UMK325BJ475MM- [RICHTEK]

3A, 36V, 500kHz Synchronous Step-Down Converter; 3A , 36V , 500kHz的同步降压型转换器
UMK325BJ475MM-
型号: UMK325BJ475MM-
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

3A, 36V, 500kHz Synchronous Step-Down Converter
3A , 36V , 500kHz的同步降压型转换器

转换器
文件: 总14页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT7272A  
3A, 36V, 500kHz Synchronous Step-Down Converter  
General Description  
Features  
z 4.5V to 36V Input Voltage Range  
The RT7272A is a high efficiency, current mode  
synchronous step-downDC/DC converter that can deliver  
up to 3A output current over a wide input voltage range  
from 4.5V to 36V. The device integrates a 150mΩ high  
side and a 80mΩ low side MOSFET to achieve high  
conversion efficiency up to 95%. The current mode control  
architecture supports fast transient response and simple  
compensation circuit.  
z 3A Output Current  
z Internal N-MOSFETs  
z Current Mode Control  
z Fixed Frequency Operation : 500kHz  
z Adjustable Output Voltage from 0.8V to 30V  
z High Efficiency Up to 95%  
z Stable with Low ESR Ceramic Output Capacitors  
z Cycle-by-Cycle Current Limit  
z Input Under Voltage Lockout  
z Output Under Voltage Protection  
z Thermal Shutdown Protection  
z Adjustable Current Limit  
A cycle-by-cycle current limit function provides protection  
against shorted output and an internal soft-start eliminates  
input current surge during start-up. The RT7272A provides  
complete protection functions such as input under voltage  
lockout, output under voltage protection, over current  
protection and thermal shutdown.  
z RoHS Compliant and Halogen Free  
The RT7272Ais available in the thermal enhanced SOP-8  
(Exposed Pad) package.  
Applications  
z Distributed Power Systems  
z Pre-Regulator for Linear Regulators  
z Notebook Computers  
Ordering Information  
RT7272A  
z Point of Load Regulator in Distributed Power System  
z Digital Set-top Boxes  
Package Type  
SP : SOP-8 (Exposed Pad-Option 2)  
z PersonalDigital Recorders  
z Broadband Communications  
z Flat Panel TVs and Monitors  
z Vehicle Electronics  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
Simplified Application Circuit  
V
BOOT  
RT7272A  
VIN  
IN  
C
IN  
C
B
L
SW  
V
OUT  
R1  
R2  
RLIM  
GND  
C
OUT  
FB  
R
C
C
L
R
C
COMP  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7272A-01 January 2013  
www.richtek.com  
1
RT7272A  
Pin Configurations  
Marking Information  
RT7272AGSP : Product Number  
(TOP VIEW)  
RT7272A  
GSPYMDNN  
YMDNN : Date Code  
8
7
6
5
SW  
BOOT  
EN  
VIN  
2
3
4
RLIM  
COMP  
FB  
GND  
9
GND  
SOP-8 (Exposed Pad)  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
SW  
Switch Node Connect to external L-C filter.  
Bootstrap Supply for High Side Gate Drive. A 100nF or greater capacitor is  
recommended to connect from BOOT pin to SW pin.  
2
3
BOOT  
EN  
Enable Control Input. A logic-high enables the converter; a logic-low forces the  
device into shutdown mode.  
4,  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum thermal dissipation.  
GND  
9 (Exposed Pad)  
Feedback Input. This pin is connected to the converter output. It is used to set  
the output of the converter to regulate to the desired value via an resistive  
divider.  
Compensation Node. COMP is used to compensate the regulation control loop.  
Connect a series RC network from COMP to GND. In some cases, an additional  
capacitor from COMP to GND is required.  
5
6
FB  
COMP  
7
8
RLIM  
VIN  
Current Limit Setting. Connect to a resistor to determine current limit.  
Power Input. The input voltage range is from 4.5V to 36V. Must bypass with a  
suitable large ceramic capacitor.  
Function Block Diagram  
VIN  
V
CC  
Internal  
Regulator  
Oscillator  
Current Sense  
Amplifier  
Shutdown  
Comparator  
V
V
CC  
A
Slope Comp  
+
V
A
Foldback  
Control  
R
SENSE  
-
1.2V  
+
-
0.4V  
+
BOOT  
SW  
UV  
Lockout  
Comparator  
-
S
R
Q
Q
150mΩ  
80mΩ  
UV  
5kΩ  
Comparator  
-
EN  
+
-
+
