AD5272BCPZ-20-RL7 [ROCHESTER]

20K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO10, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, LFCSP-10;
AD5272BCPZ-20-RL7
型号: AD5272BCPZ-20-RL7
厂家: Rochester Electronics    Rochester Electronics
描述:

20K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO10, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, LFCSP-10

光电二极管 转换器 电阻器
文件: 总29页 (文件大小:1876K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1024-/256-Position, 1% Resistor Tolerance Error,  
I2C Interface and 50-TP Memory Digital Rheostat  
Data Sheet  
AD5272/AD5274  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
Single-channel, 1024-/256-position resolution  
20 kΩ, 50 kΩ, 100 kΩ nominal resistance  
Maximum 1ꢀ nominal resistor tolerance error  
50-times programmable (50-TP) wiper memory  
Rheostat mode temperature coefficient: 5 ppm/°C  
2.7 V to 5.5 V single-supply operation  
2.5 V to 2.75 V dual-supply operation for ac or bipolar  
operations  
POWER-ON  
RESET  
AD5272/AD5274  
RDAC  
REGISTER  
SCL  
SDA  
A
2
10/8  
I C  
SERIAL  
INTERFACE  
I2C-compatible interface  
W
Wiper setting readback  
50-TP  
MEMORY  
BLOCK  
ADDR  
RESET  
Power on refreshed from 50-TP memory  
Thin LFCSP 10-lead, 3 mm × 3 mm × 0.8 mm package  
Compact MSOP, 10-lead 3 mm × 4.9 mm × 1.1 mm package  
V
EXT_CAP  
GND  
SS  
APPLICATIONS  
Figure 1.  
Mechanical rheostat replacements  
Op-amp: variable gain control  
Instrumentation: gain, offset adjustment  
Programmable voltage to current conversions  
Programmable filters, delays, time constants  
Programmable power supply  
Sensor calibration  
GENERAL DESCRIPTION  
The AD5272/AD52741 are single-channel, 1024-/256-position  
digital rheostats that combine industry leading variable resistor  
performance with nonvolatile memory (NVM) in a compact  
package.  
The AD5272/AD5274 device wiper settings are controllable  
through the I2C-compatible digital interface. Unlimited  
adjustments are allowed before programming the resistance  
value into the 50-TP memory. The AD5272/AD5274 do not  
require any external voltage supply to facilitate fuse blow and  
there are 50 opportunities for permanent programming. During  
50-TP activation, a permanent blow fuse command freezes the  
wiper position (analogous to placing epoxy on a mechanical  
trimmer).  
The AD5272/AD5274 ensure less than 1% end-to-end resistor  
tolerance error and offer 50-times programmable (50-TP) memory.  
The guaranteed industry leading low resistor tolerance error  
feature simplifies open-loop applications as well as precision  
calibration and tolerance matching applications.  
The AD5272/AD5274 are available in a 3 mm × 3 mm 10-lead  
LFCSP package and in a 10-lead MSOP package. The parts are  
guaranteed to operate over the extended industrial temperature  
range of −40°C to +125°C.  
1 Protected by U.S. Patent Number 7688240.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5272/AD5274  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Shift Register............................................................................... 18  
Write Operation.......................................................................... 19  
Read Operation........................................................................... 20  
RDAC Register............................................................................ 21  
50-TP Memory Block ................................................................ 21  
Write Protection ......................................................................... 21  
50-TP Memory Write-Acknowledge Polling.......................... 23  
Reset............................................................................................. 23  
Resistor Performance Mode...................................................... 23  
Shutdown Mode ......................................................................... 23  
RDAC Architecture.................................................................... 23  
Programming the Variable Resistor......................................... 23  
EXT_CAP Capacitor.................................................................. 24  
Terminal Voltage Operating Range ......................................... 24  
Power-Up Sequence ................................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5272 .......................................... 3  
Electrical Characteristics—AD5274 .......................................... 5  
Interface Timing Specifications.................................................. 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 17  
Theory of Operation ...................................................................... 18  
Serial Data Interface................................................................... 18  
REVISION HISTORY  
3/13—Rev. C to Rev. D  
3/10—Rev. 0 to Rev. A  
Changed Resistor Noise Density, RAW = 20 kΩ from 50 nV/√Hz  
to 13 nV/√Hz; Table 1...................................................................... 4  
Changed Resistor Noise Density, RAW = 20 kΩ from 50 nV/√Hz  
to 13 nV/√Hz; Table 4...................................................................... 6  
Updated Outline Dimensions....................................................... 25  
Changes to Product Title and General Description Section .......1  
Changes to Theory of Operation Section.................................... 15  
10/09—Revision 0: Initial Version  
11/10—Rev. B to Rev. C  
Changes to Figure 24...................................................................... 14  
5/10—Rev. A to Rev. B  
Added LFCSP Package.................................................. Throughout  
Changed OTP to 50-TP................................................ Throughout  
Changes to Features Section and Applications Section............... 1  
Added Endnote 1.............................................................................. 1  
Changes to Table 1............................................................................ 3  
Added Table 3.................................................................................... 4  
Changes to Table 4............................................................................ 5  
Added Table 6.................................................................................... 6  
Changes to Table 8 and Table 9....................................................... 9  
Added Figure 5................................................................................ 10  
Added Exposed Pad Note to Table 10.......................................... 10  
Changes to Typical Performance Characteristics....................... 11  
Changes to Resistor Performance Mode Section ....................... 23  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide .......................................................... 26  
Rev. D | Page 2 of 28  
 
Data Sheet  
AD5272/AD5274  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—AD5272  
VDD = 2.7 V to 5.5 V, V SS = 0 V; VDD = 2.5 V to 2.75 V, V SS = −2.5 V to −2.75 V; −40°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
R-INL  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
Resistor Integral Nonlinearity2, 3  
10  
−1  
−1  
−1  
−1  
Bits  
LSB  
LSB  
LSB  
LSB  
RAW= 20 kΩ, |VDD − VSS| = 3.0 V to 5.5 V  
RAW= 20 kΩ, |VDD − VSS| = 2.7 V to 3.0 V  
RAW= 50 kΩ, 100 kΩ  
+1  
+1.5  
+1  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
R-Perf Mode4  
R-DNL  
+1  
See Table 2 and Table 3  
−1  
0.5 +1  
%
Normal Mode  
15  
5
35  
%
Resistance Temperature Coefficient5, 6  
Wiper Resistance  
RESISTOR TERMINALS  
Terminal Voltage Range5, 7  
Capacitance5 A  
Code = full scale  
Code = zero scale  
ppm/°C  
70  
VSS  
VDD  
V
f = 1 MHz, measured to GND, code = half scale  
f = 1 MHz, measured to GND, code = half scale  
VA = VW  
90  
40  
pF  
pF  
nA  
Capacitance5 W  
Common-Mode Leakage Current5  
50  
DIGITAL INPUTS  
Input Logic5  
High  
Low  
Input Current  
Input Capacitance5  
DIGITAL OUTPUT  
Output Voltage5  
High  
VINH  
VINL  
IIN  
2.0  
V
V
µA  
pF  
0.8  
1
5
CIN  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VDD  
RPULL_UP = 2.2 kΩ to VDD  
VDD − 0.1  
V
Low  
VDD = 2.7 V to 5.5 V, VSS = 0 V  
VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V  
0.4  
0.6  
+1  
V
V
µA  
pF  
Tristate Leakage Current  
Output Capacitance5  
POWER SUPPLIES  
Single-Supply Power Range  
Dual-Supply Power Range  
Supply Current  
Positive  
−1  
5
VSS = 0 V  
2.7  
2.5  
5.5  
2.75  
V
V
IDD  
ISS  
1
µA  
µA  
Negative  
50-TP Store Current5, 8  
−1  
Positive  
Negative  
IDD_OTP_STORE  
ISS_OTP_STORE  
4
−4  
mA  
mA  
50-TP Read Current5, 9  
Positive  
Negative  
Power Dissipation10  
IDD_OTP_READ  
ISS_OTP_READ  
500  
5.5  
µA  
µA  
µW  
−500  
VIH = VDD or VIL = GND  
Rev. D | Page 3 of 28  
 
