X9261UB16-2.7 [RENESAS]

DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, BGA16, BUMP, CSP-16;
X9261UB16-2.7
型号: X9261UB16-2.7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, BGA16, BUMP, CSP-16

转换器 电阻器
文件: 总25页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X9261  
®
Single Supply/Low Power/256-Tap/SPI Bus  
Data Sheet  
February 28, 2005  
FN8171.0  
DESCRIPTION  
Dual Digitally-Controlled (XDCP™)  
Potentiometers  
The X9261 integrates  
potentiometer (XDCP) on  
integrated circuit.  
2
digitally controlled  
monolithic CMOS  
a
FEATURES  
• Dual–Two Separate Potentiometers  
• 256 resistor taps/pot–0.4% resolution  
• SPI Serial Interface for write, read, and transfer  
operations of the potentiometer single supply  
device  
The digital controlled potentiometer is implemented  
using 255 resistive elements in a series array.  
Between each element are tap points connected to the  
wiper terminal through switches. The position of the  
wiper on the array is controlled by the user through the  
SPI bus interface. Each potentiometer has associated  
with it a volatile Wiper Counter Register (WCR) and  
four non-volatile Data Registers that can be directly  
written to and read by the user. The contents of the  
WCR controls the position of the wiper on the resistor  
array though the switches. Powerup recalls the  
contents of the default Data Register (DR0) to the  
WCR.  
• Wiper Resistance, 100typical @ V  
= 5V  
CC  
• 4 Nonvolatile Data Registers for Each  
Potentiometer  
• Nonvolatile Storage of Multiple Wiper Positions  
• Power-on Recall Loads Saved Wiper Position on  
Power-up.  
• Standby Current < 5µA Max  
• 50k, 100kversions of End to End Resistance  
• 100 yr. Data Retention  
• Endurance: 100,000 Data Changes per Bit per  
Register  
• 24-Lead SOIC, 24-Lead TSSOP, 16-Lead CSP  
(Chip Scale Package)  
The XDCP can be used as a three-terminal  
potentiometer or as a two terminal variable resistor in  
a wide variety of applications including control,  
parameter adjustments, and signal processing.  
• Low Power CMOS  
• Power Supply V  
= 2.7V to 5.5V  
CC  
FUNCTIONAL DIAGRAM  
V
R
R
H1  
CC  
H0  
Write  
Read  
Address  
Transfer  
Inc/Dec  
Power-on Recall  
Data  
Status  
Bus  
SPI  
Wiper Counter  
Register (WCR)  
Bus  
Interface  
and Control  
Interface  
Data Registers  
(DR0-DR3)  
Control  
V
R
R
R
R
L1  
SS  
W0  
L0  
W1  
50kor 100kversions  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
XDCP is a trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
X9261  
DETAILED FUNCTIONAL DIAGRAM  
R
R
R
H0  
L0 W0  
V
CC  
Power-on  
Recall  
Pot 0  
R
R
0
1
Wiper  
Counter  
Register  
(WCR)  
HOLD  
CS  
SCK  
SO  
INTERFACE  
AND  
CONTROL  
CIRCUITRY  
R
R
2
3
SI  
A0  
A1  
50k  
and 100kΩ  
256-taps  
8
Power-on  
Recall  
Data  
WP  
R
R
0
1
Wiper  
Counter  
Register  
(WCR)  
Resistor  
Array  
Pot 1  
R
R
2
3
V
R
R R  
SS  
L1 H1 W1  
CIRCUIT LEVEL APPLICATIONS  
SYSTEM LEVEL APPLICATIONS  
• Vary the gain of a voltage amplifier  
• Adjust the contrast in LCD displays  
• Provide programmable dc reference voltages for  
comparators and detectors  
• Control the power level of LED transmitters in  
communication systems  
• Control the volume in audio circuits  
• Set and regulate the DC biasing point in an RF  
power amplifier in wireless systems  
• Trim out the offset voltage error in a voltage ampli-  
fier circuit  
• Control the gain in audio and home entertainment  
systems  
• Set the output voltage of a voltage regulator  
• Provide the variable DC bias for tuners in RF wire-  
less systems  
• Trim the resistance in Wheatstone bridge circuits  
• Control the gain, characteristic frequency and  
Q-factor in filter circuits  
• Set the operating points in temperature control  
systems  
• Set the scale factor and zero point in sensor signal  
conditioning circuits  
• Control the operating point for sensors in industrial  
systems  
• Vary the frequency and duty cycle of timer ICs  
• Trim offset and gain errors in artificial intelligent  
systems  
• Vary the dc biasing of a pin diode attenuator in RF  
circuits  
• Provide a control variable (I, V, or R) in feedback  
circuits  
FN8171.0  
February 28, 2005  
2
X9261  
PIN CONFIGURATION  
CSP  
1
2
3
4
SOIC/TSSOP  
HOLD  
SCK  
NC  
