RV5VE001B [RICOH]

MULTI-POWER SUPPLY; MULTI -POWER SUPPLY
RV5VE001B
型号: RV5VE001B
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

MULTI-POWER SUPPLY
MULTI -POWER SUPPLY

电源电路 电源管理电路 光电二极管
文件: 总49页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MULTI-POWER SUPPLY  
RV5VE0××× SERIES  
APPLICATION MANUAL  
NO.EA-021-0006  
MULTI-POWER SUPPLY  
RV5VE0××× SERIES  
OUTLINE  
The RV5VE0×××series are multi-power supply ICs with high accuracy output voltage and detector threshold  
and with ultra low supply current by CMOS process. Each of these ICs consists of four voltage regulators,two volt-  
age detectors and control switches.These ICs can achieve the construction of an ideal power supply system in  
accordance with the user's mask option.  
Output Voltage and Detector Threshold can be independently set within each IC by laser trim. The package  
are of 16pin SSOP(0.8mm pitch) and 16pin SSOP(0.65mm pitch).  
FEATURES  
Ultra-Low Supply Current  
.....................  
1.5V to 10.0V  
Broad Operating Voltage Range  
.....................................................  
±
2.5%  
High Accuracy Output Voltage and Detector Threshold  
........  
Output Voltage and Detector Threshold  
Stepwise setting with a step of 0.1V is possible  
(refer to Selection Guide)  
.............  
±
TYP. 100ppm/˚C  
Low Temperature-Drift Coefficients of Output Voltage and Detector Threshold  
.....................................  
Small Dropout Voltage  
50mV when IOUT is 80mA (Regulators 1, 2)  
..................................................  
Small Package  
16pin SSOP (0.8mm pitch)  
16pin SSOP (0.65mm pitch)  
Direct connection to CPU is possible by an internal Level Shift Circuit.  
APPLICATIONS  
Power source system for hand-held communication equipment such as cellular phones and cordless telephones.  
Power source system for battery-powered appliances.  
PIN CONFIGURATION  
×
RV5VE001  
ROUT4  
VSEN2  
CD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
ROUT3  
VSEN1  
CSW3  
CSW2  
CSW1  
ROUT2  
IBC2  
RESET  
DOUT  
ROUT1  
IBC1  
GND  
1
RV5VE0×××  
BLOCK DIAGRAMS  
×
RV5VE0  
×××  
RV5VE001  
(Optional Mask Version)  
VDD  
VDD  
IBC1  
IBC1  
Regulator  
1
Regulator  
1
ROUT1  
T Q  
Q
R
ROUT1  
Level  
Shift  
CSW1  
CSW2  
CSW3  
IBC2  
IBC2  
Regulator  
2
Regulator  
2
ROUT2  
ROUT2  
Level  
Shift  
Regulator  
3
One Shot  
Regulator  
3
ROUT3  
ROUT4  
DOUT  
GND  
ROUT3  
Pulse  
Generator  
Level  
Shift  
Regulator  
4
Regulator  
4
ROUT4  
DOUT  
VSEN1  
Detector  
1
Detector  
1
VSEN2  
GND  
RESET  
CD  
Delay  
Detector  
2
RESET  
CD  
Delay  
Generator  
Detector  
2
Generator  
SELECTION GUIDE  
In the RV5VE0×××series, Standard ICs and Customized ICs by mask option (hereinafter Optional Mask  
Version ICs) are available at the user's request. Voltage settings for six circuits, four for Regulators and two for  
Detectors, can be designated.  
Part Number is designated as follows :  
RV5VE0  
Part Number  
××× ××  
↑ ↑ ↑ ↑  
a
b c d e  
Code  
Contents  
Designation of Package Type:  
V : 16pin SSOP (0.65mm pitch)  
a
b
c
Serial Number for Multi-Power Supply IC (RV5VE) series:  
Serial Number for Mask Version:  
×1 for Standard ICs. Other numbers for Optional Mask Version ICs.  
Serial Number for Voltage Setting:  
d
e
A to Z are assigned in alphabetical order. (except I,O,Q,X)  
Designation of Taping Type:  
Ex. E1, E2  
(refer to Taping Specifications)  
2
RV5VE0×××  
PIN DESCRIPTION  
RV5VE001×(Standard ICs)  
Pin No.  
Symbol  
ROUT4  
VSEN2  
CD  
Description  
1
2
Output Pin for Voltage Regulator 4.  
Sense Pin for Voltage Detector 2.  
3
Pin for External Capacitor for Delay Time Setting of Voltage Detector 2.  
Output Pin of Voltage Detector 2. Nch Open Drain Output. “L” Outputat Detection.  
Output Pin of Voltage Detector 1. Nch Open Drain Output. “L” Output at Detection.  
Output Pin of Voltage Regulator 1. Connected to Collector of PNP Transistor.  
Connected to Base of External PNP Transistor for Voltage Regulator 1 and controls Base Current.  
Ground Pin.  
4
RESET  
DOUT  
ROUT1  
IBC1  
5
6
7
8
GND  
IBC2  
9
Connected to Base of External PNP Transistor for Voltage Regulator 2 and controls Base Current.  
Output Pin of Voltage Regulator 2. Connected to Collector of PNP Transistor.  
10  
ROUT2  
Control Switch Input Pin for turning Voltage Regulator 1 ON/OFF.  
Input level for this Input Pin is Active “H” .  
11  
CSW1  
Control Switch Input Pin for turning Voltage Regulator 2 ON/OFF.  
Input level for this Input Pin is Active “H”  
12  
13  
CSW2  
CSW3  
Control Switch Input Pin for turning Voltage Regulator 3 ON/OFF.  
Input level for this Input Pin is Active “H” .  
14  
15  
16  
VSEN1  
ROUT3  
VDD  
Sense Pin of Voltage Detector 1.  
Output Pin of Voltage Regulator 3.  
VDD Pin.  
RV5VE0×××(Optional Mask Version ICs)  
Pin No.  
2
Symbol  
Description  
5 Pins Nos. 2, 11, 12, 13 and 14 can be designated as Input Pins by User's  
choice. Refer to Optional Mask Version Guide.  
11  
To be  
named  
by User  
12  
Pins other than the above 5 Pins can be selected from the same pins as those  
used in R×5VE001×(Standard ICs)  
13  
14  
3
RV5VE0×××  
OPTIONAL MASK VERSION GUIDE  
User can designate an optional mask version in accordance with the following Optional Mask Version Guide:  
Item  
Description  
sense Pins of Voltage Detectors 1, 2 can be connected to Output ROUT , ROUT ,  
1
2
Sense Pins of Voltage  
Detectors 1, 2  
3
4
ROUT , ROUT of Voltage Regulators, or VDD.  
ON/OFF Control of  
Regulators and  
Detectors  
ON/OFF Control of Voltage Regulators 1 to 4 and Voltage Detector 1 can be per-  
formed by 3 INPUT AND Gate.  
ON/OFF Control of Voltage Detector 2 can be directly performed.  
ON/OFF Control of 4 Voltage Regulators and 2 Voltage Detectors can be per-  
formed by AND Gate of Toggle Input and Level Input.  
Edge Trigger Flip-Flop (Rise Edge Operation) is reset and Initialized at the rise  
of power source or at the detection operation of Voltage Detector 1 or 2.  
Flip-Flop can be reset by one shot pulse at the detection of Voltage Detector 1 or  
2, or the reset state can be maintained during the detection operation.  
ON/OFF Control by  
Toggle Input  
(only Pin 11)  
Five Input Pins are available as User's Pins as shown in the TABLE shown below.  
ON/OFF Control Input Pins for Regulators and detectors.  
Sense Pins of Voltage Detectors 1,2.  
Pins by User's Choice  
Active “H” Input or Active “L” Input can be selected.  
RESET Output and DOUT Output, which are output from Voltage Detectors 1, 2,  
can be set at “L” or “H” at the time of the detection.  
RESET Output and DOUT Output, which are output from Voltage Detectors 1,  
2,can be set at “L” or “H” at the time of OFF by ON/OFF Control.  
Output Signals of Voltage Detectors 1, 2 can perform ON/OFF control of Voltage  
Regulators 1 to 4.  
Output of Voltage  
Detectors 1, 2  
Functions of Input Pins by User' Choice  
Pin No.  
Symbol  
Functions  
2
Control Switch of Each Circuit, Sense Pin of Voltage Detector 1 or 2.  
11  
12  
13  
14  
Control Switch of Each Circuit, Schmitt trigger input possible.  
Control Switch of Each Circuit only.  
To be  
named  
by User  
Control Switch of Each Circuit only.  
Control Switch of Each Circuit, Sense Pin of Voltage Detector 1 or 2.  
4
RV5VE0×××  
