  
−40  
+125  
°C  
1 Although the specifications of the AD8236 list only low to midrange gains, gains can be set beyond 200.  
Rev. 0 | Page 6 of 20  
 
AD8236  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
The difference between the total drive power and the load power is  
the drive power dissipated in the package.  
Rating  
Supply Voltage  
Power Dissipation  
6 V  
PD = Quiescent Power + (Total Drive Power Load Power)  
See Figure 3  
55 mA  
VS  
VS  
−65°C to +125°C  
−40°C to +125°C  
300°C  
2
VS VOUT  
VOUT  
RL  
Output Short-Circuit Current  
Input Voltage (Common Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
θJA (4-Layer JEDEC Standard Board)  
8-Lead MSOP  
PD =  
(
VS ×IS  
)
+
×
2
RL  
RMS output voltages should be considered. If RL is referenced to  
−VS, as in single-supply operation, the total drive power is VS ×  
IOUT. If the rms signal levels are indeterminate, consider the worst  
case, when VOUT = VS/4 for RL to midsupply  
140°C  
2
(
VS /4  
RL  
)
PD =  
(
VS ×IS +  
)
135°C/W  
140°C  
Package Glass Transition Temperature  
8-Lead MSOP  
ESD  
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes  
reduces the θJA.  
Human Body Model  
Charge Device Model  
Machine Model  
2 kV  
1 kV  
200 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Figure 3 shows the maximum safe power dissipation in the package  
vs. the ambient temperature for the 8-lead MSOP on a 4-layer  
JEDEC standard board. θJA values are approximations.  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the package of the  
AD8236 is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die locally reaches  
the junction temperature. At approximately 140°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit may change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8236.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
The still-air thermal properties of the package and PCB (θJA),  
the ambient temperature (TA), and the total power dissipated in  
the package (PD) determine the junction temperature of the die.  
The junction temperature is calculated as  
Figure 3. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
TJ = TA + (PD × θJA)  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, the total drive power is VS/2 × IOUT, some of which  
is dissipated in the package and some in the load (VOUT × IOUT).  
Rev. 0 | Page 7 of 20  
 
 
AD8236  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
–IN  
1
2
3
4
8
7
6
5
+V  
S
AD8236  
R
R
V
OUT  
G
G
TOP VIEW  
REF  
–V  
(Not to Scale)  
+IN  
S
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 3  
4
5
6
−IN  
RG  
Negative Input Terminal (True Differential Input)  
Gain Setting Terminals (Place Resistor Across the RG Pins)  
Positive Input Terminal (True Differential Input)  
Negative Power Supply Terminal  
Reference Voltage Terminal (Drive This Terminal with a Low Impedance Voltage Source to Level-Shift the Output)  
Output Terminal  
+IN  
−VS  
REF  
VOUT  
+VS  
7
8
Positive Power Supply Terminal  
Rev. 0 | Page 8 of 20  
 
AD8236  
TYPICAL PERFORMANCE CHARACTERISTICS  
G = 5, +VS = 5 V, VREF = 2.5 V, RL = 100 kꢀ tied to GND, TA = 25°C, unless otherwise noted.  
GAIN = 5  
700  
600  
500  
400  
300  
200  
100  
5µV/DIV  
1s/DIV  
0
–40  
–20  
0
20  
40  
CMRR (µV/V)  
Figure 5. Typical Distribution of CMRR, G = 5  
Figure 8. 0.1 Hz to 10 Hz RTI Voltage Noise  
GAIN = 200  
800  
600  
400  
200  
0
5µV/DIV  
1s/DIV  
–4000 –3000 –2000 –1000  
0
1000  
2000  
3000  
4000  
V
(µV)  
OSI  
Figure 9. 0.1 Hz to 10 Hz RTI Voltage Noise  
Figure 6. Typical Distribution of Input Offset Voltage  
140  
1k  
100  
10  
120  
100  
80  
60  
40  
20  
0
GAIN = 200  
GAIN = 100  
INTERNAL  
CLIPPING  
GAIN = 5  
GAIN = 200  
BANDWIDTH  
LIMITED  
GAIN = 10  
GAIN = 5  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
FREQUNCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Voltage Noise Spectral Density vs. Frequency  
Figure 10. Positive PSRR vs. Frequency, RTI,  
VS = 0.9 V, 2.5 V, VREF = 0 V  
Rev. 0 | Page 9 of 20  
 