SO  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
A
A0  
R
CS  
A1  
R
H1  
H0  
NC  
3
NC  
NC  
NC  
NC  
4
B
C
D
NC  
5
R
WP  
SO  
A0  
SI  
R
L1  
W0  
NC  
6
X9261  
V
V
7
CC  
SS  
R
R
8
W1  
L0  
R
R
HOLD  
R
W1  
R
H0  
9
L0  
H1  
R
R
W0  
10  
15  
14  
L1  
A1  
SI  
CS  
11  
12  
WP  
13  
V
SCK  
V
CC  
SS  
Preliminary Pinout for CSP (Call factory for availability)  
PIN ASSIGNMENTS  
Pin  
Pin  
CSP  
(SOIC/TSSOP)  
Symbol  
SO  
Function  
1
2
C2  
D2  
N/A  
N/A  
N/A  
N/A  
D1  
C1  
A1  
Serial Data Output for SPI bus  
A0  
Device Address for SPI bus.  
No Connect.  
3
NC  
4
NC  
No Connect.  
5
NC  
No Connect.  
6
NC  
No Connect.  
7
V
System Supply Voltage  
Low Terminal for Potentiometer 0.  
High Terminal for Potentiometer 0.  
Wiper Terminal for Potentiometer 0.  
Device Address for SPI bus.  
Hardware Write Protect  
Serial Data Input for SPI bus  
Device Address for SPI bus.  
Low Terminal for Potentiometer 1.  
High Terminal for Potentiometer 1.  
Wiper Terminal for Potentiometer 1.  
System Ground  
CC  
8
R
L0  
H0  
W0  
9
R
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
B1  
R
A2  
CS  
B2  
WP  
SI  
B3  
A3  
A1  
B4  
R
L1  
H1  
W1  
A4  
R
C4  
D4  
N/A  
N/A  
N/A  
N/A  
D3  
C3  
R
V
SS  
NC  
NC  
No Connect  
No Connect  
NC  
No Connect  
NC  
No Connect  
SCK  
HOLD  
Serial Clock for SPI bus  
Device select. Pause the SPI serial bus.  
FN8171.0  
3
February 28, 2005  
X9261  
PIN DESCRIPTIONS  
Bus Interface Pins  
SERIAL OUTPUT (SO)  
Potentiometer Pins  
R , R  
H
L
The R and R pins are equivalent to the terminal  
H
L
connections on a mechanical potentiometer. Since  
there are 2 potentiometers, there are 2 sets of R and  
SO is a serial data output pin. During a read cycle,  
data is shifted out on this pin. Data is clocked out by  
the falling edge of the serial clock.  
H
R such that R and R are the terminals of POT 0  
L
H0  
L0  
and so on.  
SERIAL INPUT  
R
W
SI is the serial data input pin. All opcodes, byte  
addresses and data to be written to the pots and pot  
registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
The wiper pin are equivalent to the wiper terminal of a  
mechanical potentiometer. Since there are  
2
potentiometers, there are 2 sets of R such that R  
is the terminals of POT 0 and so on.  
W
W0  
SERIAL CLOCK (SCK)  
Supply Pins  
The SCK input is used to clock data into and out of the  
X9261.  
SYSTEM SUPPLY VOLTAGE (V ) AND SUPPLY  
CC  
GROUND (V  
)
SS  
HOLD (HOLD)  
The V  
CC  
pin is the system supply voltage. The V  
pin is the system ground.  
SS  
HOLD is used in conjunction with the CS pin to select  
the device. Once the part is selected and a serial  
sequence is underway, HOLD may be used to pause  
the serial communication with the controller without  
resetting the serial sequence. To pause, HOLD must  
be brought LOW while SCK is LOW. To resume  
communication, HOLD is brought HIGH, again while  
SCK is LOW. If the pause feature is not used, HOLD  
should be held HIGH at all times.  
Other Pins  
NO CONNECT  
No connect pins should be left floating. This pins are  
used for Intersil manufacturing and testing purposes.  
HARDWARE WRITE PROTECT INPUT (WP)  
The WP pin when LOW prevents nonvolatile writes to  
the Data Registers.  
DEVICE ADDRESS (A1 - A0)  
The address inputs are used to set the 4-bit slave  
address. A match in the slave address serial data  
stream must be made with the address input in order  
to initiate communication with the X9261.  
CHIP SELECT (CS)  
When CS is HIGH, the X9261 is deselected and the  
SO pin is at high impedance, and (unless an internal  
write cycle is underway) the device will be in the  
standby state. CS LOW enables the X9261, placing it  
in the active power mode. It should be noted that after  
a power-up, a HIGH to LOW transition on CS is  
required prior to the start of any operation.  
FN8171.0  
4
February 28, 2005  
X9261  
PRINCIPLES OF OPERATION  
Serial Interface  
At both ends of each array and between each resistor  
segment is a CMOS switch connected to the wiper  
(R ) output. Within each individual array only one  
W
switch may be turned on at a time.  
The X9261 supports the SPI interface hardware  
conventions. The device is accessed via the SI input  
with data clocked in on the rising SCK. CS must be  
