AD1584CRTZ-REEL7 [ROCHESTER]

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO3, LEAD FREE, TO-236AB, SOT-23, 3 PIN;
AD1584CRTZ-REEL7
型号: AD1584CRTZ-REEL7
厂家: Rochester Electronics    Rochester Electronics
描述:

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO3, LEAD FREE, TO-236AB, SOT-23, 3 PIN

光电二极管 输出元件
文件: 总17页 (文件大小:1360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.0 V Micropower, Precision  
Series Mode Voltage References  
AD1582/AD1583/AD1584/AD1585  
FEATURES  
PIN CONFIGURATION  
Series reference (2.5 V, 3 V, 4.096 V, 5 V)  
Low quiescent current: 70 μA maximum  
Current output capability: 5 mA  
Wide supply range: VIN = VOUT + 200 mV to 12 V  
Wideband noise (10 Hz to 10 kHz): 50 μV rms  
Specified temperature range: −40°C to +125°C  
Compact, surface-mount SOT-23 package  
AD1582/  
V
1
OUT  
AD1583/  
AD1584/  
AD1585  
3
V
IN  
TOP VIEW  
(Not to Scale)  
GND  
2
Figure 1. 3-Lead SOT-23-3 (RT Suffix)  
900  
800  
700  
APPLICATIONS  
Portable, battery-powered equipment; for example,  
notebook computers, cellular phones, pagers, PDAs, GPSs,  
and DMMs  
600  
500  
1
SHUNT REFERENCE  
Computer workstations; suitable for use with a wide range  
of video RAMDACs  
400  
Smart industrial transmitters  
PCMCIA cards  
Automotive  
300  
200  
100  
AD1582 SERIES REFERENCE  
Hard disk drives  
3 V/5 V, 8-bit/12-bit data converters  
0
2.7  
5
V
(V)  
SUPPLY  
1
3.076kSOURCE RESISTOR.  
Figure 2. Supply Current (μA) vs. Supply Voltage (V)  
GENERAL DESCRIPTION  
The AD1582/AD1583/AD1584/AD1585 series mode devices  
source or sink up to 5 mA of load current and operate efficiently  
with only 200 mV of required headroom supply. These parts  
draw a maximum 70 μA of quiescent current with only a  
1.0 μA/V variation with supply voltage. The advantage of  
these designs over conventional shunt devices is extraordinary.  
Valuable supply current is no longer wasted through an input  
series resistor, and maximum power efficiency is achieved at  
all input voltage levels.  
The AD1582/AD1583/AD1584/AD1585 are low cost, low power,  
low dropout, precision band gap references. These designs are  
available as 3-terminal (series) devices and are packaged in the  
compact SOT-23, 3-lead surface-mount package. The versatility  
of these references makes them ideal for use in battery-powered  
3 V or 5 V systems where there can be wide variations in supply  
voltage and a need to minimize power dissipation.  
The superior accuracy and temperature stability of the AD1582/  
AD1583/AD1584/AD1585 result from the precise matching and  
thermal tracking of on-chip components. Patented temperature  
drift curvature correction design techniques minimize the  
nonlinearities in the voltage output temperature characteristic.  
The AD1582/AD1583/AD1584/AD1585 are available in two  
grades, A and B, and are provided in a tiny footprint, the SOT-  
23. All grades are specified over the industrial temperature  
range of −40°C to +125°C.  
Table 1. AD158x Products, Three Electrical Grades  
Initial Accuracy  
Temperature  
Coefficient  
Electrical  
Grade  
AD1582 AD1583/AD1585 AD1584 (ppm°C)  
B
0.08%  
0.80%  
0.10%  
1.00%  
0.10%  
0.98%  
50  
A
100  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©1997–2010 Analog Devices, Inc. All rights reserved.  
 
