R1223N502H [RICOH]

PWM/VFM Step-down DC/DC Converter; PWM / VFM降压型DC / DC转换器
R1223N502H
型号: R1223N502H
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

PWM/VFM Step-down DC/DC Converter
PWM / VFM降压型DC / DC转换器

转换器
文件: 总19页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
99.12.8  
PWM/VFM step-down DC/DC Converter  
R1223N Series  
12345  
n OUTLINE  
The R1223N Series are PWM step-down DC/DC Converter controllers with low supply current by CMOS  
process.  
Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier,  
a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable circuit, and resistors for  
voltage detection. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC  
with only four external components, or a power-transistor, an inductor, a diode and a capacitor.  
With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching  
into the VFM oscillator from PWM oscillator, therefore the efficiency at small load current is improved. The  
R1223N XXXB type, which is without a PWM/VFM alternative circuit, is also available.  
If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. There are  
two types of protection function. One is latch-type protection circuit, and it works to latch an external Power  
MOSFET with keeping it disable. To release the condition of protection, after disable this IC with a chip enable  
circuit, enable it again, or restart this IC with power-on. The other is Reset-type protection circuit, and it works to  
restart the operation with soft-start and repeat this operation until maximum duty cycle condition is released.  
Either of these protection circuits can be designated by users’ request.  
n FEATURES  
l Range of Input Voltage · · · · · · · · · · · · ·2.3V~13.2V  
l Built-in Soft-start Function and Two choices of Protection Function (Latch-type or Reset type)  
l Two choices of Oscillator Frequency · · · · · ·300kHz, 500kHz  
l High Efficiency · · · · · · · · · · · · · · · · · ·TYP. 90%  
l Output Voltage · · · · · · · · · · · · · · · · · Stepwise Setting with a step of 0.1V  
in the range of 1.5V ~ 5.0V  
l Standby Current · · · · · · · · · · · · · · · · ·TYP. 0µA  
l High Accuracy Output Voltage · · · · · · · · · ·±2.0%  
l Low Temperature-Drift Coefficient of Output Voltage · · · · · TYP. ±100ppm/°C  
n APPLICATIONS  
l Power source for hand-held communication equipment, cameras, video instruments such as VCRs,  
camcorders.  
l Power source for battery-powered equipment.  
l Power source for household electrical appliances.  
12345  
Rev. 1.11  
- 1 -  
n BLOCK DIAGRAM  
OSC  
VOUT  
VIN  
Vref  
EXT  
Protection  
PWM/VFM  
CONTROL  
Soft Start  
CE  
Chip Enable  
GND  
n SELECTION GUIDE  
In the R1223N Series, the output voltage, the oscillator frequency, the optional function, and the taping type for  
the ICs can be selected at the users request.  
The selection can be made by designating the part number as shown below;  
R1223NXXXX-XX  
• • •  
a b c d  
Code  
a
Contents  
Setting Output Voltage(VOUT):  
Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible.  
Designation of Oscillator Frequency  
2 : fixed  
b
c
Designation of Optional Function  
A : 300kHz, with a PWM/VFM alternative circuit, Latch-type protection  
B : 500 kHz, with a PWM/VFM alternative circuit, Latch-type protection  
C : 300kHz, without a PWM/VFM alternative circuit, Latch-type protection  
D : 500kHz, without a PWM/VFM alternative circuit, Latch-type protection  