LOW and the HOLD and WP pins must be HIGH  
during the entire operation.  
These switches are controlled by a Wiper Counter  
Register (WCR). The 8-bits of the WCR (WCR[7:0])  
are decoded to select, and enable, one of 256  
switches (See Table 1).  
The SO and SI pins can be connected together, since  
they have three state outputs. This can help to reduce  
system pin count.  
Power-up and Down Requirements.  
There are no restrictions on the power-up or power-  
down conditions of V  
and the voltages applied to  
CC  
Array Description  
the potentiometer pins provided that V  
is always  
CC  
more positive than or equal to V , V , and V , i.e.,  
The X9261 is comprised of a resistor array (See  
Figure 1). The array contains the equivalent of 255  
discrete resistive segments that are connected in  
series. The physical ends of each array are equivalent  
to the fixed terminals of a mechanical potentiometer  
H
L
W
V
, V , V , V . The V  
ramp rate specification is  
CC  
H
L
W
CC  
always in effect.  
(R and R inputs).  
H
L
Figure 1. Detailed Potentiometer Block Diagram  
One of Two Potentiometers  
SERIAL DATA PATH  
SERIAL  
BUS  
INPUT  
R
H
FROM INTERFACE  
CIRCUITRY  
C
O
U
N
T
REGISTER 1  
(DR1)  
REGISTER 0  
(DR0)  
8
8
PARALLEL  
BUS  
INPUT  
E
R
REGISTER 2  
(DR2)  
REGISTER 3  
(DR3)  
D
E
C
O
D
E
WIPER  
COUNTER  
REGISTER  
(WCR)  
INC/DEC  
LOGIC  
IF WCR = 00[H] THEN R = R  
W
L
UP/DN  
IF WCR = FF[H] THEN R = R  
UP/DN  
CLK  
W
H
R
L
MODIFIED SCK  
R
W
FN8171.0  
February 28, 2005  
5
X9261  
DEVICE DESCRIPTION  
Data Registers (DR)  
Each potentiometer has four 8-bit nonvolatile Data  
Registers. These can be read or written directly by the  
host. Data can also be transferred between any of the  
four Data Registers and the associated Wiper Counter  
Register. All operations changing data in one of the  
Data Registers is a nonvolatile operation and will take  
a maximum of 10ms.  
Wiper Counter Register (WCR)  
The X9261 contains two Wiper Counter Registers, one  
for each DCP potentiometer. The Wiper Counter  
Register can be envisioned as a 8-bit parallel and  
serial load counter with its outputs decoded to select  
one of 256 switches along its resistor array. The  
contents of the WCR can be altered in four ways: it  
may be written directly by the host via the Write Wiper  
Counter Register instruction (serial load); it may be  
written indirectly by transferring the contents of one of  
four associated data registers via the XFR Data  
Register instruction (parallel load); it can be modified  
one step at a time by the Increment/Decrement  
instruction (See Instruction section for more details).  
Finally, it is loaded with the contents of its Data  
Register zero (DR0) upon power-up.  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can  
be used as regular memory locations for system  
parameters or user preference data.  
Bits [7:0] are used to store one of the 256 wiper  
positions or data (0~255).  
Status Register (SR)  
This 1-bit Status Register is used to store the system  
status.  
The Wiper Counter Register is a volatile register; that  
is, its contents are lost when the X9261 is powered-  
down. Although the register is automatically loaded  
with the value in DR0 upon power-up, this may be  
different from the value present at power-down.  
Power-up guidelines are recommended to ensure  
proper loadings of the DR0 value into the WCR.  
WIP: Write In Progress status bit, read only.  
– When WIP=1, indicates that high-voltage write cycle  
is in progress.  
– When WIP=0, indicates that no high-voltage write  
cycle is in progress.  
Table 1. Wiper Counter Register, WCR (8-bit), WCR[7:0]: Used to store the current wiper position (Volatile, V).  
WCR7  
V
WCR6  
V
WCR5  
V
WCR4  
V
WCR3  
V
WCR2  
V
WCR1  
V
WCR0  
V
(MSB)  
(LSB)  
Table 2. Data Register, DR (8-bit), Bit [7:0]: Used to store wiper positions or data (Nonvolatile, NV).  
Bit 7  
NV  
Bit 6  
NV  
Bit 5  
NV  
Bit 4  
NV  
Bit 3  
NV  
Bit 2  
NV  
Bit 1  
NV  
Bit 0  
NV  
MSB  
LSB  
FN8171.0  
February 28, 2005  
6
X9261  
DEVICE DESCRIPTION  
Instructions  
input state; a successful compare of both address bits  
is required for the X9261 to successfully continue the  
command sequence. Only the device which slave  
address matches the incoming device address sent  