AD1582/AD1583/AD1584/AD1585  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 10  
Applications Information.............................................................. 11  
Temperature Performance......................................................... 11  
Voltage Output Nonlinearity vs. Temperature ....................... 11  
Output Voltage Hysteresis......................................................... 12  
Supply Current vs. Temperature............................................... 12  
Supply Voltage ............................................................................ 12  
AC Performance ......................................................................... 12  
Noise Performance and Reduction.......................................... 13  
Turn-On Time ............................................................................ 13  
Dynamic Performance............................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
Package Branding Information ................................................ 16  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD1582 Specifications................................................................. 3  
AD1583 Specifications................................................................. 4  
AD1584 Specifications................................................................. 5  
AD1585 Specifications................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Terminology ...................................................................................... 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
5/10—Rev. H to Rev. I  
12/02—Rev. B to Rev. C  
Changes to Figure 10...................................................................... 11  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 16  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................6  
Replaced TPC 3 .................................................................................8  
Changes to Temperature Performance Section.............................9  
Replaced Figure 4 ..............................................................................9  
Changes to Output Voltage Hysteresis Section .......................... 10  
Updated SOT-23 Package.............................................................. 13  
11/07—Rev. G to Rev. H  
Deleted C Grade .................................................................Universal  
Changes to VOERR Parameter....................................................... 3  
Changes to Ordering Guide .......................................................... 16  
6/06—Rev. F to Rev. G  
Changes to Features.......................................................................... 1  
Changes to General Description .................................................... 1  
3/97—Revision 0: Initial Version  
2/06—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Table 6............................................................................ 7  
Changes to Ordering Guide .......................................................... 16  
6/05—Rev. D to Rev. E  
Changes to Ordering Guide ........................................................... 7  
Moved Package Branding Section.................................................. 7  
6/04—Rev. C to Rev. D  
Changes to Ordering Guide ............................................................ 6  
Updated Outline Dimensions....................................................... 13  
Rev. I | Page 2 of 16  
 
AD1582/AD1583/AD1584/AD1585  
SPECIFICATIONS  
AD1582 SPECIFICATIONS  
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.  
Table 2.  
AD1582A  
Typ  
AD1582B  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
OUTPUT VOLTAGE (@ 25°C)  
VO  
2.480  
2.500  
2.520  
2.498  
2.500  
2.502  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
−20  
+20  
−2  
+2  
mV  
−0.80  
+0.80  
100  
−0.08  
+0.08  
50  
%
OUTPUT VOLTAGE TEMPERATURE DRIFT  
TEMPERATURE COEFFICIENT (TCVO)  
−40°C < TA < +125°C  
ppm/°C  
40  
35  
100  
18  
15  
50  
ppm/°C  
ppm/°C  
mV  
0°C < TA < 70°C  
MINIMUM SUPPLY HEADROOM (VIN – VOUT  
LOAD REGULATION  
)
200  
200  
0 mA < IOUT < 5 mA (−40°C to +85°C)  
0 mA < IOUT < 5 mA (−40°C to +125°C)  
−5 mA < IOUT < 0 mA (−40°C to +85°C)  
0.2  
0.4  
0.25  
0.45  
2.7  
0.2  
0.4  
0.25  
0.45  
2.7  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
−5 mA < IOUT < 0 mA (−40°C to +125°C)  
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C)  
−0.1 mA < IOUT < +0.1 mA (−40°C to +125°C)  
LINE REGULATION  
3.5  
3.5  
VOUT + 200 mV < VIN < 12 V  
IOUT = 0 mA  
25  
25  
μV/V  
RIPPLE REJECTION (ΔVOUT/ΔVIN)  
VIN = 5 V 100 mV (f = 120 Hz)  
QUIESCENT CURRENT  
80  
80  
dB  
70  
15  
70  
15  
μA  
mA  
SHORT-CIRCUIT CURRENT TO GROUND  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
70  
50  
70  
50  
μV p-p  
μV rms  
10 Hz to 10 kHz  
TURN-ON SETTLING TIME TO 0.1%  
CL = 0.2 μF  
100  
100  
μs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
ppm/1000 hr  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
−40  
−55  
+125  
+125  
−40  
−55  
+125  
+125  
°C  
°C  
Rev. I | Page 3 of 16  
 
AD1582/AD1583/AD1584/AD1585  
AD1583 SPECIFICATIONS  
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.  
Table 3.  
AD1583A  
Typ  
AD1583B  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
OUTPUT VOLTAGE (@ 25°C)  
VO  
2.970  
3.000  
3.030  
2.997  
3.000  
3.003  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
−30  
−1.0  
+30  
+1.0  
100  
−3  
−0.1  
+3  
+0.1  
50  
mV  
%
OUTPUT VOLTAGE TEMPERATURE DRIFT  
TEMPERATURE COEFFICIENT (TCVO)  
–40°C < TA < +125°C  
ppm/°C  
40  
35  
100  
18  
15  
50  
ppm/°C  
ppm/°C  
mV  
0°C < TA < 70°C  
MINIMUM SUPPLY HEADROOM (VIN – VOUT  
LOAD REGULATION  
)
200  
200  
0 mA < IOUT < 5 mA (–40°C to +85°C)  
0 mA < IOUT < 5 mA (–40°C to +125°C)  
–5 mA < IOUT < 0 mA (–40°C to +85°C)  
–5 mA < IOUT < 0 mA (–40°C to +125°C)  
0.25  
0.45  
0.40  
0.6  
2.9  
3.7  
0.25  
0.45  
0.40  
0.6  
2.9  
3.7  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
–0.1 mA < IOUT < +0.1 mA (–40°C to +85°C)  
–0.1 mA < IOUT < +0.1 mA (–40°C to +125°C)  
LINE REGULATION  
VOUT + 200 mV < VIN < 12 V  
IOUT = 0 mA  
25  
25  
μV/V  
RIPPLE REJECTION (ΔVOUT/ΔVIN)  
VIN = 5 V 100 mV (f = 120 Hz)  
QUIESCENT CURRENT  
80  
80  
dB  
70  
15  
70  
15  
μA  
mA  
SHORT-CIRCUIT CURRENT TO GROUND  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
85  
60  
85  
60  
μV p-p  
μV rms  
10 Hz to 10 kHz  
TURN-ON SETTLING TIME TO 0.1%  
CL = 0.2 μF  
120  
120  
μs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
ppm/1000 hr  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
−40  
−55  
+125  
+125  
−40  
−55  
+125  
+125  
°C  
°C  
Rev. I | Page 4 of 16  
 
