X9250US24Z-2.7

更新时间:2024-09-18 19:00:56
品牌:RENESAS
描述:Quad Digitally Controlled Potentiometer (XDCP™); SOIC24, TSSOP24; Temp Range: See Datasheet

X9250US24Z-2.7 概述

Quad Digitally Controlled Potentiometer (XDCP™); SOIC24, TSSOP24; Temp Range: See Datasheet 数字电位计

X9250US24Z-2.7 规格参数

生命周期:Unknown零件包装代码:SOIC, TSSOP
包装说明:SOP, SOP24,.4针数:24, 24
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:11 weeks
风险等级:5.13Is Samacsys:N
其他特性:NONVOLATILE MEMORY控制接口:3-WIRE SERIAL
转换器类型:DIGITAL POTENTIOMETERJESD-30 代码:R-PDSO-G24
JESD-609代码:e3长度:15.4 mm
湿度敏感等级:5功能数量:4
位置数:256端子数量:24
最高工作温度:70 °C最低工作温度:
封装主体材料:PLASTIC/EPOXY封装代码:SOP
封装等效代码:SOP24,.4封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):260
电源:3/5 V认证状态:Not Qualified
电阻定律:LINEAR最大电阻容差:20%
最大电阻器端电压:5.5 V最小电阻器端电压:-5.5 V
座面最大高度:2.65 mm子类别:Digital Potentiometers
标称供电电压:2.7 V表面贴装:YES
技术:CMOS标称温度系数:300 ppm/°C
温度等级:COMMERCIAL端子面层:Matte Tin (Sn) - annealed
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:40
标称总电阻:50000 Ω宽度:7.5 mm
Base Number Matches:1

X9250US24Z-2.7 数据手册

通过下载X9250US24Z-2.7数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
DATASHEET  
X9250  
FN8165  
Rev.3.00  
August 29, 2006  
Low Noise/Low Power/SPI Bus/256 Taps Quad Digitally Controlled  
Potentiometers (XDCP™)  
FEATURES  
DESCRIPTION  
The X9250 integrates  
potentiometers (XDCP) on a monolithic CMOS  
integrated circuit.  
• Four potentiometers in one package  
• 256 resistor taps/pot - 0.4% resolution  
• SPI serial interface  
4
digitally controlled  
• Wiper resistance, 40typical @ V  
= 5V  
CC  
The digitally controlled potentiometer is implemented  
using 255 resistive elements in a series array.  
Between each element are tap points connected to the  
wiper terminal through switches. The position of the  
wiper on the array is controlled by the user through the  
SPI bus interface. Each potentiometer has associated  
with it a volatile Wiper Counter Register (WCR) and 4  
nonvolatile Data Registers (DR0:DR3) that can be  
directly written to and read by the user. The contents  
of the WCR controls the position of the wiper on the  
resistor array though the switches. Power up recalls  
the contents of DR0 to the WCR.  
• Four nonvolatile data registers for each pot  
• Nonvolatile storage of wiper position  
• Standby current < 5µA max (total package)  
• Power supplies  
—V  
= 2.7V to 5.5V  
CC  
—V+ = 2.7V to 5.5V  
—V– = -2.7V to -5.5V  
• 100k, 50ktotal pot resistance  
• High reliability  
—Endurance – 100,000 data changes per bit per  
register  
—Register data retention - 100 years  
• 24 Ld SOIC, 24 Ld TSSOP  
• Dual supply version of X9251  
• Pb-free plus anneal available (RoHS compliant)  
The XDCP can be used as  
a three-terminal  
potentiometer or as a two-terminal variable resistor in  
a wide variety of applications including control,  
parameter adjustments, and signal processing.  