by the master executes the instruction. The A3-A0  
inputs can be actively driven by CMOS input signals  
IDENTIFICATION BYTE ( ID AND A )  
The first byte sent to the X9261 from the host,  
following a CS going HIGH to LOW, is called the  
Identification Byte. The most significant four bits of the  
slave address are a device type identifier. The ID[3:0]  
bits is the device id for the X9261; this is fixed as  
0101[B] (refer to Table 3).  
or tied to V  
or V  
.
CC  
SS  
INSTRUCTION BYTE ( I[3:0] )  
The next byte sent to the X9261 contains the instruction  
and register pointer information. The three most  
significant bits are used provide the instruction opcode  
(I[3:0]). The RB and RA bits point to one of the four  
Data Registers of each associated XDCP. The least  
significant bit points to one of two Wiper Counter  
Registers or Pots.The format is shown below in Table 4.  
The AD[3:0] bits in the ID byte is the internal slave  
address. The physical device address is defined by  
the state of the A3 - A0 input pins. The slave address  
is externally specified by the user. The X9261  
compares the serial data stream with the address  
Table 3. Identification Byte Format  
Device Type  
Identifier  
Slave Address  
ID3  
0
ID2  
1
ID1  
0
ID0  
1
A3  
A2  
A1  
A0  
(MSB)  
(LSB)  
Table 4. Instruction Byte Format  
Data  
Register  
Pot Selection  
(WCR Selection)  
Instruction  
Opcode  
Selection  
I3  
I2  
I1  
I0  
RB  
RA  
0
P0  
(MSB)  
(LSB)  
Register Selection  
Register Selected  
RB  
0
RA  
0
DR0  
DR1  
DR2  
DR3  
0
1
1
0
1
1
FN8171.0  
7
February 28, 2005  
X9261  
DEVICE DESCRIPTION  
Instructions  
XFR Data Register to Wiper Counter Register –  
This transfers the contents of one specified Data  
Register to the associated Wiper Counter Register.  
Four of the ten instructions are three bytes in length.  
These instructions are:  
XFR Wiper Counter Register to Data Register –  
This transfers the contents of the specified Wiper  
Counter Register to the specified associated Data  
Register.  
Read Wiper Counter Register – read the current  
wiper position of the selected potentiometer,  
Global XFR Data Register to Wiper Counter  
Register – This transfers the contents of all speci-  
fied Data Registers to the associated Wiper Counter  
Registers.  
Write Wiper Counter Register – change current  
wiper position of the selected potentiometer,  
Read Data Register – read the contents of the  
selected Data Register;  
Global XFR Wiper Counter Register to Data  
Register – This transfers the contents of all Wiper  
Counter Registers to the specified associated Data  
Registers.  
Write Data Register – write a new value to the  
selected Data Register.  
Read Status - This command returns the contents  
of the WIP bit which indicates if the internal write  
cycle is in progress.  
INCREMENT/DECREMENT COMMAND  
The basic sequence of the three byte instructions is  
illustrated in Figure 3. These three-byte instructions  
exchange data between the WCR and one of the Data  
Registers. A transfer from a Data Register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position. The response of the  
The final command is Increment/Decrement (See  
Figures 6 and 7). The Increment/Decrement command  
is different from the other commands. Once the  
command is issued and the X9261 has responded  
with an acknowledge, the master can clock the  
selected wiper up and/or down in one segment steps;  
thereby, providing a fine tuning capability to the host.  
wiper to this action will be delayed by t  
. A transfer  
WRL  
from the WCR (current wiper position), to a Data  
Register is a write to nonvolatile memory and takes a  
For each SCL clock pulse (t  
the selected wiper will move one resistor segment  
) while SI is HIGH,  
HIGH  
minimum of t  
to complete. The transfer can occur  
towards the R terminal. Similarly, for each SCL clock  
pulse while SI is LOW, the selected wiper will move  
WR  
H
between one of the two potentiometers and one of its  
associated registers; or it may occur globally, where  
the transfer occurs between all potentiometers and  
one associated register. The Read Status Register  
instruction is the only unique format (See Figure 5).  
one resistor segment towards the R terminal. A  
L