E : 300kHz, with a PWM/VFM alternative circuit, Reset-type protection  
F : 500 kHz, with a PWM/VFM alternative circuit, Reset-type protection  
G : 300kHz, without a PWM/VFM alternative circuit, Reset-type protection  
H : 500kHz, without a PWM/VFM alternative circuit, Reset-type protection  
Designation of Taping Type; Ex. :TR,TL(refer to Taping Specification)  
”TR” is prescribed as a standard.  
d
12345  
Rev. 1.11  
- 2 -  
n PIN CONFIGURATION  
l SOT-23-5  
4
5
VIN  
EXT  
(mark side)  
CE GND VOUT  
3
1
2
n PIN DESCRIPTION  
Pin No.  
Symbol  
CE  
Description  
1
2
3
4
5
Chip Enable Pin  
Ground Pin  
GND  
V
OUT  
Pin for Monitoring Output Voltage  
External Transistor Drive Pin  
Power Supply Pin  
EXT  
V
IN  
n ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Supply Voltage  
Rating  
15  
Unit  
V
V
IN  
V
IN  
V
EXT Pin Output Voltage  
CE Pin Input Voltage  
-0.3~V +0.3  
V
EXT  
IN  
V
-0.3~V +0.3  
V
CE  
IN  
V
V
Pin Input Voltage  
-0.3~V +0.3  
V
OUT  
EXT  
OUT  
IN  
I
EXT Pin Inductor Drive Output Current  
Power Dissipation  
±25  
250  
mA  
mW  
°C  
°C  
PD  
Topt  
Tstg  
Operating Temperature Range  
Storage Temperature Range  
-40~+85  
-55~+125  
12345  
Rev. 1.11  
- 3 -  
n ELECTRICAL CHARACTERISTICS  
lR1223N**2A(,C,E,G) Output Voltage : Vo  
(Topt=25°C)  
Symbol  
Item  
Conditions  
MIN.  
2.3  
TYP. MAX. Unit  
V
IN  
Operating Input Voltage  
Step-down Output Voltage  
13.2  
Vo´  
1.02  
V
V
V
OUT  
V =V =Vo+1.2V,I =-10mA  
OUT  
Vo´  
0.98  
Vo  
IN  
CE  
DV  
/
Step-down Output Voltage  
Temperature Coefficient  
Oscillator Frequency  
Oscillator Frequency  
Temperature Coefficient  
Supply Current1  
-40°C £ Topt £ 85°C  
±100  
ppm  
OUT  
DT  
/°C  
fosc  
V =V =Vo+1.2V,I =-100mA  
OUT  
240  
300  
360 kHz  
%
IN  
CE  
Df  
/
-40°C £ Topt £ 85°C  
±0.3  
OSC  
DT  
/°C  
I
V =13.2V,V =13.2V,V =13.2V  
OUT  
100  
0
160 mA  
DD1  
IN  
CE  
I
stb  
Standby Current  
V =13.2V,V =0V,V =0V  
OUT  
0.5  
-6  
mA  
mA  
mA  
mA  
mA  
V
IN  
CE  
I
EXT "H" Output Current  
EXT "L" Output Current  
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
V =8V,V  
=7.9V,V  
=0.1V,V  
=8V,V =8V  
-10  
20  
0
EXTH  
IN  
EXT  
EXT  
OUT  
CE  
I
V =8V,V  
IN  
=0V,V =8V  
10  
EXTL  
OUT  
CE  
I
V =13.2V,V =13.2V,V  
=13.2V  
0.5  
1.2  
CEH  
IN  
CE  
OUT  
I
V =13.2V,V =0V,V  
=13.2V  
-0.5  
0
CEL  
IN  
CE  
OUT  
V
CEH  
V =8V,V  
=0V®1.5V  
=1.5V®0V  
0.8  
0.8  
IN  
OUT  
V
CEL  
V =8V,V  
0.3  
V
IN  
OUT  
Maxdty Oscillator Maximum Duty Cycle  
VFMdty VFM Duty Cycle  
100  
%
only for A, E version  
25  
10  
%
T
Delay Time by Soft-Start function V = Vo+1.2V, V =0V®Vo+1.2V  
5
1
16  
5
ms  
start  
IN  
CE  
specified at 80% for rising edge  
T
Delay Time for protection circuit  
V =V =Vo+1.2V  
3
ms  
prot  
IN  
CE  
V
OUT  
= Vo+1.2V®0V  
12345  
Rev. 1.11  
- 4 -  
lR1223N**2B(,D,F,H) Output Voltage : Vo  
(Topt=25°C)  
Symbol  
Item  
Conditions  
MIN.  
2.3  
TYP. MAX. Unit  
V
IN  
Operating Input Voltage  
Step-down Output Voltage  
13.2  
Vo´  
1.02  
V
V
V
OUT  
V =V =Vo+1.2V,I =-10mA  
OUT  
Vo´  
0.98  
Vo  
IN  
CE  
DV  
/
Step-down Output Voltage  
Temperature Coefficient  
Oscillator Frequency  
Oscillator Frequency  
Temperature Coefficient  
Supply Current1  
-40°C £ Topt £ 85°C  
±100  
ppm  
OUT  
DT  
/°C  
fosc  
V =V =Vo+1.2V,I =-100mA  
OUT  
400  
500  
600 kHz  
%
IN  
CE  
Df  
/
-40°C £ Topt £ 85°C  
±0.3  
OSC  
DT  
/°C  
I
V =13.2V,V =13.2V,V =13.2V  
OUT  
140  
0
200 mA  
