AD7766BRUZ [ROCHESTER]

1-CH 24-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16;
AD7766BRUZ
型号: AD7766BRUZ
厂家: Rochester Electronics    Rochester Electronics
描述:

1-CH 24-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16

PC 光电二极管 转换器
文件: 总25页 (文件大小:2644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24-Bit, 8.5 mW, 109 dB,  
128 kSPS/64 kSPS/32 kSPS ADCs  
AD7766  
FEATURES  
GENERAL DESCRIPTION  
Oversampled successive approximation (SAR) architecture  
High performance ac and dc accuracy, low power  
115.5 dB dynamic range, 32 kSPS (AD7766-2)  
112.5 dB dynamic range, 64 kSPS (AD7766-1)  
109.5 dB dynamic range, 128 kSPS (AD7766)  
−112 dB THD  
The AD7766/AD7766-1/AD7766-2 are high performance,  
24-bit, oversampled SAR analog-to-digital converters (ADCs).  
The AD7766/AD7766-1/AD7766-2 combine the benefits of a  
large dynamic range and input bandwidth, consuming 15 mW,  
10.5 mW, and 8.5 mW power, respectively, and are contained in  
a 16-lead TSSOP package.  
Exceptionally low power  
Ideal for ultralow power data acquisition (such as PCI- and USB-  
based systems), the AD7766/AD7766-1/AD7766-2 provide 24-bit  
resolution. The combination of exceptional SNR, wide dynamic  
range, and outstanding dc accuracy make the AD7766/AD7766-1/  
AD7766-2 ideally suited for measuring small signal changes over a  
wide dynamic range. This is particularly suitable for applications  
where small changes on the input are measured on larger ac or  
dc signals. In such an application, the AD7766/AD7766-1/  
AD7766-2 accurately gather both ac and dc information.  
8.5 mW, 32 kSPS (AD7766-2)  
10.5 mW, 64 kSPS (AD7766-1)  
15 mW, 128 kSPS (AD7766)  
High dc accuracy  
24 bits, no missing codes (NMC)  
INL: 6 ppm (typical), 15 ppm (maximum)  
Low temperature drift  
Zero error drift: 15 nV/°C  
Gain error drift: 0.4 ppm/°C  
The AD7766/AD7766-1/AD7766-2 include an on-board digital  
filter (complete with linear phase response) that acts to elimi-  
nate out-of-band noise by filtering the oversampled input voltage.  
The oversampled architecture also reduces front-end antialias  
requirements. Other features of the AD7766/AD7766-1/AD7766-2  
On-chip low-pass FIR filter  
Linear phase response  
Pass-band ripple: 0.005 dB  
Stop-band attenuation: 100 dB  
2.5 V supply with 1.8 V/2.5 V/3 V/3.6 V logic interface options  
Flexible interfacing options  
SYNC PD  
include a  
/
(synchronization/power-down) pin, allowing  
Synchronization of multiple devices  
Daisy-chain capability  
Power-down function  
the synchronization of multiple AD7766/AD7766-1/AD7766-2  
devices. The addition of an SDI pin provides the option of daisy  
chaining multiple AD7766/AD7766-1/AD7766-2 devices.  
Temperature range: −40°C to +105°C  
The AD7766/AD7766-1/AD7766-2 operate from a 2.5 V supply  
using a 5 V reference. The devices operate from −40°C to +105°C.  
APPLICATIONS  
Low power PCI/USB data acquisition systems  
Low power wireless acquisition systems  
Vibration analysis  
Instrumentation  
High precision medical acquisition  
RELATED DEVICES  
Table 1. 24-Bit ADCs  
Part No.  
Description  
AD7760  
2.5 MSPS, 100 dB dynamic range,1 on-board differential  
amp and reference buffer, parallel, variable decimation  
625 kSPS, 109 dB dynamic range,1 on-board differential  
amp and reference buffer, parallel/serial, variable  
decimation  
AD7762/  
AD7763  
FUNCTIONAL BLOCK DIAGRAM  
AV  
AGND MCLK  
DV  
V
DGND  
DD  
DD  
DRIVE  
312 kSPS, 109 dB dynamic range,1 on-board differential  
amp and reference buffer, variable decimation (pin)  
156 kSPS, 112 dB dynamic range,1 on-board differential  
amp and reference buffer, variable decimation (pin)  
AD7764  
AD7765  
V
REF+  
V
IN+  
DIGITAL  
FIR FILTER  
SUCCESSIVE  
APPROXIMATION  
ADC  
SYNC/PD  
CS  
128 kSPS, 109.5 dB,1 15 mW, 18-bit INL, serial interface  
64 kSPS 112.5 dB,1 10.5 mW, 18-bit INL, serial interface  
32 kSPS, 115.5 dB,1 8.5 mW, 18-bit INL, serial interface  
V
AD7767  
IN–  
SERIAL INTERFACE  
AND  
CONTROL LOGIC  
REFGND  
AD7767-1  
AD7767-2  
AD7766/  
AD7766-1/  
AD7766-2  
1 Dynamic range at maximum output data rate.  
SCLK DRDY SDO SDI  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD7766  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Supply and Reference Voltages................................................. 16  
AD7766/AD7766-1/AD77662-2 Interface.................................. 17  
Initial Power-Up ......................................................................... 17  
Reading Data............................................................................... 17  
Power-Down, Reset, and Synchronization ............................. 17  
Daisy Chaining ............................................................................... 18  
Reading Data in Daisy-Chain Mode ....................................... 18  
Choosing the SCLK Frequency ................................................ 18  
Daisy-Chain Mode Configuration and Timing Diagrams ... 19  
Driving the AD7766/AD7766-1/AD7766-2............................... 20  
Differential Signal Source ......................................................... 20  
Single-Ended Signal Source ...................................................... 20  
Antialiasing ................................................................................. 21  
Power Dissipation....................................................................... 21  
VREF+ Input Signal ....................................................................... 22  
Multiplexing Analog Input Channels...................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Related Devices................................................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Timing Diagrams.......................................................................... 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 14  
Theory of Operation ...................................................................... 15  
AD7766/AD7766-1/AD7766-2 Transfer Function................ 15  
Converter Operation.................................................................. 15  
Analog Input Structure.............................................................. 16  
REVISION HISTORY  
4/10—Rev. B to Rev. C  
Changes to Pin 8 Description ......................................................... 9  
Changes to Table 8.......................................................................... 20  
3/09—Rev. A to Rev. B  
Changes to tSETTLING Parameter, Table 3.......................................... 5  
Changes to Table 7.......................................................................... 17  
1/09—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Change to AD7766, Intermodulation Distortion (IMD)  
Parameter and Integral Nonlinearity Parameter, Table 2....... 3  
Change to Figure 21 and Figure 24 .............................................. 12  
Changes to Supply and Reference Voltages Section................... 16  
Changes to Choosing the SCLK Frequency Section.................. 18  
Changes to Driving the AD7766 Section .................................... 20  
Changes to Single-Ended Signal Source Section........................ 20  
Changes to Figure 40 and Figure 41............................................. 20  
Added Table 8; Renumbered Sequentially .................................. 20  
Change to Figure 42 ....................................................................... 21  
Changes to Antialiasing Section................................................... 21  
Changes to Table 9.......................................................................... 21  
Changes to VREF+ Input Signal Section......................................... 22  
Changes to Figure 46...................................................................... 22  
8/07—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
 