 
AD5272/AD5274  
Data Sheet  
Parameter  
Power Supply Rejection Ratio5  
Symbol  
Test Conditions/Comments  
ΔVDD/ΔVSS = 5 V 10%  
RAW = 20 kΩ  
Min  
Typ1 Max  
Unit  
PSRR  
dB  
−66  
−75  
−78  
−55  
−67  
−70  
RAW = 50 kΩ  
RAW = 100 kΩ  
DYNAMIC CHARACTERISTICS5, 11  
Bandwidth  
−3 dB, RAW = 10 kΩ, Terminal W, see Figure 41  
RAW = 20 kΩ  
kHz  
300  
120  
60  
RAW = 50 kΩ  
RAW = 100 kΩ  
Total Harmonic Distortion  
Resistor Noise Density  
VA = 1 V rms, f = 1 kHz, code = half scale  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW = 100 kΩ  
Code = half scale, TA = 25°C, f = 10 kHz  
RAW = 20 kΩ  
dB  
−90  
−88  
−85  
nV/√Hz  
13  
25  
32  
RAW = 50 kΩ  
RAW = 100 kΩ  
1 Typical specifications represent average readings at 25°C, VDD = 5 V, and VSS = 0 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions.  
3 The maximum current in each code is defined by IAW = (VDD − 1)/RAW  
.
4 The terms, resistor performance mode and R-Perf mode, are used interchangeably. See the Resistor Performance Mode section.  
5 Guaranteed by design and not subject to production test.  
6 See Figure 24 for more details.  
7 Resistor Terminal A and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground referenced bipolar  
signal adjustment.  
8 Different from operating current, the supply current for the fuse program lasts approximately 55 ms.  
9 Different from operating current, the supply current for the fuse read lasts approximately 500 ns.  
10  
P
is calculated from (IDD × VDD) + (ISS × VSS).  
DISS  
11 All dynamic characteristics use VDD = +2.5 V, VSS = −2.5 V.  
Table 2. AD5272 Resistor Performance Mode Code Range  
Resistor Tolerance Per Code  
|VDD − VSS| = 4.5 V to 5.5 V  
|VDD − VSS| = 2.7 V to 4.5 V  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x078 to 0x3FF  
From 0x037 to 0x3FF  
From 0x028 to 0x3FF  
From 0x0BE to 0x3FF  
From 0x055 to 0x3FF  
From 0x037 to 0x3FF  
Table 3. AD5272 50 kΩ and 100 kΩ Resistor Performance Mode Code Range  
Resistor Tolerance Per Code  
RAW = 50 kΩ  
RAW = 100 kΩ  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x078 to 0x3FF  
From 0x055 to 0x3FF  
From 0x032 to 0x3FF  
From 0x04B to 0x3FF  
From 0x032 to 0x3FF  
From 0x019 to 0x3FF  
Rev. D | Page 4 of 28  
 
 
Data Sheet  
AD5272/AD5274  
ELECTRICAL CHARACTERISTICS—AD5274  
VDD = 2.7 V to 5.5 V, VSS = 0 V; VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V; −40°C < TA < +125°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS—  
RHEOSTAT MODE  
Resolution  
8
−1  
−1  
Bits  
LSB  
LSB  
Resistor Integral Nonlinearity2, 3  
R-INL  
R-DNL  
+1  
+1  
Resistor Differential  
Nonlinearity2  
Nominal Resistor Tolerance  
R-Perf Mode4  
Normal Mode  
See Table 5 and Table 6  
−1  
0.5  
15  
+1  
%
%
Resistance Temperature  
Coefficient5, 6  
Wiper Resistance  
RESISTOR TERMINALS  
Terminal Voltage Range5, 7  
Capacitance5 A  
Capacitance5 W  
Common-Mode Leakage  
Current5  
Code = full scale  
Code = zero scale  
5
ppm/°C  
35  
70  
VSS  
VDD  
V
f = 1 MHz, measured to GND, code = half scale  
f = 1 MHz, measured to GND, code = half scale  
VA = VW  
90  
40  
pF  
pF  
nA  
50  
DIGITAL INPUTS  
Input Logic5  
High  
VINH  
VINL  
IIN  
2.0  
V
V
µA  
pF  
Low  
0.8  
Input Current  
Input Capacitance5  
DIGITAL OUTPUT  
Output Voltage5  
High  
1
5
CIN  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VDD  
RPULL_UP = 2.2 kΩ to VDD  
VDD − 0.1  
V
Low  
VDD = 2.7 V to 5.5 V, VSS = 0 V  
VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V  
0.4  
0.6  
+1  
V
V
µA  
pF  
Tristate Leakage Current  
Output Capacitance5  
POWER SUPPLIES  
Single-Supply Power Range  
Dual-Supply Power Range  
Supply Current  
Positive  
−1  
5
VSS = 0 V  
2.7  
2.5  
5.5  
2.75  
V
V
IDD  
ISS  
1
µA  
µA  
Negative  
OTP Store Current5, 8  
−1  
Positive  
Negative  
IDD_OTP_STORE  
ISS_OTP_STORE  
4
−4  
mA  
mA  
OTP Read Current5, 9  
Positive  
Negative  
Power Dissipation10  
IDD_OTP_READ  
ISS_OTP_READ  
500  
5.5  
µA  
µA  
µW  
dB  
−500  
VIH = VDD or VIL = GND  
ΔVDD/ΔVSS = 5 V 10%  
RAW = 20 kΩ  
Power Supply Rejection Ratio5 PSRR  
−66  
−75  
−78  
−55  
−67  
−70  
RAW = 50 kΩ  
RAW = 100 kΩ  
Rev. D | Page 5 of 28  
 
