AD566AKD [ROCHESTER]

PARALLEL, WORD INPUT LOADING, 0.25 us SETTLING TIME, 12-BIT DAC, CDIP24, HERMETIC SEALED, SIDE BRAZED, CERAMIC, DIP-24;
AD566AKD
型号: AD566AKD
厂家: Rochester Electronics    Rochester Electronics
描述:

PARALLEL, WORD INPUT LOADING, 0.25 us SETTLING TIME, 12-BIT DAC, CDIP24, HERMETIC SEALED, SIDE BRAZED, CERAMIC, DIP-24

CD 输入元件 转换器
文件: 总13页 (文件大小:896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed 12-Bit  
Monolithic D/A Converters  
a
AD565A/AD566A  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Single Chip Construction  
V
REF OUT  
CC  
BIPOLAR OFF  
Very High Speed Settling to 1/2 LSB  
AD565A: 250 ns max  
AD566A: 350 ns max  
Full-Scale Switching Time: 30 ns  
Guaranteed for Operation with ؎12 V (565A) Supplies,  
with –12 V Supply (AD566A)  
Linearity Guaranteed Overtemperature  
1/2 LSB max (K, T Grades)  
20V SPAN  
10V  
AD565A  
5k⍀  
9.95k⍀  
10V SPAN  
DAC OUT  
19.95k⍀  
0.5mA  
REF  
IN  
5k⍀  
I
REF  
DAC  
I
=
20k⍀  
OUT  
4 
؋
 I  
I
REF  
GND  
8k⍀  
O
؋
 CODE  
REF  
CODE INPUT  
Monotonicity Guaranteed Overtemperature  
Low Power: AD566A = 180 mW max;  
AD565A = 225 mW max  
–V  
EE  
POWER  
GND  
MSB  
LSB  
BIPOLAR OFF  
Use with On-Board High Stability Reference (AD565A)  
or with External Reference (AD566A)  
Low Cost  
20V SPAN  
AD566A  
5k⍀  
9.95k⍀  
10V SPAN  
DAC OUT  
19.95k⍀  
0.5mA  
MlL-STD-883-Compliant Versions Available  
REF  
IN  
5k⍀  
I
REF  
DAC  
PRODUCT DESCRIPTION  
I
=
20k⍀  
OUT  
4 
؋
 I  
I
REF  
GND  
8k⍀  
O
The AD565A and AD566A are fast 12-bit digital-to-analog  
converters that incorporate the latest advances in analog circuit  
design to achieve high speeds at low cost.  
؋
 CODE  
REF  
CODE INPUT  
The AD565A and AD566A use 12 precision, high speed bipolar  
current-steering switches, a control amplifier, and a laser-trimmed  
thin-film resistor network to produce a very fast, high accuracy  
analog output current. The AD565A also includes a buried  
Zener reference that features low noise, long-term stability, and  
temperature drift characteristics comparable to the best discrete  
reference diodes.  
–V  
EE  
POWER  
GND  
LSB  
MSB  
AD565A and AD566A are available in four performance  
grades. The J and K grades are specified for use over the 0°C to  
+70°C temperature range while the S and T grades are speci-  
fied for the –55°C to +125°C range. The D grades are all pack-  
aged in a 24-lead, hermetically sealed, ceramic, dual-in-line  
package. The JR grade is packaged in a 28-lead plastic SOIC.  
The combination of performance and flexibility in the AD565A and  
AD566A has resulted from major innovations in circuit design,  
an important new high speed bipolar process, and continuing  
advances in laser-wafer-trimming techniques (LWT). The  
AD565A and AD566A have a 10%–90% full-scale transition  
time less than 35 ns and settle to within 1/2 LSB in 250 ns max  
(350 ns for AD566A). Both are laser-trimmed at the wafer level  
to 1/8 LSB typical linearity and are specified to 1/4 LSB max  
error (K and T grades) at +25°C. High speed and accuracy make  
the AD565A and AD566A the ideal choice for high speed display  
drivers as well as for fast analog-to-digital converters.  
PRODUCT HIGHLIGHTS  
1. The wide output compliance range of the AD565A and  
AD566A are ideally suited for fast, low noise, accurate voltage  
output configurations without an output amplifier.  
2. The devices incorporate a newly developed, fully differential,  
nonsaturating precision current switching cell structure that  
combines the dc accuracy and stability first developed in the  
AD562/AD563 with very fast switching times and an optimally  
damped settling characteristic.  
