EEV-TG2A101M [RFMD]

30W GaN WIDEBAND POWER AMPLIFIER; 30W的GaN宽带功率放大器
EEV-TG2A101M
型号: EEV-TG2A101M
厂家: RF MICRO DEVICES    RF MICRO DEVICES
描述:

30W GaN WIDEBAND POWER AMPLIFIER
30W的GaN宽带功率放大器

放大器 功率放大器
文件: 总14页 (文件大小:1806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF3931  
30W GaN WIDEBAND POWER AMPLIFIER  
Package Style: Hermetic 2-Pin Flanged Ceramic  
Features  
RF IN  
VGQ  
Pin 1 (CUT)  
RF OUT  
VDQ  
Pin 2  
Broadband Operation DC to  
3.5GHz  
Advanced GaN HEMT  
Technology  
GND  
BASE  
Advanced Heat-Sink  
Technology  
Gain = 15dB at 2GHz  
48V Operation Typical  
Performance at 900MHz  
• Output Power 50W  
• Drain Efficiency 65%  
• -40°C to 85°C Operation  
Functional Block Diagram  
Product Description  
The RF3931 is a 48V 30W high power discrete amplifier designed for commercial  
wireless infrastructure, cellular and WiMAX infrastructure, industrial/scien-  
tific/medical, and general purpose broadband amplifier applications. Using an  
advanced high power density Gallium Nitride (GaN) semiconductor process, these  
high-performance amplifiers achieve high efficiency and flat gain over a broad fre-  
quency range in a single amplifier design. The RF3931 is an unmatched GaN tran-  
sistor packaged in a hermetic, flanged ceramic package. This package provides  
excellent thermal stability through the use of advanced heat sink and power dissi-  
pation technologies. Ease of integration is accomplished through the incorporation  
of simple, optimized matching networks external to the package that provide wide-  
band gain and power performance in a single amplifier.  
Applications  
Commercial Wireless  
Infrastructure  
Cellular and WiMAX  
Infrastructure  
Civilian and Military Radar  
General Purpose Broadband  
Amplifiers  
Public Mobile Radios  
Industrial, Scientific and  
Medical  
Ordering Information  
RF3931S2  
RF3931SB  
RF3931SQ  
RF3931SR  
RF3931TR7  
2-Piece sample bag  
5-Piece bag  
25-Piece bag  
100 Pieces on 7” short reel  
750 Pieces on 7” reel  
RF3931PCK-411 Fully assembled evaluation board optimized for 2.14GHz; 48V  
Optimum Technology Matching® Applied  
GaAs HBT  
GaAs MESFET  
InGaP HBT  
SiGe BiCMOS  
Si BiCMOS  
SiGe HBT  
GaAs pHEMT  
Si CMOS  
Si BJT  
GaN HEMT  
BiFET HBT  
RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade-  
mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
DS120406  
1 of 14  
RF3931  
Absolute Maximum Ratings  
Parameter  
Caution! ESD sensitive device.  
Rating  
150  
Unit  
V
Exceeding any one or a combination of the Absolute Maximum Rating conditions may  
cause permanent damage to the device. Extended application of Absolute Maximum  
Rating conditions to the device may reduce device reliability. Specified typical perfor-  
mance or functional operation of the device under Absolute Maximum Rating condi-  
tions is not implied.  
Drain Voltage (V )  
D
Gate Voltage (V )  
-8 to +2  
V
G
The information in this publication is believed to be accurate and reliable. However, no  
responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any  
infringement of patents, or other rights of third parties, resulting from its use. No  
license is granted by implication or otherwise under any patent or patent rights of  
RFMD. RFMD reserves the right to change component circuitry, recommended appli-  
cation circuitry and specifications at any time without prior notice.  
Gate Current  
23  
65  
mA  
V
Operational Voltage  
Ruggedness (VSWR)  
Storage Temperature Range  
10:1  
-55 to +125  
-40 to +85  
°C  
°C  
RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free  
per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric  
materials and red phosphorus as a flame retardant, and <2% antimony in  
solder.  