DESCRIPTION OF EACH CIRCUIT  
1. Voltage Regulators 1,2  
Voltage Regulators 1, 2 are linear regulators which can be constructed of external PNP Transistor, and are capa-  
ble of obtaining a large output current by a small Dropout Voltage.  
Output Voltage of each of Voltage Regulators 1, 2 can be set stepwise with a step of 0.1V in the range of 3V to 6V  
by laser trim.  
Voltage Regulators 1, 2 can be turned ON/OFF by Control Pins.  
Use External PNP Transistor of a low saturation type, with an hFE of 100 or more.  
Use Voltage Regulators 1, 2 with the attachment of a Capacitor with a capacitance of 10µF or more to the Output  
Pins.  
2. Voltage Regulators 3,4  
Voltage Regulators 3, 4 are CMOS type linear regulators and have the same structure as those of Voltage  
Regulators R×5RL and R×5RE series.  
Output Voltage of each of Voltage Regulators 3, 4 can be set stepwise with a step of 0.1V in the range of 2V to 6V  
by laser trim.  
Voltage Regulators 3, 4 can be turned ON/OFF by Control Pins.  
3. Voltage Detector 1  
When Voltage Detector 1 detects the lowering of VSEN1, the level of the output of Voltage Detector 1 becomes “L”  
level. The output of Voltage Detector 1 is Nch Open Drain Output.  
Voltage Detector 1 can be set as follows by optional mask:  
1. ON/OFF Control of Voltage Detector 1.  
2. Output of Voltage Detector 1 at the detection can be set at “L” level or “H” level.  
3. Output of Voltage Detector 1 at OFF can be set at “L” level or “H” level.  
4. Sense Pins of Voltage Detectors 1, 2 can be connected to Output ROUT1, ROUT2, ROUT3, ROUT4 of Voltage  
Regulators or VDD within the IC.  
4. Voltage Detector 2  
When Voltage Detector 2 detects the lowering of VSEN2, the level of the output of Voltage Detector 2 becomes “L”  
level. The output of Voltage Detector 2 is Nch Open Drain Output.  
Voltage Detector 2 can set Reset Delay Time. Delay Time can be set in accordance with the capacitance CD of  
External Capacitor as shown on the following pages.  
Voltage detector 2 can be set as follows by optional mask:  
1. ON/OFF Control of Voltage Detector 2.  
2. Output of Voltage Detector 2 at the detection can be set at “L” level or “H” level.  
3. Output of Voltage Detector 2 at OFF can be set at “L” level or “H” level.  
4. Sense Pins of Voltage Detectors 2 can be connected to Output ROUT1, ROUT2, ROUT3, ROUT4 of Voltage  
Regulators or VDD within the IC.  
5
RV5VE0×××  
Formula for calculating Reset Delay Time is  
tD = 0.69×RD ×CD  
wherein RD is the resistance of a built-in resistor and can be set at 1Min IC, so that the above formula is:  
tD = 0.69×106×CD  
Voltage Detector with Delay Circuit is constructed as shown below.  
Block Diagram of Voltage Detector with delay Circuit.  
VSEN2  
VDD  
Current Source  
RD  
+
RESET  
GND  
Vref  
CD  
Extermal Capacitor  
5. Main Power Source Control (in the case of Optional Mask Version)  
• This IC includes built-in Edge Trigger Flip-Flop (Rising Edge Operation) and AND Gate, so that Main Power  
Source of any instruments can be turned ON/OFF by “AND” of Toggle Input and Level Input.  
• Edge Trigger Flip-Flop is reset by One Shot Pulse Generator when Voltage Detector 1 or 2 detects the lowering  
of the voltage. This Flip-Flop can be continuously reset during the detection.  
6
RV5VE0×××  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Rating  
+12  
Unit  
V
VIN  
Input Voltage  
VOUT  
IOUT  
Output Voltage  
–0.3 to VIN+0.3  
300  
V
Output Current  
mA  
mW  
mW  
˚C  
PD1  
Power Dissipation1 (16pin SSOP (0.8mm pitch))  
Power Dissipation2 (16pin SSOP (0.65mm pitch))  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature(Soldering)  
500  
PD2  
470  
Topt  
Tstg  
30 to +80  
40 to +125  
260˚C 10s  
˚C  
Tsolder  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any  
conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above  
these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress  
ratings only and do not necessarily imply functional operation below these limits.  
OVERALL CHARACTERISTICS  
Symbol  
Item  
Conditions  
MIN.  
1.5  
3.0  
2.0  
2.0  
TYP.  
MAX.  
10.0  
6.0  
Unit  
V
VDD  
Operationg Voltage Range  
Output Voltage Setting Range 1  
Output Voltage Setting Range 2  
Detector Threshold Setting Range  
ROUT1,2  
ROUT3,4  
–VDET  
Step of 0.1V  
Step of 0.1V  
Step of 0.1V  
V
6.0  
V
6.0  
V
Electrical Characteristics of R×5VE001×  
The following three types of ICs are available as Standard ICs.The details of these ICs are shown in the section  
of Electrical Characteristics on the following pages:  
List of Standard Voltage Settings  
Type Number  
R×5VE001A R×5VE001B R×5VE001C  
Output Voltage of Regulator 1 to 4  
Threshold Voltage of Detector 1  
Threshold Voltage of Detector 2  
Conditions for Input Voltage  
5.0V  
5.4V  
4.5V  
6.0V  
4.0V  
4.4V  
3.5V  
4.8V  
3.0V  
3.4V  
2.5V  
3.6V  
7
RV5VE0×××  
RV5VE001A  
Voltage Regulators 1, 2 [ RV5VE001A]  
Topt=25˚C  
Symbol  
ROUT1,2  
ISS1,2  
Item  
Output Voltage  
Quiescent Current  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
MAX.  
5.125  
100  
1
Unit  
4.875  
5.000  
V
µA  
mA  
V
IOUT=0mA  
IOUT=80mA  
Iopr1,2  
VDIF1,2  
ROUT1,2=5.0V,IOUT=80mA  
0.05  
0.3  
VOUT  
IOUT  
ROUT1,2=5.0V  
Load Regulation  
Line Regulation  
50  
mV  
1mAIOUT80mA  
VOUT  
VIN  
ROUT1,2+0.3VVIN10.0V  
0.05  
60  
0.3  
%/V  
RR  
Ripple Rejection  
Current Limit  
f=120HZ,Ripple 0.5Vrms  
40  
3
dB  
Base Current of IB1,2of  
PNP Transistor  
Ilim1,2  
10  
mA  
VOUT  
Topt  
Output Voltage  
Temperature Coefficient  
±100  
ppm/˚C  
(Note 1) Unless otherwise provided, VDD = 6.0V, IOUT = 50mA, Co = 10µF, Rbe = 100k.  
(Note 2) Use External Transistor with hFE 100.  
(Note 3) Quiescent Current = Operating Current of Regulators 1, 2 + 0.6/Rbe.  
(Note 4) Supply Current = Quiescent (No Load) Current + Load Current/hFE.  
Voltage Regulator 3 [RV5VE001A]  
Topt=25˚C  
Symbol  
Item  
Output Voltage  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
5.000  
5.0  
MAX.  
5.125  
10.0  
0.3  
Unit  
ROUT  
ISS3  
4.875  
V
µA  
V
3
VDIF3  
ROUT3=5.0V,IOUT=50mA  
ROUT =5.0V  
3
VOUT  
IOUT  
Load Regulation  
50  
mV  
1mAIOUT50mA  
VOUT  
VIN  
Line Regulation  
Current Limit  
ROUT3+0.5VVIN10.0V  
0.05  
0.3  
%/V  
Ilim3  
100  
300  
mA  
Output Voltage  
VOUT  
Topt  
±100  
ppm/˚C  
Temperature Coefficient  
(Note) Unless otherwise provided, VDD = 6.0V, IOUT = 30mA  
8
RV5VE0×××  
Voltage Regulator 4 [RV5VE001A]  
Topt=25˚C  
Symbol  
ROUT4  
ISS4  
Item  
Output Voltage  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
5.000  
1.3  
MAX.  
Unit  
V
4.875  
5.125  
3.9  
µA  
V
VDIF4  
ROUT4=5.0V,IOUT=20mA  
0.3  
ROUT4=5.0V  
VOUT  
IOUT  
Load Regulation  
50  
mV  
1mAIOUT20mA  
VOUT  
VIN  
Line Regulation  
Current Limit  
ROUT4+0.5VVIN10.0V  
0.05  
0.3  
%/V  
Ilim4  
100  
300  
mA  
Output Voltage  
VOUT  
Topt  
±100  
ppm/˚C  
Temperature Coefficient  
(Note) Unless otherwise provided, VDD = 6.0V, IOUT = 10mA  
Voltage Detectors 1,2 [RV5VE001A]  
Topt=25˚C  
Symbol  
–VDET1  
–VDET2  
Item  
Conditions  
MIN.  
5.265  
4.388  
TYP.  
5.400  
4.500  
MAX.  
5.535  
4.612  
Unit  
Detector Threshold 1  
Detector Threshold 2  
Voltage Detector 1  
Voltage Detector 2  
V
V
( VDET)  
VHYS  
Detector Threshold Hysteresis  
Supply Current  
V
×
0.05  