detailed illustration of the sequence and timing for this  
operation are shown. See Instruction format for more  
details.  
Four instructions require a two-byte sequence to  
complete. These instructions transfer data between  
the host and the X9261; either between the host and  
one of the data registers or directly between the host  
and the Wiper Counter Register. These instructions  
are:  
FN8171.0  
8
February 28, 2005  
X9261  
Figure 2. Two-Byte Instruction Sequence  
CS  
SCK  
SI  
0
0
0
0
0
0
1
0
1
A1 A0  
ID3 ID2 ID1 ID0  
Device ID  
RB RA  
P0  
I3  
I2  
I1 I0  
Register  
Address  
Instruction  
Opcode  
Pot/WCR  
Address  
Internal  
Address  
Figure 3. Three-Byte Instruction Sequence (Write)  
CS  
SCL  
SI  
0
0
0
0
0
1
0
1
0
ID3 ID2 ID1 ID0  
A1 A0  
RB RA  
P0  
I3 I2  
I0  
D7 D6 D5 D4 D3 D2 D1 D0  
I1  
WCR[7:0]  
or  
Data Register Bit [7:0]  
Internal  
Address  
Instruction  
Opcode  
Register  
Address  
Pot/WCR  
Address  
Device ID  
Figure 4. Three-Byte Instruction Sequence (Read)  
CS  
SCL  
SI  
0
0
0
0
0
1
0
1
X
X
X
X
X
X
X
0
X
ID3 ID2 ID1 ID0  
Device ID  
A1 A0  
I2 I1  
RB RA  
P0  
I3  
I0  
Don’t Care  
Internal  
Address  
Pot/WCR  
Address  
Instruction  
Opcode  
Register  
Address  
S0  
D7 D6 D5 D4 D3 D2 D1 D0  
WCR[7:0]  
or  
Data Register Bit [7:0]  
FN8171.0  
9
February 28, 2005  
X9261  
Figure 5. Three-Byte Instruction Sequence (Read Status Register)  
CS  
SCL  
SI  
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1
0
0
0
ID3 ID2 ID1 ID0  
I3  
A1 A0  
I2 I1 I0  
RB RA  
P0  
WIP  
Internal  
Address  
Instruction  
Opcode  
Register  
Address  
Pot/WCR  
Address  
Status  
Bit  
Device ID  
Figure 6. Increment/Decrement Instruction Sequence  
CS  
SCL  
SI  
0
0
0
0
0
1
0
1
0
ID3 ID2 ID1 ID0  
Device ID  
I2 I3  
I0  
A1 A0  
I1  
RB RA  
P0  
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
Internal  
Address  
Instruction  
Opcode  
Pot/WCR  
Address  
Register  
Address  
Figure 7. Increment/Decrement Timing Limits  
t
WRID  
SCK  
SI  
VOLTAGE OUT  
R
W
INC/DEC CMD ISSUED  
FN8171.0  
February 28, 2005  
10  
X9261  
Table 5. Instruction Set  
Instruction  
Instruction Set  
I0 RB RA  
I3  
I2  
I1  
0
P0  
Operation  
Read Wiper Counter  
Register  
1
0
0
1
0
1
0
1
0
0
0
1/0 Read the contents of the Wiper Counter  
Register pointed to by P0  
Write Wiper Counter  
Register  
1
1
1
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1/0 Write new value to the Wiper Counter  
Register pointed to by P0  
Read Data Register  
1/0 1/0  
1/0 1/0  
1/0 1/0  
1/0 Read the contents of the Data Register  
pointed to by P0 and RB - RA  
Write Data Register  
1/0 Write new value to the Data Register  
pointed to by P0 and RB - RA  
XFR Data Register to  
Wiper Counter Register  
1/0 Transfer the contents of the Data Register  
pointed to by P0 and RB - RA to its  
associated Wiper Counter Register  
XFR Wiper Counter  
Register to Data Register  
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
0
1/0 1/0  
1/0 1/0  
1/0 1/0  
0
0
0
0
1/0 Transfer the contents of the Wiper Counter  
Register pointed to by P0 to the Data  
Register pointed to by RB - RA  
Global XFR Data Registers  
to Wiper Counter Registers  
0
Transfer the contents of the Data Registers  
pointed to by RB - RA of all four pots to their  
respective Wiper Counter Registers  
Global XFR Wiper Counter  
Registers to Data Register  
0
Transfer the contents of both Wiper Counter  
Registers to their respective data Registers  
pointed to by RB - RA of all four pots  
Increment/Decrement  
Wiper Counter Register  
0
0
1/0 Enable Increment/decrement of the Control  
Latch pointed to by P0  
Note: 1/0 = data is one or zero  
FN8171.0  
February 28, 2005  
11  
X9261  
INSTRUCTION FORMAT  
Read Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Wiper Position  
(Sent by X9261 on SO)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
W
C
R
7
W W W W W W  
C C C C C C  
R R R R R R  
0
1
0
1
0
0 A1 A0 1  
0
0
1
0
0
0 P0  
5
4
3
2
1
0
6
Write Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
W
C
R
7
W W W W W W  
C C C C C C  
R R R R R R  
0
1
0
1
0
0 A1 A0 1  
0
1
0
0
0
0 P0  
5
4 3 2 1 0  
6
Read Data Register (DR)  
Device Type  
CS  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by X9271 on SO)  
CS  
Rising  
Edge  
Identifier  
Falling  
Edge  
D