AD1582/AD1583/AD1584/AD1585  
AD1584 SPECIFICATIONS  
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.  
Table 4.  
AD1584A  
Typ  
AD1584B  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
OUTPUT VOLTAGE (@ 25°C)  
VO  
4.056  
4.096  
4.136  
4.092  
4.096  
4.100  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
−40  
+40  
−4  
+4  
mV  
−0.98  
+0.98  
100  
−0.1  
+0.1  
50  
%
OUTPUT VOLTAGE TEMPERATURE DRIFT  
TEMPERATURE COEFFICIENT (TCVO)  
−40°C < TA < +125°C  
ppm/°C  
40  
35  
100  
18  
15  
50  
ppm/°C  
ppm/°C  
mV  
0°C < TA < 70°C  
MINIMUM SUPPLY HEADROOM (VIN – VOUT  
LOAD REGULATION  
)
200  
200  
0 mA < IOUT < 5 mA (−40°C to +85°C)  
0 mA < IOUT < 5 mA (−40°C to +125°C)  
−5 mA < IOUT < 0 mA (−40°C to +85°C)  
0.32  
0.52  
0.40  
0.6  
3.2  
4.1  
0.32  
0.52  
0.40  
0.6  
3.2  
4.1  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
−5 mA < IOUT < 0 mA (−40°C to +125°C)  
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C)  
−0.1 mA < IOUT < +0.1 mA (−40°C to +125°C)  
LINE REGULATION  
VOUT + 200 mV < VIN 12 V  
IOUT = 0 mA  
25  
25  
μV/V  
RIPPLE REJECTION (ΔVOUT/ΔVIN)  
VIN = 5 V 100 mV (f = 120 Hz)  
QUIESCENT CURRENT  
80  
80  
dB  
70  
15  
70  
15  
μA  
mA  
SHORT-CIRCUIT CURRENT TO GROUND  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
110  
90  
110  
90  
μV p-p  
μV rms  
10 Hz to 10 kHz  
TURN-ON SETTLING TIME TO 0.1%  
CL = 0.2 μF  
140  
140  
μs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
ppm/1000 hr  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
−40  
−55  
+125  
−125  
−40  
−55  
+125  
+125  
°C  
°C  
Rev. I | Page 5 of 16  
 
AD1582/AD1583/AD1584/AD1585  
AD1585 SPECIFICATIONS  
@ TA = TMIN to TMAX, VIN = 6 V, unless otherwise noted.  
Table 5.  
AD1585A  
Typ  
AD1585B  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
OUTPUT VOLTAGE (@ 25°C)  
VO  
4.950  
5.000  
5.050  
4.995  
5.000  
5.005  
V
INITIAL ACCURACY ERROR (@ 25°C)  
VOERR  
−50  
−1.0  
+50  
+1.0  
100  
−5  
−0.10  
+5  
+0.10  
50  
mV  
%
OUTPUT VOLTAGE TEMPERATURE DRIFT  
TEMPERATURE COEFFICIENT (TCVO)  
−40°C < TA < 125°C  
ppm/°C  
40  
35  
100  
18  
15  
50  
ppm/°C  
ppm/°C  
mV  
0°C < TA < 70°C  
MINIMUM SUPPLY HEADROOM (VIN – VOUT  
LOAD REGULATION  
)
200  
200  
0 mA < IOUT < 5 mA (−40°C to +85°C)  
0 mA < IOUT < 5 mA (−40°C to +125°C)  
−5 mA < IOUT < 0 mA (−40°C to +85°C)  
0.40  
0.6  
0.40  
0.6  
4
0.40  
0.6  
0.40  
0.6  
4
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
−5 mA < IOUT < 0 mA (−40°C to +125°C)  
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C)  
−0.1 mA < IOUT < +0.1 mA (−40°C to +125°C)  
LINE REGULATION  
4.8  
4.8  
VOUT + 200 mV < VIN < 12 V  
IOUT = 0 mA  
25  
25  
μV/V  
RIPPLE REJECTION (ΔVOUT/ΔVIN)  
VIN = 6 V 100 mV (f = 120 Hz)  
QUIESCENT CURRENT  
80  
80  
dB  
70  
15  
70  
15  
μA  
mA  
SHORT-CIRCUIT CURRENT TO GROUND  
NOISE VOLTAGE (@ 25°C)  
0.1 Hz to 10 Hz  
140  
100  
140  
100  
μV p-p  
μV rms  
10 Hz to 10 kHz  
TURN-ON SETTLING TIME TO 0.1%  
CL = 0.2 ꢀF  
175  
175  
μs  
LONG-TERM STABILITY  
1000 Hours @ 25°C  
100  
115  
100  
115  
ppm/1000 hr  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
TEMPERATURE RANGE  
Specified Performance (A, B, C)  
Operating Performance (A, B, C)  
−40  
−55  
+125  
+125  
−40  
−55  
+125  
+125  
°C  
°C  
Rev. I | Page 6 of 16  
 