Voltage Detector 1,VDD=6.0V  
Voltage Detector 2,VDD=6.0V  
VDS=0.5V, VDD=1.5V  
1.3  
1.5  
3.9  
4.5  
µA  
µA  
ISS5  
ISS6  
1.5  
IOUT  
Output Current  
mA  
VDS=0.5V, VDD=6.0V  
11.6  
RD  
Output Delay Resistor  
Sense Pin Input Current  
Voltage Detector 2 only  
VSEN=6.0V  
0.5  
1.0  
0.5  
2.0  
2
MΩ  
ISEN  
µA  
VDET  
Topt  
Detector Threshold  
Temperature Coefficient  
±100  
ppm/˚C  
(Note) Unless otherwise provided, VDD = 6.0V.  
9
RV5VE0×××  
Input Pins [RV5VE001A]  
Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Ileak  
VIL  
Input Leakage Current  
–1  
1
µA  
V
Control Switch  
Low Level Input Voltage  
CSW1 to 4  
CSW1 to 4  
0
2.4  
0.8  
Control Switch  
High Level Input Voltage  
VIH  
VSIL  
VSIH  
VHYS  
VDD  
V
V
V
V
Schmitt Trigger  
Low Level Input Voltage  
Optional  
Optional  
Optional  
Schmitt Trigger  
High Level Input Voltage  
Schmitt Trigger  
Hysteresis Voltage  
(Note) Unless otherwise provided, VDD = 6.0V.  
10  
RV5VE0×××  
RV5VE001B  
Voltage Regulators 1, 2 [RV5VE001B]  
Topt=25˚C  
Symbol  
ROUT1,2  
ISS1,2  
Item  
Output Voltage  
Quiescent Current  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
MAX.  
4.100  
100  
1
Unit  
V
3.900  
4.000  
IOUT=0mA  
IOUT=80mA  
µA  
mA  
V
Iopr1,2  
VDIF1,2  
ROUT1,2=4.0V,IOUT=80mA  
0.05  
0.3  
ROUT1,2=4.0V  
VOUT  
IOUT  
Load Regulation  
Line Regulation  
50  
mV  
1mAIOUT80mA  
VOUT  
VIN  
ROUT1,2+0.3VVIN10.0V  
0.05  
60  
0.3  
%/V  
RR  
Ripple Rejection  
Current Limit  
f=120HZ,Ripple 0.5Vrms  
40  
3
dB  
Base Current of IB1,2of  
PNP Transistor  
Ilim1,2  
10  
mA  
VOUT  
Topt  
Output Voltage  
Temperature Coefficient  
±100  
ppm/˚C  
(Note 1) Unless otherwise provided, VDD = 4.8V, IOUT = 50mA, Co = 10µF, Rbe = 100k.  
(Note 2) Use External Transistor with hFE 100.  
(Note 3) Quiescent Current = Operating Current of Regulators 1, 2 + 0.6/Rbe.  
(Note 4) Supply Current = Quiescent (No Load) Current + Load Current/hFE.  
Voltage Regulator 3 [RV5VE001B]  
Topt=25˚C  
Symbol  
Item  
Output Voltage  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
4.000  
5.0  
MAX.  
4.100  
10.0  
0.3  
Unit  
ROUT  
ISS3  
3.900  
V
µA  
V
3
VDIF3  
ROUT3=4.0V,IOUT=43mA  
ROUT =4.0V  
3
VOUT  
IOUT  
Load Regulation  
50  
mV  
1mAIOUT43mA  
VOUT  
VIN  
Line Regulation  
Current Limit  
ROUT3+0.5VVIN10.0V  
0.05  
0.3  
%/V  
Ilim3  
100  
300  
mA  
Output Voltage  
VOUT  
Topt  
±100  
ppm/˚C  
Temperature Coefficient  
(Note) Unless otherwiseprovided, VDD = 4.8V, IOUT = 30mA.  
11  
RV5VE0×××  
Voltage Regulator 4 [RV5VE001B]  
Topt=25˚C  
Symbol  
ROUT4  
ISS4  
Item  
Output Voltage  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
4.000  
1.3  
MAX.  
4.100  
3.9  
Unit  
3.900  
V
µA  
V
VDIF4  
ROUT4=4.0V,IOUT=17.5mA  
0.3  
ROUT4=4.0V  
VOUT  
IOUT  
Load Regulation  
50  
mV  
1mAIOUT17.5mA  
VOUT  
VIN  
Line Regulation  
Current Limit  
ROUT4+0.5VVIN10.0V  
0.05  
0.3  
%/V  
Ilim4  
100  
300  
mA  
Output Voltage  
VOUT  
Topt  
±100  
ppm/˚C  
Temperature Coefficient  
(Note) Unless otherwise provided, VDD = 4.8V, IOUT = 10mA  
Voltage Detectors 1,2 [RV5VE001B]  
Topt=25˚C  
Symbol  
–VDET1  
–VDET2  
Item  
Conditions  
MIN.  
4.290  
3.413  
TYP.  
4.400  
3.500  
MAX.  
4.510  
3.587  
Unit  
Detector Threshold 1  
Detector Threshold 2  
Voltage Detector 1  
Voltage Detector 2  
V
V
(–VDET)  
VHYS  
Detector Threshold Hysteresis  
Supply Current  
V
×
0.05  
Voltage Detector 1,VDD=4.8V  
Voltage Detector 2,VDD=4.8V  
VDS=0.5V, VDD=1.5V  
1.2  
1.4  
1.5  
9.0  
3.6  
4.2  
µA  
µA  
ISS5  
ISS6  
IOUT  
Output Current  
mA  
VDS=0.5V, VDD=4.8V  
RD  
Output Delay Resistor  
Sense Pin Input Current  
Voltage Detector 2 only  
VSEN=4.8V  
0.5  
1.0  
0.4  
2.0  
1.6  
MΩ  
ISEN  
µA  
VDET  
Topt  
Detector Threshold  
Temperature Coefficient  
±100  
ppm/˚C  
(Note) Unless otherwise provided, VDD = 4.8V.  
12  
RV5VE0×××  
Input Pins [RV5VE001B]  
Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Ileak  
VIL  
Input Leakage Current  
–1  
1
µA  
Control Switch  
Low Level Input Voltage  
CSW1 to 4  
CSW1 to 4  
0
2.0  
0.8  
V
V
V
V
V
Control Switch  
High Level Input Voltage  
VIH  
VSIL  
VSIH  
VHYS  
VDD  
Schmitt Trigger  
Low Level Input Voltage  
Optional  
Optional  
Optional  
Schmitt Trigger  
High Level Input Voltage  
Schmitt Trigger  
Hysteresis Voltage  
(Note) Unless otherwise provided, VDD = 4.8V.  
13  
RV5VE0×××  
RV5VE001C  
Voltage Regulators 1, 2 [RV5VE001C]  
Topt=25˚C  
Symbol  
ROUT1,2  
ISS1,2  
Item  
Output Voltage  
Quiescent Current  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
MAX.  
3.075  
100  
1
Unit  
2.925  
3.000  
V
µA  
mA  
V
IOUT=0mA  
IOUT=80mA  
Iopr1,2  
VDIF1,2  
ROUT1,2=3.0V,IOUT=80mA  
0.05  
0.3  
ROUT1,2=3.0V  
VOUT  
IOUT  
Load Regulation  
Line Regulation  
50  
mV  
1mAIOUT80mA  
VOUT  
VIN  
ROUT1,2+0.3VVIN10.0V  
0.05  
60  
0.3  
%/V  
RR  
Ripple Rejection  
Current Limit  
f=120HZ,Ripple 0.5Vrms  
40  
3
dB  
Base Current of IB1,2of  
PNP Transistor  
Ilim1,2  
10  
mA  
VOUT  
Topt  
Output Voltage  
Temperature Coefficient  
±100  
ppm/˚C  
(Note 1) Unless otherwise provided, VDD = 3.6V, IOUT = 50mA, Co = 10µF, Rbe = 100k.  
(Note 2) Use External Transistor with hFE 100.  
(Note 3) Quiescent Current = Operating Current of Regulators 1, 2 + 0.6/Rbe.  
(Note 4) Supply Current = Quiescent (No Load) Current + Load Current/hFE.  
Voltage Regulator 3 [RV5VE001C]  
Topt=25˚C  
Symbol  
Item  
Output Voltage  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
3.000  
5.0  
MAX.  
3.075  
10.0  
0.3  
Unit  
ROUT  
ISS3  
2.925  
V
µA  
V
3
VDIF3  
ROUT3=3.0V,IOUT=35mA  
ROUT =3.0V  
3
VOUT  
IOUT  
Load Regulation  
50  
mV  
1mAIOUT35mA  
VOUT  
VIN  
Line Regulation  
Current Limit  
ROUT3+0.5VVIN10.0V  
0.05  
0.3  
%/V  
Ilim3  
100  
300  
mA  
Output Voltage  
VOUT  
Topt  
±100  
ppm/˚C  
Temperature Coefficient  
(Note) Unless otherwise provided, VDD = 3.6V, IOUT = 30mA  
14  
RV5VE0×××  
Voltage Regulator 4 [RV5VE001C]  
Topt=25˚C  
Symbol  
ROUT4  
ISS4  
Item  
Output Voltage  
Supply Current  
Dropout Voltage  
Conditions  
MIN.  
TYP.  
3.000  
1.1  
MAX.  
Unit  
V
2.925  
3.075  
3.3  
µA  
V
VDIF4  
ROUT4=3.0V,IOUT=15mA  
0.3  
ROUT4=3.0V  
VOUT  
IOUT  
Load Regulation  
50  
mV  
1mAIOUT15mA  
VOUT  
VIN  
Line Regulation  
Current Limit  
ROUT4+0.5VVIN10.0V  
0.05  
0.3  
%/V  
Ilim4  
100  
300  
mA  
Output Voltage  
VOUT  
Topt  
100  
±
ppm/˚C  
Temperature Coefficient  
(Note) Unless otherwise provided, VDD = 3.6V, IOUT = 10mA  
Voltage Detectors 1,2 [RV5VE001C]  
Topt=25˚C  
Symbol  
–VDET1  
–VDET2  
Item  
Conditions  
MIN.  
3.315  
2.438  
TYP.  
3.400  
2.500  
MAX.  
3.485  
2.562  
Unit  
Detector Threshold 1  
Detector Threshold 2  
Voltage Detector 1  
Voltage Detector 2  
V
V
(–VDET)  
VHYS  
Detector Threshold Hysteresis  
Supply Current  
V
×
0.05  
Voltage Detector 1,VDD=3.6V  
Voltage Detector 2,VDD=3.6V  
VDS=0.5V, VDD=1.5V  
1.1  
1.3  
1.5  
6.5  
3.3  
3.9  
µA  
µA  
ISS5  
ISS6  
IOUT  
Output Current  
mA  
VDS=0.5V, VDD=3.6V  
RD  
Output Delay Resistor  
Sense Pin Input Current  
Voltage Detector 2 only  
VSEN=3.6V  
0.5  
1.0  
0.3  
2.0  
1.2  
MΩ  
ISEN  
µA  
VDET  
Topt  
Detector Threshold  
Temperature Coefficient  
±100  
ppm/˚C  
(Note) Unless otherwise provided, VDD = 6.0V.  