AD8236  
120  
100  
80  
15  
10  
5
GAIN = 100  
GAIN = 10  
GAIN = 5  
GAIN = 200  
60  
0
40  
–5  
–10  
–15  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 14. Change in CMRR vs. Temperature, G = 5, Normalized at 25°C  
Figure 11. Negative PSRR vs. Frequency, RTI, VS = 0.9 V, 2.5 V, VREF = 0 V  
60  
120  
100  
80  
50  
40  
GAIN = 200  
GAIN = 100  
GAIN = 10  
30  
20  
10  
GAIN = 5  
60  
40  
20  
0
GAIN = 200  
GAIN = 100  
0
–10  
–20  
–30  
–40  
GAIN = 10  
GAIN = 5  
1k  
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Gain vs. Frequency, VS = 1.8 V, 5 V  
Figure 12. CMRR vs. Frequency, RTI  
6
5
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
GAIN = 200  
GAIN = 100  
GAIN = 5  
GAIN = 10  
0.1  
1
10  
100  
1k  
10k 100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Maximum Output Voltage vs. Frequency  
Figure 13. CMRR vs. Frequency, 1 kΩ Source Imbalance, RTI  
Rev. 0 | Page 10 of 20  
AD8236  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
(4.98V, 4.737V)  
(0.01V, 4.24V)  
R
R
= 100kTIED TO GND  
= 10kTIED TO GND  
LOAD  
LOAD  
(4.98V, 0.767V)  
(0.01V, 0.27V)  
V
V
V
= 5V  
S
S
S
0.5  
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.0  
4.0  
4.5  
4.5  
4.5  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 17. Gain Nonlinearity, G = 5  
Figure 20. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 5, VS = 5 V, VREF = 2.5 V  
5.0  
4.5  
(4.994V, 4.75V)  
(0.01V, 4.25V)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
TWO CURVES REPRESENTED:  
R
= 10kAND 100kTIED TO GND  
LOAD  
(4.994V, 0.076V)  
(0.01V, 0.026V)  
= 5V  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 18. Gain Nonlinearity, G = 10  
Figure 21. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 200, VS = 5 V, VREF = 2.5 V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
(1.78V, 1.704V)  
(0.0069V, 1.52V)  
TWO CURVES REPRESENTED:  
R
= 10kAND 100kTIED TO GND  
LOAD  
(1.78V, 0.274V)  
(0.0069V, 0.09V)  
= 5V  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
–0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 22. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 5, VS = 1.8 V, VREF = 0.9 V  
Figure 19. Gain Nonlinearity, G = 200  
Rev. 0 | Page 11 of 20  
 
AD8236  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
(1.75V, 1.705V)  
(0.03V, 1.533V)  
444μs TO 0.01%  
(1.75V, 0.275V)  
(0.03V, 0.103V)  
0
–0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT VOLTAGE (V)  
1ms/DIV  
Figure 26. Large Signal Pulse Response and Settling Time,  
VS = 2.5 V, VREF = 0 V, RL = 10 kΩ to VREF  
Figure 23. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 200, VS = 1.8 V, VREF = 0.9 V  
+V  
S
–0.001  
–0.002  
–0.003  
+125°C  
+85°C  
+25°C –40°C  
143.2μs TO 0.01%  
+0.003  
+0.002  
+0.001  
+85°C +25°C  
2.8  
+125°C  
–40°C  
–V  
S
1.8  
1ms/DIV  
2.3  
3.3  
3.8  
4.3  
4.8  
SUPPLY VOLTAGE (V)  
Figure 27. Large Signal Pulse Response and Settling Time,  
VS = 0.9 V, VREF = 0 V, RL = 10 kΩ to VREF  
Figure 24. Output Voltage Swing vs. Supply Voltage,  
VS = 0.9 V, 2.5 V, VREF = 0 V, RL = 100 kΩ Tied to −VS  
+V  
S
–0.1  
–0.2  
–0.3  
–40°C  
+25°C  
+85°C  
+125°C  
+0.003  
+0.002  
+0.001  
+125°C  
+85°C  
+25°C  
–40°C  
–V  
S
100µs/DIV  
1k  
10k  
100k  
R
()  
LOAD  
Figure 28. Small Signal Pulse Response, G = 5,  
VS = 2.5 V, VREF = 0 V, RL = 100 kΩ to VREF, CL = 100 pF  
Figure 25. Output Voltage Swing vs. Load Resistance,  
VS = 0.9 V, 2.5 V, VREF = 0 V, RL = 100 kΩ Tied to −VS  
Rev. 0 | Page 12 of 20  
 