DD1  
IN  
CE  
I
stb  
Standby Current  
V =13.2V,V =0V,V =0V  
OUT  
0.5  
-6  
mA  
mA  
mA  
mA  
mA  
V
IN  
CE  
I
EXT "H" Output Current  
EXT "L" Output Current  
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
V =8V,V  
=7.9V,V  
=0.1V,V  
=8V,V =8V  
-10  
20  
0
EXTH  
IN  
EXT  
EXT  
OUT  
CE  
I
V =8V,V  
IN  
=0V,V =8V  
10  
EXTL  
OUT  
CE  
I
V =13.2V,V =13.2V,V  
=13.2V  
0.5  
1.2  
CEH  
IN  
CE  
OUT  
I
V =13.2V,V =0V,V  
=13.2V  
-0.5  
0
CEL  
IN  
CE  
OUT  
V
CEH  
V =8V,V  
=0V®1.5V  
=1.5V®0V  
0.8  
0.8  
IN  
OUT  
V
CEL  
V =8V,V  
0.3  
V
IN  
OUT  
Maxdty Oscillator Maximum Duty Cycle  
VFMdty VFM Duty Cycle  
100  
%
only for B, F version  
25  
6
%
T
Delay Time by Soft-Start function V = Vo+1.2V, V =0V® Vo+1.2V  
3
1
10  
4
ms  
start  
IN  
CE  
specified at 80% for rising edge  
T
Delay Time for protection circuit  
V =V =Vo+1.2V  
2
ms  
prot  
IN  
CE  
V
OUT  
= Vo+1.2V®0V  
12345  
Rev. 1.11  
- 5 -  
n TEST CIRCUITS  
A)  
E)  
F)  
L
PMOS  
5
1
4
3
2
5
1
4
3
2
V
VIN  
SD  
CL  
A
VIN  
CIN  
L
PMOS  
OSCILLOSCOPE  
B)  
5
4
3
2
V
A
5
1
4
3
2
CIN  
SD  
CL  
VIN  
1
VIN  
CIN  
OSCILLOSCOPE  
C)  
G)  
A
5
1
4
3
2
OSCILLOSCOPE  
5
4
3
VIN  
VOUT  
VIN  
1
2
A
D)  
VEXT  
5
4
3
VIN  
VOUT  
1
2
The typical characteristics were obtained by use of these test circuits.  
Test Circuit A : Typical characteristics 1), 2), 3), 4), 5), 6), 7)  
Test Circuit B : Typical characteristics 8)  
Test Circuit C : Standby Current  
Test Circuit D : Typical characteristics 12), 13)  
Test Circuit E : CE input current “H” and “L”  
Test Circuit F : Typical characteristics 9)  
Test Circuit G : Typical characteristics 10), 11)  
12345  
Rev. 1.11  
- 6 -  
n TYPICAL APPLICATIONS AND APPLICATION HINTS  
PMOS  
L
EXT  
VIN  
VOUT  
COUT  
SD1  
CE  
Load  
CIN  
GND  
CE CONTROL  
PMOS : HAT1020R(Hitachi), Si3443DV(Siliconix)  
SD1 : RB491D (Rohm)  
L
: CD105(Sumida, 27mH)  
COUT : 47mF(Tantalum Type)  
CIN  
: 10mF52(Tantalum Type)  
When you use these ICs, consider the following issues;  
l As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed  
for load current, therefore do not use it in such a way. When you control the CE pin by another power supply,  
do not make its "H" level more than the voltage level of VIN pin.  
l The operation of Latch-type protection circuit is as follows;  
When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical  
Characteristics) the protection circuit works to shut-down Power MOSFET with its latching operation. Therefore  
when an input/output voltage difference is small, the protection circuit may work with small load current.  
To release the protection latch state, after disable this IC with a chip enable circuit, enable it again, or restart this  
IC with power-on. However, in the case of restarting this IC with power-on, after the power supply is turned off, if a  
certain amount of charge remains in CIN, or some voltage is forced to VIN from CIN, this IC might not be restarted  
even after power-on.  
If rising transition speed of supply voltage is too slow, or the time which is required for VIN voltage to reach Output  
voltage of DC/DC converter is longer than soft-starting time plus delay time for protection circuit, protection circuit  
works before VIN voltage reaches Output voltage of DC/DC converter. To prevent this action, while power supply  
voltage is not ready, make this IC be standby mode(CE=”L”), and when the power supply is ready (the voltage level  