BLOCK DIAGRAM  
V
V
V+  
V-  
CC  
Pot 0  
SS  
R
R
R
R
V
/R  
H0 H0  
R
R
R
R
0
1
0
1
Wiper  
V
/R  
H2 H2  
Wiper  
Counter  
Register  
(WCR)  
Resistor  
Array  
Pot 2  
Counter  
Register  
(WCR)  
V
/R  
L0 L0  
HOLD  
2
3
2
3
V
/R  
L2 L2  
CS  
SCK  
SO  
V
V
/R  
W0 W0  
V
/R  
W2 W2  
Interface  
and  
Control  
SI  
8
Circuitry  
A0  
A1  
/R  
W1 W1  
Data  
V
V
/R  
W3 W3  
WP  
R
R
R
R
0
1
R
R
R
R
V
/R  
H1 H1  
Wiper  
Counter  
Register  
(WCR)  
0
1
3
/R  
Wiper  
Counter  
Register  
(WCR)  
H3 H3  
Resistor  
Array  
Pot1  
Resistor  
Array  
Pot 3  
2
3
V
/R  
L1 L1  
2
V
/R  
L3 H3  
FN8165 Rev.3.00  
August 29, 2006  
Page 1 of 20  
X9250  
Ordering Information  
PART  
MARKING  
POTENTIOMETER  
ORGANIZATION (k)  
TEMP. RANGE  
(°C)  
PART NUMBER  
X9250TS24I  
V
LIMITS (V)  
PACKAGE  
PKG. DWG. #  
CC  
X9250TS I  
5 ±10%  
100  
-40 to +85  
-40 to +85  
24 Ld SOIC (300 mil) M24.3  
X9250TS24IZ (Note)  
X9250TS ZI  
X9250TV I  
X9250TV ZI  
24 Ld SOIC (300 mil) M24.3  
(Pb-free)  
X9250TV24I  
-40 to +85  
-40 to +85  
24 Ld TSSOP  
(4.4mm)  
MDP0044  
X9250TV24IZ (Note)  
24 Ld TSSOP  
MDP0044  
(4.4mm) (Pb-free)  
X9250US24  
X9250US  
50  
0 to +70  
0 to +70  
24 Ld SOIC (300 mil) M24.3  
X9250US24Z (Note)  
X9250US Z  
24 Ld SOIC (300 mil) M24.3  
(Pb-free)  
X9250US24I  
X9250US I  
-40 to +85  
-40 to +85  
24 Ld SOIC (300 mil) M24.3  
X9250US24IZ (Note)  
X9250US ZI  
24 Ld SOIC (300 mil) M24.3  
(Pb-free)  
X9250UV24I  
X9250UV I  
X9250UV ZI  
X9250TS F  
-40 to +85  
-40 to +85  
24 Ld TSSOP  
(4.4mm)  
MDP0044  
X9250UV24IZ (Note)  
X9250TS24-2.7  
24 Ld TSSOP  
(4.4mm) (Pb-free)  
MDP0044  
-2.7 to 5.5  
100  
0 to +70  
0 to +70  
24 Ld SOIC (300 mil) M24.3  
X9250TS24Z-2.7 (Note) X9250TS ZF  
24 Ld SOIC (300 mil) M24.3  
(Pb-free)  
X9250TS24I-2.7*  
X9250TS G  
-40 to +85  
-40 to +85  
24 Ld SOIC (300 mil) M24.3  
X9250TS24IZ-2.7*  
(Note)  
X9250TS ZG  
24 Ld SOIC (300 mil) M24.3  
(Pb-free)  
X9250TV24I-2.7  
X9250TV G  
-40 to +85  
-40 to +85  
24 Ld TSSOP  
(4.4mm)  
MDP0044  
X9250TV24IZ-2.7 (Note) X9250TV ZG  
24 Ld TSSOP  
MDP0044  
(4.4mm) (Pb-free)  
X9250US24-2.7*  
X9250US F  
50  
0 to +70  
0 to +70  
24 Ld SOIC (300 mil) M24.3  
X9250US24Z-2.7* (Note) X9250US ZF  
24 Ld SOIC (300 mil) M24.3  
(Pb-free)  
X9250US24I-2.7  
X9250US G  
-40 to +85  
-40 to +85  
24 Ld SOIC (300 mil) M24.3  
X9250US24IZ-2.7 (Note) X9250US ZG  
24 Ld SOIC (300 mil) M24.3  
(Pb-free)  
X9250UV24-2.7  
X9250UV F  
0 to +70  
0 to +70  
24 Ld TSSOP  
(4.4mm)  
MDP0044  
X9250UV24Z-2.7 (Note) X9250UV ZF  
24 Ld TSSOP  
(4.4mm) (Pb-free)  
MDP0044  
MDP0044  
MDP0044  
X9250UV24I-2.7  
X9250UV G  
-40 to +85  
-40 to +85  
24 Ld TSSOP  
(4.4mm)  
X9250UV24IZ-2.7 (Note) X9250UV ZG  
*Add "T1" suffix for tape and reel.  