3. The devices also contain SiCr thin-film application resistors  
that can be used with an external op amp to provide a preci-  
sion voltage output or as input resistors for a successive-  
approximation A/D converter. The resistors are matched to  
the internal ladder network to guarantee a low gain temperature  
coefficient and are laser-trimmed for minimum full-scale and  
bipolar offset errors.  
The laser trimming process that provides the excellent linearity  
is also used to trim both the absolute value and the temperature  
coefficient of the reference of the AD565A, resulting in a typical  
full-scale gain TC of 10 ppm/°C. When tighter TC performance  
is required or when a system reference is available, the AD566A  
may be used with an external reference.  
4. The AD565A and AD566A are available in versions compliant  
with MIL-STD-883. Refer to the Analog Devices Military  
Products Databook or current /883B data sheet for detailed  
specifications.  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD565A–SPECIFICATIONS (TA = 25؇C, VCC = 15 V, VEE = 15 V, unless otherwise noted.)  
AD565AJ  
Typ  
AD565AK  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 V CMOS  
Input Voltage  
Bit ON Logic “1”  
2.0  
5.5  
0.8  
2.0  
5.5  
0.8  
V
V
Bit OFF Logic “0”  
Logic Current (Each Bit)  
Bit ON Logic “1”  
120  
35  
300  
100  
120  
35  
300  
100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
Bipolar (Figure 3, R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) 25°C  
1/4  
؎1/2  
1/8  
؎0.35  
(0.0084)  
؎1/2  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
% of F.S. Range  
LSB  
T
MIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED  
MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
With Internal Reference  
Unipolar Zero  
1
2
10  
50  
1
2
10  
20  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
5
5
Gain (Full Scale)  
Differential Nonlinearity  
15  
2
10  
2
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON  
250  
400  
250  
400  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
TEMPERATURE RANGE  
Operating  
Storage  
0
–65  
+70  
+150  
0
–65  
+70  
+150  
°C  
°C  
POWER REQUIREMENTS  
VCC, +11.4 to +16.5 V dc  
VEE, –11.4 to –16.5 V dc  
3
5
3
5
mA  
mA  
–12  
–18  
–12  
–18  
POWER SUPPLY GAIN SENSITIVITY2  
VCC = +11.4 to +16.5 V dc  
3
15  
10  
25  
3
15  
10  
25  
ppm of F.S./%  
ppm of F.S./%  
VEE = –11.4 to –16.5 V dc  
PROGRAMMABLE OUTPUT RANGES  
(See Figures 2, 3, 4)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 2)  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
% of F.S. Range  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 3)  
Gain Adjustment Range (Figure 2)  
Bipolar Zero Adjustment Range  
0.05  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
REFERENCE OUTPUT  
Voltage  
9.90  
1.5  
10.00  
2.5  
10.10  
345  
9.90  
1.5  
10.00  
2.5  
10.10  
345  
V
Current (Available for External Loads)3  
mA  
POWER DISSIPATION  
225  
225  
mW  
NOTES  
1The digital inputs are guaranteed but not tested over the operating temperature range.  
2The power supply gain sensitivity is tested in reference to a VCC, VEE of 15 V dc.  
3For operation at elevated temperatures, the reference cannot supply current for external loads. It, therefore, should be buffered if additional loads are to be supplied.  
Specifications subject to change without notice.  
–2–  
REV. E  
AD565A/AD566A  
AD565AS  
Typ  
AD565AT  
Typ  
Parameter  
Min  
2.0  
Max  
Min  
2.0  
Max  
Unit  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 V CMOS  
Input Voltage  
Bit ON Logic “1”  
5.5  
0.8  
5.5  
0.8  
V
V
Bit OFF Logic “0”  
Logic Current (Each Bit)  
Bit ON Logic “1”  