Operating Temperature Range (T )  
L
Operating Junction Temperature (T )  
200  
°C  
J
Human Body Model  
Class 1A  
6
MTTF (T < 200°C, 95% Confidence Limits)*  
hours  
°C/W  
J
3 x 10  
Thermal Resistance, R (junction to case)  
3.6  
TH  
measured at T = 85°C, DC bias only  
C
*MTTF - median time to failure for wear-out failure mode (30%ldss  
degradation) which is determined by the technology reliability. Refer to  
product qualification report for FIT (random) Failure rate.  
Operation of this device beyond any one of these limits may cause permanent  
damage. For reliable continuous operation, the device voltage and current  
must not exceed the maximum operating values specified in the table on page  
two.  
Bias Conditions should also satisfy the following expression:  
P
< (T – T ) / R J-C and T = T  
DISS  
J C TH C CASE  
Specification  
Parameter  
Unit  
Condition  
Min.  
Typ.  
Max.  
Recommended Operating Conditions  
Drain Voltage (V  
)
28  
-5  
48  
V
V
DSQ  
Gate Voltage (V  
)
-3  
-2.5  
GSQ  
Drain Bias Current  
130  
mA  
Frequency of Operation  
DC  
3500  
MHz  
Capacitance  
C
C
C
4
pF  
pF  
pF  
V
V
V
= -8V, V = 0V  
D
RSS  
G
G
G
17  
12  
= -8V, V = 0V  
D
ISS  
= -8V, V = 0V  
OSS  
D
DC Function Test  
I
- Gate Leakage  
2
mA  
mA  
V
V
V
V
V
= -8V, V = 0V  
D
G (OFF)  
D (OFF)  
G
G
G
G
I
- Drain Leakage  
- Threshold Voltage  
2.5  
= -8V, V = 48V  
D
V
V
-4.2  
= -8V, I = 6.6mA  
D
GS (TH)  
DS (ON)  
- Drain Voltage at high current  
0.25  
V
= 0V, I = 1.5A  
D
[1],[2]  
V = 48V, I = 130mA  
D
RF Function Test  
V
-3.5  
12  
V
GS (Q)  
D
Gain  
10  
55  
dB  
%
CW, P  
CW, P  
CW, P  
= 45.8dBm, f = 2140MHz  
= 45.8dBm, f = 2140MHz  
= 45.8dBm, f = 2140MHz  
OUT  
OUT  
OUT  
Drain efficiency  
Input Return Loss  
60  
-12  
-10  
dB  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
2 of 14  
DS120406  
RF3931  
Specification  
Parameter  
Unit  
Condition  
Min.  
Typ.  
Max.  
[1],[2]  
RF Typical Performance  
Small Signal Gain  
20  
14  
dB  
dB  
CW, f = 900MHz  
CW, f = 2140MHz  
CW, f = 900MHz  
CW, f = 2140MHz  
CW, f = 900MHz  
CW, f = 2140MHz  
Small Signal Gain  
Output Power at P3dB  
Output Power at P3dB  
Drain Efficiency at P3dB  
Drain Efficiency at P3dB  
[1] Test Conditions: CW Operation, V  
47  
dBm  
dBm  
%
46.5  
65  
65  
%
= 48V, I = 130mA, T = 25°C  
DSQ  
DQ  
[2] Performance in a standard tuned test fixture  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
DS120406  
3 of 14  
RF3931  
Typical Performance in standard 2.14GHz fixed tuned test fixture  
(CW, T = 25°C, unless noted)  
Small Signal Performance vs. Frequency, Pout = 30dBm  
(Vd = 48V, Idq = 130mA)  
16  
15  
14  
13  
12  
11  
10  
9
-5  
Fixed tuned test circuit  
-7  
-9  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
8
Gain  
IRL  
7
6
2080  
2110  
2140  
2170  
2200  
Frequency (MHz)  
Gain/IRL vs. Frequency, Pout = 46dBm  
Drain Efficiency vs. Frequency, Pout = 46dBm  
(CW, Vd = 48V, Idq = 130mA)  
(CW, Vd = 48V, Idq = 130mA)  
60  
58  
56  
54  
52  
50  
15  
14  
13  
12  
11  
10  
9
-5  
Fixed tuned test circuit  
Fixed tuned test circuit  
-7  
-9  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
Eff  
8
7
Gain  
2100  
IRL  
6
5
2080  
2080  
2100  
2120  
2140  
2160  
2180  
2200  
2120  
2140  
2160  
2180  
2200  
Frequency (MHz)  
Frequency (MHz)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
4 of 14  
DS120406  
RF3931  
Gain/ Efficiency vs. Pout, f = 2140MHz  
Gain/ Efficiency vs. Pout, f = 2140MHz  
(CW, Vd = 48V, Idq = 130mA)  
(Pulsed 10% duty cycle, 10uS, Vd = 48V, Idq = 130mA)  
16  
14  
12  
10  
8
70  
60  
50  
40  
30  
20  
10  
0
16  
14  
12  
10  
8
70  
60  
50  
40  
30  
20  
10  
0
6
6
Gain  