AD8236  
500  
400  
300  
200  
100  
0
100µs/DIV  
0
1
2
3
4
OUTPUT VOLTAGE STEP SIZE (V)  
Figure 29. Small Signal Pulse Response, G = 5, CL = 100 pF,  
VS = 0.9 V, VREF = 0 V, RL = 100 kΩ to VREF  
Figure 32. Settling Time vs. Output Voltage Step Size,  
VS = 2.5 V, VREF = 0 V, RL = 10 kΩ Tied to VREF  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
1.8V  
5V  
1ms/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 33. Total Supply Current vs. Temperature  
Figure 30. Small Signal Pulse Response, G = 200,  
CL = 100 pF, VS = 2.5 V, VREF = 0 V, RL = 100 kΩ to VREF  
1ms/DIV  
Figure 31. Small Signal Pulse Response, G = 200,  
CL = 100 pF, VS = 0.9 V, VREF = 0 V, RL = 100 kΩ to VREF  
Rev. 0 | Page 13 of 20  
AD8236  
THEORY OF OPERATION  
R
G
+V  
8
–V  
5
S
S
R
R
G
G
2
3
ESD  
PROTECTION  
ESD  
PROTECTION  
ESD  
PROTECTION  
6
REF  
210kꢀ  
52.5k52.5kꢀ  
210kꢀ  
OP AMP  
A
ESD  
PROTECTION  
V
7
OP AMP  
B
OUT  
ESD  
PROTECTION  
ESD  
PROTECTION  
AD8236  
1
4
+IN  
–IN  
Figure 34. Simplified Schematic  
The AD8236 is a monolithic, 2-op-amp instrumentation  
amplifier. It was designed for low power, portable applications  
where size and low quiescent current are paramount. For example,  
it has a rail-to-rail input and output stage to offer more dynamic  
range when operating on low voltage batteries. Unlike traditional  
rail-to-rail input amplifiers that use a complementary differential  
pair stage and suffer from nonlinearity, the AD8236 uses a novel  
architecture to internally boost the supply rail, allowing the  
amplifier to operate rail to rail yet still deliver a low 0.5 ppm of  
nonlinearity. In addition, the 2-op-amp instrumentation amplifier  
architecture offers a wide operational common-mode voltage  
range. Additional information is provided in the Common-  
Mode Input Voltage Range section. Precision, laser-trimmed  
resistors provide the AD8236 with a high CMRR of 86 dB  
(minimum) at G = 5 and gain accuracy of 0.05% (maximum).  
GAIN SELECTION  
Placing a resistor across the RG terminals sets the gain of the  
AD8236, which can be calculated by referring to Table 6 or by  
using the gain equation  
420 kΩ  
RG =  
G 5  
Table 6. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
422 k  
210 k  
140 k  
105 k  
84.5 k  
28 k  
9.31 k  
4.42 k  
2.15 k  
6.0  
7.0  
8.0  
9.0  
10.0  
20.0  
50.1  
100.0  
200.3  
BASIC OPERATION  
The AD8236 amplifies the difference between its positive input  
(+IN) and its negative input (−IN). The REF pin allows the user  
to level-shift the output signal. This is convenient when interfacing  
to a filter or analog-to-digital converter (ADC). The basic setup  
is shown in Figure 35. Figure 37 shows an example configuration  
for operating the AD8236 with dual supplies. The equation for  
the AD8236 is as follows:  
The AD8236 defaults to G = 5 when no gain resistor is used.  
Gain accuracy is determined by the absolute tolerance of RG.  
The TC of the external gain resistor increases the gain drift of  
the instrumentation amplifier. Gain error and gain drift are at a  
minimum when the gain resistor is not used.  
VOUT = G × (VINP VINM) + VREF  
If no gain setting resistor is installed, the default gain, G, is 5.  
The Gain Selection section describes how to program the gain, G.  
5V  
0.1µF  
+IN  
VINP  
+V  
S
R
G
OUT  
GAIN SETTING  
RESISTOR  
V
AD8236  
OUT  
R
G
REF  
VINM  
V
–IN  
REF  
–V  
S
Figure 35. Basic Setup  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
AD8236  
INCORRECT  
CORRECT  
LAYOUT  
Careful board layout maximizes system performance. In  
applications that need to take advantage of the low input  
bias current of the AD8236, avoid placing metal under the  
input path to minimize leakage current.  
AD8236  
AD8236  
REF  
REF  
V
V
Grounding  
+
OP AMP  
The output voltage of the AD8236 is developed with respect to  
the potential on the reference terminal, REF. To ensure the most  
accurate output, the trace from the REF pin should either be  
connected to the AD8236 local ground (see Figure 37) or  
connected to a voltage that is referenced to the AD8236 local  
ground (Figure 35).  
Figure 36. Driving the REF Pin  
POWER SUPPLY REGULATION AND BYPASSING  
The AD8236 has high power supply rejection ration (PSRR).  
However, for optimal performance, a stable dc voltage should be  
used to power the instrumentation amplifier. Noise on the supply  
pins can adversely affect performance. As in all linear circuits,  
bypass capacitors must be used to decouple the amplifier.  
REFERENCE TERMINAL  
The reference terminal, REF, is at one end of a 210 kꢀ resistor  
(see Figure 34). The output of the instrumentation amplifier  
is referenced to the voltage on the REF terminal; this is useful  
when the output signal needs to be offset to voltages other than  
common. For example, a voltage source can be tied to the REF  
pin to level-shift the output so that the AD8236 can interface  
with an ADC. The allowable reference voltage range is a function  
of the gain, common-mode input, and supply voltages. The REF  
pin should not exceed either +VS or −VS by more than 0.5 V.  
A 0.1 μF capacitor should be placed close to each supply pin.  
A 10 μF tantalum capacitor can be used further away from the  
part (see Figure 37). In most cases, it can be shared by other  
precision integrated circuits.  
+V  
S
For best performance, especially in cases where the output is not  
measured with respect to the REF terminal, source impedance to  
the REF terminal should be kept low because parasitic resistance  
can adversely affect CMRR and gain accuracy. Figure 36  
demonstrates how an op amp is configured to provide a low  
source impedance to the REF terminal when a midscale  
reference voltage is desired.  
0.1µF  
10µF  
+IN  
–IN  
V
OUT  
AD8236  
LOAD  
REF  
0.1µF  
10µF  
–V  
S
Figure 37. Supply Decoupling, REF, and Output Referred to Ground  
Rev. 0 | Page 15 of 20  
 