1.7V  
Current  
Comparator  
GND  
V
CC  
+
0.8V  
EA  
SS  
+
-
RLIM  
FB  
COMP  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS7272A-01 January 2013  
RT7272A  
Operation  
The RT7272A is a constant frequency, current mode  
synchronous step-down converter. In normal operation,  
the high sideN-MOSFET is turned on when the S-R latch  
is set by the oscillator and is turned off when the current  
comparator resets the S-R latch. While the high side  
N-MOSFET is turned off, the low sideN-MOSFET is turned  
on to conduct the inductor current until next cycle begins.  
Soft-Start (SS)  
An internal current source charges an internal capacitor  
to build a soft-start ramp voltage. The FB voltage will track  
the internal ramp voltage during soft-start interval. The  
typical soft-start time is 2ms.  
Current Setting  
The current limit of high side MOSFET is adjustable by  
an external resistor connected to the RLIM pin. The current  
limit range is from 2A to 6A. When the inductor current  
reaches the current limit threshold, the COMP voltage  
will be clamped to limit the inductor current.  
Error Amplifier  
The error amplifier adjusts its output voltage by comparing  
the feedback signal (VFB) with the internal 0.8V reference.  
When the load current increases, it causes a drop in the  
feedback voltage relative to the reference. The error  
amplifier's output voltage then rises to allow higher inductor  
current to match the load current.  
UV Comparator  
If the feedback voltage (VFB) is lower than 0.4V, the UV  
Comparator will go high to turn off the high side MOSFET.  
The output under voltage protection is designed to operate  
in Hiccup mode. When the UV condition is removed, the  
converter will resume switching.  
Oscillator  
The internal oscillator runs at fixed frequency 500kHz. In  
short circuit condition, the frequency is reduced to 75kHz  
for low power consumption.  
Thermal shutdown  
Internal Regulator  
The over temperature protection function will shut down  
the switching operation when the junction temperature  
exceeds 150°C. Once the junction temperature cools  
down by approximately 20°C, the converter will  
automatically resume switching.  
The regulator provides low voltage power to supply the  
internal control circuits and the bootstrap power for high  
side gate driver.  
Enable  
The converter is turned on when the ENpin is higher than  
2V. When the ENpin is lower than 0.4V, the converter will  
enter shutdown mode and reduce the supply current to  
0.5μA.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7272A-01 January 2013  
www.richtek.com  
3
RT7272A  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------------- 0.3V to 40V  
z Switch Voltage, SW ------------------------------------------------------------------------------------------------ 0.3V to (VIN + 0.3V)  
z VBOOT VSW ---------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z Other Pins Voltage -------------------------------------------------------------------------------------------------- 0.3V to 40V  
z Power Dissipation, PD @ TA = 25°C  
SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------------- 2.041W  
z Package Thermal Resistance (Note 2)  
SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------- 49°C/W  
SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------------- 15°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------------- 4.5V to 36V  
z Junction Temperature Range-------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 12V, CIN = 20μF, TA = 25°C, unless otherwise specified)  
Parameter  
Shutdown Supply Current  
Quiescent Current  
Symbol  
Test Conditions  
Min  
--  
Typ  
0.5  
0.9  
Max  
3
Unit  
μA  
V
V
= 0V  
EN  
I
= 3V, V = 0.9V  
--  
1.2  
mA  
Q
EN  
FB  
Feedback Reference  
Voltage  
V
4.5V V 36V  
0.788  
0.8  
150  
80  
0
0.812  
--  
V
REF  
IN  
High Side Switch  
On-Resistance  
R
R
--  
--  
--  
2
mΩ  
mΩ  
μA  
A
DS(ON)1  
DS(ON)2  
Low Side Switch  