AD5272/AD5274  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DYNAMIC CHARACTERISTICS5, 11  
Bandwidth  
−3 dB, RAW = 10 kΩ, Terminal W, see Figure 41  
kHz  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW = 100 kΩ  
300  
120  
60  
Total Harmonic Distortion  
Resistor Noise Density  
VA = 1 V rms, f = 1 kHz, code = half scale  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW = 100 kΩ  
Code = half scale, TA = 25°C, f = 10 kHz  
RAW = 20 kΩ  
dB  
−90  
−88  
−85  
nV/√Hz  
13  
25  
32  
RAW = 50 kΩ  
RAW = 100 kΩ  
1 Typical specifications represent average readings at 25°C, VDD = 5 V, and VSS = 0 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions.  
3 The maximum current in each code is defined by IAW = (VDD − 1)/RAW  
.
4 The terms, resistor performance mode and R-Perf mode, are used interchangeably. See the Resistor Performance Mode section.  
5 Guaranteed by design and not subject to production test.  
6 See Figure 24 for more details.  
7 Resistor Terminal A and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground referenced bipolar  
signal adjustment.  
8 Different from operating current, the supply current for the fuse program lasts approximately 55 ms.  
9 Different from operating current, the supply current for the fuse read lasts approximately 500 ns.  
10  
P
is calculated from (IDD × VDD) + (ISS × VSS).  
DISS  
11 All dynamic characteristics use VDD = +2.5 V, VSS = −2.5 V.  
Table 5. AD5274 Resistor Performance Mode Code Range  
Resistor Tolerance per Code  
|VDD − VSS| = 4.5 V to 5.5 V  
|VDD − VSS| = 2.7 V to 4.5 V  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x1E to 0xFF  
From 0x0F to 0xFF  
From 0x06 to 0xFF  
From 0x32 to 0xFF  
From 0x19 to 0xFF  
From 0x0E to 0xFF  
Table 6. AD5274 50 kΩ and 100 kΩ Resistor Performance Mode Code Range  
Resistor Tolerance per Code  
RAW = 50 kΩ  
RAW = 100 kΩ  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x1E to 0xFF  
From 0x14 to 0xFF  
From 0x0A to 0xFF  
From 0x14 to 0xFF  
From 0x0F to 0xFF  
From 0x0A to 0xFF  
Rev. D | Page 6 of 28  
 
 
Data Sheet  
AD5272/AD5274  
INTERFACE TIMING SPECIFICATIONS  
VDD = 2.5 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 7.  
Limit at TMIN, TMAX  
Parameter  
Conditions1  
Standard mode  
Fast mode  
Min  
Max  
100  
400  
Unit  
kHz  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Description  
2
fSCL  
Serial clock frequency  
Serial clock frequency  
tHIGH, SCL high time  
tHIGH, SCL high time  
tLOW, SCL low time  
t1  
t2  
t3  
t4  
t5  
t6  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
4
0.6  
4.7  
1.3  
250  
100  
0
tLOW, SCL low time  
tSU;DAT, data setup time  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
tHD;DAT, data hold time  
3.45  
0.9  
0
4.7  
0.6  
4
0.6  
160  
4.7  
1.3  
4
tSU;STA, set-up time for a repeated start condition  
tSU;STA, set-up time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
tHD;STA, hold time (repeated) start condition  
tHD;STA, hold time (repeated) start condition  
tBUF, bus free time between a stop and a start condition  
tBUF, bus free time between a stop and a start condition  
tSU;STO, setup time for a stop condition  
tSU;STO, setup time for a stop condition  
tRDA, rise time of SDA signal  
tRDA, rise time of SDA signal  
tFDA, fall time of SDA signal  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
tRCL, rise time of SCL signal  
tRCL1, rise time of SCL signal after a repeated start condition and  
after an acknowledge bit  
t7  
t8  
0.6  
t9  
1000  
300  
300  
300  
1000  
300  
t10  
t11  
t11A  
1000  
Fast mode  
300  
ns  
tRCL1, rise time of SCL signal after a repeated start condition and  
after an acknowledge bit  
t12  
t13  
Standard mode  
Fast mode  
RESET pulse time  
Fast mode  
300  
300  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
µs  
ms  
µs  
ms  
tFCL, fall time of SCL signal  
tFCL, fall time of SCL signal  
Minimum RESET low time  
20  
0
500  
3
tSP  
tEXEC  
50  
Pulse width of spike suppressed  
Command execute time  
RDAC register write command execute time (R-Perf mode)  
RDAC register write command execute time (normal mode)  
Memory readback execute time  
Memory program time  
4, 5  
tRDAC_R-PERF  
tRDAC_NORMAL  
tMEMORY_READ  
tMEMORY_PROGRAM  
tRESET  
2
600  
6
350  
600  
2
Reset 50-TP restore time  
Power-on 50-TP restore time  
6
tPOWER-UP  
1 Maximum bus capacitance is limited to 400 pF.  
2 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate but has a negative effect on EMC behavior  
of the part.  
3 Input filtering on the SCL and SDA inputs suppress noise spikes that are less than 50 ns for fast mode.  
4 Refer to tRDAC_R-PERF and tRDAC_NORMAL for RDAC register write operations.  
5 Refer to t  
t
MEMORY_READ and  
for memory commands operations.  
MEMORY_PROGRAM  
6 Maximum time after VDD − VSS is equal to 2.5 V.  
Rev. D | Page 7 of 28  
 
 
 
 
 
 
 
AD5272/AD5274  
Data Sheet  
Shift Register and Timing Diagrams  
DB9 (MSB)  
DB0 (LSB)  
D0  
D1  
C3  
C1  
C0  
D9  
D7  
D6  
D5  
D4  
D3  
D8  
0
0
C2  
D2  
DATA BITS  
CONTROL BITS  
Figure 2. Shift Register Content  
t12  
t11  
t6  
t8  
t2  
SCL  
SDA  
t5  
t1  
t6  
t10  
t9  
t4  
t3  
t7  
P
S
S
P
t13  
RESET  
Figure 3. 2-Wire Serial Interface Timing Diagram  
Rev. D | Page 8 of 28  
 
 
Data Sheet  
AD5272/AD5274  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 8.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
–0.3 V to +7.0 V  
+0.3 V to −7.0 V  
7 V  
VA, VW to GND  
VSS − 0.3 V, VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
7 V  
THERMAL RESISTANCE  
Digital Input and Output Voltage to GND  
EXT_CAP to VSS  
IA, IW  
θJA is defined by JEDEC specification JESD-51 and the value is  
dependent on the test board and test environment.  
Continuous  
Table 9. Thermal Resistance  
RAW = 20 kΩ  
RAW = 50 kΩ, 100 kΩ  
Pulsed1  
Frequency > 10 kHz  
Frequency ≤ 10 kHz  
Operating Temperature Range4  
Maximum Junction Temperature  
(TJ Maximum)  
3 mA  
2 mA  
1
Package Type  
10-Lead LFCSP  
10-Lead MSOP  
θJA  
50  
θJC  
3
N/A  
Unit  
°C/W  
°C/W  
MCC2/d3  
MCC2/√d3  
−40°C to +125°C  
150°C  
135  
1 JEDEC 2S2P test board, still air (0 m/s air flow).  
ESD CAUTION  
Storage Temperature Range  
Reflow Soldering  
−65°C to +150°C  
Peak Temperature  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A and W terminals at a given  
resistance.  
2 Maximum continuous current  
3 Pulse duty factor.  
4 Includes programming of 50-TP memory.  
Rev. D | Page 9 of 28  
 
 
 
 
 
 
 