24 Ld TSSOP  
(4.4mm) (Pb-free)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8165 Rev.3.00  
August 29, 2006  
Page 2 of 20  
X9250  
PIN DESCRIPTIONS  
Serial Output (SO)  
V /R (V /R )  
V
/R  
W
W
W0 W0 - W3 W3  
The wiper pins are equivalent to the wiper terminal of a  
mechanical potentiometer.  
SO is a serial data output pin. During a read cycle, data  
is shifted out on this pin. Data is clocked out by the  
falling edge of the serial clock.  
Hardware Write Protect Input (WP)  
The WP pin when LOW prevents nonvolatile writes to  
the Data Registers.  
Serial Input  
SI is the serial data input pin. All opcodes, byte  
addresses and data to be written to the pots and pot  
registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
Analog Supplies (V+, V-)  
The analog supplies V+, V- are the supply voltages for  
the XDCP analog section.  
PIN CONFIGURATION  
Serial Clock (SCK)  
The SCK input is used to clock data into and out of the  
X9250.  
SOIC/TSSOP  
S0  
A0  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
HOLD  
SCK  
Chip Select (CS)  
When CS is HIGH, the X9250 is deselected and the SO  
pin is at high impedance, and (unless an internal write  
cycle is underway) the device will be in the standby  
state. CS LOW enables the X9250, placing it in the  
active power mode. It should be noted that after a  
power-up, a HIGH to LOW transition on CS is required  
prior to the start of any operation.  
V
/R  
W3 W3  
3
V
V
V
/R  
L2 L2  
V
/R  
H3 H3  
4
/R  
H2 L2  
/R  
5
V
/R  
W2 W2  
L3 L3  
V–  
V+  
6
X9250  
V
7
V
V
V
CC  
SS  
V
/R  
/R  
8
L0 L0  
W1 W1  
/R  
V
/R  
9
H1 H1  
H0 H0  
Hold (HOLD)  
V
/R  
10  
V
/R  
W0 W0  
L1 L1  
HOLD is used in conjunction with the CS pin to select  
the device. Once the part is selected and a serial  
sequence is underway, HOLD may be used to pause the  
serial communication with the controller without resetting  
the serial sequence. To pause, HOLD must be brought  
LOW while SCK is LOW. To resume communication,  
HOLD is brought HIGH, again while SCK is LOW. If the  
pause feature is not used, HOLD should be held HIGH  
at all times.  
CS  
11  
12  
14  
13  
A1  
SI  
WP  
PIN NAMES  
Symbol  
Description  
Serial Clock  
SCK  
Device Address (A - A )  
0
1
SI, SO  
A -A  
Serial Data  
The address inputs are used to set the least significant 2  
bits of the 8-bit slave address. A match in the slave  
address serial data stream must be made with the  
address input in order to initiate communication with the  
X9250. A maximum of 4 devices may occupy the SPI  
serial bus.  
Device Address  
0
1
V
V
/R  
V
V
/R  
,
Potentiometer Pins  
(terminal equivalent)  
H0 H0– H3 H3  
/R /R  
L0 L0– L3 L3  
V
/R /R  
V
Potentiometer Pins  
(wiper equivalent)  
W0 W0– W3 W3  
WP  
Hardware Write Protection  
Analog Supplies  
Potentiometer Pins  
V+,V-  
V /R (V /R - V /R ), V /R (V /R - V /R  
)
H
H
H0 H0 H3 H3 L0 L0 L3 L3  
L
L
V
V
System Supply Voltage  
System Ground  
CC  
SS  
The R and R pins are equivalent to the terminal  
H
L
connections on a mechanical potentiometer.  