15  
RV5VE0×××  
Input Pins [RV5VE001C]  
Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Ileak  
VIL  
Input Leakage Current  
–1  
1
µA  
V
Control Switch  
Low Level Input Voltage  
CSW1 to 4  
CSW1 to 4  
0
1.6  
0.6  
Control Switch  
High Level Input Voltage  
VIH  
VSIL  
VSIH  
VHYS  
VDD  
V
V
V
V
Schmitt Trigger  
Low Level Input Voltage  
Optional  
Optional  
Optional  
Schmitt Trigger  
High Level Input Voltage  
Schmitt Trigger  
Hysteresis Voltage  
(Note) Unless otherwise provided, VDD = 3.6V.  
16  
RV5VE0×××  
OPERATION  
Regulators 1,2  
ROUT4  
VDD  
Level  
Shift  
CSW1,2  
IBC1,2  
Current  
Limit  
Circuit  
+
ROUT1,2  
R1  
R2  
C1,2  
GND  
Each of Regulators 1 and 2 is operating with an external PNP transistor as shown in the above figure.  
Regulators 1 and 2 divide Output Voltage VOUT by Feed-back Registers R1 and R2, and the divided voltage at the  
node between Registers R1 and R2 is compared with the reference voltage by Error Amplifier, so that the base cur-  
rent of the PNP transistor is adjusted, and a constant voltage is output. The output current from each of  
Regulators 1 and 2 is monitored by Current Limitter, and when the output current exceeds a limit current,  
Current Limitter limits the base current of the PNP transistor to the specified limit current.  
The level of input signals to CSW 1, 2 is set at the same level as the output voltage level of ROUT4 by built-in  
level shift circuit.  
Phase compensation is made externally with C1,2.  
Regulators 3,4  
ROUT4  
Level  
VDD  
Current  
Limit  
Circuit  
Shift  
CSW3  
+
ROUT3,4  
R1  
R2  
A
GND  
Regulators 3 and 4 divide Output Voltage VOUT by feed-back Registers R1 and R2, and the divided voltage at  
the node between Registers R1 and R2 is compared with the reference voltage by Error Amplifier, so that a con-  
stant voltage is output. The output current from each of Regulators 3 and 4 is monitored by Current Limitter, and  
when the output current exceeds a limit current, Current Limitter limits the output current to the limit current.  
Regulator 4 is connected at Point to the GND in the above figure, so that Regulator 4 is always in operation.  
The level of input signals to CSW1, 2 is set at the same level as the output voltage level of ROUT4 by built-in lev-  
el shift circuits.  
17  
RV5VE0×××  
Detector 1  
VDD  
VSEN1  
Ra  
DOUT  
Output Tr.  
+
Current Source  
Nch  
Rb  
Rc  
Tr.1  
GND  
Operation Diagram  
Step  
1
2
3
4
5
Step  
Step 1 Step 2  
Step 3  
Step 4 Step 5  
Detector Threshold Hysteresis  
Comparator(+)Pin  
Input Voltage  
B
Released Voltage +VDET  
Detected Voltage –VDET  
I
II  
II  
II  
I
A
Comparator Output  
H
L
L
L
H
Minimum Operating Voltage  
GND  
Tr. 1  
OFF ON  
OFF ON  
ON  
ON OFF  
ON OFF  
Output Tr.  
Nch  
Indefinite  
Output Voltage  
GND  
Rb + Rc  
I.  
· VDD  
Ra + Rb + Rc  
Rb  
Ra + Rb  
· VDD  
.
II  
Step of Operation  
The following descriptions deal with VDD pin and VSEN1 pin as connected each other, but Detector 1 can be detect-  
ed the different voltage from VDD through VSEN1 pin.  
Step 1. Output Voltage is equal to Pull-up Voltage.  
Step 2. When Input Voltage (VSEN1)reaches the state of Vref VSEN1 · (Rb+Rc)/(Ra+Rb+Rc)at Point A (Detected VoltageVDET), the output of Comparator  
is reversed, so that Output Voltage becomes GND.  
Step 3. Output Voltage becomes indefinite when Power Source Voltage (VDD) is smaller than Minimum Operating Voltage. When the output is pulled-  
up,VDD is output.  
Step 4. Output Voltage becomes equal to GND.  
Step 5. When Input Voltage to (VSEN1) reaches the state of Vref VSEN1 · Rb/(Ra + Rb) at Point B (Released Voltage+VDET), the output of Comparator is reversed,  
so that Output Voltage becomes equal to Pulled-up Voltage.  
18  
RV5VE0×××  
Detector 2  
VSEN2  
VDD  
Current Source  
Rb  
Ra  
+
RESET  
GND  
Tr.2  
Rb  
Rc  
Tr.1  
CD  
Output Capacitor  
Operation Diagram  
Step  
1
2
3
4
5
Step  
Step 1 Step 2  
Step 3  
Step 4 Step 5  
Detector Threshold Hysteresis  
Comparato (+) Pin  
Input Voltage  
B
I
II  
II  
II  
I
Released Voltage +VDET  
Detected Voltage –VDET  
A
Comparator Output  
H
L
L
L
H
Minimum Operating Voltage  
GND  
Tr. 1  
OFF ON  
OFF ON  
ON  
ON OFF  
ON OFF  
Output Tr.  
Nch  
Indefinite  
Output Voltage  
GND  
Delay Time  
Rb + Rc  
I
.
· VDD  
Ra + Rb + Rc  
Rb  
· VDD  
.
II  
Ra + Rb  
Step of Operation  
The following descriptions deal with VDD pin and VSEN2 pin as connected each other, but Detector 2 can be detect-  
ed the different voltage from VDD through VSEN2 pin.  
Step 1. Output Voltage is equal to Pull-up Voltage.  
Step 2. When Input Voltage (VSEN2) reaches the state of Vref VSEN2 · (Rb+Rc)/(Ra+Rb+Rc)at Point A (Detected Voltage VDET), the output of Compara-  
tor is reversed, so that Output Voltage becomes GND. Discharging is performed from CD pin connected to External Capacitor. No delay time is  
generated.  
Step 3. Output Voltage becomes indefinite when Power Source Voltage (VDD) is smaller than Minimum Operating Voltage. When the output is pulled-  
up,VDD is output.  
Step 4. Output Voltage becomes equal to GND.  
Step 5. When Input Voltage (VSEN2) reaches the state of VrefVSEN2 · Rb/(Ra +Rb) at Point B (Released Voltage +VDET), the output of Comparator is reversed, and  
6
the External Capacitor is charged through CD pin,so that Output Voltage becomes equal to Pulled-up Voltage after a delay timeTD (= 0.69 × 10 × CD).  
19  
RV5VE0×××  
TEST CIRCUITS (RV5VE001A,B,C)  
Test Circuit 1  
100k  
100kΩ  
1
16  
H/L  
VDD  
H/L  
H/L  
10  
µF  
Tr.  
0.1  
µF  
Tr.  
10 0.1 CD  
µF µF  
10µF  
8
9
100kΩ  
ISS  
100kΩ  
Tr : 2SB804  
(hFE=150)  
· Output Voltage  
· Quiescent Current  
· Dropout Voltage  
· Load Regulation  
· Line Regulation  
· Current Limit (Regulator 3, 4)  
CSW1  
H
L
CSW2  
CSW3  
L
· Output Voltage Temperature Coefficient  
· Detector Threshold  
Regulator 1  
Regulator 2  
Regulator 3  
Regulator 4  
Detector 1  
Detector 2  
L
H
L
L
L
L
L
· Detector Threshold Hysteresis  
· Output Voltage Transient Response  
L
H
L
L
L
L
L
L
Test Circuit 2  
1
16  
open  
open  
open  
VDD  
H/L  
H/L  
Tr  
Tr.  
10µF  
10µF  
8
9
100kΩ  
100kΩ  
Tr : 2SB804  
(hFE=150)  
· Ripple Rejection (Regulator 1, 2)  
CSW1  
H
CSW2  
L
Regulator 1  
Regulator 2  
L
H
20  
RV5VE0×××  
Test Circuit 3  
· Current Limit (Regulator 1, 2)  
1
16  
open  
open  
CSW1  
H
CSW2  
L
open  
Regulator 1  
Regulator 2  
VDD  
L
H
H/L  
H/L  
A
A
Ilim1  
8
9
Ilim2  
Test Circuit 4  
open  
· Output Current (Detector 1, 2)  
1
16  
open  
VDD  
open  
A
A
0.5V  
0.5V  
8
9
21  
RV5VE0×××  
TYPICAL CHARACTERISTICS (RV5VE001A)  
Regulator Section  
1) Output Voltage vs. Input Voltage  
(zoomed)  
Regulator 1,2 (5V)  
Regulator 1,2 (5V)  
IOUT=50mA  
IOUT=50mA  
6
5.1  
5.0  
4.9  
4.8  
–30˚C  
80˚C  
5
4
3
2
1
–30˚C  
25˚C  
25˚C  
80˚C  
4.8  
5.0  
5.2  
5.4  
5.5  
0
0
0
2
4
6
8
10  
12  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
(zoomed)  
Regulator 3 (5V)  
Regulator 3 (5V)  
IOUT=30mA  
IOUT=30mA  
80˚C  
5.1  
6
5
4
3
2
1
–30˚C  
25˚C  
5.0  
4.9  
4.8  
–30˚C  
80˚C  
25˚C  
4.8  
5.0  
5.2  
5.4  
5.6  
2
4
6
8
10  
12  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
(zoomed)  
Regulator 4 (5V)  
Regulator 4 (5V)  
IOUT=10mA  
IOUT=10mA  
80˚C  
5.1  
5.0  
4.9  