On-Resistance  
--  
High Side Switch Leakage  
Current  
V
EN  
= 0V, V  
= 0V  
10  
SW  
Upper Switch Current Limit  
Range  
U
U
--  
6.3  
OC  
Min. Duty Cycle, R  
Min. Duty Cycle, R  
Min. Duty Cycle, R  
= 57.6kΩ  
= 84.5kΩ  
= 137kΩ  
1.9  
2.7  
4.5  
--  
2.5  
3.5  
5.5  
1.5  
3.1  
4.2  
6.5  
--  
LIM  
LIM  
LIM  
OC  
Upper Switch Current Limit  
Lower Switch Current Limit  
A
A
(Note 5)  
From Drain to Source  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS7272A-01 January 2013  
RT7272A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Oscillation Frequency  
f
f
450  
500  
550  
kHz  
OSC1  
OSC2  
Short Circuit Oscillation  
Frequency  
V
FB  
= 0V  
--  
75  
--  
kHz  
Maximum Duty Cycle  
Minimum On-Time  
D
V
FB  
= 0.7V  
--  
--  
2
90  
100  
--  
--  
--  
%
MAX  
t
ns  
ON  
Logic-High  
Logic-Low  
V
V
--  
IH  
EN Input Voltage  
V
--  
--  
0.4  
IL  
Input Under Voltage Lockout  
Threshold  
Input Under Voltage Lockout  
Hysteresis  
V
V
IN  
Rising  
3.9  
--  
4.1  
4.3  
--  
V
UVLO  
ΔV  
250  
mV  
UVLO  
Thermal Shutdown  
T
--  
--  
150  
20  
--  
--  
°C  
°C  
SD  
Thermal Shutdown Hysteresis  
ΔT  
SD  
COMP to Current Sense  
Transconductance  
G
ΔI  
= ±10μA  
COMP  
--  
--  
4.7  
--  
A/V  
CS  
Error Amplifier Transconductance  
1000  
--  
μA/V  
G
EA  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. RLIM (kΩ) = [UOC x 24.14 x (1 + 0.024 x (UOC 3.5)) 1.3], where UOC is desired upper switch peak current limit  
value.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7272A-01 January 2013  
www.richtek.com  
5
RT7272A  
Typical Application Circuit  
RT7272A  
BOOT  
V
2
1
IN  
8
VIN  
4.5V to 36V  
C
C
B
100nF  
IN  
10µF x 2  
L
3
7
SW  
V
OUT  
Enable  
RLIM  
EN  
R1  
R2  
RLIM  
5
6
C
OUT  
FB  
R
179k  
L
C
C
R
C
4, 9 (Exposed Pad)  
COMP  
GND  
Table 1. Suggested Component Values  
VOUT (V)  
R1 (kΩ)  
47  
R2 (kΩ)  
3.35  
3
RC (kΩ)  
47  
L (μH)  
10  
CC (nF)  
2.7  
COUT (μF)  
22 x 2  
12  
8
27  
36  
8.2  
2.7  
22 x 2  
5
62  
11.8  
24  
6.8  
2.7  
22 x 2  
3.3  
2.5  
1.2  
75  
25.5  
30  
24  
12  
60  
16  
12  
4.7  
3.6  
2.2  
2.7  
2.7  
2.7  
22 x 2  
22 x 2  
22 x 2  
6.8  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS7272A-01 January 2013  
RT7272A  
Typical Operating Characteristics  
Efficiency vs. Output Current  
Reference Voltage vs. Input Voltage  
100  
0.810  
0.808  
0.805  
0.803  
0.800  
0.798  
0.795  
0.793  
0.790  
90  
80  
VIN = 4.5V  
VIN = 12V  
70  
VIN = 24V  
60  
50  
40  
30  
20  
10  
0
VIN = 36V  
VOUT = 3.3V  
2.5  
VIN = 4.5V to 36V, IOUT = 0A  
0
0.5  
1
1.5  
2
3
2
6.75 11.5 16.25 21 25.75 30.5 35.25 40  
Input Voltage (V)  
Output Current (A)  
Reference Voltage vs. Temperature  
Output Voltage vs. Output Current  
0.810  
0.805  
0.800  
0.795  
0.790  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
VIN = 12V  
V
V
IN = 24V  
IN = 30V  
VIN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VOUT = 3.3V, IOUT = 0A  
50 75 100 125  
VOUT = 3.3V  
2.5 3  
-50  
-25  
0
25  
0
0.5  
1
1.5  
2
Temperature (°C)  
Output Current (A)  
Switching Frequency vs. Input Voltage  
Switching Frequency vs. Temperature  
500  
490  
480  
470  
460  
450  
500  
490  
480  
470  
460  
450  
440  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VOUT = 3.3V, IOUT = 0A  
VOUT = 3.3V, IOUT = 0A  
4
8
12  
16  
20  
24  
28  
32  
36  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Voltage (V)  
Temperature (°C)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7272A-01 January 2013  
www.richtek.com  
7
RT7272A  
Current Limit vs. Temperature  
Load Transient Response  
8
7
6
5
4
3
2
VOUT  
(200mV/Div)  
IOUT  
(2A/Div)  
VIN = 12V  
100 125  
VIN = 12V, VOUT = 3.3V, IOUT = 1.5A to 3A  
-50  
-25  
0
25  
50  
75  
Time (100μs/Div)  
Temperature (°C)  
Load Transient Response  
Switching  
VOUT  
(5mV/Div)  
VOUT  
(200mV/Div)  
VSW  
(5V/Div)  
IOUT  
(2A/Div)  