AD1582/AD1583/AD1584/AD1585  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VIN to Ground  
Internal Power Dissipation1  
12 V  
SOT-23-3 (RT-3)  
400 mW  
Storage Temperature Range  
Specified Temperature Range  
65°C to 125°C  
AD1582RT/AD1583RT/  
AD1584RT/AD1585RT  
−40°C to +125°C  
ESD CAUTION  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
215°C  
220°C  
1 Specification is for device in free air at 25°C; SOT-23 package, θJA = 300°C.  
Rev. I | Page 7 of 16  
 
 
AD1582/AD1583/AD1584/AD1585  
TERMINOLOGY  
Thermal Hysteresis (VO_HYS  
)
Temperature Coefficient (TCVO)  
The change of output voltage after the device is cycled through  
temperatures from +25°C to −40°C to +85°C and back to +25°C.  
This is a typical value from a sample of parts put through  
such a cycle  
The change of output voltage over the operating temperature  
change and normalized by the output voltage at 25°C, expressed  
in ppm/°C. The equation follows  
VO  
(
T2  
)
VO  
(
T1  
)
TCVO  
[
ppm/°C  
]
=
×106  
VO _ HYS =VO  
(
25°C  
)
VO _TC  
25°C VO _TC  
VO 25°C  
VO  
(
25°C  
)
×
(T2 T1  
)
VO  
(
)
×106  
where:  
VO (25°C) = VO @ 25°C.  
VO _ HYS ppm  
[
]
=
(
)
VO (T1) = VO @ Temperature 1.  
VO (T2) = VO @ Temperature 2.  
where:  
VO (25°C) = VO at 25°C.  
O_TC = VO at 25°C after temperature cycle at +25°C to −40°C to  
V
Line Regulation (ΔVO/ΔVIN) Definition  
+85°C and back to +25°C.  
The change in output voltage due to a specified change in input  
voltage. It includes the effects of self-heating. Line regulation is  
expressed in either percent per volt, parts per million per volt,  
or microvolts per volt change in input voltage.  
Operating Temperature  
The temperature extremes at which the device can still function.  
Parts can deviate from their specified performance outside the  
specified temperature range.  
Load Regulation (ΔVO/ΔILOAD  
)
The change in output voltage due to a specified change in load  
current. It includes the effects of self-heating. Load regulation  
is expressed in either microvolts per milliampere, parts per  
million per milliampere, or ohms of dc output resistance.  
Long-Term Stability (ΔVO)  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to an operation life test of 1000 hours at 125°C.  
ΔVO = VO  
ΔVO ppm  
(
t0  
)
VO  
VO t0  
VO  
(
t1  
VO  
t0  
)
(
)
(t1 )  
[
]
=
×106  
(
)
where:  
VO (t0) = VO @25°C at Time 0.  
VO (t1) = VO @ 25°C after 1000 hours of operation at 125°C.  
Rev. I | Page 8 of 16  
 
AD1582/AD1583/AD1584/AD1585  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
22  
20  
18  
16  
14  
12  
10  
8
AD1585  
AD1582  
6
4
2
0
0
2
4
6
8
10  
12  
–60 –50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
V
(V)  
ppm/°C  
IN  
Figure 3. Typical Output Voltage Temperature Drift Distribution  
Figure 6. Load Regulation vs. VIN  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
AD1582  
AD1585  
5
0
–1.0%  
–0.6%  
–0.2%  
0.2%  
0.6%  
1.0%  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(ERROR)  
I
(mA)  
OUT  
OUT  
Figure 4. Typical Output Voltage Error Distribution  
Figure 7. Line Regulation vs. ILOAD  
2.504  
2.502  
10k  
2.500  
2.498  
2.496  
I
= 1mA  
OUT  
I
= 0mA  
OUT  
1k  
2.494  
2.492  
2.490  
2.488  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
Figure 5. Typical Temperature Drift Characteristic Curves  
Figure 8. Noise Spectral Density  
Rev. I | Page 9 of 16  
 