4.8  
6
5
4
3
2
1
–30˚C  
–30˚C  
25˚C  
25˚C  
80˚C  
4.8  
5.0  
5.2  
5.4  
5.6  
2
4
6
8
10  
12  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
22  
RV5VE0×××  
2) Output Voltage vs. Output Current  
Regulator 1,2 (5V)  
Regulator 3 (5V)  
VDD=6.0V  
–30˚C  
VDD=6.0V  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
5.1  
25˚C  
80˚C  
5.0  
80˚C  
–30˚C  
25˚C  
4.9  
4.8  
0
100  
200  
300  
0
100  
200  
300  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
Regulator 4 (5V)  
VDD=6.0V  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
–30˚C  
25˚C  
80˚C  
0
50  
100  
150  
200  
Output Current IOUT(mA)  
3) Dropout Voltage vs. Output Curret  
Regulator 1,2 (5V)  
Regulator 3 (5V)  
0.3  
2.0  
1.5  
1.0  
0.5  
0.0  
25˚C  
25˚C  
0.2  
80˚C  
80˚C  
–30˚C  
0.1  
–30˚C  
0.0  
0
100  
200  
300  
0
100  
200  
300  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
23  
RV5VE0×××  
Regulator 4 (5V)  
2.0  
1.5  
1.0  
0.5  
0.0  
80˚C  
25˚C  
–30˚C  
0
50  
100  
100  
100  
Output Current IOUT(mA)  
5) Ripple Rejection vs. Frequency  
VDD = 6.0V 0.5Vrms  
Regulator 1,2: IOUT=50mA C = 4.7µF  
Regulator 3 : IOUT=30mA C = 0.1µF  
4) Output Voltage vs.Temperature  
(5V)  
Regulator 4 : IOUT=10mA C = 0.1µF  
5.04  
70  
Regulator 2  
60  
5.02  
5.00  
4.98  
4.96  
Regulator 1,2  
50  
Regulator 1  
Regulator 4  
40  
Regulator 3  
30  
Regulator 4  
VDD=6.0V  
20  
Regulator 1: IOUT=50mA  
Regulator 2: IOUT=50mA  
Regulator 3: IOUT=30mA  
Regulator 4: IOUT=10mA  
Regulator 3  
10  
0
10  
100  
1000  
10000  
–40 –20  
0
20 40 60 80 100  
Frequency f(Hz)  
Temperature Topt(˚C)  
6) Line Transient Response 1  
Regulator 1,2 (5V)  
IOUT=1mA  
COUT=4.7µF  
IOUT=1mA  
COUT=0.1µF  
Regulator 3 (5V)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Input Voltage  
Input Voltage  
Output Voltage  
Output Voltage  
0
1
2
3
4
5
0
1
2
3
4
5
Time t(ms)  
Time t(ms)  
24  
RV5VE0×××  
IOUT=1mA  
COUT=0.1µF  
Regulator 4 (5V)  
8
7
6
5
4
3
2
1
0
Input Voltage  
Output Voltage  
0
1
2
3
4
5
Time t(ms)  
7) Line Transient Response 2  
Regulator 1,2 (5V)  
IOUT=10mA  
COUT=4.7µF  
IOUT=10mA  
COUT=0.1µF  
Regulator 3 (5V)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Input Voltage  
Input Voltage  
Output Voltage  
Output Voltage  
0
1
2
3
4
5
0
1
2
3
4
5
Time t(ms)  
Time t(ms)  
IOUT=10mA  
COUT=0.1µF  
Regulator 4 (5V)  
8
7
6
5
4
3
2
1
0
Input Voltage  
Output Voltage  
0
1
2
3
4
5
Time t(ms)  
25  
RV5VE0×××  
8) Supply Current vs. Input Voltage  
Regulator 1,2 (5V)  
Regulator 3 (5V)  
10  
8
10  
8
6
4
2
0
6
4
2
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
Input Voltage VDD(V)  
Regulator 4 (5V)  
5
4
3
2
1
0
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
9) Supply Current vs. Temperature  
Regulator 1,2 (5V)  
Regulator 3 (5V)  
VDD=6.0V  
VDD=6.0V  
10  
8
10  
8
6
6
4
4
2
2
0
0
100  
–40  
0
20 40 60 80  
–20  
100  
–40  
0
20 40 60 80  
–20  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
26  
RV5VE0×××  
Regulator 4 (5V)  
VDD=6.0V  
5
4
3
2
1
0
100  
–40  
0
20 40 60 80  
–20  
Temperature Topt(˚C)  
10) Output Voltage Transient Response for “CSW” Input Voltage Step  
VDD=6.0V  
VDD=6.0V  
IOUT=30mA  
Regulator 3 (5V)  
COUT=0.1µF  
IOUT=50mA  
COUT=10µF  
Regulator 1,2 (5V)  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
200  
400  
600  
0
100  
200  
300  
Time t(µs)  
Time t(µs)  
VDD=6.0V  
IOUT=10mA  
COUT=0.1µF  
Regulator 4 (5V)  
7
6
5
4
3
2
1
0
(Note) 0µs point is synchronous with being “H” state of Control Switch.  
0
400  
800  
1200  
Time t(µs)  
27  
RV5VE0×××  
Detectors  
1) Output Voltage vs. Input Voltage  
2) Output Current vs. Input Voltage  
Detector 1,2  
Detector 1,2  
–VDET1,2=2.0V  
VDS=0.5V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
24  
20  
–30˚C  
16  
12  
8
25˚C  
80˚C  
80˚C  
25˚C  
–30˚C  
4
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
Input Voltage VDD(V)  
0
1
2
3
4
5
6
7
Input Voltage VDD(V)  
3) Supply Current vs. Input Voltage  
Detector 2  
Detector 1  
4
10  
8
3
80˚C  
6
2
1
0
25˚C  
4
–30˚C  
80˚C  
25˚C  
–30˚C  
2
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
Input Voltage VDD(V)  
4) Detected/Released Voltage vs. Temperature  
Detector 1  
Detector 2  
5.7  
4.8  
+VDET1  
+VDET2  
5.6  
4.7  
4.6  
4.5  
4.4  
5.5  
–VDET1  
–VDET2  
5.4  
5.3  
–40 –20  
0
20 40 60 80 100  
–40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
28  
RV5VE0×××  
5) Output Delay Time (falling edge) vs.  
Load Capacitance  
6) Output Delay Time (rising edge) vs.  
Input Voltage  
Topt = 25˚C  
Detector 2  
Topt = 25˚C  
without COUT  
and CD  
without CD  
Detector 1,2  
Detector 1,2  
VDD = 3.0V  
10-3  
10-3  
10-4  
Detector 2  
10-4  
Detector 2  
10-5  
Detector 1  
Detector 1  
10-5  
10-6  
10-9  
10-8  
Load Capacitance COUT(F)  
10-7  
10-6  
0
2
4
6
8
10  
Input Voltage VDD(V)  
8) Output Delay Time (rising edge) vs.  
CD Pin External Capacitance  
7) Output Delay Time (falling edge) vs.  
CD Pin External Capacitance  
Topt = 25˚C  
without COUT  
Detector 2  
Detector 1  
Topt = 25˚C  
10-0  
10-1  
10-2  
10-3  
10-5  
10-6  
10-9  
10-9  
10-8  
10-7  
10-6  
10-8  
10-7  
10-6  
CD Pin External Capacitance CD(F)  
CD Pin External Capacitance CD(F)  
29  
RV5VE0×××  
TYPICAL CHARACTERISTICS (RV5VE001B)  
Regulators  
1) Output Voltage vs. Input Voltage  
(zoomed)  
Regulator 1,2 (4V)  
Regulator 1,2 (4V)  
IOUT=50mA  
IOUT=50mA  
5
4.1  
4.0  
3.9  
3.8  
–30˚C  
25˚C  
80˚C  
4
3
2
1
–30˚C  
25˚C  
80˚C  
2
4
6
8
10  
12  
0
0
0
3.8  
4.0  
4.2  
4.4  
4.6  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
(zoomed)  
Regulator 3 (4V)  
Regulator 3 (4V)  
IOUT=30mA  
IOUT=30mA  
80˚C  
4.1  
5
4
3
2
1
–30˚C  
25˚C  
–30˚C  
25˚C  
4.0  
3.9  
3.8  
80˚C  
3.8  
4.0  
4.2  
4.4  
4.6  
2
4
6
8
10  
12  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
(zoomed)  
Regulator 4 (4V)  
Regulator 4 (4V)  
IOUT=10mA  
IOUT=10mA  
80˚C  
4.1  
4.0  
3.9  
3.8  
5
4
3
2
1
–30˚C  
25˚C  
25˚C  
–30˚C  
80˚C  
3.8  
4
4.0  
4.2  
4.4  
4.6  
2
4
6
8
10  
12  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
30  
RV5VE0×××  
2) Output Voltage vs. Output Current  
Regulator 1,2 (4V)  
Regulator 3 (4V)  
VDD=4.8V  
–30˚C  
VDD=4.8V  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
4.1  
4.0  
3.9  
3.8  
–30˚C 25˚C  
25˚C  
80˚C  
80˚C  
0
100  
200  
300  
0
100  
200  
300  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
Regulator 4 (4V)  
VDD=4.8V  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
–30˚C  
25˚C  
80˚C  
0
50  
100  
150  
Output Current IOUT(mA)  
3) Dropout Voltage vs. Output Curret  
Regulator 1,2 (4V)  
Regulator 3 (4V)  
0.3  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
80˚C  
0.2  
80˚C  
25˚C  
25˚C  
–30˚C  
0.1  
–30˚C  
0.0  
0
100  
200  
300  
0
100  
200  
300  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
31  
RV5VE0×××  
Regulator 4 (4V)  
2.0  
1.5  
1.0  
0.5  
0.0  
80˚C  
25˚C  
–30˚C  
0
20  
40  
60  
80  
100  
Output Current IOUT(mA)  
5) Ripple Rejection vs. Frequency  
VDD = 4.8V 0.5Vrms  
Regulator 1,2: IOUT=50mA C=4.7µF  
Regulator 3 : IOUT=30mA C=0.1µF  
4) Output Voltage vs.Temperature  
Regulator 4 : IOUT=10mA C=0.1µF  
(4V)  
4.04  
70  
Regulator 2  
Regulator 1  
60  
4.02  
4.00  
Regulator 1,2  
50  