AD7766  
SPECIFICATIONS  
AVDD = DVDD = 2.5 V 5ꢀ, VDRIVE = 1.8 V to 3.6 V, VREF+ = 5 V, MCLK = 1 MHz, common-mode input = VREF+/2, TA = −40°C to +105°C,  
unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT DATA RATE (ODR)  
AD7766  
AD7766-1  
Decimate by 8  
Decimate by 16  
Decimate by 32  
128  
64  
32  
kHz  
kHz  
kHz  
AD7766-2  
ANALOG INPUT1  
Differential Input Voltage  
Absolute Input Voltage  
VIN+ − VIN−  
VIN+  
VREF+  
+VREF+ + 0.1  
V p-p  
V
−0.1  
−0.1  
VIN−  
+VREF+ + 0.1  
VREF+/2 + 5%  
V
V
pF  
Common-Mode Input Voltage  
Input Capacitance  
VREF+/2 − 5% VREF+/2  
22  
DYNAMIC PERFORMANCE  
AD7766  
Decimate by 8, ODR = 128 kHz  
Shorted inputs  
Full-scale input amplitude, 1 kHz tone  
Dynamic Range2  
108  
107  
109.5  
108.5  
−128  
−112  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio (SNR)2  
Spurious-Free Dynamic Range (SFDR)2 Full-scale input amplitude, 1 kHz tone  
−116  
−103  
Total Harmonic Distortion (THD)2  
Intermodulation Distortion (IMD)2  
Second-Order Terms  
Full-scale input amplitude, 1 kHz tone  
Tone A = 49.7 kHz, Tone B = 50.3 kHz  
−133  
−109  
dB  
dB  
Third-Order Terms  
AD7766-1  
Decimate by 16, ODR = 64 kHz  
Shorted inputs  
Full-scale input amplitude, 1 kHz tone  
Dynamic Range2  
111  
110  
112.5  
111.5  
−128  
−112  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio (SNR)2  
Spurious-Free Dynamic Range (SFDR)2 Full-scale input amplitude, 1 kHz tone  
−116  
−103  
Total Harmonic Distortion (THD)2  
Intermodulation Distortion (IMD)2  
Second-Order Terms  
Full-scale input amplitude, 1 kHz tone  
Tone A = 24.7 kHz, Tone B = 25.3 kHz  
−133  
−108  
Third-Order Terms  
AD7766-2  
Decimate by 32, ODR = 32 kHz  
Shorted inputs  
Full-scale input amplitude, 1 kHz tone  
Dynamic Range2  
114  
112  
115.5  
113.5  
−128  
−112  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio (SNR)2  
Spurious-Free Dynamic Range (SFDR)2 Full-scale input amplitude, 1 kHz tone  
−116  
−103  
Total Harmonic Distortion (THD)2  
Intermodulation Distortion (IMD)2  
Second-Order Terms  
Full-scale input amplitude, 1 kHz tone  
Tone A = 11.7 kHz, Tone B = 12.3 kHz  
−137  
−108  
Third-Order Terms  
DC ACCURACY1  
For all devices  
Resolution  
No missing codes  
24  
Bits  
Differential Nonlinearity2  
Integral Nonlinearity2  
Zero Error2  
Guaranteed monotonic to 24 bits  
16-bit linearity  
6
20  
0.0075  
15  
0.4  
15  
ppm  
μV  
% FS  
nV/°C  
ppm/°C  
dB  
Gain Error2  
0.075  
Zero Error Drift2  
Gain Error Drift2  
Common-Mode Rejection Ratio2  
50 Hz tone  
−110  
Rev. C | Page 3 of 24  
 
 
AD7766  
Parameter  
DIGITAL FILTER RESPONSE1  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Group Delay  
37/ODR  
74/ODR  
ꢀs  
ꢀs  
Settling Time (Latency)  
Pass-Band Ripple  
Pass Band  
−3 dB Bandwidth  
Stop-Band Frequency  
Stop-Band Attenuation  
REFERENCE INPUT1  
VREF+ Input Voltage  
DIGITAL INPUTS (Logic Levels)1  
VIL  
Complete settling  
0.005  
dB  
Hz  
Hz  
Hz  
dB  
0.453 × ODR  
0.49 × ODR  
0.547 × ODR  
100  
2.4  
2 × AVDD  
V
−0.3  
0.7 × VDRIVE  
+0.3 × VDRIVE  
VDRIVE + 0.3  
1
V
V
VIH  
Input Leakage Current  
Input Capacitance  
Master Clock Rate  
Serial Clock Rate  
DIGITAL OUTPUTS1  
Data Format  
μA/pin  
pF  
MHz  
Hz  
5
1.024  
1/t8  
Serial 24 bits, twos complement  
(MSB first)  
VOL  
VOH  
ISINK = +500 μA  
ISOURCE = −500 ꢀA  
0.4  
3.6  
V
V
VDRIVE – 0.3  
POWER REQUIREMENTS1  
AVDD  
DVDD  
VDRIVE  
5%  
5%  
2.5  
2.5  
2.5  
V
V
V
1.7  
CURRENT SPECIFICATIONS  
MCLK = 1.024 MHz  
AD7766 Operational Current  
128 kHz output data rate  
AIDD  
DIDD  
IREF  
1.3  
3.9  
0.35  
1.5  
4.8  
0.425  
mA  
mA  
mA  
AD7766-1 Operational Current  
AIDD  
DIDD  
IREF  
64 kHz output data rate  
32 kHz output data rate  
1.3  
2.2  
0.35  
1.5  
2.85  
0.425  
mA  
mA  
mA  
AD7766-2 Operational Current  
AIDD  
DIDD  
IREF  
1.3  
1.37  
0.35  
1.5  
1.86  
0.425  
mA  
mA  
mA  
Static Current with MCLK Stopped  
AIDD  
DIDD  
Power-Down Mode Current  
AIDD  
For all devices  
For all devices  
0.9  
1
1
93  
mA  
μA  
0.1  
1
6
93  
μA  
μA  
DIDD  
POWER DISSIPATION  
AD7766 Operational Power  
AD7766-1 Operational Power  
AD7766-2 Operational Power  
MCLK = 1.024 MHz  
128 kHz output data rate  
64 kHz output data rate  
32 kHz output data rate  
15  
10.5  
8.5  
18  
13  
10.5  
mW  
mW  
mW  
1 Specifications are for all devices, AD7766, AD7766-1, and AD7766-2.  
2 See the Terminology section.  
Rev. C | Page 4 of 24  
AD7766  
TIMING SPECIFICATIONS  
AVDD = DVDD = 2.5 V 5ꢀ, VDRIVE = 1.7 V to 3.6 V, VREF+ = 5 V, common-mode input = VREF+/2, TA = −40°C (TMIN) to +105°C (TMAX),  
unless otherwise noted.1  
Table 3.  
Parameter  
Limit at tMIN, tMAX  
Unit  
Description  
DRDY OPERATION  
t1  
510  
100  
900  
265  
128  
71  
ns typ  
ns min  
MCLK rising edge to DRDY falling edge  
MCLK high pulse width  
2
t2  
t3  
2
ns max MCLK low pulse width  
t4  
ns typ  
ns typ  
ns typ  
ns typ  
ns typ  
ns typ  
ns typ  
MCLK rising edge to DRDY rising edge (AD7766)  
MCLK rising edge to DRDY rising edge (AD7766-1)  
MCLK rising edge to DRDY rising edge (AD7766-2)  
DRDY pulse width (AD7766)  
t5  
294  
435  
492  
tDRDY − t5  
DRDY pulse width (AD7766-1)  
DRDY pulse width (AD7766-2)  
3
tREAD  
DRDY low period, read data during this period  
3
tDRDY  
n × 8 × tMCLK  
ns typ  
DRDY period  
READ OPERATION  
t6  
t7  
t8  
0
ns min  
DRDY falling edge to CS setup time  
6
ns max CS falling edge to SDO tristate disabled  
60  
50  
25  
24  
10  
10  
10  
1/t8  
6
ns max Data access time after SCLK falling edge (VDRIVE = 1.7 V)  
ns max Data access time after SCLK falling edge (VDRIVE = 2.3 V)  
ns max Data access time after SCLK falling edge (VDRIVE = 2.7 V)  
ns max Data access time after SCLK falling edge (VDRIVE = 3.0 V)  
ns min  
ns min  
ns min  
t9  
SCLK falling edge to data valid hold time (VDRIVE = 3.6 V)  
SCLK high pulse width  
SCLK low pulse width  
t10  
t11  
tSCLK  
t12  
t13  
sec min Minimum SCLK period  
ns max Bus relinquish time after CS rising edge  
0
ns min  
CS rising edge to DRDY rising edge  
READ OPERATION WITH CS LOW  
t14  
t15  
0
0
ns min  
DRDY falling edge to data valid setup time  
ns max DRDY rising edge to data valid hold time  
DAISY-CHAIN OPERATION  
t16  
t17  
1
2
ns min  
SDI valid to SCLK falling edge setup time  
ns max SCLK falling edge to SDI valid hold time  
SYNC/PD OPERATION  
t18  
t19  
t20  
t21  
1
ns typ  
ns typ  
ns min  
ns typ  
tMCLK  
SYNC/PD falling edge to MCLK rising edge  
20  
MCLK rising edge to DRDY rising edge going into SYNC/PD mode  
SYNC/PD rising edge to MCLK rising edge  
1
510  
MCLK rising edge to DRDY falling edge coming out of SYNC/PD mode  
Filter settling time after a reset or power-down  
3
tSETTLING  
(592 × n) + 2  
1 Sample tested during initial release to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of DVDD) and timed from a voltage level of 1.7 V.  
2 t2 and t3 allow a ~90% to 10% duty cycle to be used for the MCLK input, where the minimum is 10% for the clock high time and 90% for MCLK low time. The maximum  
MCLK frequency is 1.024 MHz.  
3 n = 1 for AD7766, n = 2 for the AD7766-1, n = 4 for the AD7766-2.  
Rev. C | Page 5 of 24  
 