 
AD1582/AD1583/AD1584/AD1585  
THEORY OF OPERATION  
The AD1582/AD1583/AD1584/AD1585 use the band gap  
concept to produce stable, low temperature coefficient voltage  
references suitable for high accuracy data acquisition compo-  
nents and systems. These parts of precision references use the  
underlying temperature characteristics of a silicon transistors  
base emitter voltage in the forward-biased operating region.  
Under this condition, all such transistors have a −2 mV/°C  
temperature coefficient (TC) and a VBE that, when extrapolated  
to absolute zero, 0 K (with collector current proportional to  
absolute temperature), approximates the silicon band gap voltage.  
By summing a voltage that has an equal and opposite tempera-  
ture coefficient of 2 mV/°C with the VBE of a forward-biased  
transistor, an almost 0 TC reference can be developed. In the  
AD1582/AD1583/AD1584/AD1585 simplified circuit diagram  
shown in Figure 9, such a compensating voltage, V1, is derived  
by driving two transistors at different current densities and  
amplifying the resultant VBE difference (ΔVBE, which has a positive  
TC). The sum of VBE and V1 (VBG) is then buffered and amplified  
to produce stable reference voltage outputs of 2.5 V, 3 V, 4.096 V,  
and 5 V.  
V
V
IN  
R3  
R4  
OUT  
R5  
V
BG  
+
R2  
V
BE  
R6  
+
V1  
R1  
GND  
Figure 9. Simplified Schematic  
Rev. I | Page 10 of 16  
 
 
AD1582/AD1583/AD1584/AD1585  
APPLICATIONS INFORMATION  
Duplication of these results requires a test system that is highly  
accurate with stable temperature control. Evaluation of the  
AD1582/AD1583/AD1584/AD1585 produces curves similar  
to those in Figure 5 and Figure 11, but output readings can vary  
depending on the test methods and test equipment used.  
2.504  
The AD1582/AD1583/AD1584/AD1585 are series references  
that can be used for many applications. To achieve optimum  
performance with these references, only two external compo-  
nents are required. Figure 10 shows the AD1582/AD1583/  
AD1584/AD1585 configured for operation under all loading  
conditions. With a simple 4.7 ꢀF capacitor attached to the input  
and a 1 ꢀF capacitor applied to the output, the devices can achieve  
specified performance for all input voltage and output current  
requirements. For best transient response, add a 0.1 ꢀF capacitor  
in parallel with the 4.7 ꢀF capacitor. While a 1 ꢀF output capacitor  
can provide stable performance for all loading conditions, the  
AD1582/AD1583/AD1584/AD1585 can operate under low  
(−100 ꢀA < IOUT < +100 ꢀA) current conditions with just a  
0.2 ꢀF output capacitor. The 4.7 ꢀF capacitor on the input can  
be reduced to 1 μF in this condition.  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
Unlike conventional shunt reference designs, the AD1582/  
AD1583/AD1584/AD1585 provide stable output voltages at  
constant operating current levels. When properly decoupled,  
as shown in Figure 10, these devices can be applied to any  
circuit and provide superior low power solutions.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 11. Output Voltage vs. Temperature  
VOLTAGE OUTPUT NONLINEARITY VS.  
TEMPERATURE  
1
+
AD1582/  
AD1583/  
AD1584/  
AD1585  
When using a voltage reference with data converters, it is  
important to understand the impact that temperature drift can  
have on converter performance. The nonlinearity of the reference  
output drift represents additional error that cannot be easily  
calibrated out of the overall system. To better understand the  
impact such a drift can have on a data converter, refer to Figure 12,  
where the measured drift characteristic is normalized to the  
endpoint average drift. The residual drift error for the AD1582/  
AD1583/AD1584/AD1585 of approximately 200 ppm demon-  
strates that these parts are compatible with systems that require  
12-bit accurate temperature performance.  
V
3
V
IN  
OUT  
1µF  
4.7µF  
2
Figure 10. Typical Connection Diagram  
TEMPERATURE PERFORMANCE  
The AD1582/AD1583/AD1584/AD1585 are designed for  
applications where temperature performance is important.  
Extensive temperature testing and characterization ensure  
that device performance is maintained over the specified  
temperature range.  
250  
The error band guaranteed with the AD1582/AD1583/AD1584/  
AD1585 is the maximum deviation from the initial value at 25°C.  
Therefore, for a given grade of the AD1582/AD1583/AD1584/  
AD1585, the designer can easily determine the maximum total  
error by summing initial accuracy and temperature variation. For  
example, for the AD1582BRT, the initial tolerance is 2 mV,  
and the temperature error band is 8 mV; therefore, the reference  
is guaranteed to be 2.5 V 10 mV from −40°C to +125°C.  
200  
150  
100  
50  
Figure 11 shows the typical output voltage drift for the AD1582/  
AD1583/AD1584/AD1585 and illustrates the methodology. The  
box in Figure 11 is bounded on the x-axis by operating tempera-  
ture extremes. It is bounded on the y-axis by the maximum  
and minimum output voltages observed over the operating  
temperature range. The slope of the diagonal drawn from the  
initial output value at 25°C to the output values at +125°C and  
−40°C determines the performance grade of the device.  
0
–50  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
Figure 12. Residual Drift Error  
Rev. I | Page 11 of 16  
 