IL  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 0 to 3A  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (100μs/Div)  
Time (1μs/Div)  
Power On from EN  
Power Off from EN  
VEN  
VIN  
(5V/Div)  
(5V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
IOUT  
IOUT  
(2A/Div)  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (2.5ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (2.5ms/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS7272A-01 January 2013  
RT7272A  
Application Information  
Output Voltage Setting  
Chip Enable Operation  
The resistive divider allows the FB pin to sense the output  
voltage as shown in Figure 1.  
The EN pin is the chip enable input. Pulling the EN pin  
low (<0.4V) will shutdown the device. During shutdown  
mode, the RT7272A quiescent current drops to lower than  
3μA. Driving the EN pin high (>2.5V, < 18V) will turn on  
the device again. For external timing control, the EN pin  
can also be externally pulled high by adding a REN resistor  
and CEN capacitor from the VIN pin (see Figure 3).  
V
OUT  
R1  
FB  
RT7272A  
GND  
R2  
EN  
R
EN  
V
IN  
EN  
RT7272A  
Figure 1. Output Voltage Setting  
C
EN  
GND  
The output voltage is set by an external resistive voltage  
divider according to the following equation :  
Figure 3. Enable Timing Control  
R1  
R2  
VOUT = VREF 1+  
An external MOSFET can be added to implement digital  
control on the EN pin when no system voltage above 2.5V  
is available, as shown in Figure 4. In this case, a 100kΩ  
pull-up resistor, REN, is connected between VIN and the  
EN pin. MOSFET Q1 will be under logic control to pull  
down the EN pin.  
Where VREF is the reference voltage (0.8V typ.).  
External Bootstrap Diode  
Connect a 0.1μF low ESR ceramic capacitor between the  
BOOT and SW pins. This capacitor provides the gate driver  
voltage for the high side MOSFET.  
R
EN  
100k  
V
It is recommended to add an external bootstrap diode  
between an external 5V and BOOT pin for efficiency  
improvement when input voltage is lower than 5.5V or duty  
ratio is higher than 65% .The bootstrap diode can be a  
low cost one such as IN4148 or BAT54. The external 5V  
can be a 5V fixed input from system or a 5V output of the  
RT7272A. Note that the external boot voltage must be  
lower than 5.5V  
EN  
RT7272A  
GND  
IN  
Q1  
EN  
Figure 4. Digital Enable Control Circuit  
Under Voltage Protection  
5V  
Hiccup Mode  
The RT7272A provides Hiccup Mode Under Voltage  
Protection (UVP). When the VFB voltage drops below 0.4V,  
the UVP function will be triggered to shut down switching  
operation. If the UVP condition remains for a period, the  
RT7272Awill retry automatically. When the UVP condition  
is removed, the converter will resume operation. The UVP  
is disabled during soft-start period.  
BOOT  
100nF  
RT7272A  
SW  
Figure 2. External Bootstrap Diode  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7272A-01 January 2013  
www.richtek.com  
9
RT7272A  
Hiccup Mode  
The inductor's current rating (caused a 40°C temperature  
rising from 25°C ambient) should be greater than the  
maximum load current and its saturation current should  
be greater than the short circuit peak current limit. Please  
see Table 2 for the inductor selection reference.  
VOUT  
(2V/Div)  
Table 2. Suggested Inductors for Typical  
Application Circuit  
ILX  
(2A/Div)  
Component  
Supplier  
Dimensions  
(mm)  
Series  
TDK  
TDK  
VLF10045  
SLF12565  
10 x 9.7 x 4.5  
IOUT = Short  
12.5 x 12.5 x 6.5  
Time (50ms/Div)  
TAIYO  
YUDEN  
NR8040  
8 x 8 x 4  
Figure 5. Hiccup Mode Under Voltage Protection  
Over Temperature Protection  
CIN and COUT Selection  
The RT7272A features an Over Temperature Protection  
(OTP) circuitry to prevent from overheating due to  
excessive power dissipation. The OTP will shut down  
switching operation when junction temperature exceeds  
150°C. Once the junction temperature cools down by  
approximately 20°C, the converter will resume operation.  