Gain  
Drain Eff  
Drain Eff  
4
4
2
2
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
30  
32  
34  
36  
38  
40  
42  
44  
46  
Pout, Output Power (dBm)  
Pout, Output Power (dBm)  
IMD3 vs. Pout  
Gain vs. Pout  
(2-Tone 1MHz Seperaꢀon, Vd = 48V, Idq varied, fc = 2140MHz)  
(2-Tone 1MHz Seperaꢀon, Vd = 48V, Idq varied, fc = 2140MHz)  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
18  
17  
16  
15  
14  
13  
12  
11  
10  
65mA  
100mA  
130mA  
260mA  
390mA  
65mA  
100mA  
130mA  
260mA  
390mA  
1
10  
100  
1
10  
100  
Pout, Output Power (W-PEP)  
Pout, Output Power (W-PEP)  
IMD vs. Output Power  
(Vd = 48V, Idq = 130mA, f1 = 2139.5MHz, f2 = 2140.5MHz)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-IMD3  
-IMD5  
-IMD7  
IMD3  
IMD5  
IMD7  
1
10  
Pout, Output Power (W- PEP)  
100  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
DS120406  
5 of 14  
RF3931  
Typical Performance in standard 900MHz fixed tuned test fixture  
(CW, T = 25°C, unless noted)  
Gain/IRL vs. Frequency, Pout = 47dBm  
Small Signal Performance vs. Frequency, Pout = 30dBm  
(CW, Vd = 48V, Idq = 130mA)  
(Vd = 48V, Idq = 130mA)  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
0
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
0
Fixed tuned test circuit  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
Fixed tuned test circuit  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
Gain  
IRL  
Gain  
IRL  
880  
890  
900  
Frequency (MHz)  
910  
920  
880  
890  
900  
Frequency (MHz)  
910  
920  
Gain/ Efficiency vs. Pout, f = 900MHz  
Drain Efficiency vs. Frequency, Pout = 47dBm  
(CW, Vd = 48V, Idq = 130mA)  
(CW, Vd = 48V, Idq = 130mA)  
22  
21  
20  
19  
18  
17  
16  
15  
14  
70  
60  
50  
40  
30  
20  
10  
0
70  
68  
66  
64  
62  
60  
Fixed tuned test circuit  
Eff  
Gain  
Drain Eff  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
880  
890  
900  
910  
920  
Pout, Output Power (dBm)  
Frequency (MHz)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
6 of 14  
DS120406  
RF3931  
IMD3 vs. Pout  
Gain vs. Pout  
(2-Tone 1MHz Seperaꢀon, Vd = 48V, Idq varied, fc = 900MHz)  
(2-Tone 1MHz Seperaꢀon, Vd = 48V, Idq varied, fc = 900MHz)  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
22  
21  
20  
19  
18  
17  
16  
15  
65mA  
100mA  
130mA  
260mA  
390mA  
65mA  
100mA  
130mA  
260mA  
390mA  
1
10  
100  
1
10  
100  
Pout, Output Power (W-PEP)  
Pout, Output Power (W-PEP)  
IMD vs. Output Power  
(Vd = 48V, Idq = 130mA, f1 = 899.5MHz, f2 = 900.5MHz)  
0
-10  
-20  
-30  
-40  
-50  
-IMD3  
-IMD5  
-IMD7  
IMD3  
IMD5  
IMD7  
-60  
1
10  
Pout, Output Power (W- PEP)  
100  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
DS120406  
7 of 14  
RF3931  
Package Drawing  
(Package Style: Flanged Ceramic)  
Pin  
Function  
Description  
1
2
3
Gate  
Drain  
Source  
Gate - VG RF Input  
Drain - VD RF Output  
Source - Ground Base  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
8 of 14  
DS120406  
RF3931  
Bias Instruction for RF3931 Evaluation Board  
ESD Sensitive Material. Please use proper ESD precautions when handling devices of evaluation board.  
Evaluation board requires additional external fan cooling.  
Connect all supplies before powering up the evaluation board.  
1. Connect RF cables at RFIN and RFOUT  
.
2. Connect ground to the ground supply terminal, and ensure that both the VG and VD grounds are also connected to this  
ground terminal.  
3. Apply -8V to VG.  
4. Apply 48V to VD.  
5. Increase VG until drain current reaches 130mA desired bias point.  
6. Turn on the RF input.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
DS120406  
9 of 14  
RF3931  
2.14GHz Evaluation Board Schematic  
ꢉꢊꢋꢌ  
ꢍꢀꢊꢎꢏ  
 