120  
35  
300  
100  
120  
35  
300  
100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
Bipolar (Figure 3, R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) 25°C  
1/4  
؎1/2  
1/8  
؎0.35  
(0.0084)  
؎1/2  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
% of F.S. Range  
LSB  
TMIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED  
MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
With Internal Reference  
Unipolar Zero  
1
2
10  
30  
1
2
10  
15  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
5
5
Gain (Full Scale)  
Differential Nonlinearity  
15  
2
10  
2
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON  
250  
400  
250  
400  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
TEMPERATURE RANGE  
Operating  
Storage  
–55  
–65  
+125  
+150  
–55  
–65  
+125  
+150  
°C  
°C  
POWER REQUIREMENTS  
VCC, +11.4 to +16.5 V dc  
VEE, –11.4 to –16.5 V dc  
3
5
3
5
mA  
mA  
–12  
–18  
–12  
–18  
POWER SUPPLY GAIN SENSITIVITY2  
VCC = +11.4 to +16.5 V dc  
3
15  
10  
25  
3
15  
10  
25  
ppm of F.S./%  
ppm of F.S./%  
VEE = –11.4 to –16.5 V dc  
PROGRAMMABLE OUTPUT RANGES  
(See Figures 2, 3, 4)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 2)  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
؎0.1  
% of F.S. Range  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 3)  
Gain Adjustment Range (Figure 2)  
Bipolar Zero Adjustment Range  
0.05  
0.05  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
REFERENCE OUTPUT  
Voltage  
9.90  
1.5  
10.00  
2.5  
10.10  
9.90  
1.5  
10.00  
2.5  
10.10  
345  
V
Current (Available for External Loads)3  
mA  
POWER DISSIPATION  
225  
345  
225  
mW  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min  
and max specifications are guaranteed, although only those shown in boldface are tested on all production units.  
Specification subject to change without notice.  
REV. E  
–3–  
(T = 25؇C, V = –15 V, unless otherwise noted)  
AD566A–SPECIFICATIONS  
A
EE  
AD566AJ  
Typ  
AD566AK  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 V CMOS  
Input Voltage  
Bit ON Logic “1”  
2.0  
0
5.5  
0.8  
2.0  
0
5.5  
0.8  
V
V
Bit OFF Logic “0”  
Logic Current (Each Bit)  
Bit ON Logic “1”  
120  
35  
300  
100  
120  
35  
300  
100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar (Adjustable to Zero per Figure 3)  
Bipolar (Figure 4, R1 and R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) 25°C  
1/4  
؎1/2  
1/8  
؎0.35  
(0.0084)  
؎1/2  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
% of F.S. Range  
LSB  
T
MIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
Unipolar Zero  
1
5
7
2
2
10  
10  
1
5
3
2
2
10  
5
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
Gain (Full Scale)  
Differential Nonlinearity  
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON  
250  
350  
250  
350  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
POWER REQUIREMENTS  
VEE, –11.4 to –16.5 V dc  
POWER SUPPLY GAIN SENSITIVITY2  
VEE = –11.4 to –16.5 V dc  
–12  
15  
–18  
25  
–12  
15  
–18  
25  
mA  
ppm of F.S./%  
PROGRAMMABLE OUTPUT RANGES  
(see Figures 3, 4, 5)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 3)  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 4)  
Gain Adjustment Range (Figure 3)  
Bipolar Zero Adjustment Range  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
؎0.1  
% of F.S. Range  
0.05  
0.05  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
POWER DISSIPATION  
180  
300  
180  
300  
mW  
MULTIPLYING MODE PERFORMANCE (All Models)  
Quadrants  
Two (2): Bipolar Operation at Digital Input Only  
1 V to 10 V, Unipolar  
10 Bits ( 0.05% of Reduced F.S.) for 1 V dc Reference Voltage  