 
AD5272/AD5274  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
10  
9
V
1
2
3
4
5
ADDR  
DD  
A
SCL  
AD5272/  
AD5274  
8
SDA  
W
(EXPOSED  
PAD)  
V
7
RESET  
GND  
SS  
V
1
2
3
4
5
10 ADDR  
DD  
A
AD5272/  
AD5274  
TOP VIEW  
(Not to Scale)  
9
8
7
6
SCL  
6
EXT_CAP  
W
SDA  
V
SS  
EXT_CAP  
RESET  
GND  
NOTES  
1. THE EXPOSED PAD IS LEFT FLOATING  
OR IS TIED TO V  
.
SS  
Figure 4. MSOP Pin Configuration  
Figure 5. LFCSP Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
VDD  
A
W
Positive Power Supply. Decouple this pin with 0.1 μF ceramic capacitors and 10 μF capacitors.  
Terminal A of RDAC. VSS ≤ VA ≤ VDD.  
Wiper terminal of RDAC. VSS ≤ VW ≤ VDD.  
Negative Supply. Connect to 0 V for single-supply applications. Decouple this pin with 0.1 ꢀF ceramic capacitors  
and 10 ꢀF capacitors.  
VSS  
5
EXT_CAP  
External Capacitor. Connect a 1 μF capacitor between EXT_CAP and VSS. This capacitor must have a voltage  
rating of ≥7 V.  
6
7
GND  
RESET  
Ground Pin, Logic Ground Reference.  
Hardware Reset Pin. Refreshes the RDAC register with the contents of the 50-TP memory register. Factory  
default loads midscale until the first 50-TP wiper memory location is programmed. RESET is active low. Tie RESET  
to VDD if not used.  
8
SDA  
Serial Data Line. This is used in conjunction with the SCL line to clock data into or out of the 16-bit input registers. It is  
a bidirectional, open-drain data line that should be pulled to the supply with an external pull-up resistor.  
9
10  
EPAD  
SCL  
ADDR  
Exposed Pad  
(LFCSP Only)  
Serial Clock Line. This is used in conjunction with the SDA line to clock data into or out of the 16-bit input registers.  
Tristate Address Input. Sets the two least significant bits (Bit A1, Bit A0) of the 7-bit slave address (see Table 11).  
Leave floating or tie to VSS.  
Rev. D | Page 10 of 28  
 
Data Sheet  
AD5272/AD5274  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.8  
0.8  
0.6  
0.4  
0.2  
+125°C  
R
= 20kΩ  
T
= 25°C  
AW  
A
20kΩ  
50kΩ  
100kΩ  
+25°C  
–40°C  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
0
–0.2  
–0.4  
0
256  
512  
768  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5272)  
Figure 9. R-INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5272)  
0.6  
0.2  
T
= 25°C  
A
R
= 20kΩ  
AW  
0.1  
0
0.4  
0.2  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.2  
–0.4  
–0.6  
–40°C  
256  
+25°C  
512  
+125°C  
768  
20kΩ  
50kΩ  
100kΩ  
0
128  
384  
640  
896  
1023  
0
256  
512  
CODE (Decimal)  
768  
1023  
CODE (Decimal)  
Figure 7. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5272)  
Figure 10. R-DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5272)  
0.5  
0.6  
+125°C  
+25°C  
–40°C  
20kΩ  
50kΩ  
100kΩ  
T
= 25°C  
A
R
= 20kΩ  
AW  
0.4  
0.3  
0.2  
0.4  
0.2  
0
–0.2  
–0.4  
0.1  
0
–0.1  
0
256  
512  
768  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 8. R-INL in Normal Mode vs. Code vs. Temperature (AD5272)  
Figure 11. R-INL in Normal Mode vs. Code vs. Nominal Resistance (AD5272)  
Rev. D | Page 11 of 28  
 
AD5272/AD5274  
Data Sheet  
0.15  
0.15  
0.10  
+125°C  
+25°C  
–40°C  
T
= 25°C  
20kΩ  
50kΩ  
100kΩ  
R
= 20kΩ  
A
AW  
0.10  
0.05  
0
0.05  
0
–0.05  
–0.05  
–0.10  
–0.10  
–0.15  
–0.20  
–0.15  
0
256  
512  
768  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 12. R-DNL in Normal Mode vs. Code vs. Temperature (AD5272)  
Figure 15. R-DNL in Normal Mode vs. Code vs. Nominal Resistance (AD5272)  
0.15  
0.20  
+125°C  
+25°C  
–40°C  
T
= 25°C  
20kΩ  
A
R
= 20kΩ  
AW  
100kΩ  
0.15  
0.10  
0.05  
0.10  
0.05  
0
0
–0.05  
–0.10  
–0.05  
–0.10  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 16. R-INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5274)  
Figure 13. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5274)  
0.15  
0.06  
+125°C  
+25°C  
–40°C  
R
= 20kΩ  
T
= 25°C  
AW  
A
0.04  
0.02  
0.10  
0.05  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
0
–0.05  
–0.10  
–0.15  
20kΩ  
100kΩ  
–0.14  
0
64  
128  
CODE (Decimal)  
192  
255  
0
64  
128  
192  
255  
CODE (Decimal)  
Figure 17. R-DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5274)  
Figure 14. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5274)  
Rev. D | Page 12 of 28  
Data Sheet  
AD5272/AD5274  
0.10  
0.15  
0.10  
0.05  
0
+125°C  
+25°C  
–40°C  
20kΩ  
100kΩ  
T
= 25°C  
R
= 20kΩ  
A
AW  
0.08  
0.06  
0.04  
0.02  
0
–0.05  
–0.10  
–0.02  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 18. R-INL in Normal Mode vs. Code vs. Temperature (AD5274)  
Figure 21. R-INL in Normal Mode vs. Code vs. Nominal Resistance (AD5274)  
0.03  
0.010  
+125°C  
+25°C  
–40°C  
T
= 25°C  
R
= 20kΩ  
A
100kΩ  
20kΩ  
AW  
0.02  
0.01  
0
0.008  
0.006  
0.004  
0.002  
0
–0.01  
–0.02  
–0.002  
–0.03  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 19. R-DNL in Normal Mode vs. Code vs. Temperature (AD5274)  
Figure 22. R-DNL in Normal Mode vs. Code vs. Nominal Resistance (AD5274)  
0.7  
500  
400  
0.6  
0.5  
0.4  
0.3  
I
= 5V  
DD  
300  
200  
I
I
= 3V  
DD  
100  
I
= 3V  
0
SS  
–100  
–200  
–300  
–400  
–500  
0.2  
0.1  
0
= 5V  
SS  
–0.1  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110  
TEMPERATURE (°C)  
V
LOGIC  
Figure 20. Supply Current (IDD, ISS) vs. Temperature  
Figure 23. Supply Current (IDD) vs. Digital Input Voltage  
Rev. D | Page 13 of 28  
AD5272/AD5274  
Data Sheet  
7
6
5
4
3
2
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
/V = 5V/0V  
DD SS  
V
/V = 5V/0V  
DD SS  
20kΩ  
50kΩ  
100kΩ  
20kΩ  
50kΩ  
100kΩ  
1
0
0
0
0
256  
64  
512  
128  
768  
192  
1023 AD5272  
255 AD5274  
0
0
256  
64  
512  
128  
768  
192  
1023 AD5272  
255 AD5274  
CODE (Decimal)  
CODE (Decimal)  
Figure 24. Tempco ΔRWA/ΔT vs. Code  
Figure 27. Theoretical Maximum Current vs. Code  
0
0
AD5272 (AD5274)  
AD5272 (AD5274)  
0x200 (0x80)  
0x100 (0x40)  
0x080 (0x20)  
0x040 (0x10)  
0x020 (0x08)  
0x010 (0x04)  
0x008 (0x02)  
0x004 (0x01)  
0x200 (0x80)  
–10  
–20  
–10 0x100 (0x40)  
0x080 (0x20)  
–20  
0x040 (0x10)  
–30  
–40  
–50  
–60  
–70  
0x020 (0x08)  
–30  
0x010 (0x04)  
0x008 (0x02)  
–40  
0x004 (0x01)  
0x002  
0x001  
0x002  
–50  
0x001  
–60  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. 20 kΩ Gain vs. Code vs. Frequency  
Figure 28. 100 kΩ Gain vs. Code vs. Frequency  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
/V = 5V/0V  
AD5272 (AD5274)  
DD SS  
0x200 (0x80)  
CODE = HALF SCALE  
0x100 (0x40)  
0x080 (0x20)  
0x040 (0x10)  
0x020 (0x08)  
0x010 (0x04)  
50kΩ  
100kΩ  
20kΩ  
0x008 (0x02)  
0x004 (0x01)  
–40  
–50  
–60  
0x002  
0x001  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 26. 50 kΩ Gain vs. Code vs. Frequency  
Figure 29. PSRR vs. Frequency  
Rev. D | Page 14 of 28  
 