 
 
 
AD1582/AD1583/AD1584/AD1585  
OUTPUT VOLTAGE HYSTERESIS  
SUPPLY VOLTAGE  
High performance industrial equipment manufacturers can  
require the AD1582/AD1583/AD1584/AD1585 to maintain a  
consistent output voltage error at 25°C after the references are  
operated over the full temperature range. All references exhibit  
a characteristic known as output voltage hysteresis; however, the  
AD1582/AD1583/AD1584/AD1585 are designed to minimize  
this characteristic. This phenomenon can be quantified by mea-  
suring the change in the +25°C output voltage after temperature  
excursions from +125°C to +25°C and from −40°C to +25°C.  
Figure 13 displays the distribution of the AD1582/AD1583/  
AD1584/AD1585 output voltage hysteresis.  
One of the ideal features of the AD1582/AD1583/AD1584/AD1585  
is low supply voltage headroom. The parts can operate at supply  
voltages as low as 200 mV above VOUT and up to 12 V. However,  
if negative voltage is inadvertently applied to VIN with respect to  
ground, or any negative transient >5 V is coupled to VIN, the  
device can be damaged.  
AC PERFORMANCE  
To apply the AD1582/AD1583/AD1584/AD1585, it is impor-  
tant to understand the effects of dynamic output impedance  
and power supply rejection. In Figure 15, a voltage divider  
is formed by the AD1582/AD1583/AD1584/ AD1585 output  
impedance and by the external source impedance. Figure 16  
shows the effect of varying the load capacitor on the reference  
output. Power supply rejection ratio (PSRR) should be determined  
when characterizing the ac performance of a series voltage  
reference. Figure 17 shows a test circuit used to measure PSRR,  
and Figure 18 demonstrates the ability of the AD1582/AD1583/  
AD1584/AD1585 to attenuate line voltage ripple.  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
DC  
LOAD  
5V  
2k  
10kΩ  
10kΩ  
2 × V  
OUT  
10kΩ  
5µF  
DUT  
×1  
±100µA  
1µF  
±2V  
–700  
–450  
–200  
50  
ppm  
300  
550  
Figure 15. Output Impedance Test Circuit  
Figure 13. Output Voltage Hysteresis Distribution  
SUPPLY CURRENT VS. TEMPERATURE  
100  
10  
1
The quiescent current for the AD1582/AD1583/AD1584/  
AD1585 varies slightly over temperature and input supply  
range. Figure 14 illustrates the typical performance for the  
AD1582/AD1583/AD1584/AD1585 reference when varying  
both temperature and supply voltage. As is evident from  
Figure 14, the AD1582/AD1583/AD1584/AD1585 supply  
current increases only 1.0 ꢀA/V, making this device extremely  
attractive for use in applications where there can be wide  
variations in supply voltage and a need to minimize power  
dissipation.  
1µF CAP  
AD1585  
AD1582  
100  
0.1  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
80  
Figure 16. Output Impedance vs. Frequency  
T
= +85°C  
A
T
= +25°C  
A
60  
40  
20  
0
10k  
10V  
5V ± 100mV  
×1  
±200mV  
10kΩ  
V
0.22µF  
OUT  
0.22µF  
DUT  
T
= –40°C  
A
Figure 17. Ripple Rejection Test Circuit  
3
4
5
6
7
(V)  
8
9
10  
11  
V
IN  
Figure 14. Typical Supply Current over Temperature  
Rev. I | Page 12 of 16  
 
 
 
 
 