Reference Voltage  
Accuracy  
Reference Feedthrough (Unipolar Mode,  
All Bits OFF, and 1 V to 10 V [p-p], Sine Wave  
Frequency for 1/2 LSB [p-p] Feedthrough)  
Output Slew Rate 10%–90%  
40  
5
kHz typ  
mA/µs  
mA/µs  
90%–10%  
1
Output Settling Time (All Bits ON and a 0 V–10 V  
Step Change in Reference Voltage)  
1.5 µs to 0.01% F.S.  
CONTROL AMPLIFIER  
Full Power Bandwidth  
300  
1.8  
kHz  
MHz  
Small-Signal Closed-Loop Bandwidth  
NOTES  
1The digital input levels are guaranteed but not tested over the temperature range.  
2The power supply gain sensitivity is tested in reference to a VEE of –1.5 V dc.  
Specifications subject to change without notice.  
–4–  
REV. E  
AD565A/AD566A  
AD566AS  
Typ  
AD566AT  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 V CMOS  
Input Voltage  
Bit ON Logic “1”  
2.0  
0
5.5  
0.8  
2.0  
0
5.5  
0.8  
V
V
Bit OFF Logic “0”  
Logic Current (Each Bit)  
Bit ON Logic “1”  
120  
35  
300  
100  
+120  
+35  
300  
100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar (Adjustable to Zero per Figure 3)  
Bipolar (Figure 4, R1 and R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) 25°C  
1/4  
؎1/2  
1/8  
؎0.35  
(0.0084)  
؎1/2  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
% of F.S. Range  
LSB  
T
MIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED  
MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
Unipolar Zero  
1
5
7
2
2
10  
10  
1
5
3
2
2
10  
5
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
Gain (Full Scale)  
Differential Nonlinearity  
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON  
250  
350  
250  
350  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
POWER REQUIREMENTS  
VEE, –11.4 to –16.5 V dc  
POWER SUPPLY GAIN SENSITIVITY2  
VEE = –11.4 to –16.5 V dc  
–12  
15  
–18  
25  
–12  
15  
–18  
25  
mA  
ppm of F.S./%  
PROGRAMMABLE OUTPUT RANGES  
(see Figures 3, 4, 5)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 3)  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 4)  
Gain Adjustment Range (Figure 3)  
Bipolar Zero Adjustment Range  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
؎0.1  
% of F.S. Range  
0.05  
0.05  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
POWER DISSIPATION  
180  
300  
180  
300  
mW  
MULTIPLYING MODE PERFORMANCE (All Models)  
Quadrants  
Two (2): Bipolar Operation at Digital Input Only  
1 V to 10 V, Unipolar  
10 Bits ( 0.05% of Reduced F.S.) for 1 V dc Reference Voltage  
Reference Voltage  
Accuracy  
Reference Feedthrough (Unipolar Mode,  
All Bits OFF, and 1 V to 10 V [p-p], Sine Wave  
Frequency for l/2 LSB [p-p] Feedthrough)  
Output Slew Rate 10%–90%  
40  
5
kHz typ  
mA/µs  
mA/µs  
90%–10%  
1
Output Settling Time (All Bits ON and a 0 V–10 V  
Step Change in Reference Voltage)  
1.5 µs to 0.01% F.S.  
CONTROL AMPLIFIER  
Full Power Bandwidth  
300  
1.8  
kHz  
MHz  
Small-Signal Closed-Loop Bandwidth  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max  
specifications are guaranteed, although only those shown in boldface are tested on all production units.  
Specification subject to change without notice.  
REV. E  
–5–  
AD565A/AD566A  
GROUNDING RULES  
ABSOLUTE MAXIMUM RATINGS  
The AD565A and AD566A use separate reference and power  
grounds to allow optimum connections for low noise and high  
speed performance. These grounds should be tied together at one  
point, usually the device power ground. The separate ground  
returns minimize current flow in low level signal paths. In this  
way, logic return currents are not summed into the same return  
path with analog signals.  
VCC to Power Ground . . . . . . . . . . . . . . . . . . . . . 0 V to +18 V  