40  
30  
20  
10  
0
Regulator 4  
VDD=4.8V  
Regulator 3  
Regulator 3  
Regulator 4  
Regulator 1: IOUT=50mA  
Regulator 2: IOUT=50mA  
Regulator 3: IOUT=30mA  
Regulator 4: IOUT=10mA  
3.98  
3.96  
–40 –20  
0
20 40 60 80 100  
10  
100  
1000  
10000  
Temperature Topt(˚C)  
Frequency f(Hz)  
6) Line Transient Response 1  
Regulator 1,2 (4V)  
IOUT=1mA  
COUT=0.1µF  
IOUT=1mA  
COUT=4.7µF  
Regulator 3 (4V)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Input Voltage  
Input Voltage  
Output Voltage  
Output Voltage  
0
1
2
3
4
5
0
1
2
3
4
5
Time t(ms)  
Time t(ms)  
32  
RV5VE0×××  
IOUT=1mA  
COUT=0.1µF  
Regulator 4 (4V)  
8
7
6
5
4
3
2
1
0
Input Voltage  
Output Voltage  
0
1
2
3
4
5
Time t(ms)  
7) Line Transient Response 2  
Regulator 1,2 (4V)  
IOUT=10mA  
COUT=0.1µF  
IOUT=10mA  
COUT=4.7µF  
Regulator 3 (4V)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Input Voltage  
Input Voltage  
Output Voltage  
Output Voltage  
0
1
2
3
4
5
0
1
2
3
4
5
Time t(ms)  
Time t(ms)  
IOUT=10mA  
COUT=0.1µF  
Regulator 4 (4V)  
8
7
6
5
4
3
2
1
0
Input Voltage  
Output Voltage  
0
1
2
3
4
5
Time t(ms)  
33  
RV5VE0×××  
8) Supply Current vs. Input Voltage  
Regulator 1,2 (4V)  
Regulator 3 (4V)  
10  
8
10  
8
6
4
2
0
6
4
2
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
Input Voltage VDD(V)  
Regulator 4 (4V)  
5
4
3
2
1
0
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
9) Supply Current vs. Temperature  
Regulator 1,2 (4V)  
Regulator 3 (4V)  
VDD=4.8V  
VDD=4.8V  
10  
8
10  
8
6
6
4
4
2
2
0
0
–40 –20  
0
20 40 60 80 100  
0
–40 –20  
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
34  
RV5VE0×××  
Regulator 4 (4V)  
VDD=4.8V  
5
4
3
2
1
0
–40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
10) Output Voltage Transient Response for “CSW” Input Voltage Step  
VDD=4.8V  
VDD=4.8V  
IOUT=30mA  
COUT=0.1µF  
IOUT=50mA  
COUT=10µF  
Regulator 1,2 (4V)  
Regulator 3 (4V)  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
200  
400  
600  
0
100  
200  
300  
Time t(µs)  
Time t(µs)  
VDD=4.8V  
IOUT=10mA  
COUT=0.1µF  
Regulator 4 (4V)  
7
6
5
4
3
2
1
0
(Note) 0µs point is synchronous with being “H” state of Control Switch.  
0
400  
800  
1200  
Time t(µs)  
35  
RV5VE0×××  
Detectors  
1) Output Voltage vs. Input Voltage  
2) Output Current vs. Input Voltage  
Detector 1,2  
Detector 1,2  
–VDET1,2=2.0V  
VDS=0.5V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
24  
–30˚C  
25˚C  
20  
16  
12  
8
80˚C  
80˚C  
25˚C  
–30˚C  
1.0  
0.5  
0.0  
4
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
1
2
3
4
5
6
7
0
Input Voltage VDD(V)  
Input Voltage VDD(V)  
3) Supply Current vs. Input Voltage  
Detector 2  
Detector 1  
10  
8
4
3
6
25˚C  
80˚C  
2
1
0
4
25˚C  
80˚C  
–30˚C  
2
–30˚C  
10  
0
0
2
4
6
8
12  
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
Input Voltage VDD(V)  
4) Detected/Released Voltage vs. Temperature  
Detector 1  
Detector 2  
3.8  
4.7  
+VDET1  
3.7  
3.6  
3.5  
3.4  
4.6  
+VDET2  
4.5  
–VDET1  
–VDET2  
4.4  
4.3  
–40 –20  
0
20 40 60 80 100  
–40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
36  
RV5VE0×××  
5) Output Delay Time (falling edge) vs.  
Load Capacitance  
6) Output Delay Time (rising edge) vs.  
Input Voltage  
Topt = 25˚C  
Detector 2  
Topt = 25˚C  
without COUT  
and CD  
without C  
D
Detector 1,2  
Detector 1,2  
VDD = 3.0V  
10-3  
10-4  
10-5  
10-6  
10-3  
Detector 2  
10-4  
Detector 2  
Detector 1  
Detector 1  
10-5  
10-9  
10-8  
10-7  
10-6  
0
2
4
6
8
10  
Input Voltage VDD(V)  
Load Capacitance COUT(F)  
8) Output Delay Time (rising edge) vs.  
CD Pin External Capacitance  
7) Output Delay Time (falling edge) vs.  
CD Pin External Capacitance  
Topt = 25˚C  
Detector 2  
Detector 2  
Topt = 25˚C  
without COUT  
10-0  
10-1  
10-2  
10-3  
10-5  
10-6  
10-9  
10-9  
10-8  
10-7  
10-6  
10-8  
10-7  
10-6  
CD Pin External Capacitance CD(F)  
CD Pin External Capacitance CD(F)  
37  
RV5VE0×××  
TYPICAL CHARACTERISTICS (RV5VE001C)  
Regulator Section  
1) Output Voltage vs. Input Voltage  
(zoomed)  
Regulator 1,2 (3V)  
Regulator 1,2 (3V)  
IOUT=50mA  
IOUT=50mA  
3.2  
3.1  
3.0  
2.9  
2.8  
–30˚C  
3.0  
80˚C  
25˚C  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
80˚C  
25˚C –30˚C  
0
0
0
2
4
6
8
10  
12  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
(zoomed)  
Regulator 3 (3V)  
Regulator 3 (3V)  
IOUT=30mA  
IOUT=30mA  
3.1  
3.0  
2.9  
2.8  
3.5  
3.0  
2.5  
2.0  
1.5  
–30˚C  
25˚C 80˚C  
25˚C  
–30˚C  
80˚C  
3.2  
2
4
6
8
10  
12  
2.8  
3.0  
3.4  
3.6  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
(zoomed)  
Regulator 4 (3V)  
Regulator 4 (3V)  
IOUT=10mA  
IOUT=10mA  
3.1  
3.0  
2.9  
2.8  
–30˚C  
3.0  
2.5  
2.0  
1.5  
80˚C  
25˚C  
25˚C  
–30˚C  
80˚C  
2
4
6
8
10  
12  
2.8  
3.0  
3.2  
3.4  
3.6  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
38  
RV5VE0×××  
2) Output Voltage vs. Output Current  
Regulator 1,2 (3V)  
Regulator 3 (3V)  
VDD=3.6V  
VDD=3.6V  
3.1  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.0  
–30˚C  
25˚C  
–30˚C  
80˚C  
25˚C  
80˚C  
2.9  
2.8  
0
100  
200  
300  
0
100  
200  
300  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
Regulator 4 (3V)  
VDD=3.6V  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
–30˚C  
80˚C  
25˚C  
0
50  
100  
150  
Output Current IOUT(mA)  
3) Dropout Voltage vs. Output Current  
Regulator 1,2 (3V)  
Regulator 3 (3V)  
2.0  
1.5  
1.0  
0.5  
0.0  
0.3  
80˚C  
25˚C  
80˚C  
0.2  
25˚C  
–30˚C  
0.1  
–30˚C  
0.0  
0
100  
200  
300  
0
100  
200  
300  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
39  
RV5VE0×××  
Regulator 4 (3V)  
2.0  
1.5  
1.0  
0.5  
0.0  
80˚C  
25˚C  
–30˚C  
0
20  
40  
60  
80  
100  
Output Current IOUT(mA)  
5) Ripple Rejection vs. Frequency  
VDD = 3.6V 0.5Vrms  
Regulator 1,2: IOUT=50mA C=4.7 µF  
Regulator 3 : IOUT=30mA C=0.1µF  
4) Output Voltage vs.Temperature  
Regulator 4 : IOUT=10mA C=0.1µF  
70  
3.02  
Regulator 4  
60  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
Regulator 1,2  
50  
Regulator 1  
40  
Regulator 3  
Regulator 2  
Regulator 3  
30  
Regulator 4  
VDD=3.6V  
20  
10  
0
Regulator 1: IOUT=50mA  
Regulator 2: IOUT=50mA  
Regulator 3: IOUT=30mA  
Regulator 4: IOUT=10mA  
10  
100  
1000  
10000  
–40  
–20  
0
20 40 60 80 100  
Frequency f(Hz)  
Temperature Topt(˚C)  
6) Line Transient Response 1  
IOUT=1mA  
COUT=4.7µF  
IOUT=1mA  
COUT=0.1µF  
Regulator 3 (3V)  
Regulator 1,2 (3V)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Input Voltage  
Input Voltage  
Output Voltage  
Output Voltage  
0
4
1
5
2
3
0
1
4
5
2
3
Time t(ms)  
Time t(ms)  
40  
RV5VE0×××  
IOUT=1mA  
COUT=0.1µF  
Regulator 4 (3V)  
8
7
6
5
4
3
2
1
0
Input Voltage  
Output Voltage  
0
1
2
3
4
5
Time t(ms)  
7) Line Transient Response 2  
Regulator 1,2 (3V)  
IOUT=10mA  
COUT=0.1µF  
IOUT=10mA  
COUT=4.7µF  
Regulator 3 (3V)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Input Voltage  
Input Voltage  
Output Voltage  
Output Voltage  
0
1
2
3
4
5
0
1
2
3
4
5
Time t(ms)  
Time t(ms)  
Regulator 4 (3V)  
IOUT=10mA  
COUT=0.1µF  
8
7
6
5
4
3
2
1
0
Input Voltage  
Output Voltage  
0
1
2
3
4
5
Time t(ms)  
41  
RV5VE0×××  
8) Supply Current vs. Input Voltage  
Regulator 1,2 (3V)  
Regulator 3 (3V)  
10  
10  
8
8
6
4
2
0
6
4
2
0