of VIN is equal or more than the voltage level of VOUT), make it enable(CE=”H”).  
l The operation of Reset-type protection circuit is as follows;  
When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical  
Characteristics) the protection circuit works to restart with soft-start operation. Therefore when an input/output  
voltage difference is small, the protection circuit may work with small load current.  
l Set external components as close as possible to the IC and minimize the connection between the components  
and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. And make  
sufficient grounding and reinforce supplying. A large switching current flows through the connection of power  
supply, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the  
voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of  
the IC.  
l Use capacitors with a capacity of 22mF or more for VOUT pin, and with good high frequency characteristics such  
as tantalum capacitors. We recommend you to use capacitors with an allowable voltage which is at least twice as  
much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is  
generated by an inductor when an external transistor is on and off.  
l Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach  
magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the  
absolute maximum rating at the maximum loading.  
12345  
Rev. 1.11  
- 7 -  
Use an inductor with appropriate inductance.  
l Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.  
l Do not use this IC under the condition at VIN voltage less than minimum operating voltage.  
P The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the  
values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
n OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy  
from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the  
input voltage is obtained. The operation will be explained with reference to the following diagrams :  
<Basic Circuits>  
<Current through L>  
i1  
ILmax  
IOUT  
ILmin  
topen  
L
VIN  
Lx Tr  
VOUT  
i2  
SD  
CL  
ton  
toff  
T=1/fosc  
Step 1 : LxTr turns on and current IL(=i1) flows, and energy is charged into CL. At this moment, IL increases from  
ILmin(=0) to reach ILmax in proportion to the on-time period(ton) of LXTr.  
Step 2 : When LxTr turns off, Schottky diode(SD) turns on in order that L maintains IL at ILmax, and current IL(=i2)  
flows.  
Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off, provided that  
in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this  
case, IL value is from this ILmin(>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period(ton), with the  
oscillator frequency(fosc) being maintained constant.  
l Discontinuous Conduction Mode and Continuous Conduction Mode  
The maximum value(ILmax) and the minimum value(ILmin) of the current which flows through the inductor are the  
same as those when LxTr is ON and when it is OFF.  
The difference between ILmax and ILmin, which is represented by DI ;  
DI = ILmax – ILmin = VOUT ´ topen / L = (VIN-VOUT)´ton/L×××Equation 1  
wherein T=1/fosc=ton+toff  
duty(%)=ton/T´100=ton´fosc´100  
topen £ toff  
In Equation 1, VOUT´topen/L and (VIN-VOUT)´ton/L are respectively show the change of the current at ON, and the  
change of the current at OFF.  
When the output current(IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the  
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period  