VEE to Power Ground (AD565A) . . . . . . . . . . . . 0 V to –18 V  
Voltage on DAC Output (Pin 9) . . . . . . . . . . . . –3 V to +12 V  
Digital Inputs (Pins 13 to 24) to  
Power Ground . . . . . . . . . . . . . . . . . . . . . . –1.0 V to +7.0 V  
REF IN to Reference Ground . . . . . . . . . . . . . . . . . . . . 12 V  
Bipolar Offset to Reference Ground . . . . . . . . . . . . . . . 12 V  
10 V Span R to Reference Ground . . . . . . . . . . . . . . . . 12 V  
20 V Span R to Reference Ground . . . . . . . . . . . . . . . . 24 V  
REF OUT (AD565A) . . . . . Indefinite Short to Power Ground  
Momentary Short to VCC  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 mW  
AD565A ORDERING GUIDE  
Max Gain  
T.C. (ppm  
Linearity  
Temperature  
Range  
Error Max  
@ +25  
Package  
Options2  
Model1  
of F.S./°C)  
°C  
AD565AJD  
AD565AJR  
AD565AKD  
AD565ASD  
AD565ATD  
50  
50  
20  
30  
15  
0°C to +70°C  
1/2 LSB  
1/2 LSB  
1/4 LSB  
1/2 LSB  
1/4 LSB  
Ceramic (D-24)  
SOIC (RW-28)  
Ceramic (D-24)  
Ceramic (D-24)  
Ceramic (D-24)  
0°C to +70°C  
0°C to +70°C  
–55°C to +125°C  
–55°C to +125°C  
NOTES  
1For details on grade and package offerings screened in accordance with MIL-STD-883, refer to the Analog Devices Military Products Databook or current/883B data sheet.  
2D = Ceramic DIP, R = SOIC.  
AD566A ORDERING GUIDE  
Max Gain  
T.C. (ppm  
Linearity  
Temperature  
Range  
Error Max  
@ +25  
Package  
Option2  
Model1  
of F.S./°C)  
°C  
AD566AJD  
AD566AKD  
AD566ASD  
AD566ATD  
10  
3
10  
3
0°C to +70°C  
1/2 LSB  
1/4 LSB  
1/2 LSB  
1/4 LSB  
Ceramic (D-24  
Ceramic (D-24)  
Ceramic (D-24)  
Ceramic (D-24)  
0°C to +70°C  
–55°C to +125°C  
–55°C to +125°C  
NOTES  
1For details on grade and package offerings screened in accordance with MIL-STD-883, refer to the Analog Devices Military Products Databook or current/883B data sheet.  
2D = Ceramic DIP.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD565A/AD566A features proprietary ESD protection circuitry, permanent damage may occur on  
WARNING!  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
ESD SENSITIVE DEVICE  
–6–  
REV.E  
AD565A/AD566A  
PIN CONFIGURATIONS  
24-Lead DIP  
24-Lead DIP  
1
2
24  
23  
22  
21  
20  
19  
18  
NC  
NC  
BIT 1 IN (MSB)  
BIT 2 IN  
1
24  
23  
22  
21  
20  
19  
18  
NC  
NC  
BIT 1 IN (MSB)  
2
3
BIT 2 IN  
BIT 3 IN  
BIT 4 IN  
BIT 5 IN  
BIT 6 IN  
3
REF GND  
BIT 3 IN  
V
CC  
4
4
AMP SUMMING JUNCTION  
REF V HI IN  
BIT 4 IN  
REF OUT (+10V 1ꢀ)  
5
5
BIT 5 IN  
REF GND  
REF IN  
AD566A  
AD565A  
TOP VIEW  
(Not to Scale)  
6
–V –15V IN (20mA)  
EE  
BIT 6 IN  
6
TOP VIEW  
(Not to Scale)  
7
7
BIPOLAR OFFSET IN  
NC  
BIT 7 IN  
–V  
EE  
BIT 7 IN  
8
17 BIT 8 IN  
8
BIPOLAR OFFSET IN  
DAC OUT (–2mA F.S.)  
10V SPAN R  
17 BIT 8 IN  
DAC OUT (–2mA F.S.)  
10V SPAN R  
9
BIT 9 IN  
16  
15  
9
BIT 9 IN  
16  
15  
10  
11  
BIT 10 IN  
10  
11  
BIT 10 IN  
20V SPAN R  
14 BIT 11 IN  
BIT 12 IN (LSB)  
13  
20V SPAN R  
14 BIT 11 IN  
BIT 12 IN (LSB)  
PWR GND 12  
NC = NO CONNECT  
PWR GND 12  
13  
NC = NO CONNECT  
28-Lead SOIC  
NC  
NC  
NC  
1
2
28 NC  
27  
BIT 1 (MSB)  
3
26  
25  
24  
BIT 2  
BIT 3  
BIT 4  
4
V
CC  
5
REF OUT (10V)  
6
REF GND  
REF IN  
NC  
23 BIT 5  
22  
AD565A  
TOP VIEW  
(Not to Scale)  
7
BIT 6  
8
21 BIT 7  
BIT 8  
20  
9
–V  
EE  
BIT 9  
19  
10  
11  
12  
13  
14  
BIPOLAR OFFSET IN  
DAC OUT  
BIT 10  
18  
NC  
10V SPAN R  
20V SPAN R  
BIT 11  
17  
BIT 12 (LSB)  
16  
15  
PWR GND  
NC = NO CONNECT  
–7–  
REV. E  
AD565A/AD566A  
CONNECTING THE AD565A FOR BUFFERED VOLTAGE  
OUTPUT  
R1  
100  
REF  
OUT  
V
BIPOLAR OFF  
CC  