 
AD1582/AD1583/AD1584/AD1585  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100µV  
10ms  
100  
90  
AD1582  
AD1585  
10  
0%  
Figure 20. 1 Hz to 10 Hz Voltage Noise  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
TURN-ON TIME  
Figure 18. Ripple Rejection vs. Frequency  
Many low power instrument manufacturers are concerned  
with the turn-on characteristics of the components used in their  
systems. Fast turn-on components often enable the end user to  
save power by keeping power off when not needed. Turn-on  
settling time is defined as the time required, after the application of  
power (cold start), for the output voltage to reach its final value  
within a specified error. The two major factors affecting this are  
the active circuit settling time and the time required for the  
thermal gradients on the chip to stabilize. Figure 21 shows the  
turn-on settling and transient response test circuit. Figure 22  
shows the turn-on characteristics of the AD1582/AD1583/  
AD1584/AD1585. These characteristics are generated from cold-  
start operation and represent the true turn-on waveform after  
power-up. Figure 23 shows the fine settling characteristics of  
the AD1582/AD1583/AD1584/AD1585. Typically, the reference  
settles to within 0.1% of its final value in about 100 ꢀs.  
NOISE PERFORMANCE AND REDUCTION  
The noise generated by the AD1582/AD1583/AD1584/AD1585 is  
typically less than 70 ꢀV p-p over the 0.1 Hz to 10 Hz frequency  
band. Figure 19 shows the 0.1 Hz to 10 Hz noise of a typical  
AD1582/AD1583/AD1584/AD1585. The noise measurement  
is made with a high gain band-pass filter. Noise in a 10 Hz to  
10 kHz region is approximately 50 ꢀV rms. Figure 20 shows the  
broadband noise of a typical AD1582/AD1583/AD1584/AD1585.  
If further noise reduction is desired, add a 1-pole, low-pass  
filter between the output pin and ground. A time constant of  
0.2 ms has a −3 dB point at roughly 800 Hz and reduces the  
high frequency noise to about 16 V rms. It should be noted,  
however, that while additional filtering on the output can  
improve the noise performance of the AD1582/AD1583/  
AD1584/AD1585, the added output impedance can degrade  
the ac performance of the references.  
The device can momentarily draw excessive supply current  
when VSUPPLY is slightly below the minimum specified level.  
Power supply resistance must be low enough to ensure reliable  
turn-on. Fast power supply edges minimize this effect.  
10µV  
1s  
100  
90  
0V OR 10V  
10k  
5V OR 10V  
0V OR 5V  
0V TO 10V  
10kΩ  
V
0.22µF  
OUT  
DUT  
0.22µF  
10  
0%  
Figure 21. Turn-On/Transient Response Test Circuit  
Figure 19. 10 Hz to 10 kHz Wideband Noise  
Rev. I | Page 13 of 16  
 
 
 
 
 
AD1582/AD1583/AD1584/AD1585  
20µs  
5V  
50µs  
5V  
100  
90  
100  
90  
10  
10  
0%  
0%  
20µs  
200mV  
50µs  
1V  
Figure 22. Turn-On Characteristics  
Figure 24. Line Transient Response  
20µs  
5V  
20µs  
5V  
100  
90  
100  
90  
10  
10  
0%  
0%  
1mV  
20µs  
5mV  
20µs  
Figure 23. Turn-On Settling  
Figure 25. Load Transient Response (0 mA to 5 mA Load)  
DYNAMIC PERFORMANCE  
20µs  
5V  
Many ADCs and DACs present transient current loads to the  
reference and poor reference response can degrade converter  
performance. The AD1582/AD1583/AD1584/AD1585 provide  
superior static and dynamic line and load regulation. Because  
these series references are capable of both sourcing and sinking  
large current loads, they exhibit excellent settling charac-  
teristics.  
100  
90  
10  
0%  
Figure 24 displays the line transient response for the AD1582/  
AD1583/AD1584/AD1585. The circuit used to perform such  
a measurement is shown in Figure 21, where the input supply  
voltage is toggled from 5 V to 10 V, and the input and output  
capacitors are each 0.22 μF.  
5mV  
20µs  
Figure 26. Load Transient Response (0 mA to −1 mA Load)  
Figure 25 and Figure 26 show the load transient settling cha-  
racteristics for the AD1582/AD1583/AD1584/AD1585 when  
load current steps of 0 mA to +5 mA and 0 mA to −1 mA are  
applied. The input supply voltage remains constant at 5 V; the  
input decoupling and output load capacitors are 4.7 μF and 1 μF,  
respectively; and the output current is toggled. For both positive  
and negative current loads, the reference responses settle very  
quickly and exhibit initial voltage spikes of less than 10 mV.  
Rev. I | Page 14 of 16  
 
 
 
 
 