NC  
No Connection  
FN8165 Rev.3.00  
August 29, 2006  
Page 3 of 20  
X9250  
DEVICE DESCRIPTION  
Serial Interface  
Wiper Counter Register (WCR)  
The X9250 contains four Wiper Counter Registers, one  
for each XDCP potentiometer. The WCR is equivalent to  
a serial-in, parallel-out register/counter with its outputs  
decoded to select one of 256 switches along its resistor  
array. The contents of the WCR can be altered in four  
ways: it may be written directly by the host via the write  
Wiper Counter Register instruction (serial load); it may  
be written indirectly by transferring the contents of one of  
four associated Data Registers via the XFR Data  
Register or Global XFR Data Register instructions  
(parallel load); it can be modified one step at a time by  
the increment/decrement instruction. Finally, it is loaded  
with the contents of its Data Register zero (DR0) upon  
power-up.  
The X9250 supports the SPI interface hardware  
conventions. The device is accessed via the SI input  
with data clocked in on the rising SCK. CS must be LOW  
and the HOLD and WP pins must be HIGH during the  
entire operation.  
The SO and SI pins can be connected together, since  
they have three state outputs. This can help to reduce  
system pin count.  
Array Description  
The X9250 is comprised of four resistor arrays. Each  
array contains 255 discrete resistive segments that are  
connected in series. The physical ends of each array are  
equivalent to the fixed terminals of a mechanical  
The Wiper Counter Register is a volatile register; that is,  
its contents are lost when the X9250 is powered-down.  
Although the register is automatically loaded with the  
value in R0 upon power-up, this may be different from  
the value present at power-down.  
potentiometer (V /R and V /R inputs).  
H
H
L
L
At both ends of each array and between each resistor  
segment is a CMOS switch connected to the wiper  
(V /R ) output. Within each individual array only one  
Data Registers  
W
W
switch may be turned on at a time.  
Each potentiometer has four 8-bit nonvolatile Data  
Registers. These can be read or written directly by the  
host. Data can also be transferred between any of the  
four Data Registers and the associated Wiper Counter  
Register. All operations changing data in one of the Data  
Registers is a nonvolatile operation and will take a  
maximum of 10ms.  
These switches are controlled by a Wiper Counter  
Register (WCR). The 8 bits of the WCR are decoded to  
select, and enable, one of 256 switches.  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can be  
used as regular memory locations for system  
parameters or user preference data.  
Data Register Detail  
(MSB)  
D7  
(LSB)  
D0  
D6  
D5  
D4  
NV  
D3  
NV  
D2  
NV  
D1  
NV  
NV  
NV NV  
NV  
FN8165 Rev.3.00  
August 29, 2006  
Page 4 of 20  
X9250  
Figure 1. Detailed Potentiometer Block Diagram  
(One of Four Arrays)  
Serial Data Path  
V /R  
H H  
Serial  
Bus  
Input  
From Interface  
Circuitry  
C
o
u
n
t
Register 0  
Register 2  
Register 1  
8
8
Parallel  
Bus  
Input  
e
r
Wiper  
Counter  
Register  
(WCR)  
D
e
c
o
d
e
Register 3  
Inc/Dec  
Logic  
If WCR = 00[H] then V /R = V /R  
L
W
W
L
UP/DN  
UP/DN  
If WCR = FF[H] then V /R = V /R  
H
W
W
H
V /R  
L
L
Modified SCK  
CLK  
V
/R  
W
W
Write in Process  
Figure 2. Identification Byte Format  
The contents of the Data Registers are saved to  
nonvolatile memory when the CS pin goes from LOW to  
HIGH after a complete write sequence is received by the  
device. The progress of this internal write operation can  
be monitored by a write in process bit (WIP). The WIP bit  
is read with a read status command.  
Device Type  
Identifier  
0
1
0
1
0
0
A1  
A0  
Device Address  
INSTRUCTIONS  
Instruction Byte  
Identification (ID) Byte  
The next byte sent to the X9250 contains the instruction  
and register pointer information. The four most  
significant bits are the instruction. The next four bits  
point to one of the four pots and, when applicable, they  
point to one of four associated registers. The format is  
shown below in Figure 3.  
The first byte sent to the X9250 from the host, following  
a CS going HIGH to LOW, is called the Identification  
byte. The most significant four bits of the slave address  
are a device type identifier, for the X9250 this is fixed as  
0101[B] (refer to Figure 2).  
The two least significant bits in the ID byte select one of  
four devices on the bus. The physical device address is  
Figure 3. Instruction Byte Format  
defined by the state of the A - A input pins. The X9250  
0
1
Register  
Select  
compares the serial data stream with the address input  
state; a successful compare of both address bits is  
required for the X9250 to successfully continue the  
I3  
I2  
I1  
I0  
R1 R0  
P1  
P0  
command sequence. The A - A inputs can be actively  
0
1
driven by CMOS input signals or tied to V  
or V  
.