D D D D D D D  
0
1
0
1
0
0 A1 A0 1  
0
1
1 RB RA  
0
P0  
6
5 4 3 2 1 0  
7
Write Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
D
7
D D D D D D D  
6 5 4 3 2 1 0  
0
1
0
1
0 0 A1 A0 1 1 0 0 RB RA  
0
P0  
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0
A1 A0 0 0 0 1 RB RA 0 0  
FN8171.0  
12  
February 28, 2005  
X9261  
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1 0 0 A1 A0 1 0 0 0 RB RA 0 0  
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1 0 0 A1 A0 1 1 1 0 RB RA 0 P0  
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1 0 0 A1 A0 1 1 0 1 RB RA 0 P0  
Increment/Decrement Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Increment/Decrement  
(Sent by Master on SDA)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0 A1 A0 0  
0
1
0
X X 0 P0 I/D I/D  
.
.
.
. I/D I/D  
Read Status Register (SR)  
Device Type  
Identifier  
Device  
Addresses  
0 A1 A0 0  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by X9261 on SO)  
WIP  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(2) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(3) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
FN8171.0  
13  
February 28, 2005  
X9261  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias.................... -65°C to +135°C  
Storage temperature ......................... -65°C to +150°C  
Voltage on SCK any address input  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; the functional operation of  
the device (at these or any other conditions above  
those listed in the operational sections of this  
specification) is not implied. Exposure to absolute  
maximum rating conditions for extended periods may  
affect device reliability.  
with respect to V ................................. -1V to +7V  
SS  
V = | (V - VL) |...................................................5.5V  
H
Lead temperature (soldering, 10 seconds)........ 300°C  
I
(10 seconds)..................................................±6mA  
W
RECOMMENDED OPERATING CONDITIONS  
(4)  
Temp  
Min.  
0°C  
Max.  
+70°C  
+85°C  
Device  
X9261  
Supply Voltage (V  
CC  
)
Limits  
Commercial  
Industrial  
5V ± 10%  
2.7V to 5.5V  
-40°C  
X9261-2.7  
POTENTIOMETER CHARACTERISTICS (Over recommended industrial operating conditions unless otherwise stated.)  
Parameter  
Limits  
Symbol  
Min.  
Typ.  
Max. Units  
Test Conditions  
T version  
R
End to End Resistance  
End to End Resistance  
End to End Resistance Tolerance  
Power Rating  
100  
50  
kΩ  
kΩ  
TOTAL  
TOTAL  
R
U version  
±20  
50  
%
mW  
mA  
25°C, each pot  
I
Wiper Current  
±3  
W
R
R
Wiper Resistance  
300  
150  
I
I
= ±3mA @ V+ = 3V  
= ±3mA @ V+ = 5V  
W
W
W
Wiper Resistance  
W
V
Voltage on any R or R Pin  
V
V
V
V
= 0V  
TERM  
H
L
SS  
CC  
SS  
Ref: 1V  
Noise  
-120  
0.4  
dBV  
Resolution  
%
(1)  
(3)  
MI  
(5)  
Absolute Linearity  
±1  
R
R
- R  
w(n)(actual)  
w(n)(expected)  
(2)  
(3)  
MI  
(5)  
Relative Linearity  
±0.6  
- [R ]  
w(n) + MI  
w(n + 1)  
Temperature Coefficient of R  
±300  
ppm/°C  
ppm/°C  
pF  
TOTAL  
Ratiometric Temp. Coefficient  
Potentiometer Capacitances  
20  
C /C /C  
W
10/10/25  
0.1  
See Macro model  
Device in stand by.  
H
L
I
R , R , R Leakage  
10.0  
µA  
al  
W
H
L
Vin = V to V  
SS CC  
Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a  
potentiometer.  
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a  
potentiometer. It is a measure of the error in step size.  
(3) MI = RTOT / 255 or (R - R ) / 255, single pot  
H
L
(4) During power-up V  
> V , V , and V .  
CC  
H L W  
(5) n = 0, 1, 2, …,255; m = 0, 1, 2, …, 254.  
FN8171.0  
14  
February 28, 2005  
X9261  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
I
I
I
V
supply current  
400  
µA  
f
= 2.5 MHz, SO = Open, V  
= 6V  
= 6V  
CC1  
CC2  
SB  
CC  
SCK  
CC  
(active)  
Other Inputs = V  
SS  
V
supply current  
1
5
5
mA  
f
= 2.5MHz, SO = Open, V  
CC  
(nonvolatile write)  
SCK  
Other Inputs = V  
CC  
SS  
V
current (standby)  
µA  
SCK = SI = V , Addr. = V  
CS = V  
,
SS  
CC  
SS  
= 6V  
CC  
I
I
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
10  
10  
µA  
µA  
V
V
V
= V to V  
SS CC  
LI  
IN  
= V to V  
SS CC  
LO  
OUT  
V
V
V
V
V
V
x 0.7  
V
+ 1  
IH  
CC  
-1  
CC  
x 0.3  
V
V
IL  
CC  
0.4  
Output LOW voltage  
Output HIGH voltage  