of toff, therefore ILmin becomes to zero(ILmin=0). When Iout is gradually increased, eventually, topen becomes to  
toff(topen=toff), and when IOUT is further increased, ILmin becomes larger than zero(ILmin>0). The former mode  
is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,  
12345  
Rev. 1.11  
- 8 -  
tonc=T´VIN/VOUT××× Equation 2  
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.  
n OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When LxTr is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of LXTr is described as Rp the direct current  
of the inductor is described as RL.)  
VIN=VOUT+(Rp+RL)´IOUT+L´IRP/ton  
×××Equation 3  
When LxTr is OFF:  
L´IRP/toff = VF+VOUT+RL´IOUT  
×××Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,  
DON=(VOUT+VF+RL´IOUT)/(VIN+VF-Rp´IOUT)×××Equation 5  
Ripple Current is as follows;  
IRP=(VIN-VOUT-Rp´IOUT-RL´IOUT)´DON/f/L ¼Equation 6  
wherein, peak current that flows through L, LxTr, and SD is as follows;  
ILmax=IOUT+IRP/2  
¼Equation 7  
Consider ILmax, condition of input and output and select external components.  
HThe above explanation is directed to the calculation in an ideal case in continuous mode.  
n External Components  
1. Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,  
magnetic saturation occurs and make transform efficiency worse.  
When the load current is same, the smaller value of L, the larger the ripple current.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output current,  
efficiency is better than using an inductor with a large value of L and vice versa.  
2. Diode  
Use a diode with low VF (Schottky type is recommended.) and high switching speed.  
Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.  
3. Capacitor  
As for CIN, use a capacitor with low ESR(Equivalent Series Resistance) and a capacity of at least 10mF for stable  
operation.  
COUT can reduce ripple of Output Voltage, therefore 47 to 100mF tantalum type is recommended.  
4. Lx Transistor  
Pch Power MOS FET is required for this IC.  
Its breakdown voltage between gate and source should be a few volt higher than Input Voltage.  
In the case of Input Voltage is low, to turn on MOS FET completely, select a MOS FET with low threshold voltage.  
If a large load current is necessary for your application and important, choose a MOS FET with low ON resistance  
for good efficiency.  
If a small load current is mainly necessary for your application, choose a MOS FET with low gate capacity for good  
efficiency.  
Maximum continuous drain current of MOS FET should be larger than peak current, ILmax.  
12345  
Rev. 1.11  
- 9 -  
n TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
L=27uH  
R1223N332H  
L=27uH  
R1223N152H  
1.530  
1.520  
1.510  
1.500  
1.490  
1.480  
1.470  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
12V  
8V  
4.5V  
13.2V  
8V  
5V  
2.3V  
1E-05 0.0001 0.001 0.01  
0.1  
1
1E-05 0.0001 0.001 0.01  
0.1  
1
Output Current IOUT(A)  
Output Current IOUT(A)  
2) Efficiency vs. Output Current  
CD104-27uH  
Si3443DV  
CD104-27uH  
R1223N332A(VIN=12V)  
Si3443DV  
R1223N332A(VIN=4.5V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
CD104-27uH  
Si3443DV  
CD104-27uH  
Si3443DV  
R1223N332B(VIN=4.5V)  
R1223N332B(VIN=12V)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
12345  
Rev. 1.11  
- 10 -  
CD104-27uH  
Si3443DV  
CD104-27uH  
Si3443DV  
R1223N332C(VIN=4.5V)  
R1223N332C(VIN=12V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
