RT7257EN [RICHTEK]

3A, 17V, 340kHz Synchronous Step-Down Converter;
RT7257EN
型号: RT7257EN
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

3A, 17V, 340kHz Synchronous Step-Down Converter

文件: 总15页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
智 新  
Preliminary  
RT7257E  
SacPower  
3A, 17V, 340kHz Synchronous Step-Down Converter  
General Description  
Features  
z
1.5% High Accuracy Feedback Voltage  
The RT7257E is a high efficiency, monolithic synchronous  
step-down DC/DC converter that can deliver up to 3A  
output current from a 4.5V to 17V input supply. The  
RT7257E's current mode architecture and external  
compensation allow the transient response to be  
optimized over a wide range of loads and output capacitors.  
Cycle-by-cycle current limit provides protection against  
shorted outputs, and soft-start eliminates input current  
surge during start-up. The RT7257E provides thermal  
shutdown protection. The low current (<3μA) shutdown  
mode provides output disconnection, enabling easy power  
management in battery-powered systems. The RT7257E  
is available in an SOP-8 (Exposed Pad) package.  
z 4.5V to 17V Input Voltage Range  
z 3A Output Current  
z Integrated N-MOSFET Switches  
z Current Mode Control  
z Fixed Frequency Operation : 340kHz  
z Output Adjustable from 0.8V to 15V  
z Up to 95% Efficiency  
z Programmable Soft-Start  
z Stable with Low ESR Ceramic Output Capacitors  
z Cycle-by-Cycle Over Current Protection  
z Input Under Voltage Lockout  
z Thermal Shutdown Protection  
z RoHS Compliant and Halogen Free  
Ordering Information  
RT7257EN  
Applications  
z Wireless AP/Router  
Package Type  
SP : SOP-8 (Exposed Pad-Option 2)  
z Set-Top-Box  
z Industrial and Commercial Low Power Systems  
z LCDMonitors and TVs  
Lead Plating System  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
z Green Electronics/Appliances  
z Point of Load Regulation of High-PerformanceDSPs  
Note :  
Richtek products are :  
Pin Configurations  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
(TOP VIEW)  
8
BOOT  
VIN  
SS  
2
3
4
7
6
5
EN  
GND  
SW  
COMP  
FB  
9
GND  
Marking Information  
SOP-8 (Exposed Pad)  
For marking information, contact our sales representative  
directly or through a Richtek distributor located in your  
area.  
http//www.sacpower.net  
1
E-mail:nikozhong@hotmail.com  
0755-83983280  
系人: 先生  
Preliminary  
RT7257E  
Typical Application Circuit  
1
V
2
IN  
VIN  
BOOT  
RT7257E  
4.5V to 17V  
C
100nF  
C
BOOT  
IN  
L
10µF x 2  
10µH  
V
3
OUT  
SW  
3.3V  
Chip Enable  
R1  
7
8
EN  
SS  
75k  
C
OUT  
5
6
FB  
22µF x 2  
C
C
C
R
SS  
C
12k  
R2  
4.7nF  
0.1µF  
24k  
4, 9 (Exposed Pad)  
COMP  
GND  
C
P
Open  
Table 1. Recommended Components Selection  
VOUT (V) R1 (kΩ) R2 (kΩ) RC (kΩ) CC (nF)  
L (μH)  
22  
COUT (μF)  
8
27  
62  
3
11.8  
24  
12  
24  
18  
12  
8.2  
3.6  
3
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
5
15  
10  
6.8  
3.6  
3.6  
3.6  
3.3  
2.5  
1.5  
1.2  
1
75  
25.5  
10.5  
12  
12  
24  
12  
3
2.7  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
Bootstrap for High Side Gate Driver. Connect a 0.1μF or greater ceramic  
capacitor from BOOT to SW pins.  
1
BOOT  
Input Supply Voltage, 4.5V to 17V. Must bypass with a suitably large ceramic  
capacitor.  
2
3
VIN  
SW  
Switch Node. Connect this pin to an external L-C filter.  
4,  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
GND  
9 (Exposed Pad)  
Feedback Input. It is used to regulate the output of the converter to a set value  
via an internal resistive voltage divider.  
5
6
FB  
Compensation Node. COMP is used to compensate the regulation control  
loop. Connect a series RC network from COMP to GND. In some cases, an  
additional capacitor from COMP to GND is required.  
COMP  
Enable Input. A logic high enables the converter; a logic low forces the  
RT7257E into shutdown mode reducing the supply current to less than 3μA.  