CC  
SS  
Instructions  
Pot Select  
The remaining two bits in the slave byte must be set to 0.  
The four high order bits of the instruction byte specify the  
register oriented instruction is issued. The last two bits  
operation. The next two bits (R and R ) select one of  
the four registers that is to be acted upon when a  
(P1 and P ) selects which one of the four potentiometers  
is to be affected by the instruction.  
1
0
0
FN8165 Rev.3.00  
August 29, 2006  
Page 5 of 20  
X9250  
Four of the ten instructions are two bytes in length and  
end with the transmission of the instruction byte. These  
instructions are:  
Five instructions require a three-byte sequence to  
complete. These instructions transfer data between the  
host and the X9250; either between the host and one of  
the data registers or directly between the host and the  
Wiper Counter Register. These instructions are:  
– XFR Data Register to Wiper Counter Register—This  
transfers the contents of one specified Data Register  
to the associated Wiper Counter Register.  
– Read Wiper Counter Register—read the current wiper  
position of the selected pot,  
– XFR Wiper Counter Register to Data Register—This  
transfers the contents of the specified Wiper Counter  
Register to the specified associated Data Register.  
– Write Wiper Counter Register—change current wiper  
position of the selected pot,  
– Global XFR Data Register to Wiper Counter Regiter—  
This transfers the contents of all specified Data Regis-  
ters to the associated Wiper Counter Registers.  
– Read Data Register—read the contents of the  
selected data register;  
– Write Data Register—write a new value to the selected  
data register.  
– Global XFR Wiper Counter Register to Data Regiter—  
This transfers the contents of all Wiper Counter Regis-  
ters to the specified associated Data Registers.  
– Read Status—This command returns the contents of  
the WIP bit which indicates if the internal write cycle is  
in progress.  
The basic sequence of the two byte instructions is  
illustrated in Figure 4. These two-byte instructions  
exchange data between the WCR and one of the Data  
Registers. A transfer from a Data Register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position. The response of the wiper  
The sequence of these operations is shown in Figure 5  
and Figure 6.  
The final command is Increment/Decrement. It is  
different from the other commands, because it’s length is  
indeterminate. Once the command is issued, the master  
can clock the selected wiper up and/or down in one  
resistor segment steps; thereby, providing a fine tuning  
to this action will be delayed by t  
. A transfer from the  
WRL  
WCR (current wiper position), to a Data Register is a  
write to nonvolatile memory and takes a minimum of t  
WR  
capability to the host. For each SCK clock pulse (t  
)
to complete. The transfer can occur between one of the  
four potentiometers and one of its associated registers;  
or it may occur globally, where the transfer occurs  
between all potentiometers and one associated register.  
HIGH  
while SI is HIGH, the selected wiper will move one  
resistor segment towards the V /R terminal. Similarly,  
H
H
for each SCK clock pulse while SI is LOW, the selected  
wiper will move one resistor segment towards the V /R  
L
L
terminal. A detailed illustration of the sequence and timing  
for this operation are shown in Figure 7 and Figure 8.  