 
 
AD8236  
+V  
+V  
S
S
AD8236  
AD8236  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
C
C
R
R
1
fHIGH-PASS  
=
AD8236  
2πRC  
AD8236  
REF  
REF  
–V  
–V  
S
S
AC-COUPLED  
AC-COUPLED  
Figure 38. Creating an IBIAS Path  
RF INTERFERENCE  
INPUT BIAS CURRENT RETURN PATH  
RF rectification is often a problem in applications where there are  
large RF signals. The problem appears as a small dc offset voltage.  
The AD8236, by its nature, has a 3.1 pF gate capacitance, CG, at  
each input. Matched series resistors form a natural low-pass filter  
that reduces rectification at high frequency (see Figure 39). The  
relationship between external, matched series resistors and the  
internal gate capacitance is expressed as  
The AD8236 input bias current is extremely small at less than  
10 pA. Nonetheless, the input bias current must have a return  
path to common. When the source, such as a transformer,  
cannot provide a return current path, one should be created  
(see Figure 38).  
INPUT PROTECTION  
All terminals of the AD8236 are protected against ESD. In  
addition, the input structure allows for dc overload conditions  
a diode drop above the positive supply and a diode drop below  
the negative supply. Voltages beyond a diode drop of the supplies  
cause the ESD diodes to conduct and enable current to flow  
through the diode. Therefore, an external resistor should be  
used in series with each of the inputs to limit current for  
voltages above +VS. In either scenario, the AD8236 safely  
handles a continuous 6 mA current at room temperature.  
1
FilterFreqDIFF  
=
RCG  
1
FilterFreqCM  
=
RCG  
+V  
S
0.1µF  
+IN  
10µF  
For applications where the AD8236 encounters extreme  
overload voltages, as in cardiac defibrillators, external series  
resistors and low leakage diode clamps, such as BAV199Ls,  
FJH1100s, or SP720s, should be used.  
R
C
C
G
V
OUT  
AD8236  
–V  
S
R
G
REF  
–V  
S
–IN  
0.1µF  
10µF  
–V  
S
Figure 39. RFI Filtering Without External Capacitors  
Rev. 0 | Page 16 of 20  
 