 
AD7766  
TIMING DIAGRAMS  
t2  
1
8 × n  
t4  
1
8 × n  
MCLK  
t3  
t1  
t5  
t5  
tREAD  
DRDY  
tDRDY  
DRDY  
Figure 2.  
vs. MCLK Timing Diagram, n = 1 for AD7766 (Decimate by 8), n = 2 for AD7766-1 (Decimate by 16), n = 4 for AD7766-2 (Decimate by 32)  
tDRDY  
tREAD  
DRDY  
t13  
t6  
CS  
t10  
1
23  
SCLK  
t11  
t8  
t9  
t7  
t12  
SDO  
MSB  
D22  
D21  
D20  
D1  
LSB  
CS  
Figure 3. Serial Timing Diagram, Reading Data Using  
CS = 0  
DRDY  
tDRDY  
tREAD  
t14  
t10  
1
23  
24  
SCLK  
SDO  
t11  
t8  
t9  
t15  
DATA  
INVALID  
DATA  
INVALID  
MSB  
D22  
D21  
D20  
D1  
LSB  
CS  
Figure 4. Serial Timing Diagram, Reading Data Setting Logic Low  
Rev. C | Page 6 of 24  
 
 
 
AD7766  
PART OUT OF POWER-DOWN  
FILTER RESET  
PART IN POWER-DOWN  
A
BEGINS SAMPLING  
MCLK (I)  
B
C
D
t20  
t18  
SYNC/PD (I)  
t21  
t19  
DRDY (O)  
SDO (O)  
tSETTLING  
VALID DATA  
INVALID DATA  
VALID DATA  
Figure 5. Reset, Synchronization, and Power-Down Timing (For More Information, See the Power-Down, Reset, and Synchronization Section)  
Rev. C | Page 7 of 24  
 
AD7766  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
AVDD to AGND  
DVDD to DGND  
AVDD to DVDD  
VREF+ to REFGND  
REFGND to AGND  
VDRIVE to DGND  
VIN+, VIN– to AGND  
Digital Inputs to DGND  
Digital Outputs to DGND  
AGND to DGND  
−0.3 V to +3 V  
−0.3 V to +3 V  
−0.3 V to +0.3 V  
−0.3 V to +7 V  
−0.3 V to +0.3 V  
−0.3 V to +6 V  
−0.3 V to VREF+ + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to +0.3 V  
10 mA  
ESD CAUTION  
Input Current to Any Pin Except  
Supplies1  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
TSSOP Package  
−40°C to +105°C  
−65°C to +150°C  
150°C  
θJA Thermal Impedance  
θJC Thermal Impedance  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
150.4°C/W  
27.6°C/W  
215°C  
220°C  
1 kV  
ESD  
1 Transient currents of up to 100 mA do not cause SCR latch-up.  
Rev. C | Page 8 of 24  
 
 
 
 
AD7766  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
AV  
CS  
DD  
SDI  
V
REF+  
AD7766/  
AD766-1/  
AD7766-2  
TOP VIEW  
(Not to Scale)  
REFGND  
MCLK  
SCLK  
DRDY  
DGND  
SDO  
V
IN+  
V
IN–  
AGND  
SYNC/PD  
DV  
V
DRIVE  
DD  
Figure 6. 16-Lead TSSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
AVDD  
VREF+  
+2.5 V Analog Power Supply.  
Reference Input for the AD7766/AD7766-1/AD7766-2. An external reference must be applied to this input pin. The  
VREF+ input can range from 2.4 V to 5 V. The reference voltage input is independent of the voltage magnitude  
applied to the AVDD pin.  
3
REFGND  
Reference Ground. Ground connection for the reference voltage. The input reference voltage (VREF+) should be  
decoupled to this pin.  
4
5
6
7
VIN+  
VIN−  
AGND  
SYNC/PD  
Positive Input of the Differential Analog Input.  
Negative Input of the Differential Analog Input.  
Power Supply Ground for Analog Circuitry.  
Synchronization and Power-Down Input Pin. This pin has dual functionality. It can be used to synchronize multiple  
AD7766/AD7766-1/AD7766-2 devices and/or to put the AD7766/AD7766-1/AD7766-2 devices into power-down  
mode. See the Power-Down, Reset, and Synchronization section for further details.  
8
DVDD  
VDRIVE  
SDO  
2.5 V Digital Power Supply Input. In cases where a logic voltage of 2.5 V for interfacing is used, (2.5 V applied to  
VDRIVE pin), the DVDD and VDRIVE pins may be connected to the same voltage supply rail.  
Logic Power Supply Input, 1.8 V to 3.6 V. The voltage supplied at this pin determines the operating voltage of the  
digital logic interface.  
Serial Data Output. The conversion result from the AD7766/AD7766-1/AD7766-2 is output on the SDO pin as a 24-bit,  
twos complement, MSB first, serial data stream.  
9
10  
11  
12  
DGND  
DRDY  
Digital Logic Power Supply Ground.  
Data Ready Output. A falling edge on the DRDY signal indicates that a new conversion data result is available in the  
output register of the AD7766/AD7766-1/AD7766-2. See the AD7766/AD7766-1/AD77662-2 Interface section for  
further details.  
13  
SCLK  
Serial Clock Input. The SCLK input provides the serial clock for all serial data transfers with the AD7766/AD7766-1/  
AD7766-2 devices. See the AD7766/AD7766-1/AD77662-2 Interface section for further details.  
14  
15  
MCLK  
SDI  
Master Clock Input. The sampling frequency of the AD7766/AD7766-1/AD7766-2 is equal to the MCLK frequency.  
Serial Data Input. This is the daisy-chain input of the AD7766/AD7766-1/AD7766-2. See the Daisy Chaining section  
for further details.  
16  
CS  
Chip Select Input. The CS input selects a specific AD7766/AD7766-1/AD7766-2 device and acts as an enable on the  
SDO pin. In cases where CS is used, the MSB of the conversion result is clocked onto the SDO line on the CS falling  
edge. The CS input allows multiple AD7766/AD7766-1/AD7766-2 devices to share the same SDO line. This allows  
the user to select the appropriate device by supplying it with a logic low CS signal, which enables the SDO pin of  
the device concerned. See the AD7766/AD7766-1/AD77662-2 Interface section for further details.  
Rev. C | Page 9 of 24  
 
AD7766  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = DVDD = 2.5 V 5ꢀ, VDRIVE = 1.8 V to 3.6 V, VREF+ = 5 V, MCLK = 1 MHz, common-mode input = VREF+/2. TA = 25°C, unless  
otherwise noted. All FFTs were generated using 8192 samples using a four-term Blackman-Harris window.  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
32k  
16k  
0
0
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
32k  
16k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. AD7766 FFT, 1 kHz, −0.5 dB Input Tone  
Figure 10. AD7766 FFT, 1 kHz, −6 dB Input Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
4k  
8k  
12k  
16k  
20k  
24k  
28k  
4k  
8k  
12k  
16k  
20k  
24k  
28k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8. AD7766-1 FFT, 1 kHz, −0.5 dB Input Tone  
Figure 11. AD7766-1 FFT, 1 kHz, −6 dB Input Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
4k  
8k  
12k  
4k  
8k  
12k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. AD7766-2 FFT, 1 kHz, −0.5 dB Input Tone  
Figure 12. AD7766-2 FFT, 1 kHz, −6 dB Input Tone  
Rev. C | Page 10 of 24  
 