Data Sheet  
AD5272/AD5274  
0
0
–10  
–20  
V
/V = 5V/0V  
DD SS  
20kΩ  
50kΩ  
100kΩ  
V
/V = 5V/0V  
DD SS  
CODE = HALF SCALE  
NOISE BW = 22kHz  
V
CODE = HALF SCALE  
fIN = 1kHz  
= 1V rms  
IN  
NOISE BW = 22kHz  
–20  
–40  
–60  
20kΩ  
50kΩ  
100kΩ  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
–90  
–100  
–100  
0.001  
100  
1k  
10k  
0.01  
0.1  
)
1
100k  
VOLTAGE (V  
FREQUENCY (Hz)  
RMS  
Figure 30. THD + N vs. Frequency  
Figure 33. THD + N vs. Amplitude  
0.03  
0.02  
0.01  
0
0.0010  
0.0005  
0
V
/V = 5V/0V  
DD SS  
= 200µA  
20kΩ  
50kΩ  
100kΩ  
I
AW  
CODE = HALF SCALE  
–0.01  
–0.0005  
–0.0010  
–0.0015  
–0.02  
–0.03  
–0.04  
–1  
4
9
14  
19  
–10  
0
10  
20  
30  
40  
50  
60  
TIME (µs)  
TIME (µs)  
Figure 31. Maximum Glitch Energy  
Figure 34. Digital Feedthrough  
70  
60  
50  
40  
30  
20  
10  
0
45  
40  
11.25  
10.00  
8.75  
15.5  
T
= 25°C  
A
V
/V = 5V/0V  
DD SS  
20kΩ  
50kΩ  
100kΩ  
20kΩ  
50kΩ  
100kΩ  
15.0  
12.5  
10.0  
7.5  
5.0  
2.5  
0
35  
30  
7.50  
6.25  
25  
20  
5.00  
3.75  
2.50  
15  
10  
1.25  
0
5
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
TEMPERATURE (°C)  
DD  
Figure 35. Maximum Code Loss vs. Power Supply Range  
Figure 32. Maximum Code Loss vs. Temperature  
Rev. D | Page 15 of 28  
AD5272/AD5274  
Data Sheet  
8
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
V
/V = 5V/0V  
DD SS  
= 10µA  
I
AW  
CODE = HALF SCALE  
7
6
5
4
–0.001  
–0.002  
0
100 200 300 400 500 600 700 800 900 1000  
OPERATION AT 150°C (Hours)  
0.07  
0.09  
0.11  
0.13  
0.15  
0.17  
TIME (Seconds)  
Figure 36. VEXT_CAP Waveform While Writing Fuse  
Figure 37. Long-Term Drift Accelerated Average by Burn-In  
Rev. D | Page 16 of 28  
Data Sheet  
AD5272/AD5274  
TEST CIRCUITS  
Figure 38 to Figure 42 define the test conditions used in the Specifications section.  
DUT  
DUT  
I
W
1GΩ  
W
W
A
A
V
V
V
MS  
MS  
Figure 41. Gain vs. Frequency  
Figure 38. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
DUT  
GND  
GND  
V
I
MS  
R
=
=
WA  
I
CM  
W
+2.75V  
–2.75V  
W
CODE = 0x00  
DUT  
A
R
WA  
2
I
W
R
W
A
W
V
NC  
GND  
–2.75V  
MS  
NC = NO CONNECT  
+2.75V  
Figure 39. Wiper Resistance  
Figure 42. Common Leakage Current  
V+ = V ±10%  
DD  
V
V
MS  
PSRR (dB) = 20 log  
DD  
ΔV  
ΔV  
%
%
MS  
DD  
I
W
PSS (%/%) =  
V
DD  
W
V+  
A
V
MS  
Figure 40. Power Supply Sensitivity (PSS, PSRR)  
Rev. D | Page 17 of 28  
 
 
 
 
AD5272/AD5274  
Data Sheet  
THEORY OF OPERATION  
The AD5272 and AD5274 digital rheostats are designed to  
operate as true variable resistors for analog signals within the  
terminal voltage range of VSS < VTERM < VDD. The RDAC register  
contents determine the resistor wiper position. The RDAC  
register acts as a scratchpad register, which allows unlimited  
changes of resistance settings. The RDAC register can be  
programmed with any position setting using the I2C interface.  
When a desirable wiper position is found, this value can be  
stored in a 50-TP memory register. Thereafter, the wiper  
position is always restored to that position for subsequent  
power-up. The storing of 50-TP data takes approximately  
350 ms; during this time, the AD5272/AD5274 is locked and  
does not acknowledge any new command thereby preventing  
any changes from taking place. The acknowledge bit can be  
polled to verify that the fuse program command is complete.  
The 2-wire serial bus protocol operates as follows: The master  
initiates a data transfer by establishing a start condition, which  
is when a high-to-low transition on the SDA line occurs while  
SCL is high. The next byte is the address byte, which consists  
W
of the 7-bit slave address and a R/ bit. The slave device cor-  
responding to the transmitted address responds by pulling  
SDA low during the ninth clock pulse (this is termed the  
acknowledge bit). At this stage, all other devices on the bus  
remain idle while the selected device waits for data to be  
written to, or read from, its shift register.  
Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge bit).  
The transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of SCL.  
When all data bits have been read or written, a stop condition is  
established. In write mode, the master pulls the SDA line high  
during the 10th clock pulse to establish a stop condition. In read  
mode, the master issues a no acknowledge for the ninth clock  
pulse (that is, the SDA line remains high). The master then  
brings the SDA line low before the 10th clock pulse, and then  
high during the 10th clock pulse to establish a stop condition.  
The AD5272/AD5274 also feature a patented 1% end-to-end  
resistor tolerance. This simplifies precision, rheostat mode, and  
open-loop applications where knowledge of absolute resistance  
is critical.  
SERIAL DATA INTERFACE  
The AD5272/AD5274 have 2-wire I2C-compatible serial inter-  
faces. Each of these devices can be connected to an I2C bus as  
a slave device under the control of a master device; see Figure 3  
for a timing diagram of a typical write sequence.  
SHIFT REGISTER  
For the AD5272/AD5274, the shift register is 16 bits wide, as  
shown in Figure 2. The 16-bit word consists of two unused bits,  
which should be set to zero, followed by four control bits and  
10 RDAC data bits (note that for the AD5274 only, the lower  
two RDAC data bits are don’t care if the RDAC register is read  
from or written to), and data is loaded MSB first (Bit 15). The  
four control bits determine the function of the software command  
(Table 12). Figure 43 shows a timing diagram of a typical  
AD5272/AD5274 write sequence.  
The AD5272/AD5274 support standard (100 kHz) and fast  
(400 kHz) data transfer modes. Support is not provided for  
10-bit addressing and general call addressing.  
The AD5272/AD5274 each has a 7-bit slave address. The five  
MSBs are 01011 and the two LSBs are determined by the state  
of the ADDR pin. The facility to make hardwired changes to  
ADDR allows the user to incorporate up to three of these  
devices on one bus as outlined in Table 11.  
The command bits (Cx) control the operation of the digital  
potentiometer and the internal 50-TP memory. The data bits  
(Dx) are the values that are loaded into the decoded register.  
Table 11. Device Address Selection  
ADDR  
A1  
1
A0  
1
7-Bit I2C Device Address  
0101111  
GND  
VDD  
0
1
0
0
0101100  
0101110  
NC (No Connection)1  
1 Not available in bipolar mode. VSS < 0 V.  
Rev. D | Page 18 of 28  
 