To maintain continuous operation, the maximum junction  
temperature should be lower than 125°C.  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the Source of the high side MOSFET.  
To prevent large ripple current, a low ESR input capacitor  
sized for the maximum RMS current should be used. The  
approximate RMS current equation is given :  
V
V
V
IN  
V
OUT  
OUT  
I
= I  
1  
RMS  
OUT(MAX)  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT / 2. This simple worst case condition is  
commonly used for design because even significant  
deviations do not offer much relief.  
Inductor Selection  
The inductor value and operating frequency determine the  
ripple current according to a specific input and output  
voltage. The ripple current ΔIL increases with higher VIN  
and decreases with higher inductance.  
Choose a capacitor rated at a higher temperature than  
required. Several capacitors may also be paralleled to  
meet size or height requirements in the design.  
V
f ×L  
V
OUT  
V
IN  
⎤ ⎡  
⎦ ⎣  
OUT  
ΔI =  
L
× 1−  
⎥ ⎢  
For the input capacitor, two 10μF low ESR ceramic  
capacitors are suggested. For the suggested capacitor,  
please refer to Table 3 for more details.  
Having a lower ripple current reduces not only the ESR  
losses in the output capacitors but also the output voltage  
ripple. High frequency with small ripple current can achieve  
the highest efficiency operation. However, it requires a  
large inductor to achieve this goal.  
The selection of COUT is determined by the required ESR  
to minimize voltage ripple.  
Moreover, the amount of bulk capacitance is also a key  
for COUT selection to ensure that the control loop is stable.  
Loop stability can be checked by viewing the load transient  
response as described in a later section.  
For the ripple current selection, the value of ΔIL= 0.24(IMAX  
)
will be a reasonable starting point. The largest ripple  
current occurs at the highest VIN. To guarantee that the  
ripple current stays below the specified maximum, the  
inductor value should be chosen according to the following  
equation :  
The output ripple, ΔVOUT , is determined by :  
1
ΔVOUT ≤ ΔIL ESR +  
8fCOUT  
⎤ ⎡  
V
f × ΔI  
V
OUT  
V
IN(MAX)  
OUT  
L =  
× 1−  
⎥ ⎢  
L(MAX)  
⎦ ⎣  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS7272A-01 January 2013  
RT7272A  
The thermal resistance θJA of SOP-8 (Exposed Pad) is  
determined by the package architecture design and the  
PCB layout design. However, the package architecture  
design had been designed. If possible, it's useful to  
increase thermal performance by the PCB layout copper  
design. The thermal resistance θJA can be decreased by  
adding copper area under the exposed pad of SOP-8  
(Exposed Pad) package.  
The output ripple will be the highest at the maximum input  
voltage since ΔIL increases with input voltage. Multiple  
capacitors placed in parallel may be needed to meet the  
ESR and RMS current handling requirement. Higher values,  
lower cost ceramic capacitors are now becoming available  
in smaller case sizes. Their high ripple current, high voltage  
rating and low ESR make them ideal for switching regulator  
applications. However, care must be taken when these  
capacitors are used at input and output. When a ceramic  
capacitor is used at the input and the power is supplied  
by a wall adapter through long wires, a load step at the  
output can induce ringing at the input, VIN. At best, this  
ringing can couple to the output and be mistaken as loop  
instability. At worst, a sudden inrush of current through  
the long wires can potentially cause a voltage spike at  
VIN large enough to damage the part.  
As shown in Figure 6, the amount of copper area to which  
the SOP-8 (Exposed Pad) is mounted affects thermal  
performance. When mounted to the standard  
SOP-8 (Exposed Pad) pad (Figure 6.a), θJA is 75°C/W.  
Adding copper area of pad under the SOP-8 (Exposed  
Pad) (Figure 6.b) reduces the θJA to 64°C/W. Even further,  