Attach this pin to VIN with a 100kΩ pull up resistor for automatic startup.  
Soft-Start Control Input. SS controls the soft-start period. Connect a capacitor  
from SS to GND to set the soft-start period. A 0.1μF capacitor sets the  
soft-start period to 13.5ms.  
7
8
EN  
SS  
2
Preliminary  
RT7257E  
Function Block Diagram  
VIN  
Internal  
Regulator  
Oscillator  
Current Sense  
Amplifier  
Slope Comp  
Shutdown  
Comparator  
V
VA  
VA  
+
-
CC  
Foldback  
Control  
1.2V  
+
-
0.4V  
+
BOOT  
SW  
Lockout  
Comparator  
-
110mΩ  
90mΩ  
S
Q
Q
UV  
5k  
Comparator  
-
+
R
-
EN  
+
1.8V  
Current  
GND  
Comparator  
V
CC  
6µA  
0.8V  
+
+
-
EA  
SS  
FB  
COMP  
3
Preliminary  
RT7257E  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage, VIN ------------------------------------------------------------------------------------------ 0.3V to 20V  
z Switch Voltage, SW ------------------------------------------------------------------------------------------------ 0.3V to (VIN + 0.3V)  
z VBOOT VSW ---------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z Other Pins Voltage ------------------------------------------------------------------------------------------------- 0.3V to 20V  
z Power Dissipation, PD @ TA = 25°C  
SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------------- 1.333W  
z Package Thermal Resistance (Note 2)  
SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------- 75°C/W  
SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------------- 15°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ---------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------------ 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ------------------------------------------------------------------------------------------ 4.5V to 17V  
z Junction Temperature Range-------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 12V, TA = 25°C, unless otherwise specified)  
Parameter  
Shutdown Supply Current  
Supply Current  
Symbol  
Test Conditions  
Min  
--  
Typ  
0.5  
0.8  
0.8  
Max  
3
Unit  
μA  
mA  
V
VEN = 0V  
VEN = 3 V, VFB = 0.9V  
--  
1.2  
Feedback Voltage  
VFB  
4.5V VIN 17V  
0.788  
0.812  
Error Amplifier  
GEA  
ΔIC = ±10μA  
--  
--  
--  
940  
110  
90  
--  
--  
--  
μA/V  
mΩ  
Transconductance  
High Side Switch  
On-Resistance  
Low Side Switch  
On-Resistance  
High Side Switch Leakage  
Current  
RDS(ON)1  
RDS(ON)2  
mΩ  
VEN = 0V, VSW = 0V  
--  
--  
0
10  
--  
μA  
A
Upper Switch Current Limit  
Min. Duty Cycle, VBOOT VSW = 4.8V  
5.1  
4.7  
340  
100  
COMP to Current Sense  
Transconductance  
GCS  
--  
--  
A/V  
kHz  
kHz  
Oscillation Frequency  
fOSC1  
fOSC2  
300  
--  
380  
--  
Short Circuit Oscillation  
Frequency  
VFB = 0V  
Maximum Duty Cycle  
Minimum On Time  
DMAX  
tON  
VFB = 0.7V  
--  
--  
93  
--  
--  
%
100  
ns  
To be continued  
4
Preliminary  
RT7257E  
Parameter  
Symbol  
Test Conditions  
Min  
2
Typ  
--  
Max  
5.5  
0.4  
4.5  
--  
Unit  
Logic-High  
Logic-Low  
V
V
V
IH  
EN Input Threshold  
Voltage  
V
--  
--  
IL  
Input Under Voltage Lockout Threshold  
V
V
Rising  
3.8  
--  
4.2  
320  
6
V
UVLO  
IN  
Input Under Voltage Lockout Hysteresis ΔV  
mV  
μA  
ms  
°C  
UVLO  
Soft-Start Current  
Soft-Start Period  
Thermal Shutdown  
I
t
= 0V  
--  
--  
SS  
SS  
SS  
C
= 0.1μF  
--  
13.5  
150  
--  
SS  
T
--  
--  
SD  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. θJA is measured in natural convection at TA = 25°C on a high effective thermal conductivity four-layer test board of  
JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the  
package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
5
Preliminary  
RT7257E  
Typical Operating Characteristics  
Efficiency vs. Load Current  
Reference Voltage vs. Input Voltage  
100  
0.820  
0.815  
0.810  
0.805  
0.800  
0.795  
0.790  
0.785  
0.780  
90  
80  
VIN = 4.5V  
V
V
IN = 12V  