AD7766  
0
–20  
0
–20  
TONE A = 49.7kHz  
TONE B = 50.3kHz  
SECOND-ORDER IMD = –133.71dB  
THIRD-ORDER IMD = –109.05dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
32k  
16k  
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
32k  
16k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. AD7766 FFT, 1 kHz, −60 dB Input Tone  
Figure 16. AD7766 IMD FFT, 50 kHz Center Frequency  
0
–20  
0
–20  
TONE A = 24.7kHz  
TONE B = 25.3kHz  
SECOND-ORDER IMD = –133.33dB  
THIRD-ORDER IMD = –108.15dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
4k  
8k  
12k  
16k  
20k  
24k  
28k  
0
4k  
8k  
12k  
16k  
20k  
24k  
28k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. AD7766-1 FFT, 1 kHz, −60 dB Input Tone  
Figure 17. AD7766-1 IMD FFT, 25 kHz Center Frequency  
0
–20  
0
–20  
TONE A = 11.7kHz  
TONE B = 12.3kHz  
SECOND-ORDER IMD = –137.96dB  
THIRD-ORDER IMD = –108.1dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
4k  
8k  
12k  
0
4k  
8k  
12k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. AD7766-2 FFT, 1 kHz, −60 dB Input Tone  
Figure 18. AD7766-2 IMD FFT, 12 kHz Center Frequency  
Rev. C | Page 11 of 24  
AD7766  
120  
115  
110  
105  
100  
95  
–104  
–108  
–112  
–116  
DYNAMIC RANGE  
AD7766-2  
AD7766-1  
OPEN INPUTS  
AD7766  
–120  
0
FULL-SCALE 921Hz  
90  
100k 200k 300k 400k 500k 600k 700k 800k 900k 1M  
MCLK FREQUENCY (Hz)  
0
10k  
20k  
30k  
40k  
50k  
60k  
fNOISE (Hz)  
Figure 19. AD7766/AD7766-1/AD7766-2 THD vs. MCLK Frequency  
Figure 22. AD7766 CMRR vs. Common-Mode Ripple Frequency (fNOISE  
)
115  
200  
MAX = 8,388,637  
MIN = 8,388,493  
SPREAD = 145  
180  
160  
140  
120  
100  
80  
114  
AD7766-2  
113  
112  
111  
AD7766-1  
110  
60  
109  
AD7766  
40  
108  
107  
20  
0
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1M  
MCLK FREQUENCY (Hz)  
CODES  
Figure 20. AD7766/AD7766-1/AD7766-2 SNR vs. MCLK Frequency  
Figure 23. AD7766 24-Bit Histogram  
150  
250  
200  
150  
100  
50  
AV  
DD  
DV  
MAX = 8,388,608  
DD  
MIN = 8,388,507  
SPREAD = 102 CODES  
140  
130  
120  
110  
100  
V
DRIVE  
0
0
10k  
20k  
30k  
fNOISE (Hz)  
40k  
50k  
60k  
CODES  
Figure 21. AD7766 Power Supply Sensitivity vs. Supply Ripple Frequency  
(fNOISE) with Decoupling Capacitors  
Figure 24. AD7766-1 24-Bit Histogram  
Rev. C | Page 12 of 24  
AD7766  
15  
12  
9
MAX = 8,388,593  
MIN = 8,388,526  
SPREAD = 69 CODES  
350  
300  
250  
200  
150  
100  
50  
6
3
0
–3  
–6  
–9  
–12  
–15  
0
0
4,194,304  
2,097,152 6,291,456  
24-BIT CODES  
8,388,608  
12,582,912  
16,777,216  
10,485,760  
14,680,064  
CODES  
Figure 27. AD7766/AD7766-1/AD7766-2 24-Bit INL  
Figure 25. AD7766-2 24-Bit Histogram  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
4,194,304  
2,097,152 6,291,456  
24-BIT CODES  
8,388,608  
12,582,912  
16,777,216  
10,485,760  
14,680,064  
Figure 26. AD7766/AD7766-1/AD7766-2 24-Bit DNL  
Rev. C | Page 13 of 24  
AD7766  
TERMINOLOGY  
Signal-to-Noise Ratio (SNR)  
as per the THD specification, where it is the ratio of the rms  
sum of the individual distortion products to the rms amplitude  
of the sum of the fundamentals expressed in decibels.  
SNR is the ratio of the actual input signals rms value to the rms  
sum of all other spectral components below the Nyquist frequency,  
excluding harmonics and dc. The value for SNR is expressed in  
decibels.  
Integral Nonlinearity (INL)  
INL is the maximum deviation from a straight line passing  
Total Harmonic Distortion (THD)  
through the endpoints of the ADC transfer function.  
THD is the ratio of the rms sum of harmonics to the fundamen-  
tal. For the AD7766, it is defined as  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured and the ideal  
1 LSB change between any two adjacent codes in the ADC.  
V22 + V32 + V42 + V52 + V62  
THD  
where:  
dB = 20 log  
( )  
Zero Error  
V1  
Zero error is the difference between the ideal midscale input  
voltage (when both inputs are shorted together) and the actual  
voltage producing the midscale output code.  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second to  
the sixth harmonics.  
Zero Error Drift  
Zero error drift is the change in the actual zero error value due  
to a temperature change of 1°C. It is expressed as a percentage  
of full scale at room temperature.  
Nonharmonic Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the rms signal amplitude to the rms value  
of the peak spurious spectral component, excluding harmonics.  
Gain Error  
Dynamic Range  
The first transition (from 100 … 000 to 100 … 001) should occur  
½ LSB above the nominal negative full scale for an analog voltage.  
The last transition (from 011 … 110 to 011 … 111) should occur  
1½ LSB below the nominal full scale for an analog voltage. The  
gain error is the deviation of the difference between the actual  
level of the last transition and the actual level of the first transition,  
from the difference between the ideal levels.  
Dynamic range is the ratio of the rms value of the full scale to  
the rms noise measured with the inputs shorted together. The  
value for the dynamic range is expressed in decibels.  
Intermodulation Distortion (IMD)  
With inputs consisting of sine waves at two frequencies, fa  
and fb, any active device with nonlinearities creates distortion  
products at sum and difference frequencies of mfa nfb, where  
m, n = 0, 1, 2, 3, and so on. Intermodulation distortion terms  
are those for which neither m nor n is equal to 0. For example,  
the second-order terms include (fa + fb) and (fa − fb), and the  
third-order terms include (2fa + fb), (2fa − fb), (fa + 2fb), and  
(fa − 2fb).  
Gain Error Drift  
Gain error drift is the change in the actual gain error value due  
to a temperature change of 1°C. It is expressed as a percentage  
of full scale at room temperature.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is defined as the ratio of the power in the ADC output  
at full-scale frequency f to the power of a 100 mV sine wave  
applied to the common-mode voltage of the VIN+ and VIN−  
inputs at frequency fS.  
The AD7766 is tested using the CCIF standard, where two input  
frequencies near the top end of the input bandwidth are used.  
In this case, the second-order terms are usually distanced in  
frequency from the original sine waves, and the third-order  
terms are usually at a frequency close to the input frequencies.  
As a result, the second- and third-order terms are specified  
separately. The calculation of the intermodulation distortion is  
CMRR (dB) = 10 log(Pf/PfS)  
where Pf is the power at the frequency f in the ADC output, and  
PfS is the power at the frequency fS in the ADC output.  
Rev. C | Page 14 of 24  
 