increasing the copper area of pad to 70mm2 (Figure 6.e)  
reduces the θJA to 49°C/W.  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. The Figure 7 of derating curves allows the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation allowed.  
Thermal Considerations  
For continuous operation, do not exceed the maximum  
operation junction temperature 125°C. The maximum  
power dissipation depends on the thermal resistance of  
IC package, PCB layout, the rate of surroundings airflow  
and temperature difference between junction to ambient.  
The maximum power dissipation can be calculated by  
following formula :  
2.2  
Four-Layer PCB  
2.0  
1.8  
Copper Area  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2
70mm  
PD(MAX) = (TJ(MAX) TA ) / θJA  
2
50mm  
30mm  
2
Where TJ(MAX) is the maximum operation junction  
temperature , TA is the ambient temperature and the θJA is  
the junction to ambient thermal resistance.  
2
10mm  
Min.Layout  
For recommended operating conditions specification of  
RT7272A, the maximum junction temperature is 125°C.  
The junction to ambient thermal resistance θJA is layout  
dependent. For SOP-8 (Exposed Pad) package, the  
thermal resistance θJA is 75°C/W on the standard JEDEC  
51-7 four-layers thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by following  
formula :  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 7.Derating Curve of Maximum PowerDissipation  
PD(MAX) = (125°C 25°C) / (75°C/W) = 1.333W  
(min.copper area PCB layout)  
PD(MAX) = (125°C 25°C) / (49°C/W) = 2.04W  
(70mm2copper area PCB layout)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7272A-01 January 2013  
www.richtek.com  
11  
RT7272A  
Layout Considerations  
For best performance of the RT7272A, the following layout  
guidelines must be strictly followed.  
` Input capacitor must be placed as close to the IC as  
possible.  
(a) Copper Area = (2.3 x 2.3) mm2,θJA = 75°C/W  
` SW should be connected to inductor by wide and short  
trace. Keep sensitive components away from this trace.  
` The RL resistor, compensator and feedback components  
must be connected as close to the device as possible.  
(b) Copper Area = 10mm2,θJA = 64°C/W  
(c) Copper Area = 30mm2 ,θJA = 54°C/W  
(d) Copper Area = 50mm2 ,θJA = 51°C/W  
(e) Copper Area = 70mm2 ,θJA = 49°C/W  
Figure 6. Thermal Resistance vs. CopperArea Layout  
Design  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS7272A-01 January 2013  
RT7272A  
Input capacitor must be placed  
as close to the IC as possible.  
V
V
OUT  
IN  
C
OUT  
C
IN  
The R resistor must be connected  
as close to the device as possible.  
Keep sensitive components away.  
L
SW should be connected to  
inductor by wide and short trace.  
Keep sensitive components  
C *  
S
R *  
S
L
away from this trace and C  
.
BOOT  
R
L
8
7
6
5
SW  
BOOT  
EN  
VIN  
C
V
BOOT  
2
3
4
RLIM  
COMP  
FB  
R
C
GND  
C
C
C
IN  
9
R
EN  
GND  
P
R1  
V
OUT  
R2  
The R component  
EN  
must be connected.  
GND  
The Compensator and feedback  
components must be connected as  
close to the device as possible.  
* : Option  
Figure 8. PCB Layout Guide  
Table 3. Suggested Capacitors for CIN and COUT  
Location  
Component Supplier  
Part No.  
Capacitance (μF)  
Case Size  
1206  
C
IN  
C
IN  
C
IN  
C
IN  
C
IN  
MURATA  
TAIYO YUDEN  
MURATA  
TDK  
GRM32ER71H475K  
UMK325BJ475MM-T  
GRM31CR61E106K  
C3225X5R1E106K  
TMK316BJ106ML  
GRM31CR60J476M  
C3225X5R0J476M  
GRM32ER71C226M  
C3225X5R1C22M  
4.7  
4.7  
10  
10  
10  
47  
47  
22  
22  
1206  
1206  
1206  
TAIYO YUDEN  
MURATA  
TDK  
1206  
C
C
C
C
1206  
OUT  
OUT  
OUT  
OUT  
1210  
MURATA  
TDK  
1210  
1210  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7272A-01 January 2013  
www.richtek.com  
13  
RT7272A  
Outline Dimension  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
J
M
X
Option 1  
Y
X
Y
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
14  
DS7272A-01 January 2013  