 
 
AD8236  
To eliminate high frequency common-mode signals while using  
smaller source resistors, a low-pass RC network can be placed  
at the input of the instrumentation amplifier (see Figure 40).  
The filter limits the input signal bandwidth according to the  
following relationship:  
COMMON-MODE INPUT VOLTAGE RANGE  
The common-mode input voltage range is a function of the  
input voltages, reference voltage, supplies, and the output of  
Internal Op Amp A. Figure 34 shows the internal nodes of the  
AD8236. Figure 20 to Figure 23 show the common-mode  
voltage ranges for typical supply voltages and gains.  
1
FilterFreqDIFF  
=
R(2 CD + CC + CG )  
If the supply voltages and reference voltage is not represented in  
Figure 20 to Figure 23, the following methodology can be used  
to calculate the acceptable common-mode voltage range:  
1
FilterFreqCM  
=
R(CC + CG )  
1. Adhere to the input, output, and reference voltage ranges  
shown in Table 2 and Table 3.  
2. Calculate the output of the internal op amp, A. The following  
equation calculates this output:  
Mismatched CC capacitors result in mismatched low-pass filters.  
The imbalance causes the AD8236 to treat what would have been  
a common-mode signal as a differential signal. To reduce the  
effect of mismatched external CC capacitors, select a value of CD  
greater than 10 times CC. This sets the differential filter frequency  
lower than the common-mode frequency.  
52.5 kΩ  
RG  
5
4
VDIFF  
2
VREF  
4
A =  
V
VDIFF −  
CM  
+V  
S
where:  
DIFF is defined as the difference in input voltages,  
VDIFF = VINP − VINM.  
CM is defined as the common mode voltage,  
V
0.1µF  
+IN  
10µF  
C
C
C
1nF  
C
D
C
V
R
VCM = (VINP + VINM)/2.  
4.02k  
V
OUT  
10nF  
1nF  
AD8236  
If no gain setting resistor, RG, is installed, set RG to infinity.  
R
REF  
3. Keep A within 10 mV of either supply rail. This is valid over  
the −40°C to +125°C temperature range.  
–IN  
4.02kꢀ  
−VS + 10 mV < A < +VS – 10 mV  
Figure 40. RFI Suppression  
Rev. 0 | Page 17 of 20  
 
 
 
AD8236  
APPLICATIONS INFORMATION  
+V  
S
AC-COUPLED INSTRUMENTATION AMPLIFIER  
An integrator can be tied to the AD8236 in feedback to create a  
high-pass filter as shown in Figure 41. This circuit can be used  
to reject dc voltages and offsets. At low frequencies, the impedance  
of the capacitor, C, is high. Therefore, the gain of the integrator  
is high. DC voltage at the output of the AD8236 is inverted and  
gained by the integrator. The inverted signal is injected back into  
the REF pin, nulling the output. In contrast, at high frequencies,  
the integrator has low gain because the impedance of C is low.  
Voltage changes at high frequencies are inverted but at a low  
gain. The signal is injected into the REF pins, but it is not enough to  
null the output. At very high frequencies, the capacitor appears as  
a short. The op amp is at unity gain. High frequency signals are,  
therefore, allowed to pass.  
0.1µF  
+IN  
1
fHIGH-PASS  
=
2πRC  
AD8236  
R
REF  
–IN  
C
+V  
S
0.1µF  
AD8603  
+V  
S
When a signal exceeds fHIGH-PASS, the AD8236 outputs the high-  
pass filtered input signal.  
V
REF  
10µF  
Figure 41. AC-Coupled Circuit  
Rev. 0 | Page 18 of 20  
 