 
AD7766  
THEORY OF OPERATION  
The AD7766/AD7766-1/AD7766-2 operate using a fully  
differential analog input applied to a successive approximation  
(SAR) core. The output of the oversampled SAR is filtered using  
a linear-phase digital FIR filter. The fully filtered data is output  
in a serial format, with the MSB being clocked out first.  
The digital filtering that follows the converter output acts to  
remove the out-of-band quantization noise (see Figure 30). This  
also has the effect of reducing the data rate from fMCLK at the  
input of the filter to fMCLK/8, fMCLK/16, or fMCLK/32 at the digital  
output, depending on which model of the device is being used.  
The digital filter consists of three separate filter blocks. Figure 31  
shows the three constituent blocks of the filter. The order of  
decimation of the first filter block is set as 2, 4, or 8. The  
remaining sections each operate with a decimation of 2.  
AD7766/AD7766-1/AD7766-2 TRANSFER  
FUNCTION  
The conversion results of the AD7766/AD7766-1/AD7766-2  
are output in a twos complement, 24-bit serial format. The fully  
differential inputs VIN+ and VIN− are scaled by the AD7766/  
AD7766-1/AD7766-2 relative to the reference voltage input  
(VREF+) as shown in Figure 28.  
DIGITAL FILTER  
STAGE 1  
STAGE 2  
STAGE 3  
DATA  
STREAM  
SINC FILTER  
FIR FILTER  
FIR FILTER  
SDO  
24 BITS  
TWOS  
COMPLEMENT  
DEC × (2 × n)  
DEC × 2  
DEC × 2  
011 ... 111  
011 ... 110  
Figure 31. FIR Filter Stages  
(n = 1 for AD7766, n = 2 for AD7766-1, n = 4 for AD7766-2)  
000 ... 010  
000 ... 001  
Table 6 shows the three available models of the AD7766, listing  
the change in output data rate relative to the order of decimation  
rate implemented. This brings into focus the trade-off that exists  
between extra filtering and reduction in bandwidth, whereby  
using a filter option with a larger decimation rate increases the  
noise performance while decreasing the usable input bandwidth.  
000 ... 000  
111 ... 111  
111 ... 110  
100 ... 001  
100 ... 000  
Table 6. AD7766 Models  
Model  
Decimation Rate  
Output Data Rate (ODR)  
V
= 0V  
V
V
V
IN+  
= V – 1LSB  
REF+  
IN+  
REF+  
2
REF+  
V
V
=
=
AD7766  
AD7766-1  
AD7766-2  
8
16  
32  
128 kHz  
64 kHz  
32 kHz  
IN+  
V
= V  
REF+  
– 1LSB  
V
= 0V  
IN–  
IN–  
IN–  
2
Figure 28. AD7766/AD7766-1/AD7766-2 Transfer Function  
CONVERTER OPERATION  
Note that the output data rates shown in Table 6 are realized  
when using the maximum MCLK input frequency of 1.024 MHz.  
The output data rate scales linearly with the MCLK frequency,  
as does the digital power dissipated in the device.  
Internally, the input waveform applied to the SAR core is  
converted and an equivalent digital word is output to the digital  
filter at a rate equal to MCLK. By employing oversampling, the  
quantization noise of the converter is spread across a wide  
bandwidth from 0 to fMCLK. This means that the noise energy  
contained in the signal band of interest is reduced (see  
Figure 29).  
The settling time of the filter implemented on the AD7766,  
AD7766-1, and AD7766-2 is related to the length of the filter  
employed. The response of the filter in the time domain sets the  
filter settling time. Table 7 shows the filter settling times of the  
AD7766/AD7766-1/AD7766-2.  
The frequency responses of the digital filters on the AD7766,  
AD7766-1, and AD7766-2 are shown in Figure 32, Figure 33,  
and Figure 34, respectively. At the Nyquist frequency (output  
data rate/2), the digital filter provides 6 dB of attenuation. In each  
case, the filter provides stop-band attenuation of 100 dB and  
pass-band ripple of 0.005 dB.  
QUANTIZATION NOISE  
fMCLK/2  
BAND OF INTEREST  
Figure 29. Quantization Noise  
DIGITAL FILTER CUTOFF FREQUENCY  
fMCLK/2  
BAND OF INTEREST  
Figure 30. Digital Filter Cutoff Frequency  
Rev. C | Page 15 of 24  
 
 
 
 
 
 
 
 
AD7766  
0
ANALOG INPUT STRUCTURE  
–20  
The AD7766/AD7766-1/AD7766-2 are configured as a differential  
input structure. A true differential signal is sampled between the  
analog inputs VIN+ and VIN−, Pin 4 and Pin 5, respectively. Using  
differential inputs provides rejection of signals that are common  
to both the VIN+ and VIN− pins.  
–40  
–60  
–80  
Figure 35 shows the equivalent analog input circuit of the  
AD7766/AD7766-1/AD7766-2. The two diodes on each of the  
differential inputs provide ESD protection for the analog inputs.  
–100  
–120  
–140  
V
REF+  
D
D
–160  
0
C2  
R
IN  
16k  
32k  
48k  
64k  
80k  
96k  
112k  
128k  
V
IN+  
FREQUENCY (Hz)  
C1  
Figure 32. AD7766 Digital Filter Frequency Response  
GND  
AGND  
V
REF+  
0
–20  
D
C2  
R
IN  
V
IN–  
C1  
D
–40  
GND  
AGND  
–60  
Figure 35. Equivalent Analog Input Structure  
–80  
Take care to ensure that the analog input signal does not exceed  
the reference supply voltage (VREF+) by more than 0.3 V, as specified  
in the Absolute Maximum Ratings section. If the input voltage  
exceeds this limit, the diodes become forward biased and start  
to conduct current. The diodes can handle 130 mA maximum.  
–100  
–120  
–140  
–160  
The impedance of the analog inputs can be modeled as a parallel  
combination of C1 and the network formed by the series con-  
nection of RIN, C1, and C2. The value of C1 is dominated by the  
pin capacitance. RIN is typically 1.4 kΩ, the lumped component  
of serial resistors and the RON of the switches. C2 is typically  
22 pF, and its value is dominated by the sampling capacitor.  
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
FREQUENCY (Hz)  
Figure 33. AD7766-1 Digital Filter Frequency Response  
0
–20  
SUPPLY AND REFERENCE VOLTAGES  
The AD7766/AD7766-1/AD7766-2 operate from a 2.5 V supply  
applied to the DVDD and AVDD pins. The interface is specified to  
operate between 1.7 V and 3.6 V. The AD7766/AD7766-1/  
AD7766-2 operate from a reference input in the range of 2.2 V  
to 2 × AVDD applied to the VREF+ pin. The nominal reference  
supply voltage is 5 V, but a 2.5 V supply can also be used. When  
using a 5 V reference, the recommended reference devices are  
the ADR445, ADR435, or ADR425; when using 2.5 V, the ADR441,  
ADR431, or ADR421 are recommended. The voltage applied to  
the reference input (VREF+) operates both as a reference supply  
and as a power supply to the AD7766/AD7766-1/AD7766-2  
devices. Therefore, when using a 5 V reference input, the full-scale  
differential input range of the AD7766/AD7766-1/AD7766-2 is  
10 V. See the Driving the AD7766/AD7766-1/AD7766-2 section  
for details on the maximum input voltage.  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
4k  
8k  
12k  
16k  
20k  
24k  
28k  
32k  
FREQUENCY (Hz)  
Figure 34. AD7766-2 Digital Filter Frequency Response  
Rev. C | Page 16 of 24  
 
 
 
 
 