相关型号:

UMK325BJ475MM-T

5A, 32V, 500kHz Step-Down Converter
RICHTEK

UMK325BJ475MN-T

High Value Multilayer Ceramic Capacitors (High dielectric type)
TAIYO YUDEN

UMK325BJ475MNHT

Multilayer Ceramic Capacitors (High dielectric type) for Automotive
TAIYO YUDEN

UMK325C7106KM-T

CAP CER 10UF 50V X7S 1210
TAIYO YUDEN

UMK325C7106MM-P

CAP CER 10UF 50V X7S 1210
TAIYO YUDEN

UMK325C7106MM-T

Non-Dimmable 120VAC Evaluation Board
DIODES

UMK325F105ZF-T

CAP CER 1UF 50V Y5V 1210
TAIYO YUDEN

UMK325F475KH-T

Ceramic Capacitor, Multilayer, Ceramic, 50V, 10% +Tol, 10% -Tol, Y5V, -82/+22% TC, 4.7uF, Surface Mount, 1210, CHIP
TAIYO YUDEN

UMK325F475ZH-B

CAPACITOR, CERAMIC, MULTILAYER, 50V, Y5V, 4.7uF, SURFACE MOUNT, 1210, CHIP
TAIYO YUDEN

UMK325F475ZH-T

CAP CER 4.7UF 50V Y5V 1210
TAIYO YUDEN

UMK325LD105KN-T

Low Distortion High Value Multilayer Ceramic Capacitors(CF_LD)
TAIYO YUDEN

UMK325LD105MN-T

Low Distortion High Value Multilayer Ceramic Capacitors(CF_LD)
TAIYO YUDEN