AD1582/AD1583/AD1584/AD1585  
OUTLINE DIMENSIONS  
3.04  
2.90  
2.80  
1.40  
1.30  
1.20  
3
2.64  
2.10  
1
2
0.60  
0.45  
1.03  
0.89  
2.05  
1.78  
1.02  
0.54  
REF  
0.95  
0.88  
GAUGE  
PLANE  
1.12  
0.89  
0.100  
0.013  
0.180  
0.085  
0.51  
0.37  
SEATING  
PLANE  
0.25  
0.60 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS TO-236-AB  
Figure 27. 3-Lead Small Outline Transistor Package [SOT-23-3]  
(RT-3)  
Dimensions shown in millimeters  
7” REEL 100.00  
4.10  
4.00  
3.90  
1.10  
1.00  
0.90  
OR  
14.40 MIN  
13” REEL 330.00  
1.55  
1.50  
1.45  
1.10  
1.00  
0.90  
2.05  
2.00  
1.95  
0.35  
0.30  
0.25  
1.50 MIN  
7” REEL 50.00 MIN  
2.80  
2.70  
2.60  
13.20  
13.00  
12.80  
OR  
20.20  
MIN  
8.30  
8.00  
7.70  
13” REEL 100.00 MIN  
3.55  
3.50  
3.45  
0.75 MIN  
3.20  
3.10  
2.90  
1.00 MIN  
9.90  
8.40  
6.90  
DIRECTION OF UNREELING  
Figure 28. SOT-23 Tape and Reel Outline Dimension  
(RT-3)  
Dimensions shown in millimeters  
Rev. I | Page 15 of 16  
 
AD1582/AD1583/AD1584/AD1585  
ORDERING GUIDE  
Output  
Voltage  
(V)  
Initial  
Accuracy  
(%)  
Initial Temp.  
Coefficient  
(ppm/°C)  
No. of Parts  
Banding  
Accuracy  
(mV)  
Package  
Description  
Package  
Option  
Model1  
Branding2 per Reel  
AD1582ART-REEL7  
AD1582ARTZ-R2  
AD1582ARTZ-REEL7  
AD1582BRT-REEL7  
AD1582BRTZ-REEL7  
AD1583ART-REEL7  
AD1583ARTZ-R2  
AD1583ARTZ-REEL7  
AD1583BRT-REEL7  
AD1583BRTZ-REEL7  
AD1584ARTZ-R2  
AD1584ARTZ-REEL7  
AD1584BRTZ-REEL7  
AD1585ARTZ-R2  
AD1585ARTZ-REEL7  
AD1585BRTZ-REEL7  
2.50  
2.50  
2.50  
2.50  
2.50  
3.00  
3.00  
3.00  
3.00  
3.00  
4.096  
4.096  
4.096  
5.00  
5.00  
5.00  
20  
20  
20  
2
0.80  
0.80  
0.80  
0.08  
0.08  
1.00  
1.00  
1.00  
0.10  
0.10  
0.98  
0.98  
0.10  
1.00  
1.00  
0.10  
100  
100  
100  
50  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
SOT-23-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
2A  
3,000  
250  
R1Z  
R1Z  
2B  
R20  
3A  
R22  
R22  
3B  
R23  
R25  
R25  
R26  
R28  
R28  
R29  
3,000  
3,000  
3,000  
3,000  
250  
3,000  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
2
50  
30  
30  
30  
3
100  
100  
100  
50  
3
50  
40  
40  
4
100  
100  
50  
50  
50  
5
100  
100  
50  
1 Z = RoHS Compliant Part.  
2 See Package Branding Information section.  
PACKAGE BRANDING INFORMATION  
This branding information is only for nonPb-free versions. Four fields identify the device:  
First field, product identifier; for example, a 2/3/4/5 identifies the generic as AD1582/AD1583/AD1584/AD1585  
Second field, device grade, which can be A, B, or C  
Third field, calendar year of processing: 7 for 1997..., A for 2001...  
Fourth field, two-week window within the calendar year; for example, letters A to Z to represent a two-week window starting with A” for  
the first two weeks of January.  
©1997–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00701-0-5/10(I)  
Rev. I | Page 16 of 16  
 
 
 

相关型号:

AD1584_15

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585A

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585ART

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585ART-R2

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585ART-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO3, TO-236AB, SOT-23, 3 PIN
ROCHESTER

AD1585ART-REEL

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO3, PLASTIC, TO-236AB, SOT-23, 3 PIN, Voltage Reference
ADI

AD1585ART-REEL7

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585ART-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO3, TO-236AB, SOT-23, 3 PIN
ROCHESTER

AD1585ARTRL

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585ARTRL7

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI

AD1585ARTZ-R2

2.5 V to 5.0 V Micropower, Precision Series Mode Voltage References
ADI