IN = 17V  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3V  
10  
VIN = 4.5V to 17V, VOUT = 3.3V, IOUT = 1A  
0.01  
0.1  
1
4.5  
7
9.5  
12  
14.5  
17  
Load Current (A)  
Input Voltage (V)  
Reference Voltage vs. Temperature  
Output Voltage vs. Load Current  
0.820  
0.815  
0.810  
0.805  
0.800  
0.795  
0.790  
0.785  
0.780  
3.380  
3.354  
3.328  
3.302  
3.276  
3.250  
VIN = 4.5V  
VIN = 12V  
VIN = 17V  
VOUT = 3.3V  
2.5 3  
VIN = 12V, VOUT = 3.3V, IOUT = 1A  
-50  
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1
1.5  
2
Temperature (°C)  
Load Current (A)  
Switching Frequency vs. Input Voltage  
Switching Frequency vs. Temperature  
380  
370  
360  
350  
340  
330  
320  
310  
300  
370  
360  
350  
340  
330  
320  
310  
300  
VOUT = 3.3V, IOUT = 0.3A  
VIN = 12V, VOUT = 3.3V, IOUT = 0.5A  
25 50 75 100 125  
4.5  
7
9.5  
12  
14.5  
17  
-50  
-25  
0
Input Voltage (V)  
Temperature (°C)  
6
Preliminary  
RT7257E  
Current Limit vs. Temperature  
Load Transient Response  
8
7
6
5
4
3
2
VOUT  
(100mV/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V  
50 75 100 125  
VIN = 12V, VOUT = 3.3V, IOUT = 0.2A to 3A  
Time (250μs/Div)  
-50  
-25  
0
25  
Temperature (°C)  
Load Transient Response  
Switching  
VOUT  
(10mV/Div)  
VOUT  
(100mV/Div)  
VSW  
(10V/Div)  
IOUT  
(2V/Div)  
IL  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 1.5A to 3A  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (250μs/Div)  
Time (1μs/Div)  
Power On from VIN  
Power Off from VIN  
VIN  
VIN  
(5V/Div)  
(5V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
IL  
IL  
(2A/Div)  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (5ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (5ms/Div)  
7
Preliminary  
RT7257E  
Power Off from EN  
Power On from EN  
VEN  
VEN  
(5V/Div)  
(5V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
IL  
IL  
(2A/Div)  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 2A  
Time (5ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 2A  
Time (5ms/Div)  
8
Preliminary  
RT7257E  
Application Information  
The RT7257E is a synchronous high voltage buck converter  
that can support the input voltage range from 4.5V to 17V  
and the output current can be up to 3A.  
Soft-Start  
The RT7257E contains an external soft-start clamp that  
gradually raises the output voltage. The soft-start timing  
can be programmed by the external capacitor between  
SS pin andGND. The chip provides a 6μAcharge current  
for the external capacitor. If 0.1μF capacitor is used to  
set the soft-start, it's period will be 13.5ms (typ.).  
Output Voltage Setting  
The resistive divider allows the FB pin to sense the output  
voltage as shown in Figure 1.  
V
OUT  
Chip Enable Operation  
The EN pin is the chip enable input. Pulling the EN pin  
low (<0.4V) will shutdown the device. During shutdown  
mode, the RT7257E quiescent current drops to lower than  
3μA. Driving the EN pin high (>2V, < 17V) will turn on the  
device again. For external timing control (e.g.RC), the EN  
pin can also be externally pulled high by adding a REN*  
resistor and CEN* capacitor from the VIN pin (see Figure  
5).  
R1  
FB  
RT7257E  
GND  
R2  
Figure 1. Output Voltage Setting  
The output voltage is set by an external resistive voltage  
divider according to the following equation :  
An external MOSFET can be added to implement digital  
control on the EN pin when no system voltage above 2V  
is available, as shown in Figure 3. In this case, a 100kΩ  
pull-up resistor, REN, is connected between VIN and the  
EN pin. MOSFET Q1 will be under logic control to pull  
down the EN pin.  
R1  
R2  
VOUT = VFB 1+  
Where VFB is the feedback reference voltage (0.8V typ.).  
External Bootstrap Diode  
1
2
VIN  
BOOT  
V
Connect a 100nF low ESR ceramic capacitor between  
the BOOT pin and SW pin. This capacitor provides the  
gate driver voltage for the high side MOSFET.  
IN  
C
BOOT  
V
OUT  
C
IN  