ꢅꢇ  
ꢅꢂ  
ꢅꢄ  
ꢅꢄꢑ  
ꢅꢄꢄ  
ꢅꢄꢇ  
ꢅꢄꢂ  
ꢑꢒꢓ  
ꢅꢄꢐ  
ꢅꢑ  
 
ꢀꢄ  
ꢅꢄꢒ  
ꢔꢕꢖꢗꢘ  
ꢙꢐ  
ꢀꢁꢓꢚꢛꢋ  
ꢑꢒꢓ  
ꢔꢕꢖꢗꢘ  
ꢙꢄ  
ꢀꢁꢓꢎꢏ  
ꢀꢁꢂꢃꢂꢄ  
ꢅꢝ  
ꢅꢃ  
ꢅꢐ  
ꢅꢆ  
ꢅꢜ  
2.14GHz Evaluation Board Bill of Materials  
Component  
Value  
33pF  
Manufacturer  
ATC  
Part Number  
C1, C2, C10, C11  
ATC800A330JT  
GRM32NR72A104KA01L  
GRM55ER72A475KA01L  
ECE-V1HA101UP  
ATC800A2R2BT  
ATC800A0R7BT  
ATC800A1R0BT  
ATC800A3R3BT  
EEV-TG2A101M  
ATC800A100JT  
ERJ-8GEYJ100V  
-
C3,C14  
0.1F  
4.7F  
100F  
2.2pF  
0.7pF  
1.0pF  
3.3pF  
100F  
10pF  
Murata  
Murata  
Panasonic  
ATC  
C4,C13  
C5  
C6  
C7  
ATC  
C8  
ATC  
C9  
ATC  
C12  
Panasonic  
ATC  
C15  
R1  
C16, C17, C18, C19  
PCB  
10  
Panasonic  
-
Not used  
RO4350, 0.030" thick  
dielectric  
Rogers  
-
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
10 of 14  
DS120406  
RF3931  
2.14GHz Evaluation Board Layout  
Device Impedances  
Frequency (MHz)  
Z Source ()  
2.6 - j3.1  
Z Load (  
6.5 + j5.8  
6.7 + j6.6  
7.0 + j7.4  
2110  
2140  
2170  
2.5 - j2.8  
2.4 - j2.5  
Note: Device impedances reported are the measured evaluation board impedances chosen for a trade off of efficiency, peak power, and linearity  
performance across the entire frequency bandwidth.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
DS120406  
11 of 14  
RF3931  
900MHz Evaluation Board Schematic  
VGATE  
VDRAIN  
+
C11  
C8  
C5  
C4  
C3  
C1  
C7  
C14  
C13  
50  
C12  
+
C10  
R1  
C6  
J2  
RF OUT  
50  
strip  
J1  
strip  
RF3931  
RF IN  
C9  
C2  
900MHz Evaluation Board Bill of Materials  
Component  
Value  
68pF  
Manufacturer  
ATC  
Part Number  
ATC800B680JT  
C1, C2, C10, C11  
C3,C14  
C4,C13  
C5  
0.1F  
4.7F  
100F  
12pF  
Murata  
Murata  
Panasonic  
ATC  
GRM32NR72A104KA01L  
GRM55ER72A475KA01L  
ECE-V1HA101UP  
ATC800B120  
C6  
C7  
5.6pF  
6.8pF  
2.0pF  
330F  
10  
ATC  
ATC800B5R6  
C8  
ATC  
ATC800B6R8  
C9  
ATC  
ATC800B2R0  
C12  
R1  
Panasonic  
Panasonic  
EEU-FC2A331  
ERJ-8GEYJ100V  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
12 of 14  
DS120406  
RF3931  
900MHz Evaluation Board Layout  
Device Impedances  
Frequency (MHz)  
Z Source ()  
4.2 + j9.0  
Z Load (  
12.9 + j14.2  
13.6 + j15.1  
14.4 + j16.0  
880  
900  
920  
4.3 + j10.0  
4.4 + j11.3  
Note: Device impedances reported are the measured evaluation board impedances chosen for a trade off of efficiency, peak power, and linearity  
performance across the entire frequency bandwidth.  
Loadpull contours available on RFMD website.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
DS120406  
13 of 14  
RF3931  
Device Handling/Environmental Conditions  
GaN HEMT devices are ESD sensitive materials. Please use proper ESD precautions when handling devices or  
evaluation boards.  
GaN HEMT Capacitances  
The physical structure of the GaN HEMT results in three terminal capacitors similar to other FET technologies.  
These capacitances exist across all three terminals of the device. The physical manufactured characteristics of  
the device determine the value of the CDS (drain to source), CGS (gate to source) and CGD (gate to drain). These  
capacitances change value as the terminal voltages are varied. RFMD presents the three terminal capacitances  
measured with the gate pinched off (VGS = -8V) and zero volts applied to the drain. During the measurement pro-  