 
AD8236  
This circuit was designed and tested using the AD8609, low  
LOW POWER HEART RATE MONITOR  
power, quad op amp. The fourth op amp is configured as a Schmitt  
trigger to indicate if the right arm or left arm electrodes fall off  
the body. Used in conjunction with the 953 kΩ resistors at the  
inputs of the AD8236, the resistors pull the inputs apart when  
the electrodes fall off the body. The Schmitt trigger sends an  
active low signal to indicate a leads off condition.  
The low power and small size of the AD8236 make it an  
excellent choice for heart rate monitors. As shown in Figure 42,  
the AD8236 measures the biopotential signals from the body.  
It rejects common-mode signals and serves as the primary gain  
stage set at G = 5. The 4.7 μF capacitor and the 100 kΩ resistor  
set the −3 dB cutoff of the high-pass filter that follows the  
instrumentation amplifier. It rejects any differential dc offsets  
that may develop from the half-cell overpotential of the electrode.  
The reference electrode (right leg) is set tied to ground. Likewise,  
the shield of the electrode cable is also tied to ground. Some  
portable heart rate monitors do not have a third electrode. In  
such cases, the negative input of the AD8236 can be tied to GND.  
A secondary gain stage, set at G = 403, amplifies the ECG signal,  
which is then sent into a second-order, low-pass, Bessel filter  
with −3 dB cutoff at 48 Hz. The 324 Ω resistor and 1 ꢁF capacitor  
serve as an antialiasing filter. The 1 μF capacitor also serves as a  
charge reservoir for the ADCs switched capacitor input stage.  
Note that this circuit is shown, solely, to demonstrate the capability  
of the AD8236. Additional effort must be made to ensure  
compliance with medical safety guidelines.  
+2.5V  
–2.5V  
20k  
1kꢀ  
+2.5V  
5kꢀ  
AD8609  
LEADS OFF DETECTION  
+2.5V  
0.1µF  
953kꢀ  
INTERRUPT  
LEADS OFF  
680nF  
+2.5V  
0.1µF  
RA  
LA  
AD8236  
24.9kꢀ  
4.02kꢀ  
IN-AMP  
AD8609  
324ꢀ  
AD8609  
0.1µF  
10-BIT ADC  
MCU + ADC  
100kꢀ  
RL  
953kꢀ  
1kꢀ  
402kꢀ  
220nF  
1µF  
0.1µF  
4.7µF  
–2.5V  
–2.5V  
–2.5V  
+2.5V  
AD8609  
1kꢀ  
–2.5V  
Figure 42. Example Low Power Heart Rate Monitor Schematic  
Rev. 0 | Page 19 of 20  
 
 
AD8236  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 43. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8236ARMZ1  
AD8236ARMZ-R71  
AD8236ARMZ-RL1  
Temperature Range  
Package Description  
8-Lead MSOP  
Package Option  
RM-8  
Branding  
Y1W  
Y1W  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead MSOP  
RM-8  
8-Lead MSOP  
RM-8  
Y1W  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08000-0-5/09(0)  
Rev. 0 | Page 20 of 20  
 
 
 
 

相关型号:

AD8236ARMZ-R7

OP-AMP, 3500 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8236ARMZ-R7

40 &#181;A Micropower Instrumentation Amplifier
ADI

AD8236ARMZ-R71

40 μA Micropower Instrumentation Amplifier with Zero Crossover Distortion
ADI

AD8236ARMZ-RL

40 &#181;A Micropower Instrumentation Amplifier
ADI

AD8236ARMZ-RL1

40 μA Micropower Instrumentation Amplifier with Zero Crossover Distortion
ADI

AD8236ARMZ1

40 μA Micropower Instrumentation Amplifier with Zero Crossover Distortion
ADI

AD8237

Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier
ADI

AD8237ARMZ

Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier
ADI

AD8237ARMZ-R7

Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier
ADI

AD8237ARMZ-RL

Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier
ADI

AD823A

Wide Supply Dual, 17 MHz, Rail-to-Rail
ADI

AD823A-2AR-EBZ

Wide Supply Dual, 17 MHz, Rail-to-Rail
ADI