 
 
 
 
Data Sheet  
AD5272/AD5274  
Two bytes of data are then written to the RDAC, the most  
WRITE OPERATION  
significant byte followed by the least significant byte; both of  
these data bytes are acknowledged by the AD5272/AD5274. A  
stop condition follows. The write operations for the AD5272/  
AD5274 are shown in Figure 43.  
It is possible to write data for the RDAC register or the control  
register. When writing to the AD5272/AD5274, the user must  
W
begin with a start command followed by an address byte (R/  
= 0), after which the AD5272/AD5274 acknowledges that it is  
prepared to receive data by pulling SDA low.  
A repeated write function gives the user flexibility to update the  
device a number of times after addressing the part only once, as  
shown in Figure 44.  
1
9
1
9
SCL  
1
0
0
1
1
A1  
A0  
R/W  
0
0
C3  
C2  
D9  
D8  
SDA  
START BY  
C1  
C0  
ACK. BY  
AD5272/AD5274  
ACK. BY  
AD5272/AD5274  
MASTER  
FRAME 2  
FRAME 1  
MOST SIGNIFICANT DATA BYTE  
SERIAL BUS ADDRESS BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY  
STOP BY  
AD5272/AD5274 MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 43. Write Command  
1
9
1
9
SCL  
SDA  
1
0
0
1
1
A1  
A0  
R/W  
ACK.  
0
0
C3  
C2  
C1  
C0  
D9  
D8  
ACK.  
START BY  
MASTER  
BY  
BY  
AD5272/AD5274  
AD5272/AD5274  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK.  
BY  
AD5272/AD5274  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
9
1
0
9
SCL (CONTINUED)  
SDA (CONTINUED)  
0
C3  
C2  
C1  
C0  
D9  
D8  
ACK.  
BY  
AD5272/AD5274  
FRAME 4  
MOST SIGNIFICANT DATA BYTE  
9
1
9
(CONTINUED)  
(CONTINUED)  
SCL  
SDA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK.  
STOP BY  
MASTER  
BY  
AD5272/AD5274  
FRAME 5  
LEAST SIGNIFICANT DATA BYTE  
Figure 44. Multiple Write  
Rev. D | Page 19 of 28  
 
 
 
AD5272/AD5274  
Data Sheet  
A stop condition follows. These bytes contain the read instruc-  
tion, which enables readback of the RDAC register, 50-TP  
memory, or the control register. The user can then read back  
the data beginning with a start command followed by an  
READ OPERATION  
When reading data back from the AD5272/AD5274, the user  
must first issue a readback command to the device, this begins  
with a start command followed by an address byte (R/ = 0),  
after which the AD5272/AD5274 acknowledges that it is  
prepared to receive data by pulling SDA low.  
W
W
address byte (R/ = 1), after which the device acknowledges  
that it is prepared to transmit data by pulling SDA low. Two  
bytes of data are then read from the device, as shown in Figure 45.  
A stop condition follows. If the master does not acknowledge  
the first byte, the second byte is not transmitted by the  
AD5272/AD5274.  
Two bytes of data are then written to the AD5272/AD5274, the  
most significant byte followed by the least significant byte; both  
of these data bytes are acknowledged by the AD5272/AD5274.  
1
9
1
0
9
SCL  
1
SDA  
START BY  
0
0
1
1
A1  
A0  
R/W  
ACK. BY  
0
C3  
C2  
C1  
C0  
D9  
D8  
ACK. BY  
AD5272/AD5274  
AD5272/AD5274  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY  
STOP BY  
AD5272/AD5274 MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
1
9
1
9
SCL  
SDA  
START BY  
1
0
0
1
1
A1  
A0  
R/W  
0
0
X
X
X
X
D9  
D8  
ACK. BY  
AD5272/AD5274  
ACK. BY  
MASTER  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NO ACK. BY STOP BY  
MASTER MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 45. Read Command  
Rev. D | Page 20 of 28  
 
 
Data Sheet  
AD5272/AD5274  
Prior to 50-TP activation, the AD5272/AD5274 is preset to  
midscale on power-up. It is possible to read back the contents  
of any of the 50-TP memory registers through the I2C interface  
by using Command 5 in Table 12. The lower six LSB bits, D0 to  
D5 of the data byte, select which memory location is to be read  
back. A binary encoded version address of the most recently  
programmed wiper memory location can be read back using  
Command 6 in Table 12. This can be used to monitor the spare  
memory status of the 50-TP memory block.  
RDAC REGISTER  
The RDAC register directly controls the position of the digital  
rheostat wiper. For example, when the RDAC register is loaded  
with all zeros, the wiper is connected to Terminal A of the  
variable resistor. It is possible to both write to and read from  
the RDAC register using the I2C interface. The RDAC register  
is a standard logic register; there is no restriction on the number  
of changes allowed.  
50-TP MEMORY BLOCK  
WRITE PROTECTION  
The AD5272/AD5274 contain an array of 50-TP programmable  
memory registers, which allow the wiper position to be pro-  
grammed up to 50 times. Table 16 shows the memory map.  
Command 3 in Table 12 programs the contents of the RDAC  
register to memory. The first address to be programmed is  
Location 0x01, see Table 16, and the AD5272/AD5274 incre-  
ments the 50-TP memory address for each subsequent program  
until the memory is full. Programming data to 50-TP consumes  
approximately 4 mA for 55 ms, and takes approximately 350 ms  
to complete, during which time the shift register is locked pre-  
venting any changes from taking place. Bit C3 of the control  
register in Table 15 can be polled to verify that the fuse program  
command was successful. No change in supply voltage is required  
to program the 50-TP memory; however, a 1 µF capacitor on  
the EXT_CAP pin is required as shown in Figure 47.  
On power-up, serial data input register write commands for  
both the RDAC register and the 50-TP memory registers are  
disabled. The RDAC write protect bit (Bit C1) of the control  
register (see Table 14 and Table 15) is set to 0 by default. This  
disables any change of the RDAC register content regardless of  
the software commands, except that the RDAC register can be  
refreshed from the 50-TP memory using the software reset,  
RESET  
Command 4, or through hardware by the  
pin. To enable  
programming of the variable resistor wiper position (programming  
the RDAC register), the write protect bit (Bit C1) of the control  
register must first be programmed. This is accomplished by  
loading the serial data input register with Command 7 (see  
Table 12). To enable programming of the 50-TP memory block,  
Bit C0 of the control register, which is set to 0 by default, must  
first be set to 1.  
Table 12. Command Operation Truth Table  
Command[DB13:DB10]  
Data[DB9:B0]1  
D9 D8 D7 D6 D5 D4 D3 D2  
Command  
Number  
C3  
0
C2  
0
C1  
0
C0  
0
D1 D0 Operation  
NOP: do nothing.  
0
1
X
X
X
X
X
X
X
X
X
X
0
0
0
1
D9 D8 D7 D6 D5 D4 D3 D2  
D12 D02 Write contents of serial register  
data to RDAC.  
2
3
4
0
0
0
0
0
1
1
1
0
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read contents of RDAC wiper  
register.  
Store wiper setting: store RDAC  
setting to 50-T P.  
Software reset: refresh RDAC  
with the last 50-TP memory  
stored value.  
53  
6
0
0
0
1
1
1
0
1
1
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
D5 D4 D3 D2  
D1  
X
D0 Read contents of 50-TP from the  
SDO output in the next frame.  
X
X
X
X
X
X
X
X
Read address of the last 50-TP  
programmed memory location.  
74  
D2  
D1  
D0 Write contents of the serial  
register data to the control  
register.  
8
9
1
1
0
0
0
0
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read contents of the control  
register.  
D0 Software shutdown.  
D0 = 0; normal mode.  
D0 = 1; shutdown mode.  
1 X = don’t care.  
2 AD5274 = don’t care.  
3 See Table 16 for the 50-TP memory map.  
4 See Table 15 for bit details.  
Rev. D | Page 21 of 28  
 