 
AD7766  
AD7766/AD7766-1/AD77662-2 INTERFACE  
The AD7766/AD7766-1/AD7766-2 provide the user with a  
flexible serial interface, enabling the user to implement the  
most desirable interfacing scheme for their application. Each  
AD7766/AD7766-1/AD7766-2 interface comprises seven  
The AD7766/AD7766-1/AD7766-2 offer the option of using a  
CS  
CS  
chip select input signal ( ) in a data read cycle. The  
signal is  
a gate for the SDO pin and allows many AD7766/AD7766-1/  
AD7766-2 devices to share the same serial bus. It acts as an  
instruction signal to each of these devices indicating permission  
CS  
different signals. Five of these signals are inputs: MCLK,  
SYNC PD  
,
CS  
/
, SCLK, and SDI. The other two signals are outputs:  
and SDO.  
to use the bus. When  
is logic high, the SDO line of the  
DRDY  
AD7766/AD7766-1/AD7766-2 is tristated.  
There are two distinct patterns that can be initiated to read data  
from the AD7766/AD7766-1/AD7766-2 devices: a pattern for  
INITIAL POWER-UP  
On initial power-up, apply a continuous MCLK signal. It is recom-  
mended that the user reset the AD7766/AD7766-1/AD7766-2  
to clear the filters and ensure correct operation. The reset is  
completed as shown in Figure 5, with all events occurring relative  
CS  
when the  
falling edge occurs after the  
falling edge  
DRDY  
CS  
CS  
and a pattern for when the  
falling edge occurs before the  
is set to logic low).  
falling edge (when  
DRDY  
to the rising edge of MCLK. A negative pulse on the  
/
SYNC PD  
CS  
When the  
falling edge occurs after the  
falling edge,  
DRDY  
input initiates the reset, and the  
output switches to logic  
DRDY  
the MSB of the conversion result is available on the SDO line on  
CS  
high and remains high until valid data is available. Following the  
power-up of the AD7766/AD7766-1/AD7766-2 by transitioning  
the  
falling edge. The remaining bits of the conversion result  
(MSB − 1, MSB − 2, and so on) are clocked onto the SDO line  
by the falling edges of SCLK that follow the  
Figure 3 details this interfacing scheme.  
SYNC PD  
the  
/
pin to logic high, a settling time is required before  
CS  
falling edge.  
valid data is output by the device. This settling time, tSETTLING  
,
is a function of the MCLK frequency and the decimation rate.  
Table 7 lists the settling time of each AD7766 model and should  
be referenced when reviewing Figure 5.  
CS  
When  
is tied low, the AD7766/AD7766-1/AD7766-2 serial  
interfaces can operate in 3-wire mode as shown in Figure 4. In  
this case, the MSB of the conversion result is available on the  
SDO line on the falling edge of  
the data conversion result (MSB − 1, MSB − 2, and so on) are  
clocked onto the SDO line by the subsequent SCLK falling edges.  
SYNC PD  
Table 7. Filter Settling Time After  
/
DRDY  
. The remaining bits of  
1
Model  
Decimation Rate  
tSETTLING  
AD7766  
AD7766-1  
AD7766-2  
8
16  
32  
(594 × tMCLK) + t21  
(1186 × tMCLK) + t21  
(2370 × tMCLK) + t21  
POWER-DOWN, RESET, AND SYNCHRONIZATION  
SYNC PD  
pin allows the user to synchronize multiple  
The  
/
1 tSETTLING is measured from the first MCLK rising edge after the rising edge of  
/
SYNC PD  
AD7766/AD7766-1/AD7766-2 devices. This pin also allows the  
user to reset and power down the AD7766/AD7766-1/AD7766-2  
devices. These features are implemented relative to the rising edges  
of MCLK and are shown in Figure 5, marked as A, B, C, and D.  
to the falling edge of  
.
DRDY  
READING DATA  
The AD7766/AD7766-1/AD7766-2 output data conversion  
results in an MSB-first, twos complement, 24-bit format on the  
serial data output (SDO) pin. MCLK is the master clock, which  
controls all the AD7766/AD7766-1/AD7766-2 conversions. The  
SCLK is the serial clock input for the device. All data transfers  
take place with respect to the SCLK signal.  
To power down, reset, or synchronize a device, the  
/
SYNC PD  
pin should be taken low. On the first rising edge of MCLK, the  
AD7766/AD7766-1/AD7766-2 are powered down. The  
DRDY  
pin transitions to logic high, indicating that the data in the  
output register is no longer valid. The status of the  
/
SYNC PD  
pin is checked on each subsequent rising edge of MCLK. On the  
first rising edge of MCLK after the pin is taken high,  
The  
line is used as a status signal to indicate when the data  
DRDY  
is available to be read from the AD7766/AD7766-1/AD7766-2.  
The falling edge of indicates that a new data-word is  
/
SYNC PD  
the AD7766/AD7766-1/AD7766-2 are taken out of power-down.  
On the next rising edge, the filter of the AD7766/AD7766-1/  
AD7766-2 is reset. On the following rising edge, the first new  
sample is taken.  
DRDY  
available in the output register of the device.  
stays low  
DRDY  
during the period that output data is permitted to be read from  
the SDO pin. The signal returns to logic high to indicate  
DRDY  
A settling time, tSETTLING, from the filter reset must elapse before  
valid data is output by the device (see Table 7). The  
output goes logic low after tSETTLING to indicate when valid data is  
available on SDO for readback.  
when not to read from the device. Ensure that a data read is not  
attempted during this period while the output register is being  
updated.  
DRDY  
Rev. C | Page 17 of 24  
 
 
 
 
 
 
 
 
 
AD7766  
DAISY CHAINING  
Daisy chaining devices allows numerous devices to use the same  
digital interface lines by cascading the outputs of multiple ADCs  
on a single data line. This feature is especially useful for reduc-  
ing component count and wiring connections, for example, in  
isolated multiconverter applications or for systems with a limited  
interfacing capacity. Data readback is analogous to clocking a  
shift register where data is clocked on the falling edge of SCLK.  
the devices labeled A, B, C, and D are clocked onto SDO (A)  
DRDY  
during the time between the falling edge of  
DRDY  
(A) and the  
rising edge of  
(A).  
CHOOSING THE SCLK FREQUENCY  
As shown in Figure 37, the number of SCLK falling edges that  
DRDY  
occurs during the period when  
(A) is active low must  
match the number of devices in the chain multiplied by 24 (the  
number of bits that must be clocked through onto SDO (A) for  
each device).  
The block diagram in Figure 36 shows how devices must be  
connected to achieve daisy-chain functionality. The scheme  
shown operates by passing the output data of the SDO pin of an  
AD7766 device to the SDI input of the next AD7766 device in  
the chain. The data then continues through the chain until it is  
clocked onto the SDO pin of the first device in the chain.  
The period of SCLK (tSCLK) required for a known daisy-chain length  
using a known common MCLK frequency must, therefore, be  
established in advance. Note that the maximum SCLK frequency  
is governed by t8 and is specified in Table 3 for different VDRIVE  
voltages.  
READING DATA IN DAISY-CHAIN MODE  
An example of a daisy chain of four AD7766 devices is shown in  
Figure 36 and Figure 37. In the case illustrated in Figure 36, the  
output of the AD7766 labeled A is the output of the full daisy  
chain. The last device in the chain (the AD7766 labeled D) has  
its serial data input (SDI) pin connected to ground. All the  
CS  
In the case where  
is tied logic low,  
tREAD  
tSCLK  
(1)  
24 × K  
where:  
CS  
devices in the chain must use common MCLK, SCLK, , and  
K is the number of AD7766/AD7766-1/AD7766-2 devices in  
the chain.  
tSCLK is the period of the SCLK.  
tREAD equals tDRDY − t5.  
SYNC PD  
/
signals.  
To enable the daisy-chain conversion process, apply a common  
SYNC PD  
/
pulse to all devices, synchronizing all the devices in  
the chain (see the Power-Down, Reset, and Synchronization  
section).  
CS  
In the case where  
is used in the daisy-chain interface,  
(
t  
)
(
t6 + t7 + t13  
)
READ  
SYNC PD  
pulse to all the devices, there is a  
After applying a  
/
tSCLK  
(2)  
24 × K  
delay (as listed in Table 7) before valid conversion data appears  
at the output of the chain of devices. As shown in Figure 37, the  
first conversion result is output from the AD7766 device labeled  
A. This 24-bit conversion result is followed by the conversion  
results from the devices labeled B, C, and D, with all conversion  
results output in an MSB-first sequence. The stream of conversion  
results is clocked through each device in the chain and is eventually  
clocked onto the SDO pin of the AD7766 device labeled A. The  
conversion results of all the devices in the chain must be clocked  
where:  
K is the number of AD7766/AD7766-1/AD7766-2 devices in  
the chain.  
tSCLK is the period of the SCLK.  
tREAD equals tDRDY − t5.  
Note that the maximum value of SCLK is governed by t8 and is  
specified in Table 3 for different VDRIVE voltages.  
DRDY  
onto the SDO pin of the final device in the chain while its  
signal is active low. This is illustrated in the examples shown  
(Figure 37 and Figure 38), where the conversion results from  
Rev. C | Page 18 of 24  
 