CD104-27uH  
R1223N502A(VIN=6.0V
CD104-27uH  
Si3443DV  
R1223N502A(VIN=12V)  
Si3443DV  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
CD104-27uH  
Si3443DV  
(VIN=6.0V)  
R1223N502B(VIN=12V)  
R1223N502B  
CD104-27uH  
Si3443DV  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
12345  
Rev. 1.11  
- 11 -  
CD104-27uH  
Si3443DV  
CD104-27uH  
Si3443DV  
R1223N502C(VIN=6.0V)  
R1223N502C(VIN=12V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
3) Ripple Voltage vs. Output Current  
L=27uH  
L=27uH  
R1223N502A  
R1223N332A  
200  
180  
160  
140  
120  
100  
80  
200  
180  
VIN4.5V  
VIN6V  
VIN8V  
VIN12V  
160  
140  
120  
100  
80  
VIN8V  
VIN12V  
60  
60  
40  
40  
20  
20  
0
0
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1223N332B  
L=27uH  
L=27uH  
R1223N502B  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
VIN6V  
VIN4.5V  
VIN8V  
VIN8V  
VIN12V  
VIN12V  
60  
60  
40  
40  
20  
20  
0
0
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
12345  
Rev. 1.11  
- 12 -  
L=27uH  
R1223N332C  
R1223N502C  
L=27uH  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
VIN4.5V  
VIN6V  
VIN8V  
VIN8V  
VIN12V  
VIN12V  
60  
60  
40  
40  
20  
20  
0
0
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
4) Oscillator Frequency vs. Input Voltage  
L=27uH  
R1223N152B  
R1223N152A  
L=27uH  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
0
5
10  
15  
0
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
5) Output Voltage vs. Input Voltage  
L=27uH  
R1223N152A  
R1223N152B  
L=27uH  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
0
5
10  
15  
0
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
12345  
Rev. 1.11  
- 13 -  
L=27uH  
L=27uH  
R1223N332B  
R1223N332A  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
0
5
10  
15  
0
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
6) Output Voltage vs. Temperature  
L=27uH  
VIN=2.7V  
L=27uH  
VIN=4.5V  
R1223N152B  
R1223N332H  
1.51  
1.50  
1.49  
1.48  
1.47  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt  
(°C)  
(°C)  
Temperature Topt  
7) Oscillator Frequency vs. Temperature  
L=27uH  
R1223N252A  
L=27uH  
VIN=4.5V  
R1223N332B  
VIN=3.7V  
360  
340  
320  
300  
280  
260  
240  
600  
550  
500  
450  
400  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt  
Temperature Topt  
12345  
Rev. 1.11  
- 14 -  
8) Supply Current vs. Temperature  
R1223N332G  
R1223N332H  
140  
130  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
VIN15V  
VIN13.2V  
VIN8V  
VIN15V  
VIN13.2V  
VIN8V  
80  
70  
60  
-50  
0
50  
100  
-50  
0
50  
100  
(°C)  
Temperature Topt  
(°C)  
Temperature Topt  
9) Soft-start time vs. Temperature  
R1223N252A  
L=27uH  
VIN=4.5V  
L=27uH  
VIN=3.7V  
R1223N332B  
10  
8
16  
14  
12  
10  
8
6
4
6
4
2
2
0
0
-50  
0
50  
100  
-50  
0
50  
100  
(°C)  
Temperature Topt  
Temperature Topt  
(°C)  
10) Delay Time for Latch-type protection vs. Temperature  
VIN=3.7V  
VIN=4.5  
R1223N332B  
R1223N252A  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
0
50  
100  
-50  
0
50  
100  
(°C)  
Temperature Topt  
Temperature Topt  
(°C)  
12345  
Rev. 1.11  
- 15 -  
11) Delay Time for Reset-type Protection vs. Temperature  
R1223N332G  
VIN=4.5V  
VIN=4.5V  
R1223N332H  
5
4
3
2
1
0
5
4
3
2
1
0
-50  
0
50  
100  
-50  
0
50  
100  
(°C)  
Temperature Topt  
Temperature Topt(°C)  
12) EXT "H" Output Current vs. Temperature  
R1223N332B  
16  
14  
12  
10  
8
6
4