 
 
 
 
 
 
 
AD5272/AD5274  
Data Sheet  
Table 13. Write and Read to RDAC and 50-TP memory  
DIN  
SDO1  
Action  
0x1C03 0xXXXX Enable update of wiper position and 50-TP memory contents through digital interface.  
0x0500 0x1C03 Write 0x100 to the RDAC register, wiper moves to ¼ full-scale position.  
0x0800 0x0500 Prepare data read from RDAC register.  
0x0C00 0x100  
Stores RDAC register content into 50-TP memory. 16-bit word appears out of SDO, where last 10-bits contain the  
contents of the RDAC Register 0x100.  
0x1800 0x0C00 Prepare data read of last programmed 50-TP memory monitor location.  
0x0000 0xXX19 NOP Instruction 0 sends a 16-bit word out of SDO, where the six LSBs last 6-bits contain the binary address of the last  
programmed 50-TP memory location, for example, 0x19 (see Table 16).  
0x1419 0x0000 Prepares data read from Memory Location 0x19.  
0x2000 0x0100 Prepare data read from the control register. Sends a 16-bit word out of SDO, where the last 10-bits contain the contents  
of Memory Location 0x19.  
0x0000 0xXXXX NOP Instruction 0 sends a 16-bit word out of SDO, where the last four bits contain the contents of the control register.  
If Bit C3 = 1, fuse program command successful.  
1 X is don’t care.  
Table 14. Control Register Bit Map  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
0
C3  
C2  
C1  
C0  
Table 15. Control Register Description  
Bit Name  
Description  
C0  
50-TP program enable  
0 = 50-TP program disabled (default)  
1 = enable device for 50-TP program  
RDAC register write protect  
0 = wiper position frozen to value in 50-TP memory (default)1  
1 = allow update of wiper position through a digital interface  
Resistor performance enable  
0 = RDAC resistor tolerance calibration enabled (default)  
1 = RDAC resistor tolerance calibration disabled  
50-TP memory program success bit  
C1  
C2  
C3  
0 = fuse program command unsuccessful (default)  
1 = fuse program command successful  
1 Wiper position is frozen to the last value programmed in the 50-TP memory. Wiper freezes to midscale if 50-TP memory has not been previously programmed.  
Table 16. Memory Map  
Data Byte [DB9:DB8]1  
Command Number  
D9  
X
D8  
X
D7  
X
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Register Contents  
5
Reserved  
X
X
X
0
0
0
0
0
0
1
1st programmed wiper location (0x01)  
2nd programmed wiper location (0x02)  
3rd programmed wiper location (0x03)  
4th programmed wiper location (0x04)  
X
X
X
0
0
0
0
0
1
0
X
X
X
0
0
0
0
0
1
1
X
X
X
0
0
0
0
1
0
0
X
X
X
0
0
0
1
0
1
0
10th programmed wiper location (0xA)  
20th programmed wiper location (0x14)  
30th programmed wiper location (0x1E)  
40th programmed wiper location (0x28)  
50th programmed wiper location (0x32)  
X
X
X
0
0
1
0
1
0
0
X
X
X
0
0
1
1
1
1
0
X
X
X
0
1
0
1
0
0
0
X
X
X
0
1
1
0
0
1
0
1 X is don’t care.  
Rev. D | Page 22 of 28  
 
 
 
 
Data Sheet  
AD5272/AD5274  
A
50-TP MEMORY WRITE-ACKNOWLEDGE POLLING  
After each write operation to the 50-TP registers, an internal  
write cycle begins. The I2C interface of the device is disabled.  
To determine if the internal write cycle is complete and the  
I2C interface is enabled, interface polling can be executed. I2C  
interface polling can be conducted by sending a start condition,  
followed by the slave address and the write bit. If the I2C interface  
responds with an acknowledge (ACK), the write cycle is complete  
and the interface is ready to proceed with further operations.  
Otherwise, I2C interface polling can be repeated until it completes.  
R
R
L
R
M
L
S
W
R
M
10-/8-BIT  
ADDRESS  
DECODER  
R
W
W
R
W
RESET  
The AD5272/AD5274 can be reset through software by executing  
Command 4 (see Table 12) or through hardware on the low  
Figure 46. Simplified RDAC Circuit  
RESET  
pulse of the  
pin. The reset command loads the RDAC  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation—1% Resistor Tolerance  
register with the contents of the most recently programmed 50-TP  
memory location. The RDAC register loads with midscale if no  
50-TP memory location has been previously programmed. Tie  
The nominal resistance between Terminal W and Terminal A, RWA,  
is available in 20 kΩ, 50 kΩ, and 100 kΩ, and 1024-/256-tap points  
accessed by the wiper terminal. The 10-/8-bit data in the RDAC  
latch is decoded to select one of the 1024 or 256 possible wiper  
settings. The AD5272/ AD5274 contain an internal 1% resistor  
tolerance calibration feature which can be disabled or enabled,  
enabled by default, or by programming Bit C2 of the control  
register (see Table 15). The digitally programmed output resis-  
tance between the W terminal and the A terminal, RWA, is  
calibrated to give a maximum of 1% absolute resistance error  
over both the full supply and temperature ranges. As a result,  
the general equations for determining the digitally programmed  
output resistance between the W terminal and A terminal are as  
follows:  
RESET  
RESET  
to VDD if the  
pin is not used.  
RESISTOR PERFORMANCE MODE  
This mode activates a new, patented 1% end-to-end resistor  
tolerance that ensures a 1% resistor tolerance on each code,  
that is, code = half scale and RWA = 10 kΩ 100 Ω. See Table 2,  
Table 3, Table 5, and Table 6 to check which codes achieve 1%  
resistor tolerance. The resistor performance mode is activated by  
programming Bit C2 of the control register (see Table 14 and  
Table 15).  
SHUTDOWN MODE  
The AD5272/AD5274 can be shut down by executing the software  
shutdown command, Command 9 (see Table 12), and setting  
the LSB to 1. This feature places the RDAC in a zero-power-  
consumption state where Terminal Ax is disconnected from  
the wiper terminal. It is possible to execute any command from  
Table 12 while the AD5272 or AD5274 is in shutdown mode.  
The part can be taken out of shutdown mode by executing  
Command 9 and setting the LSB to 0, or by issuing a software  
or hardware reset.  
For the AD5272  
D
1024  
RWA(D) =  
× RWA  
(1)  
(2)  
For the AD5274  
D
256  
RWA(D) =  
×RWA  
where:  
D is the decimal equivalent of the binary code loaded in the  
10-/8-bit RDAC register.  
RDAC ARCHITECTURE  
To achieve optimum performance, Analog Devices has patented the  
RDAC segmentation architecture for all the digital potentiometers.  
In particular, the AD5272/AD5274 employ a three-stage  
segmentation approach, as shown in Figure 46. The AD5272/  
AD5274 wiper switch is designed with the transmission gate  
CMOS topology.  
R
WA is the end-to-end resistance.  
In the zero-scale condition, a finite total wiper resistance of  
120 Ω is present. Regardless of which setting the part is oper-  
ating in, take care to limit the current between the A terminal  
to B terminal, W terminal to A terminal, and W terminal to  
B terminal, to the maximum continuous current of 3 mA, or  
the pulse current specified in Table 8. Otherwise, degradation or  
possible destruction of the internal switch contact can occur.  
Rev. D | Page 23 of 28  
 