RT7257E  
R
EN  
100k  
L
3
SW  
7
Chip Enable  
EN  
R1  
C
OUT  
Q1  
It is recommended to add an external bootstrap diode  
between an external 5V and BOOT pin for efficiency  
improvement when input voltage is lower than 5.5V or duty  
ratio is higher than 65% .The bootstrap diode can be a  
low cost one such as IN4148 or BAT54. The external 5V  
can be a 5V fixed input from system or a 5V output of the  
RT7257E. Note that the external boot voltage must be  
5
6
FB  
8
SS  
C
C
R2  
C
SS  
R
4,  
C
COMP  
9 (Exposed Pad)  
GND  
C
P
Figure 3. Enable Control Circuit for Logic Control with  
Low Voltage  
lower than 5.5V  
To prevent enabling circuit when VIN is smaller than the  
VOUT target value, a resistive voltage divider can be placed  
between the input voltage and ground and connected to  
the EN pin to adjust IC lockout threshold, as shown in  
Figure 4. For example, if an 8V output voltage is regulated  
from a 12V input voltage, the resistor REN2 can be selected  
to set input lockout threshold larger than 8V.  
5V  
BOOT  
100nF  
RT7257E  
SW  
Figure 2. External Bootstrap Diode  
9
Preliminary  
RT7257E  
Table 2. Suggested Inductors for Typical  
Application Circuit  
1
3
2
V
12V  
IN  
VIN  
EN  
BOOT  
V
OUT  
8V  
C
IN  
C
R
100k  
RT7257E  
10µF x 2  
BOOT  
L
EN1  
Component  
Supplier  
Dimensions  
(mm)  
7
SW  
Series  
R1  
R2  
C
R
OUT  
EN2  
TDK  
TDK  
VLF10045  
SLF12565  
10 x 9.7 x 4.5  
5
6
FB  
8
SS  
12.5 x 12.5 x 6.5  
C
C
C
SS  
R
C
4,  
COMP  
9 (Exposed Pad)  
TAIYO  
YUDEN  
GND  
C
P
NR8040  
8 x 8 x 4  
Figure 4. The Resistors can be Selected to Set IC  
Lockout Threshold  
CIN and COUT Selection  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the high side MOSFET.  
To prevent large ripple current, a low ESR input capacitor  
sized for the maximum RMS current should be used. The  
RMS current is given by :  
Inductor Selection  
The inductor value and operating frequency determine the  
ripple current according to a specific input and output  
voltage. The ripple current ΔIL increases with higher VIN  
and decreases with higher inductance.  
V
OUT  
V
IN  
I
= I  
1  
RMS  
OUT(MAX)  
V
IN  
V
OUT  
V
f ×L  
VOUT  
V
IN  
OUT ⎤ ⎡  
× 1−  
⎥ ⎢  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT / 2. This simple worst case condition is  
commonly used for design because even significant  
deviations do not offer much relief.  
ΔIL =  
⎦ ⎣  
Having a lower ripple current reduces not only the ESR  
losses in the output capacitors but also the output voltage  
ripple. High frequency with small ripple current can achieve  
the highest efficiency operation. However, it requires a  
large inductor to achieve this goal.  
Choose a capacitor rated at a higher temperature than  
required. Several capacitors may also be paralleled to  
meet size or height requirements in the design.  
For the ripple current selection, the value of ΔIL= 0.24(IMAX  
)
For the input capacitor, two 10μF low ESR ceramic  
capacitors are recommended. For the recommended  
capacitor, please refer to Table 3 for more details.  
will be a reasonable starting point. The largest ripple  
current occurs at the highest VIN. To guarantee that the  
ripple current stays below the specified maximum, the  
inductor value should be chosen according to the following  
equation :  
The selection of COUT is determined by the required ESR  
to minimize voltage ripple.  
Moreover, the amount of bulk capacitance is also a key  
for COUT selection to ensure that the control loop is stable.  
Loop stability can be checked by viewing the load transient  
response as described in a later section.  
⎤ ⎡  
V
f × ΔI  
V
OUT  
V
IN(MAX)  
OUT  
L =  
× 1−  
⎥ ⎢  
L(MAX)  
⎦ ⎣  
The inductor's current rating (caused a 40°C temperature  
rising from 25°C ambient) should be greater than the  
maximum load current and its saturation current should  
be greater than the short circuit peak current limit. Please  