The standard current-to-voltage conversion connections using an  
operational amplifier are shown in Figures 1, 2, and 3 with the  
preferred trimming techniques. If a low offset operational amplifier  
(OP77, AD741L, OP07) is used, excellent performance can be  
obtained in many situations without trimming (an op amp with  
less than 0.5 mV max offset voltage should be used to keep offset  
errors below 1/2 LSB). If a 50 fixed resistor is substituted for  
the 100 trimmer, unipolar zero is typically within 1/2 LSB  
(plus op amp offset) and full-scale accuracy is within 0.1%  
(0.25% max). Substituting a 50 resistor for the 100 bipo-  
lar offset trimmer gives a bipolar zero error typically within  
2 LSB (0.05%).  
20V SPAN  
10V SPAN  
5k⍀  
5k⍀  
I
9.95k⍀  
R2  
100⍀  
10V  
AD565A  
10pF  
OUTPUT  
–5V TO  
+5V  
19.95k⍀  
0.5mA  
DAC  
OUT  
O
8k⍀  
REF  
IN  
I
AD509  
2.4k⍀  
REF  
DAC  
I
=
OUT  
20k⍀  
REF  
GND  
4 
؋
 I  
REF  
؋
 CODE  
CODE  
INPUT  
POWER  
GND  
–V  
EE  
MSB  
LSB  
The AD509 is recommended for buffered voltage-output  
applications that require a settling time to 1/2 LSB of  
1 µs. The feedback capacitor is shown with the optimum value  
for each application; this capacitor is required to compen-  
sate for the 25 pF DAC output capacitance.  
Figure 2. 5 V Bipolar Voltage Output  
STEP I . . . OFFSET ADJUST  
Turn OFF all bits. Adjust 100 trimmer R1 to give –5.000 V  
output.  
FIGURE 1. UNIPOLAR CONFIGURATION  
This configuration provides a unipolar 0 V to 10 V output  
range. In this mode, the bipolar terminal, Pin 8, should be  
grounded if not used for trimming.  
STEP II . . . GAIN ADJUST  
Turn ON all bits. Adjust 100 gain trimmer R2 to give a  
reading of +4.9976 V.  
+15V  
Please note that it is not necessary to trim the op amp to obtain  
full accuracy at room temperature. In most bipolar situations,  
an op amp trim is unnecessary unless the untrimmed offset drift  
of the op amp is excessive.  
100k  
R1  
50k⍀  
100⍀  
–15V  
REF  
OUT  
V
BIPOLAR OFF  
CC  
FIGURE 3. OTHER VOLTAGE RANGES  
20V SPAN  
5k⍀  
5k⍀  
The AD565A can also be easily configured for a unipolar 0 V to  
+5 V range or 2.5 V and 10 V bipolar ranges by using the  
additional 5 kapplication resistor provided at the 20 V span R  
terminal, Pin 11. For a 5 V span (0 V to +5 V, or 2.5 V), the  
two 5 kresistors are used in parallel by shorting Pin 11 to Pin 9  
and connecting Pin 10 to the op amp output and the bipolar  
offset either to ground for unipolar or to REF OUT for the  
bipolar offset either to ground for unipolar or to REF OUT for  
the bipolar range. For the 10 V range (20 V span) use the 5 kΩ  
resistors in series by connecting only Pin 11 to the op amp output  
and the bipolar offset connected as shown. The 10 V option is  
shown in Figure 3.  
9.95k⍀  
10V SPAN  
R2  
100⍀  
10V  
AD565A  
10pF  
OUTPUT  
0V TO  
+10V  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
REF  
IN  
I
AD509  
2.4k⍀  
REF  
DAC  
I
=
OUT  
20k⍀  
REF  
GND  
4 
؋
 I  
REF  
؋
 CODE  
CODE  
INPUT  
POWER  
GND  
–V  
EE  
MSB  
LSB  
Figure 1. 0 V to 10 V Unipolar Voltage Output  
STEP I . . . ZERO ADJUST  
Turn all bits OFF and adjust zero trimmer R1 until the output  
reads 0.000 V (1 LSB = 2.44 mV). In most cases, this trim is not  
needed, but Pin 8 should then be connected to Pin 12.  
R1  
REF  
OUT  
V
100⍀  
BIPOLAR OFF  
CC  
20V SPAN  
10V SPAN  
5k⍀  
5k⍀  
9.95k⍀  
R2  
100⍀  
10V  
AD565A  
10pF  
STEP II . . . GAIN ADJUST  
OUTPUT  
–10V TO  
+10V  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
Turn all bits ON and adjust 100 gain trimmer R2 until the  
output is 9.9976 V. (Full scale is adjusted to 1 LSB less than  