2
0
-50  
0
50  
(°C)  
100  
Temperature Topt  
13) EXT"L" Output Current vs. Temperature  
R1223N332B  
30  
25  
20  
15  
10  
5
0
-50  
0
50  
(°C)  
100  
Temperature Topt  
12345  
Rev. 1.11  
- 16 -  
14) Load Transient Response  
R1223N332A  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1223N332A  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.4  
3.3  
3.2  
3.1  
3
500  
500  
0.1  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.9  
2.8  
2.7  
2.6  
0.  
1
0
0.05  
0.1  
0
0
0
0.0002 0.0004 0.0006 0.0008 0.001  
Time (sec)  
Time (sec)  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1223N332B  
R1223N332B  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.4  
3.3  
3.2  
3.1  
3
50  
0
50  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.9  
2.8  
2.7  
2.6  
0.  
1
0.  
0.1  
0
0.05  
Time (sec)  
0.0002 0.0004 0.0006 0.0008 0.001  
Time (sec)  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1223N332C  
R1223N332C  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.4  
3.3  
3.2  
3.1  
3
500  
0.1  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
500  
2.9  
2.8  
2.7  
2.6  
0.1  
0.0002 0.0004 0.0006 0.0008 0.001  
Time (sec)  
0
0.05  
0.1  
Time (sec)  
12345  
Rev. 1.11  
- 17 -  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1223N332D  
R1223N332D  
3.4  
3.3  
3.2  
3.1  
3
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
500  
0.1  
500  
0.1  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.9  
2.8  
2.7  
2.6  
0
0.0002 0.0004 0.0006 0.0008 0.001  
Time (sec)  
0
0.05  
0.1  
Time (sec)  
15) Turn-on Waveform  
R1223N332A  
(VIN=10V,IOUT=0mA)  
R1223N332A(VIN=5V,IOUT=0mA)  
L=27uH  
L=27uH  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
10  
0
-1.5  
-2  
-2.5  
-3  
0
-3.5  
-0.01  
0
0.01  
Time (sec)  
0.02  
-0.01  
0
0.01  
0.02  
Time (sec)  
(VIN=10V,IOUT=0mA)  
(VIN=5V,IOUT=0mA)  
R1223N332B  
R1223N332B  
L=27uH  
L=27uH  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
1
0
5
0
0
-0.01  
0
0.01  
0.02  
-0.01  
0
0.01  
Time (sec)  
0.02  
Time (sec)  
12345  
Rev. 1.11  
- 18 -  
(VIN=10V,IOUT=100mA)  
(VIN=5V,IOUT=100mA)  
R1223N332A  
R1223N332A  
L=27uH  
L=27uH  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
5
-0.5  
-1  
-0.5  
-1  
10  
0
-1.5  
-2  
-1.5  
-2  
-2.5  
-3  
-2.5  
-3  
0
-3.5  
-3.5  
-0.01  
0
0.01  
0.02  
-0.01  
0
0.01  
Time (sec)  
0.02  
Time (sec)  
(VIN=10V,IOUT=100mA)  
(VIN=5V,IOUT=100mA)  
R1223N332B  
R1223N332B  
L=27uH  
L=27uH  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
10  
0
5
0
-0.01  
0
0.01  
0.02  
-0.01  
0
0.01  
Time (sec)  
0.02  
Time (sec)  
12345  
Rev. 1.11  
- 19 -  

相关型号:

R1223N502H-TL

Switching Controller, Voltage-mode, 0.01A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1223N502H-TL-FA

Switching Controller, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1223N502H-TR

PWM/VFM Step-down DC/DC Converter
RICOH

R1223N502H-TR-FA

Switching Controller, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1223N502HTL

Voltage-Mode SMPS Controller
ETC

R1223N502HTR

Voltage-Mode SMPS Controller
ETC

R1223N512A

Voltage-Mode SMPS Controller
ETC

R1223N512ATL

Voltage-Mode SMPS Controller
ETC

R1223N512ATR

Switching Regulator/Controller, Voltage-mode, 0.01A, 300kHz Switching Freq-Max, CMOS, PDSO5,
RICOH

R1223N512B

Voltage-Mode SMPS Controller
ETC

R1223N512BTL

Voltage-Mode SMPS Controller
ETC

R1223N512BTR

Voltage-Mode SMPS Controller
ETC