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
12  
Input Voltage VDD(V)  
Input Voltage VDD(V)  
Regulator 4 (3V)  
5
4
3
2
1
0
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
9) Supply Current vs. Temperature  
Regulator 1,2 (3V)  
Regulator 3 (3V)  
VDD=3.6V  
VDD=3.6V  
10  
8
10  
8
6
6
4
4
2
2
0
0
100  
100  
–40  
0
20 40 60 80  
–40  
0
20 40 60 80  
–20  
–20  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
42  
RV5VE0×××  
Regulator 4 (3V)  
VDD=3.6V  
5
4
3
2
1
0
–40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
10) Output Voltage Transient Response for “CSW” Input Voltage Step  
VDD=3.6V  
VDD=3.6V  
IOUT=30mA  
COUT=0.1µF  
IOUT=50mA  
COUT=10µF  
Regulator 1,2 (3V)  
Regulator 3 (3V)  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
200  
400  
600  
0
0
100  
200  
Time t(µs)  
300  
Time t(µs)  
VDD=3.6V  
IOUT=10mA  
COUT=0.1µF  
Regulator 4 (3V)  
7
6
5
4
3
2
1
0
(Note) Control Switch becomes ON ( “H” ) at 0µs.  
0
400  
800  
Time t(µs)  
1200  
43  
RV5VE0×××  
Detectors  
1) Output Voltage vs. Input Voltage  
2) Output Current vs. Input Voltage  
Detector 1,2  
Detector 1,2  
–VDET1,2=2.0V  
VSD=0.5V  
24  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
–30˚C  
25˚C  
20  
16  
12  
8
80˚C  
80˚C  
25˚C  
4
–30˚C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
0
1
2
3
4
5
6
7
Input Voltage VDD(V)  
Input Voltage VDD(V)  
3) Supply Current vs. Input Voltage  
Detector 1  
Detector 2  
10  
8
4
3
6
25˚C  
80˚C  
2
1
0
4
25˚C  
6
80˚C  
–30˚C  
2
–30˚C  
10  
0
0
2
4
8
12  
0
2
4
6
8
10  
12  
Input Voltage VDD(V)  
Input Voltage VDD(V)  
4) Detected/Released Voltage vs. Temperature  
Detector 1  
Detector 2  
3.7  
2.8  
+VDET1  
3.6  
2.7  
2.6  
2.5  
2.4  
+VDET2  
3.5  
–VDET2  
–VDET1  
3.4  
3.3  
–40 –20  
0
20 40 60 80 100  
–40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
44  
RV5VE0×××  
5) Output Delay Time (falling edge) vs.  
Load Capacitance  
6) Output Delay Time (rising edge) vs.  
Input Voltage  
Topt = 25˚C  
Detector 2  
Topt = 25˚C  
without COUT  
and CD  
without C  
D
Detector 1,2  
Detector 1,2  
VDD = 3.0V  
10-3  
10-3  
10-4  
Detector 2  
10-4  
Detector 2  
10-5  
10-6  
Detector 1  
Detector 1  
10-5  
10-6  
10-9  
10-8  
10-7  
0
2
4
6
8
10  
Load Capacitance COUT(F)  
Input Voltage VDD(V)  
8) Output Delay Time (rising edge) vs.  
CD Pin External Capacitance  
7) Output Delay Time (falling edge) vs.  
CD Pin External Capacitance  
Topt = 25˚C  
without CD  
Detector 2  
Detector 2  
Topt = 25˚C  
10-0  
10-1  
10-2  
10-3  
10-5  
10-6  
10-9  
10-8  
10-7  
10-6  
10-9  
10-8  
10-7  
10-6  
CD Pin External Capacitance CD(F)  
CD Pin External Capacitance CD(F)  
45  
RV5VE0×××  
TYPICAL APPLICATION  
RV5VE001×  
In this example of the circuit, the output of Regulator 4 is used as the power source for CPU. The voltage input  
to CSW 1, 2, 3 pins is subject to level shift within the IC so as to have the same level as that of the voltage of CPU.  
Therefore CSW 1, 2, 3 pins can be directly connected to CPU. Detector 1 monitors the voltage of the battery and  
Detector 2 monitors the voltage of the power source for CPU.  
Application for Cellular Phones (RV5VE001×)  
SBD  
R×5VE001×  
R3  
R4  
ROUT4  
VSEN2  
CD  
VDD  
ROUT3  
VSEN1  
VCC  
RESET  
C5  
RESET CSW3  
DOUT CSW2  
ROUT1 CSW1  
I/O  
I/O  
I/O  
CPU  
INT  
IBC1  
ROUT2  
IBC2  
Tr  
GND  
Tr  
R1  
R2  
C2  
CD C1  
C4 C3  
Memory  
Unit  
Logic  
Unit  
C1,2,5=10µF / C3,4=0.1µF / CD=0.1µF  
R1,2,3,4=100k  
Transmitter  
Unit  
Receiver/Audio  
Unit  
Tr: 2SB799(NEC PNP type,hFE=100 to 200)  
SBD: MA717(Panasonic)  
APPLICATION HINTS  
When using these ICs, be sure to take care of the following points :  
Minimize the impedance of VDD and GND wiring. In particular, with respect to the VDD wiring, the output cur-  
rent of Regulators flows thereinto, so that when the wiring impedance is high, the operation of the IC tends to be  
unstable and is vulnerable to noise.  
Provide a capacitor with a capacitance of about 10µF between VDD pin and GND pin with a minimum wiring  
length.  
Rush current flows into the capacitor connected to the output of Regulators at the start of the operation of the  
Regulators. In particular, Regulators 1, 2 are equipped with External PNP Transistor and accordingly have  
excellent drive performance. Therefore, when Regulators 1, 2 start to operate, for example, under the conditions  
that hFE of External PNP Transistor is 100 and the base current of the limiter is 5mA, a rush current of 500mA  
flows into the regulators. When the wiring impedance is high, the Power Source Voltage applied to IC tends to  
be varied by the rush current, so that the operation of IC may be adversely affected by the variation of the Power  
Source Voltage.  
In these ICs phase compensation is made for securing stable operation even when the load current is varied.  
1
4
Select the capacitors C1 to C4 conecting the Pin ROUT to ROUT with good frequency characteristics and small  
ESR.  
Be sure to connect a resistor with a resistance of about 100kbetween the base and the emitter for preventing  
the oscillation.  
Set external parts as close as possible to the IC and minimize the connection between the parts and the IC.  
When using a capacitor connected to CD pin, use a Schottky Barrier Diode (SBD) to discharge CD capacitor at  
the time of abrupt fluctuation of power source voltage.  
46  
RV5VE0×××  
APPLICATION FOR CELLULAR PHONES  
(RV5VE0×××:Optional Mask Version)  
This Optional Mask Version's application operates as follows.  
Regulator 1, 2  
Regulator 3  
Regulator 4  
: Regulator 1 and 2 can be enabled and disabled through Toggle Input and CPU signal CSW1.  
: Regulator 3 can be enabled and disabled through Toggle Input and CPU signal CSW2.  
: Regulator 4 is always enabled by dry cells (when the VDD voltage is maintained higher than  
minimum operating voltage). The output of Regulator 4 is not only the power source for  
CPU but also the level shift voltage of CSW 1, 2 pins. Therefor CSW1, 2 pins can be direct-  
ly connected to CPU.  
Detector 1, 2  
TFF  
: Detector 1 and 2 monitor the VDD level and the output of Regulator 4 respectively.  
Furthermore Detector 2 can generate the output-delay time (time delay to output rising  
edge) by connecting a capacitor to CD pin.  
: TFF can be reset by the output of power-on-reset and Detector 2 (through one shot pulse  
generator), while TFF is in the reset state Regulator 1, Regulator 2 and Regulator 3 are dis-  
abled.  
one shot pulse generator operation  
Input  
Output  
100µs  
47  
RV5VE0×××  
Application for Cellular Phones (RV5VE0×××)  
R1  
IBC1  
VDD  
16  
7
6
Tr  
Regulator  
2
ROUT1  
Transmitter  
Unit  
T
Q
R
C1  
R2  
Mechanical  
Switch  
IBC2  
9
Tr  
Regulator  
2
ROUT2  
Receiver/Audio  
Unit  
R6  
10  
11  
C2  
R5  
C6  
Toggle Input  
I Shot  
Pulse  
Generator  
ROUT3  
Regulator  
3
Memory/Logic  
Unit  
15  
CSW1  
C3  
Level  
Shift  
12  
C5  
SBD  
ROUT4  
RESET INT  
R
egulator  
4
1
Vcc  
CSW2  
CPU  
Level  
Shift  
13  
C4  
I/O  
I/O  
VSEN1  
DOUT  
14  
R4  
CD  
Detector  
1
3
8
5
2
CD  
VSEN2  
RESET  
R3  
GND  
Detector  
2
4
C1,2,5=10µF/C3,4=0.1µF/C6=1µF/CD=0.1µF  
R1,2,3,4=100k/R5=10k/R6=47Ω  
Tr: 2SB799(NEC PNP type,hFE=100 to 200)  
SBD: MA717(Panasonic)  
48  