nominal full scale of 10.000 V.) If a 10.2375 V full scale is desired  
(exactly 2.5 mV/bit), insert a 120 resistor in series with the gain  
resistor at Pin 10 to the op amp output.  
REF  
IN  
I
AD509  
REF  
DAC  
I
=
OUT  
4 
؋
 I  
3.0k⍀  
20k⍀  
REF  
GND  
REF  
؋
 CODE  
CODE  
INPUT  
POWER  
GND  
FIGURE 2. BIPOLAR CONFIGURATION  
This configuration provides a bipolar output voltage from  
–5.000 V to +4.9976 V, with positive full scale occurring with  
all bits ON (all 1s).  
–V  
EE  
MSB  
LSB  
Figure 3. 10 V Voltage Output  
–8–  
REV.E  
AD565A/AD566A  
CONNECTING THE AD566A FOR BUFFERED VOLTAGE  
OUTPUT  
STEP II . . . GAIN ADJUST  
Turn all bits ON and adjust 100 gain trimmer, R2, until the  
output is 9.9976 V. (Full scale is adjusted to 1 LSB less than  
nominal full scale of 10.000 V.) If a 10.2375 V full scale is desired  
(exactly 2.5 mV/bit), insert a 120 resistor in series with the  
gain resistor at Pin 10 to the op amp output.  
The standard current-to-voltage conversion connections using an  
operational amplifier are shown in Figures 4, 5, and 6 with the  
preferred trimming techniques. If a low offset operational amplifier  
(OP77, AD741L, OP07) is used, excellent performance can be  
obtained in many situations without trimming (an op amp with  
less than 0.5 mV max offset voltage should be used to keep offset  
errors below 1/2 LSB). If a 50 fixed resistor is substituted for the  
100 trimmer, unipolar zero typically is within 1/2 LSB (plus op  
amp offset), and full-scale accuracy is within 0.1% (0.25% max).  
Substituting a 50 resistor for the 100 bipolar offset trimmer  
gives a bipolar zero error typically within 2 LSB (0.05%).  
FIGURE 5. BIPOLAR CONFIGURATION  
This configuration provides a bipolar output voltage from  
–5.000 V to +4.9976 V, with positive full scale occurring with  
all bits ON (all 1s).  
R1  
The AD509 is recommended for buffered voltage-output  
applications that require a settling time to 1/2 LSB of 1 µs. The  
feedback capacitor is shown with the optimum value for each  
application; this capacitor is required to compensate for the  
25 pF DAC output capacitance.  
100⍀  
BIPOLAR OFF  
20V SPAN  
10V SPAN  
AD566A  
9.95k⍀  
5k⍀  
5k⍀  
R2  
100⍀  
10pF  
REF  
IN  
FIGURE 4. UNIPOLAR CONFIGURATION  
This configuration provides a unipolar 0 V to 10 V output range.  
In this mode, the bipolar terminal, Pin 7, should be grounded if not  
used for trimming.  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
I
REF  
DAC  
E
REF  
AD509  
10V  
+V  
I
=
AD561  
OUT  
20k⍀  
2.4k⍀  
4 
؋
 I  
REF  
؋
 CODE  
REF  
GND  
+15V  
CODE  
INPUT  
POWER  
GND  
100  
100k⍀  
R1  
50k⍀  
–V  
BIPOLAR OFF  
MSB  
LSB  
EE  
–15V  
20V SPAN  
AD566A  
Figure 5. 5 V Bipolar Voltage Output  
STEP I . . . OFFSET ADJUST  
Turn OFF all bits. Adjust 100 trimmer R1 to give –5.000  
output V.  
9.95k⍀  
5k⍀  
10V SPAN  
5k⍀  
10pF  
REF  
IN  
R2  
100⍀  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
I
REF  
DAC  
E
REF  
AD509  
10V  
+V  
I
=
AD561  
OUT  
STEP II . . . GAIN ADJUST  
Turn ON all bits. Adjust 100 gain trimmer R2 to give a read-  
ing of +4.9976 V.  
20k⍀  
2.4k⍀  
4 
؋
 I  
REF  
؋
 CODE  
REF  
GND  
CODE  
INPUT  
POWER  
GND  
Please note that it is not necessary to trim the op amp to obtain  
full accuracy at room temperature. In most bipolar situations,  
an op amp trim is unnecessary unless the untrimmed offset drift  
of the op amp is excessive.  
–V  
EE  
MSB  
LSB  
Figure 4. 0 V to 10 V Unipolar Voltage Output  
STEP I . . . ZERO ADJUST  
Turn all bits OFF and adjust zero trimmer, R1, until the output  
reads 0.000 V (1 LSB = 2.44 mV). In most cases, this trim is  
not needed, but Pin 7 should then be connected to Pin 12.  