 
 
 
 
 
 
AD5272/AD5274  
Data Sheet  
The ground pins of the AD5272/AD5274 devices are primarily  
used as digital ground references. To minimize the digital  
ground bounce, join the AD5272/AD5274 ground terminal  
remotely to the common ground. The digital input control  
signals to the AD5272/AD5274 must be referenced to the  
device ground pin (GND) and satisfy the logic level defined in  
the Specifications section. An internal level shift circuit ensures  
that the common-mode voltage range of the three terminals  
extends from VSS to VDD, regardless of the digital input level.  
EXT_CAP CAPACITOR  
A 1 μF capacitor to VSS must be connected to the EXT_CAP pin  
(see Figure 47) on power-up and throughout the operation of  
the AD5272/AD5274.  
AD5272/  
AD5274  
50_OTP  
MEMORY  
EXT_CAP  
BLOCK  
C1  
1µF  
V
POWER-UP SEQUENCE  
SS  
Because there are diodes to limit the voltage compliance at  
Terminal A and Terminal W (see Figure 48), it is important to  
power VDD/VSS first before applying any voltage to Terminal A  
and Terminal W; otherwise, the diode is forward-biased such  
that VDD/VSS are powered unintentionally. The ideal power-up  
sequence is VSS, GND, VDD, digital inputs, VA, and VW. The  
order of powering VA, VW, and digital inputs is not important  
as long as they are powered after VDD/VSS.  
V
SS  
Figure 47. EXT_CAP Hardware Setup  
TERMINAL VOLTAGE OPERATING RANGE  
The positive VDD and negative VSS power supplies of the  
AD5272/AD5274 define the boundary conditions for proper  
2-terminal digital resistor operation. Supply signals present on  
Terminal A and Terminal W that exceed VDD or VSS are clamped  
by the internal forward-biased diodes (see Figure 48).  
As soon as VDD is powered, the power-on preset activates, which  
first sets the RDAC to midscale and then restores the last  
programmed 50-TP value to the RDAC register.  
V
DD  
A
W
V
SS  
Figure 48. Maximum Terminal Voltages Set by VDD and VSS  
Rev. D | Page 24 of 28  
 
 
 
 
 
Data Sheet  
AD5272/AD5274  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 49. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
10  
6
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 50. 10-Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3mm Body, Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
Rev. D | Page 25 of 28  
 
AD5272/AD5274  
Data Sheet  
ORDERING GUIDE  
Model1  
AD5272BRMZ-20  
AD5272BRMZ-20-RL7  
AD5272BRMZ-50  
AD5272BRMZ-50-RL7  
AD5272BRMZ-100  
AD5272BRMZ-100-RL7  
AD5272BCPZ-20-RL7  
AD5272BCPZ-100-RL7  
AD5274BRMZ-20  
AD5274BRMZ-20-RL7  
AD5274BRMZ-100  
AD5274BRMZ-100-RL7  
AD5274BCPZ-20-RL7  
AD5274BCPZ-100-RL7  
EVAL-AD5272SDZ  
RAW (kΩ) Resolution  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Evaluation Board  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
Package Option  
Branding  
DE6  
DE6  
DE7  
DE7  
DE5  
DE5  
DE4  
DE3  
20  
20  
50  
50  
100  
100  
20  
100  
20  
1,024  
1,024  
1,024  
1,024  
1,024  
1,024  
1,024  
1,024  
256  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
DEE  
DEE  
DED  
DED  
DE9  
20  
256  
100  
100  
20  
256  
256  
256  
100  
256  
DE8  
1 Z = RoHS Compliant Part.  
Rev. D | Page 26 of 28  
 
 
Data Sheet  
NOTES  
AD5272/AD5274  
Rev. D | Page 27 of 28  
AD5272/AD5274  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2009–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08076-0-3/13(D)  
Rev. D | Page 28 of 28  

相关型号:

AD5272BRMZ-100

1024-/256-Position, 1% Resistor Tolerance Error, I2C Interface and 50-TP Memory Digital Rheostat
ADI

AD5272BRMZ-100

100K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO10, 3 X 4.90 MM, 1.10 MM HEIGHT, ROHS COMPLIANT, MO-187BA, MSOP-10
ROCHESTER

AD5272BRMZ-100-RL7

1024-/256-Position, 1% Resistor Tolerance Error, I2C Interface and 50-TP Memory Digital Rheostat
ADI

AD5272BRMZ-20

1024-/256-Position, 1% Resistor Tolerance Error, I2C Interface and 50-TP Memory Digital Rheostat
ADI

AD5272BRMZ-20

20K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO10, 3 X 4.90 MM, 1.10 MM HEIGHT, ROHS COMPLIANT, MO-187BA, MSOP-10
ROCHESTER

AD5272BRMZ-20-RL7

1024-/256-Position, 1% Resistor Tolerance Error, I2C Interface and 50-TP Memory Digital Rheostat
ADI

AD5272BRMZ-50

1024-/256-Position, 1% Resistor Tolerance Error, I2C Interface and 50-TP Memory Digital Rheostat
ADI

AD5272BRMZ-50

50K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO10, 3 X 4.90 MM, 1.10 MM HEIGHT, ROHS COMPLIANT, MO-187BA, MSOP-10
ROCHESTER

AD5272BRMZ-50-RL7

1024-/256-Position, 1% Resistor Tolerance Error, I2C Interface and 50-TP Memory Digital Rheostat
ADI

AD5273

64-Position OTP Digital Potentiometer
ADI

AD5273BRJ1-R2

64-Position OTP Digital Potentiometer
ADI

AD5273BRJ1-REEL7

64-Position OTP Digital Potentiometer
ADI