cess, the parasitic capacitances of the package that holds the amplifier is removed through a calibration step.  
Any internal matching is included in the terminal capacitance measurements. The capacitance values presented  
in the typical characteristics table of the device represent the measured input (CISS), output (COSS), and reverse  
(CRSS) capacitance at the stated bias voltages. The relationship to three terminal capacitances is as follows:  
CISS = CGD + CGS  
COSS = CGD + CDS  
CRSS = CGD  
DC Bias  
The GaN HEMT device is a depletion mode high electron mobility transistor (HEMT). At zero volts VGS the drain of  
the device is saturated and uncontrolled drain current will destroy the transistor. The gate voltage must be taken  
to a potential lower than the source voltage to pinch off the device prior to applying the drain voltage, taking care  
not to exceed the gate voltage maximum limits. RFMD recommends applying VGS = -5V before applying any VDS  
.
RF Power transistor performance capabilities are determined by the applied quiescent drain current. This drain  
current can be adjusted to trade off power, linearity, and efficiency characteristics of the device. The recom-  
mended quiescent drain current (IDQ) shown in the RF typical performance table is chosen to best represent the  
operational characteristics for this device, considering manufacturing variations and expected performance.  
The user may choose alternate conditions for biasing this device based on performance trade off.  
Mounting and Thermal Considerations  
The thermal resistance provided as RTH (junction to case) represents only the packaged device thermal charac-  
teristics. This is measured using IR microscopy capturing the device under test temperature at the hottest spot of  
the die. At the same time, the package temperature is measured using a thermocouple touching the backside of  
the die embedded in the device heatsink but sized to prevent the measurement system from impacting the  
results. Knowing the dissipated power at the time of the measurement, the thermal resistance is calculated.  
In order to achieve the advertised MTTF, proper heat removal must be considered to maintain the junction at or  
below the maximum of 200°C. Proper thermal design includes consideration of ambient temperature and the  
thermal resistance from ambient to the back of the package including heatsinking systems and air flow mecha-  
nisms. Incorporating the dissipated DC power, it is possible to calculate the junction temperature of the device.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.  
14 of 14  
DS120406  

相关型号:

EEV106M025A9BAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV106M035A9BAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV106M035A9DAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV107M010A9GAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV107M016A9GAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV107M025A9HAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV107M035A9HAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV107M035A9MAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV107M6R3A9DAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV107M6R3A9GAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV108M010A9PAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET

EEV108M6R3A9MAA

Surface Mount Aluminum Electrolytic Capacitors EEV Series, 105ºC
KEMET