–9–  
REV. E  
AD565A/AD566A  
FIGURE 6. OTHER VOLTAGE RANGES  
The AD566A can also be easily configured for a unipolar 0 V to  
+5 V range or 2.5 V and 10 V bipolar ranges by using the  
additional 5 kapplication resistor provided at the 20 V span R  
terminal, Pin 11. For a 5 V span (0 V to +5 V or 2.5 V), the two  
5 kresistors are used in parallel by shorting Pin 11 to Pin 9 and  
connecting Pin 10 to the op amp output and the bipolar offset  
resistor either to ground for unipolar or to VREF for the bipolar  
range. For the 10 V range (20 V span), use the 5 kresistors in  
series by connecting only Pin 11 to the op amp output and the  
bipolar offset connected as shown. The 10 V option is shown  
in Figure 6.  
R1  
5k  
BIPOLAR OFF  
20V SPAN  
10V SPAN  
AD566A  
9.95k⍀  
5k⍀  
5k⍀  
14k⍀  
10pF  
R2  
5k⍀  
REF  
IN  
19.95k⍀  
DAC  
OUT  
0.5mA  
I
O
8k⍀  
I
REF  
DAC  
E
REF  
AD509  
7.5V  
–V  
I
=
AD561  
OUT  
20k⍀  
2.4k⍀  
4 
؋
 I  
REF  
؋
 CODE  
REF  
GND  
CODE  
INPUT  
POWER  
GND  
R3  
26k*  
–V  
LSB  
EE  
MSB  
*
THE PARALLEL COMBINATION OF THE BIPOLAR OFFSET RESISTOR  
AND R3 ESTABLISHES A CURRENT TO BALANCE THE MSB CURRENT.  
THE EFFECT OF TEMPERATURE COEFFICIENT MISMATCH BETWEEN  
THE BIPOLAR RESISTOR COMBINATION AND DAC RESISTORS IS  
EXPANDED ON PREVIOUS PAGE.  
Figure 6. 10 V Voltage Output  
Table I. Digital Input Codes  
ANALOG OUTPUT  
DIGITAL INPUT  
MSB  
LSB  
Straight Binary  
Offset Binary  
Twos Complement*  
0 0 0 0 0 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 1 1 1 1  
Zero  
–FS  
Zero – 1 LSB  
Zero  
Zero  
+FS – 1 LSB  
–FS  
Mid Scale – 1 LSB  
+1/2 FS  
+FS – l LSB  
+FS – 1 LSB  
Zero – 1 LSB  
*Inverts the MSB of the offset binary code with an external inverter to obtain twos complement.  
–10–  
REV.E  
AD565A/AD566A  
OUTLINE DIMENSIONS  
24-Lead Side-Brazed Solder Lid Ceramic DIP [DIP/SB]  
(D-24)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49) MAX  
13  
0.005 (0.13) MIN  
24  
0.610 (15.49)  
0.500 (12.70)  
PIN 1  
1
12  
0.620 (15.75)  
0.590 (14.99)  
0.075 (1.91)  
0.015 (0.38)  
1.290 (32.77) MAX  
0.225 (5.72)  
MAX  
0.150  
(3.81)  
MIN  
SEATING  
PLANE  
0.200 (5.08)  
0.120 (3.05)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
0.100 (2.54)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
28-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(RW-28)  
Dimensions shown in millimeters and (inches)  
18.10 (0.7126)  
17.70 (0.6969)  
28  
1
15  
14  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
؋
 45؇  
0.30 (0.0118)  
0.10 (0.0039)  
8؇  
0؇  
1.27 (0.0500) 0.51 (0.0201) SEATING  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
PLANE  
BSC  
0.33 (0.0130)  
COMPLIANT TO JEDEC STANDARDS MS-013AE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Revision History  
Location  
Page  
10/02—Data Sheet changed from REV. D to REV. E.  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
OUTLINE DIMENSIONS updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
–11–  
REV. E  
–12–  

相关型号:

AD566AKD/BIN

AD566AKD/BIN
ADI

AD566AKN

12-Bit Digital-to-Analog Converter
ETC

AD566AKN/BIN

AD566AKN/BIN
ADI

AD566AKQ

12-Bit Digital-to-Analog Converter
ETC

AD566ASD

High Speed 12-Bit Monolithic D/A Converters
ADI

AD566ASD/883B

12-Bit Digital-to-Analog Converter
ETC

AD566ASD/BIN

AD566ASD/BIN
ADI

AD566ASD/BIN/883B

AD566ASD/BIN/883B
ADI

AD566ASQ

12-Bit Digital-to-Analog Converter
ETC

AD566ATD

High Speed 12-Bit Monolithic D/A Converters
ADI

AD566ATD

PARALLEL, WORD INPUT LOADING, 0.25us SETTLING TIME, 12-BIT DAC, CDIP24, HERMETIC SEALED, SIDE BRAZED, CERAMIC, DIP-24
ROCHESTER

AD566ATD/883B

12-Bit Digital-to-Analog Converter
ETC