 
 
 
AD7766  
DAISY-CHAIN MODE CONFIGURATION AND TIMING DIAGRAMS  
SYNC/PD  
CS  
SYNC/PD  
SYNC/PD  
SYNC/PD  
SYNC/PD  
CS DRDY  
CS  
CS  
CS  
AD7766  
(D)  
AD7766  
(C)  
AD7766  
(B)  
AD7766  
(A)  
SDO  
SDI  
SDI  
SDO  
SDI  
SDO  
SDI  
SDO  
SDI  
SCLK  
SCLK  
SCLK  
SCLK  
MCLK  
MCLK  
MCLK  
MCLK  
SCLK  
MCLK  
Figure 36. Daisy-Chain Configuration with Four AD7766 Devices  
1
8 × n  
MCLK  
DRDY (A)  
CS  
24 × tSCLK  
24 × tSCLK  
24 × tSCLK  
24 × tSCLK  
SCLK  
AD7766 (A)  
AD7766 (B)  
AD7766 (C)  
AD7766 (D)  
AD7766 (B)  
AD7766 (C)  
AD7766 (D)  
AD7766 (C)  
AD7766 (D)  
AD7766 (D)  
AD7766 (A)  
AD7766 (B)  
AD7766 (C)  
AD7766 (D)  
SDO (A)  
SDI (A) = SDO (B)  
SDI (B) = SDO (C)  
SDI (C) = SDO (D)  
Figure 37. Daisy-Chain Timing Diagram (n = 1 for AD7766, n = 2 for AD7766-1, n = 4 for AD7766-2) When Driving the AD7766  
1
MCLK  
DRDY (A)  
CS  
SDO (A)  
SCLK  
MSB (A)  
LSB (A) MSB (B)  
LSB (B) MSB (C)  
LSB (C)  
t16  
t17  
MSB (B)  
LSB (B) MSB (C)  
LSB (C) MSB (D)  
LSB (D)  
SDI (A) = SDO (B)  
Figure 38. Daisy-Chain SDI Setup and Hold Timing  
Rev. C | Page 19 of 24  
 
 
 
 
AD7766  
DRIVING THE AD7766/AD7766-1/AD7766-2  
The AD7766/AD7766-1/AD7766-2 must be driven with fully  
differential inputs. The common-mode voltage of the differential  
inputs to the AD7766/AD7766-1/AD7766-2 devices, and therefore  
the limits on the differential inputs, is set by the reference voltage  
(VREF+) applied to the device. The common-mode voltage of the  
AD7766/AD7766-1/AD7766-2 is VREF+/2. When the AD7766/  
AD7766-1/AD7766-2 VREF+ pin has a 5 V supply (using ADR445,  
ADR435, or ADR425), the common mode is at 2.5 V, meaning  
that the maximum inputs that can be applied on the AD7766/  
AD7766-1/AD7766-2 differential inputs are a 5 V p-p input  
around 2.5 V.  
R1 and R2 set the attenuation ratio between the input range and  
the ADC range (VREF+). R1, R2, and CF are chosen depending on  
the desired input resistance, signal bandwidth, antialiasing, and  
noise contribution. The ratio of R2 to R1 should be equal to the  
ratio of REF to the peak-to-peak input voltage. For example, for  
the 10 V range with a 4 kꢁ impedance, R2 = 1 kꢁ and R1 = 4 kꢁ.  
R3 and R4 set the common mode on the VIN− input, and R5 and R6  
set the common mode on the VIN+ input of the ADC. The common  
mode, which is equal to the voltage present at VOFFSET1, should be  
close to VREF+/2. The voltage present should roughly be set to the  
ratio of VOFFSET1 to 1 + R2/R1.  
V
REF  
1k  
3.3nF  
V
V
REF  
2
IN+  
ADP3330-2.5  
2.5V  
1kΩ  
AIN+  
15Ω  
ADA4841-1  
0V  
2.2nF  
1
V
1kΩ  
AV  
DD  
4
REF  
V
IN+  
AD7766  
3.3nF  
V
IN–  
V
5
V
IN–  
REF+  
V
REF  
2
1kΩ  
2
AIN–  
2.2nF  
15Ω  
*
ADA4841-1  
2.5V TO 5V  
ADR4xx  
1kΩ  
1kΩ  
REFERENCE  
VOLTAGE  
0V  
Figure 39. Maximum Differential Inputs to the AD7766  
An analog voltage of 2.5 V supplies the AD7766/AD7766-1/  
AD7766-2 AVDD pin. However, the AD7766/AD7766-1/AD7766-2  
allow the user to apply a reference voltage of up to 5 V. This  
provides the user with an increased full-scale range, offering the  
user the option of using the AD7766/AD7766-1/AD7766-2 with  
a greater LSB voltage. Figure 39 shows the maximum inputs to  
the AD7766.  
*SEE V  
INPUT SIGNAL SECTION FOR DETAILS.  
REF+  
Figure 40. Driving the AD7766 from a Fully Differential Source  
V
IN  
VOUT = 5V REF  
0.1µF  
ADR445  
ADR425  
0.1µF  
ADP3330-2.5  
V
OFFSET1 R6  
R5  
R3  
2.5V  
LDO  
V
OFFSET2  
R4  
100µF  
5.2V  
DIFFERENTIAL SIGNAL SOURCE  
100nF  
100nF  
REF  
15  
15Ω  
OUTN  
OUTP  
V
An example of recommended driving circuitry that can be used  
in conjunction with the AD7766 is shown in Figure 40. Figure 40  
shows how the ADA4841-1 device can be used to drive an input  
to the AD7766 from a differential source. Each of the differential  
paths is driven by an ADA4841-1 device.  
REF+  
AV  
DD  
V
V
IN+  
2.2nF  
2.2nF  
AD7766  
IN–  
IN  
AGND DGND  
FB  
ADA4941-1  
–0.2V  
R2  
R1  
SINGLE-ENDED SIGNAL SOURCE  
V
IN  
For applications using a single-ended analog signal, either  
bipolar or unipolar, the ADA4941-1 single-ended-to-differential  
driver creates a fully differential input to the AD7766. The  
schematic is shown in Figure 41.  
C
F
Figure 41. Driving the AD7766 from a Single-Ended Source  
Table 8. Resistor Values Required When Using the Differential-to-Single-Ended Circuit with ADA4941 (See Figure 41)  
VIN (V)  
VOFFSET1 (V)  
VOFFSET2 (V)  
OUT+ (V)  
−0.01, +4.96  
0.01, 4.99  
0.00, 5.00  
OUT− (V)  
5.01, 0.04  
4.99, 0.01  
5.00, 0.00  
R1 (kΩ)  
8.06  
4.02  
2
R2 (kΩ)  
R4 (kΩ)  
12.7  
15  
R3 = R5 = R6 (kΩ)  
+20, −20  
+10, −10  
+5, −5  
2.5  
2.5  
2.5  
2.203  
2.000  
1.667  
1
1
1
10  
10  
10  
20  
Rev. C | Page 20 of 24  
 
 
 
 
 
 
 