Output HIGH voltage  
V
I
I
I
= 3mA  
OL  
OH  
OH  
OL  
OH  
OH  
V
V
- 0.8  
V
= -1mA, V  
CC  
+3V  
+3V  
CC  
CC  
- 0.4  
V
= -0.4mA, V  
CC  
ENDURANCE AND DATA RETENTION  
Parameter  
Minimum endurance  
Data retention  
Min.  
Units  
100,000  
100  
Data changes per bit per register  
years  
CAPACITANCE  
Symbol  
Test  
Max.  
Units  
pF  
Test Conditions  
(6)  
C
Output capacitance (SO)  
Input capacitance (A0, A1, SI, CS, WP, HOLD, and SCK)  
8
6
V
V
= 0V  
OUT  
OUT  
= 0V  
(6)  
C
pF  
IN  
IN  
POWER-UP TIMING  
Symbol  
Parameter  
Power-up rate  
Min.  
Max.  
50  
Units  
(6)  
t V  
CC  
V
0.2  
V/ms  
ms  
r
CC  
Power-up to initiation of read operation  
(7)  
t
1
PUR  
POWER-UP AND DOWN REQUIREMENTS  
The are no restrictions on the power-up or power-down conditions of V  
and the voltages applied to the poten-  
V , V , V . The  
CC  
is always more positive than or equal to V , V , and V , i.e., V  
tiometer pins provided that V  
CC  
H
L
W
CC  
H
L
W
V
power-up timing spec is always in effect.  
CC  
A.C. TEST CONDITIONS  
Input Pulse Levels  
V
x 0.1 to V x 0.9  
CC  
CC  
Input rise and fall times  
10ns  
Input and output timing level  
V
x 0.5  
CC  
Notes: (6) This parameter is not 100% tested  
(7) t and t are the delays required from the time the (last) power supply (V -) is stable until the specific instruction can be issued.  
PUR  
PUW  
CC  
These parameters are periodically sampled and not 100% tested.  
FN8171.0  
15  
February 28, 2005  
X9261  
EQUIVALENT A.C. LOAD CIRCUIT  
5V  
1462Ω  
3V  
1382Ω  
SPICE Macromodel  
R
TOTAL  
R
R
L
H
SO pin  
SO pin  
C
C
W
C
L
L
10pF  
2714Ω  
1217Ω  
100pF  
100pF  
25pF  
10pF  
R
W
AC TIMING  
Symbol  
Parameter  
Min.  
Max.  
Units  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
SSI/SPI clock frequency  
SSI/SPI clock cycle rime  
SSI/SPI clock high rime  
SSI/SPI clock low time  
Lead time  
2
SCK  
CYC  
WH  
WL  
LEAD  
LAG  
SU  
500  
200  
200  
250  
250  
50  
Lag time  
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable time  
50  
H
2
RI  
2
FI  
0
0
250  
200  
DIS  
V
SO output valid time  
SO output hold time  
HO  
RO  
FO  
SO output rise time  
100  
100  
SO output fall time  
HOLD time  
400  
100  
100  
HOLD  
HSU  
HH  
HZ  
HOLD setup time  
HOLD hold time  
HOLD low to output in high Z  
HOLD high to output in low Z  
100  
100  
10  
LZ  
T
Noise suppression time constant at SI, SCK, HOLD and CS inputs  
CS deselect time  
I
t
t
t
2
0
0
CS  
WP, A0, A1 setup time  
WPASU  
WPAH  
WP, A0, A1 hold time  
ns  
FN8171.0  
February 28, 2005  
16  
X9261  
HIGH-VOLTAGE WRITE CYCLE TIMING  
Symbol  
Parameter  
Typ.  
Max.  
Units  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
XDCP TIMING  
Symbol  
Parameter  
Min. Max. Units  
t
t
Wiper response time after the third (last) power supply is stable  
Wiper response time after instruction issued (all load instructions)  
5
5
10  
10  
µs  
µs  
WRPO  
WRL  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from Low to  
High  
Will change  
from Low to  
High  
May change  
from High to  
Low  
Will change  
from High to  
Low  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
FN8171.0  
17  
February 28, 2005  
X9261  
TIMING DIAGRAMS  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
t
CYC  
SCK  
...  
t
t
t
t
RI  
t
FI  
WL  
SU  
WH  
H
...  
MSB  
LSB  
SI  
High Impedance  
SO  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
...  
t
t
FO  
RO  
SO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
FN8171.0  
18  
February 28, 2005  
X9261  
XDCP Timing (for All Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
LSB  
MSB  
SI  
VWx  
High Impedance  
SO  
Write Protect and Device Address Pins Timing  
(Any Instruction)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
FN8171.0  
19  
February 28, 2005  
X9261  
APPLICATIONS INFORMATION  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
RW  
I
Three terminal Potentiometer;  
Variable voltage divider  
Two terminal Variable Resistor;  
Variable current  
Application Circuits  
Noninverting Amplifier  
Voltage Regulator  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
adj 2  
O
2
1
S
O
2
1
Offset Voltage Adjustment  
Comparator with Hysterisis  
R
R
2
1
V
+
S
V
V
S
O
100kΩ  
+
V
O
TL072  
R
R
1
2
10kΩ  
10kΩ  
+12V  