see Table 2 for the inductor selection reference.  
The output ripple, ΔVOUT , is determined by :  
1
ΔVOUT ≤ ΔIL ESR +  
8fCOUT  
10  
Preliminary  
RT7257E  
EMI Consideration  
The output ripple will be the highest at the maximum input  
Since parasitic inductance and capacitance effects in PCB  
circuitry would cause a spike voltage on SW pin when  
high side MOSFET is turned-on/off, this spike voltage on  
SW may impact on EMI performance in the system. In  
order to enhance EMI performance, there are two methods  
to suppress the spike voltage. One is to place an R-C  
snubber between SW and GND and make them as close  
as possible to the SW pin (see Figure 5). Another method  
is adding a resistor in series with the bootstrap  
capacitor, CBOOT. But this method will decrease the driving  
capability to the high side MOSFET. It is strongly  
recommended to reserve the R-C snubber during PCB  
layout for EMI improvement. Moreover, reducing the SW  
trace area and keeping the main power in a small loop will  
be helpful on EMI performance. For detailed PCB layout  
guide, please refer to the section of Layout Consideration.  
voltage since ΔIL increases with input voltage. Multiple  
capacitors placed in parallel may be needed to meet the  
ESR and RMS current handling requirement. Higher values,  
lower cost ceramic capacitors are now becoming available  
in smaller case sizes. Their high ripple current, high voltage  
rating and low ESR make them ideal for switching regulator  
applications. However, care must be taken when these  
capacitors are used at input and output. When a ceramic  
capacitor is used at the input and the power is supplied  
by a wall adapter through long wires, a load step at the  
output can induce ringing at the input, VIN. At best, this  
ringing can couple to the output and be mistaken as loop  
instability. At worst, a sudden inrush of current through  
the long wires can potentially cause a voltage spike at  
VIN large enough to damage the part.  
R
*
BOOT  
1
3
2
7
V
IN  
BOOT  
RT7257E  
VIN  
EN  
4.5V to 17V  
C
IN  
10µF x 2  
C
BOOT  
L
10µH  
100nF  
R
*
EN  
V
OUT  
SW  
Chip Enable  
3.3V/3A  
R *  
S
C
*
EN  
R1  
C
OUT  
22µFx2  
75k  
C *  
S
8
SS  
5
6
FB  
C
0.1µF  
SS  
4,  
C
C
R
C
R2  
4.7nF  
9 (Exposed Pad)  
12k  
GND  
24k  
COMP  
C
P
* : Optional  
NC  
Figure 5. Reference Circuit with Snubber and Enable Timing Control  
Thermal Considerations  
For recommended operating conditions specification of  
RT7257E, the maximum junction temperature is 125°C.  
The junction to ambient thermal resistance θJA is layout  
dependent. For SOP-8 (Exposed Pad) package, the  
thermal resistance θJA is 75°C/W on the standard JEDEC  
51-7 four-layers thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by following  
formula :  
For continuous operation, do not exceed the maximum  
operation junction temperature 125°C. The maximum  
power dissipation depends on the thermal resistance of  
IC package, PCB layout, the rate of surroundings airflow  
and temperature difference between junction to ambient.  
The maximum power dissipation can be calculated by  
following formula :  
PD(MAX) = (125°C 25°C) / (75°C/W) = 1.333W  
PD(MAX) = (TJ(MAX) TA ) / θJA  
(min.copper area PCB layout)  
Where TJ(MAX) is the maximum operation junction  
temperature , TA is the ambient temperature and the θJA is  
the junction to ambient thermal resistance.  
PD(MAX) = (125°C 25°C) / (49°C/W) = 2.04W  
(70mm2copper area PCB layout)  
11  
Preliminary  
RT7257E  
The thermal resistance θJA of SOP-8 (Exposed Pad) is  
determined by the package architecture design and the  
PCB layout design. However, the package architecture  
design had been designed. If possible, it's useful to  
increase thermal performance by the PCB layout copper  
design. The thermal resistance θJA can be decreased by  
adding copper area under the exposed pad of SOP-8  
(Exposed Pad) package.  