AD7766  
frequency applied divided by the decimation rate employed by  
the device in use. For instance, operating the AD7766 device with  
an MCLK of 800 kHz results in an output data rate of 100 kHz  
due to the decimate-by-8 filtering.  
ANTIALIASING  
The AD7766/AD7766-1/AD7766-2 sample the analog input  
at a maximum rate of 1.024 MHz. The on-board digital filter  
provides up to 100 dB attenuation for any possible aliasing  
frequency in the range from the beginning of the filter stop  
band (0.547 × ODR) to where the image of the digital filter pass  
band occurs. This occurs at fMCLK minus the filter stop band  
(fMCLK − 0.547 × ODR), as shown in Figure 42.  
4.5  
4.0  
3.5  
DI  
DD  
3.0  
2.5  
2.0  
1.5  
fMCLK  
DIGITAL FILTER  
IMAGE AT fMCLK  
DIGITAL FILTER 100dB  
ANTIALIAS PROTECTION  
AI  
I
DD  
1.0  
0.5  
0
fMCLK – (0.547 × ODR)  
FIRST IMAGE POINT  
REF  
BAND OF INTEREST  
Figure 42. AD7766/AD7766-1/AD7766 Spectrum  
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k  
FREQUENCY (Hz)  
Table 9 shows the attenuation achieved by various orders of  
front-end antialias filters prior to the signal entering the AD7766/  
AD7766-1/AD7766-2 at the image of the digital filter stop band,  
which is 1.024 MHz − 0.547 × ODR.  
Figure 43. AD7766 Current vs. MCLK Frequency  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Table 9. Antialias Filter Order  
DI  
DD  
Attenuation at  
1.024 MHz – 0.547 × ODR  
Model  
Filter Order  
First  
AD7766  
27 dB  
50 dB  
70 dB  
33 dB  
62 dB  
89 dB  
38 dB  
74 dB  
110 dB  
Second  
Third  
AI  
DD  
AD7766-1  
AD7766-2  
First  
Second  
Third  
I
REF  
First  
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k  
FREQUENCY (Hz)  
Second  
Third  
Figure 44. AD7766-1 Current vs. MCLK Frequency  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
The AD7764 and AD7765 ∑-Δ devices are available to  
DI  
DD  
customers that require extra antialias protection. These devices  
sample the signal internally at a rate of 20 MHz to achieve up to  
a maximum of 156 kHz or 312 kHz output data rate. This  
means that the first alias point of these devices when run at the  
maximum speeds is 19.921 MHz and 19.843 MHz, respectively.  
AI  
DD  
POWER DISSIPATION  
The AD7766/AD7766-1/AD7766-2 offer exceptional perform-  
ance at ultralow power. Figure 43, Figure 44, and Figure 45  
show how the current consumption of the AD7766, AD7766-1,  
and AD7766-2 scales with the MCLK frequency applied to the  
device. Both the digital and analog currents scale as the MCLK  
frequency is reduced. The actual throughput equals the MCLK  
I
REF  
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k  
FREQUENCY (Hz)  
Figure 45. AD7766-2 Current vs. MCLK Frequency  
Rev. C | Page 21 of 24  
 
 
 
 
 
 
 
AD7766  
VREF+ INPUT SIGNAL  
MULTIPLEXING ANALOG INPUT CHANNELS  
The AD7766/AD7766-1/AD7766-2 VREF + pin is supplied with a  
voltage in the range of 2.4 V to 2 × AVDD (nominally 5 V). It is  
recommended that the VREF+ input be generated by a low noise  
voltage reference. Examples of such references are the ADR445,  
ADR435, ADR425 (5 V output), and ADR421 (2.5 V output).  
Typical reference supply circuits are shown in Figure 46.  
The AD7766/AD7766-1/AD7766-2 can be used with a multi-  
plexer configuration. As per any converter that uses a digital  
filtering block, the maximum switching rate or the output data  
rate per channel is a function of the digital filter settling time.  
A user multiplexing the analog inputs to a converter that  
employs a digital filter must wait the full digital filter settling  
time before a valid conversion result can be achieved; after this  
settling time, the channel can be switched. Then, the full  
settling time must again be observed before a valid conversion  
result is available and the input is switched once more.  
The reference voltage input pin (VREF+) also acts as a power  
supply to the AD7766/AD7766-1/AD7766-2 devices. For a 5 V  
VREF+ input, a full-scale input of 5 V on both VIN+ and VIN− can  
be applied while voltage supplies to pins AVDD remain at 2.5 V.  
This configuration reduces the number of different supplies  
required.  
The AD7766 filter settling time equals 74 divided by the output  
data rate in use. The maximum switching frequency in a multi-  
plexed application is, therefore, 1/(74/ODR), where the output  
data rate (ODR) is a function of the applied MCLK frequency  
and the decimation rate employed by the device in question. For  
example, applying a 1.024 MHz MCLK frequency to the AD7766  
results in a maximum output data rate of 128 kHz, which in  
turn allows a 1.729 kHz multiplexer switching rate.  
The output of the low noise voltage reference does not require a  
buffer; however, decoupling the output of the low noise reference is  
important. Place a 0.1 μF capacitor at the output of the voltage  
reference devices (ADR445, ADR435, ADR425, and ADR421)  
and follow the decoupling advice provided for the reference  
device chosen.  
As mentioned, the nominal supply to the VREF+ pin is 5 V to  
achieve the full dynamic range available. When a 2.5 V VREF+  
input is used (that is, in low power applications), the signal-to-  
noise ratio and dynamic range figures (generated using a 5 V  
VREF+ input) quoted in the Specifications section decrease by  
6 dB, a direct result of halving the available input range.  
The AD7766-1 and the AD7766-2 employ digital filters with  
longer settling time to achieve greater precision; thus, the  
maximum switching frequency for these devices is 864 Hz and  
432 Hz, respectively.  
The AD7766/AD7766-1/AD7766-2 devices require a 100 μF  
capacitor to ground, which acts as a decoupling capacitor and as  
a reservoir of charge for the VREF+ pin. Place this capacitor as  
close to the AD7766/AD7766-1/AD7766-2 devices as possible.  
Reducing the value of this capacitor (C40 in Figure 46) to 10 μF  
typically degrades noise performance by 1 dB. C40 can be an  
electrolytic or tantalum capacitor.  
REFERENCE  
SUPPLY  
V+  
V
V
V
REF+  
IN  
OUT  
C34  
10µF  
C35  
0.1µF  
C39  
0.1µF  
C40  
100µF  
ADR4xx  
AD7766/  
AD7766-1/  
AD7766-2  
Figure 46. AD7766/AD7766-1/AD7766-2 Reference Input Configuration  
Rev. C | Page 22 of 24  
 
 
AD7766  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 47. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
AD7766BRUZ  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Converter Evaluation and Development Board  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
AD7766BRUZ-RL7  
AD7766BRUZ-1  
AD7766BRUZ-1-RL7  
AD7766BRUZ-2  
AD7766BRUZ-2-RL7  
EVAL-AD7766EDZ  
EVAL-AD7766-1EDZ  
EVAL-AD7766-2EDZ  
EVAL-CED1Z  
1 Z = RoHS Compliant Part.  
Rev. C | Page 23 of 24  
 
 
 
AD7766  
NOTES  
©2007–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06449-0-4/10(C)  
Rev. C | Page 24 of 24  

相关型号:

AD7766BRUZ-1

24-Bit, 10mW, 125ksps Analog to Digital Converter in 16 lead TSSOP
ADI

AD7766BRUZ-1

1-CH 24-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16
ROCHESTER

AD7766BRUZ-1-RL7

128 kSPS/64 kSPS/32 kSPS ADCs
ADI

AD7766BRUZ-2

24-Bit, 10mW, 125ksps Analog to Digital Converter in 16 lead TSSOP
ADI

AD7766BRUZ-2-RL7

128 kSPS/64 kSPS/32 kSPS ADCs
ADI

AD7766BRUZ-RL7

1-CH 24-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16
ROCHESTER

AD7766BRUZ-RL7

128 kSPS/64 kSPS/32 kSPS ADCs
ADI

AD7766_17

128 kSPS/64 kSPS/32 kSPS ADCs
ADI

AD7767

24-Bit, 8.5 mW, 109 dB, 128/64/32 kSPS ADCs
ADI

AD7767BRUZ

24-Bit, 8.5 mW, 109 dB, 128/64/32 kSPS ADCs
ADI

AD7767BRUZ-1

24-Bit, 8.5 mW, 109 dB, 128/64/32 kSPS ADCs
ADI

AD7767BRUZ-1-RL7

24-Bit, 8.5 mW, 109 dB, 128/64/32 kSPS ADCs
ADI