V
V
= {R /(R +R )} V (max)  
1 1 2 O  
UL  
LL  
10kΩ  
-12V  
= {R /(R +R )} V (min)  
1 1 2 O  
FN8171.0  
February 28, 2005  
20  
X9261  
Application Circuits (continued)  
Attenuator  
Filter  
C
V
+
S
R
V
R
2
O
1
3
+
R
V
O
V
S
R
R
2
R
4
R = R = R = R = 10kΩ  
1
2
3
4
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2πRC)  
-1/2 G +1/2  
Inverting Amplifier  
Equivalent L-R Circuit  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
3
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
Function Generator  
C
R
R
1
2
+
+
R
R
}
A
}
B
frequency R , R , C  
1
2
amplitude R , R  
A
B
FN8171.0  
21  
February 28, 2005  
X9261  
PACKAGING INFORMATION  
16-Bump Chip Scale Package (CSP B16)  
Package Outline Drawing  
d
a
A4  
B4  
C4  
D4  
A3  
B3  
C3  
D3  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
f
b
j
m
k
e
l
Side View  
Top View (Marking Side)  
Bottom View (Bumped Side)  
e
c
Side View  
Package Dimensions  
Ball Matrix:  
Millimeters  
Inches  
Min Nominal Max  
4
3
2
1
Symbol  
Min  
Nominal  
2.775  
4.553  
0.677  
0.457  
0.220  
0.320  
0.65  
Max  
R
R
H0  
A
B
C
D
A1  
SI  
CS  
WP  
H1  
Package Width  
a
b
c
d
e
f
2.745  
4.523  
0.644  
0.444  
0.200  
0.300  
2.805  
4.583  
0.710  
0.470  
0.240  
0.340  
R
R
W0  
L1  
Package Length  
R
R
HOLD SO  
SCK A0  
W1  
L0  
Vcc  
Package Height  
Vss  
Body Thickness  
Ball Height  
Ball Diameter  
Ball Pitch – Width  
Ball Pitch – Length  
Ball to Edge Spacing – Width  
Ball to Edge Spacing – Length  
j
k
l
0.65  
0.388  
1.277  
0.413  
1.302  
0.438  
1.327  
m
FN8171.0  
February 28, 2005  
22  
X9261  
PACKAGING INFORMATION  
24-Lead Plastic, TSSOP, Package Code V24  
.026 (.65) BSC  
.169 (4.3)  
.177 (4.5)  
.252 (6.4) BSC  
.303 (7.70)  
.311 (7.90)  
.041 (1.05)  
.0075 (.19)  
.0118 (.30)  
0.002 (0.05)  
0.005 (0.15)  
.010 (.25)  
Gage Plane  
(7.72)  
(4.16)  
0° - 8°  
Seating Plane  
.020 (.50)  
.030 (.75)  
(1.78)  
(0.42)  
Detail A (20X)  
(0.65)  
ALL MEASUREMENTS ARE TYPICAL  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8171.0  
23  
February 28, 2005  
X9261  
PACKAGING INFORMATION  
24-Lead Plastic Small Outline Gull Wing Package Type S  
0.393 (10.00)  
0.290 (7.37)  
0.299 (7.60)  
0.420 (10.65)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.020 (0.50)  
0.598 (15.20)  
0.610 (15.49)  
(4X) 7°  
0.092 (2.35)  
0.105 (2.65)  
0.003 (0.10)  
0.012 (0.30)  
0.050 (1.27)  
0.050"Typical  
0.010 (0.25)  
0.020 (0.50)  
X 45°  
0.050"  
Typical  
0° - 8°  
0.009 (0.22)  
0.013 (0.33)  
0.420"  
0.015 (0.40)  
0.050 (1.27)  
0.030" Typical  
24 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8171.0  
February 28, 2005  
24  
X9261  
ORDERING INFORMATION  
X9261  
Y
P
T
V
V
Limits  
CC  
Device  
Blank = 5V ± 10%  
-2.7 = 2.7 to 5.5V  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = -40°C to +85°C  
Package  
S24 = 24-Lead SOIC  
V24 = 24-Lead TSSOP  
B16 = 16-Lead CSP (Contact Factory  
for availability)  
Potentiometer Organization  
Pot  
U =  
T =  
50kΩ  
100kΩ  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8171.0  
25  
February 28, 2005  

相关型号:

X9261UB16I

DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, BGA16, BUMP, CSP-16
RENESAS

X9261UB16I

Digital Potentiometer, 2 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, BUMP, CSP-16
XICOR

X9261UB16I-2.7

Digital Potentiometer, 2 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, BUMP, CSP-16
XICOR

X9261UB24

Digital Potentiometer, 2 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PBGA24, XBGA-24
XICOR

X9261UB24I

Digital Potentiometer, 2 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PBGA24, XBGA-24
XICOR

X9261UB24I-2.7

Digital Potentiometer, 2 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PBGA24, XBGA-24
XICOR

X9261US24

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9261US24-2.7

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9261US24-2.7

DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, PLASTIC, SOIC-24
RENESAS

X9261US24-2.7T1

Digital Potentiometer, 2 Func, 50000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PDSO24, PLASTIC, SOIC-24
XICOR

X9261US24I

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9261US24I

Digital Potentiometer 2 Func 50000ohm 3-wire Serial Control Interface 256 Positions CMOS PDSO24
XICOR