(a) Copper Area = (2.3 x 2.3) mm2,θJA = 75°C/W  
As shown in Figure 6, the amount of copper area to which  
the SOP-8 (Exposed Pad) is mounted affects thermal  
performance. When mounted to the standard  
SOP-8 (Exposed Pad) pad (Figure 6.a), θJA is 75°C/W.  
Adding copper area of pad under the SOP-8 (Exposed  
Pad) (Figure 6.b) reduces the θJA to 64°C/W. Even further,  
increasing the copper area of pad to 70mm2 (Figure 6.e)  
reduces the θJA to 49°C/W.  
(b) Copper Area = 10mm2,θJA = 64°C/W  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. For RT7257E packages, the Figure 7 of  
derating curves allows the designer to see the effect of  
rising ambient temperature on the maximum power  
dissipation allowed.  
(c) Copper Area = 30mm2 , θJA = 54°C/W  
(d) Copper Area = 50mm2 ,θJA = 51°C/W  
(e) Copper Area = 70mm2 ,θJA = 49°C/W  
2.2  
Four-Layer PCB  
2.0  
1.8  
Copper Area  
70mm2  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
50mm2  
30mm2  
10mm2  
Min.Layout  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 7.Derating Curves for RT7257E Package  
Figure 6. Themal Resistance vs. CopperArea Layout  
Design  
12  
Preliminary  
RT7257E  
Layout Consideration  
` Connect feedback network behind the output capacitors.  
Keep the loop area small. Place the feedback  
components near the RT7257E.  
Follow the PCB layout guidelines for optimal performance  
of the RT7257E.  
` Connect all analog grounds to a command node and  
then connect the command node to the power ground  
behind the output capacitors.  
` Keep the traces of the main current paths as short and  
wide as possible.  
` Put the input capacitor as close as possible to the device  
` An example of PCB layout guide is shown in Figure 8  
pins (VINandGND).  
for reference.  
` SW node is with high frequency voltage swing and  
should be kept at small area. Keep analog components  
away from the SW node to prevent stray capacitive noise  
pick-up.  
SW  
C
V
V
GND  
GND  
IN  
IN  
The feedback components  
must be connected as close  
to the device as possible.  
R
BOOT  
EN  
C
SS  
Input capacitor must  
be placed as close  
to the IC as possible.  
C
IN  
C
C
8
7
6
5
BOOT  
VIN  
SS  
2
3
4
R
C
EN  
C
P
L
GND  
V
OUT  
SW  
COMP  
FB  
9
R1  
C *  
S
GND  
R *  
S
R2  
V
OUT  
C
OUT  
GND  
SW nods is with high frequency voltage swing and should  
be kept at small area. Keep analog components away from  
the SW node to prevent stray capacitive noise pick-up  
Figure 8. PCB Layout Guide  
Table 3. Suggested Capacitors for CIN and COUT  
Location  
CIN  
Component Supplier  
MURATA  
TDK  
Part No.  
Capacitance (μF)  
Case Size  
1206  
GRM31CR61E106K  
C3225X5R1E106K  
TMK316BJ106ML  
GRM31CR60J476M  
C3225X5R0J476M  
GRM32ER71C226M  
C3225X5R1C22M  
10  
10  
10  
47  
47  
22  
22  
CIN  
1206  
CIN  
TAIYO YUDEN  
MURATA  
TDK  
1206  
COUT  
COUT  
COUT  
COUT  
1206  
1210  
MURATA  
TDK  
1210  
1210  
13  
Preliminary  
RT7257E  
Outline Dimension  
H
A
M
Y
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
14  
Preliminary  
RT7257E  
Datasheet Revision History  
Version  
P00  
Data  
Page No.  
Item  
Description  
2011/10/19  
First Edition  
15  

相关型号:

RT7257ENZ

3A, 17V, 340kHz Synchronous Step-Down Converter
RICHTEK

RT7257G

3A, 18V, 800kHz Synchronous Step-Down Converter
RICHTEK

RT7257J

3A, 18V, 340kHz Synchronous Step-Down Converter
RICHTEK

RT7258

8A, 24V, 600kHz Step-Down Converter with Synchronous Gate Driver
RICHTEK

RT7258GQW

IC REG BUCK ADJ 8A 14WDFN
RICHTEK

RT7259

10A, 24V, 600kHz Step-Down Converter with Synchronous Gate Driver
RICHTEK

RT7262A

2A, 21V 500kHz Synchronous Step-Down Converter
RICHTEK

RT7262E

2A, 21V 500kHz Synchronous Step-Down Converter
RICHTEK

RT7263A

3A, 21V 500kHz Synchronous Step-Down Converter
RICHTEK

RT7263AZQW

IC REG BUCK ADJ 3A SYNC 14WDFN
RICHTEK

RT7263AZSP

IC REG BUCK ADJ 3A SYNC 8SOP
RICHTEK

RT7263B

3A, 21V 500kHz Synchronous Step-Down Converter
RICHTEK