相关型号:

RV5VE001B-E1

MULTI-POWER SUPPLY
RICOH

RV5VE001B-E2

MULTI-POWER SUPPLY
RICOH

RV5VE001C

MULTI-POWER SUPPLY
RICOH

RV5VE001C-E1

MULTI-POWER SUPPLY
RICOH

RV5VE001C-E2

MULTI-POWER SUPPLY
RICOH

RV5VE001F-E2

Power Supply Support Circuit, PDSO16, 0.65 MM PITCH, SSOP-16
RICOH

RV5VE001J-E2

Power Supply Support Circuit, PDSO16, 0.65 MM PITCH, SSOP-16
RICOH

RV5VE001P-E1

Power Supply Support Circuit, PDSO16, 0.65 MM PITCH, SSOP-16
RICOH

RV5VE001P-E2

Power Supply Support Circuit, PDSO16, 0.65 MM PITCH, SSOP-16
RICOH

RV5VE001R-E1

Power Supply Support Circuit, PDSO16, 0.65 MM PITCH, SSOP-16
RICOH

RV5VE001S-E2

Power Supply Support Circuit, PDSO16, 0.65 MM PITCH, SSOP-16
RICOH

RV5VE001U-E1

Power Supply Support Circuit, PDSO16, 0.65 MM PITCH, SSOP-16
RICOH