FN8165 Rev.3.00  
August 29, 2006  
Page 6 of 20  
X9250  
Figure 4. Two-Byte Instruction Sequence  
CS  
SCK  
SI  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
Figure 5. Three-Byte Instruction Sequence (Write)  
CS  
SCL  
SI  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 6. Three-Byte Instruction Sequence (Read)  
CS  
SCL  
SI  
Don’t Care  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
S0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 7. Increment/Decrement Instruction Sequence  
CS  
SCK  
SI  
P1  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0  
0
0
P0  
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
FN8165 Rev.3.00  
August 29, 2006  
Page 7 of 20  
X9250  
Figure 8. Increment/Decrement Timing Limits  
t
WRID  
SCK  
SI  
Voltage Out  
V
/R  
W
W
INC/DEC CMD Issued  
Table 1. Instruction Set  
Instruction  
Instruction Set  
I
I
I
I
R
R
P
P
Operation  
Read the contents of the Wiper Counter  
Register pointed to by P - P  
3
2
1
0
1
0
1
0
Read Wiper Counter  
Register  
1
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
P
P
1
0
1
0
Write Wiper Counter  
Register  
1
1
1
1
0
0
P
P
P
P
P
P
P
P
Write new value to the Wiper Counter Register  
pointed to by P - P  
1
1
1
1
0
0
0
0
1
0
Read Data Register  
R
R
Read the contents of the Data Register  
pointed to by P - P and R - R  
1
1
1
0
0
0
1
0
1
0
Write Data Register  
R
R
R
R
Write new value to the Data Register pointed to  
by P - P and R - R  
1
0
1
0
XFR Data Register to  
Wiper Counter Register  
Transfer the contents of the Data Register  
pointed to by R - R to the Wiper Counter  
1
0
Register pointed to by P - P  
1
0
XFR Wiper Counter  
Register to Data Register  
1
0
1
1
0
0
1
0
0
0
1
0
R
R
R
R
R
R
P
P
Transfer the contents of the Wiper Counter  
Register pointed to by P - P to the Register  
1
1
1
0
0
0
1
0
1
0
pointed to by R - R  
1
0
Global XFR Data Register  
to Wiper Counter Register  
0
0
Transfer the contents of the Data Registers  
pointed to by R - R of all four pots to their  
1
0
respective Wiper Counter Register  
Global XFR Wiper Counter  
Register to Data Register  
0
0
Transfer the contents of all Wiper Counter  
Registers to their respective data Registers  
pointed to by R - R of all four pots  
1
0
Increment/Decrement  
Wiper Counter Register  
0
0
0
1
1
0
0
1
0
0
P
P
Enable Increment/decrement of the Wiper  
Counter Register pointed to by P - P  
1
0
1
0
Read Status (WIP bit)  
0
0
0
1
Read the status of the internal write cycle, by  
checking the WIP bit.  
FN8165 Rev.3.00  
August 29, 2006  
Page 8 of 20  
X9250  
Instruction Format  
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(2) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(3) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
Read Wiper Counter Register(WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
wiper position  
(sent by X9250 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W W W  
P P P P P P P P  
A
1
A
0
P
1
P
0
0
1
0
1
0
0
1
0
0
1
0
0
7
6 5 4 3 2 1 0  
Write Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
Data Byte  
(sent by Host on SI)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W W W  
P P P P P P P P  
A
1
A
0
P
1
P
0
0
1
0
1
0
0
1
0
1
0
0
0
7
6 5 4 3 2 1 0  
Read Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
Data Byte  
(sent by X9250 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W W W  
P P P P P P P P  
A
1
A
0
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1 0 1 1  
7
6 5 4 3 2 1 0  
Write Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
Data Byte  
(sent by host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
W W W W W W W W  
P P P P P P P P  
A
1
A
0
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1 1 0 0  
7
6
5 4 3 2 1 0  
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR and WCR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A
1
A
0
0
1
0
1
0
0
1 1 0 1 R1 R0 P1 P0  
FN8165 Rev.3.00  
August 29, 2006  
Page 9 of 20  
X9250  
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
A
1
A
0
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1 1 1 0  
Increment/Decrement Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
increment/decrement  
(sent by master on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A A  
1
P P  
X X  
0
1
0
1
0
0
0
0
1
0
I/D I/D  
.
.
.
. I/D I/D  
0
1 0  
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A
1
A
0
R R  
1 0  
0
1
0
1
0
0
0
0
0
1
0 0  
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
A A  
1
R R  
1 0  
0
1
0
1
0
0
1
0
0
0
0 0  
0
Read Status  
device type  
identifier  
device  
addresses  
instruction  
opcode  
Data Byte  
(sent by X9250 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W
I
P
A A  
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
FN8165 Rev.3.00  
August 29, 2006  
Page 10 of 20  
X9250  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias........................ -65 to +135C  
Storage temperature ............................. -65 to +150C  
Voltage on SCK, SCL or any address input  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device (at these or any other conditions above those  
listed in the operational sections of this specification) is  
not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
with respect to V ................................. -1V to +7V  
SS  
Voltage on V+ (referenced to V )........................10V  
SS  
Voltage on V- (referenced to V )........................-10V  
SS  
(V+) - (V-) ..............................................................12V  
Any V /R ..............................................................V+  
H
H
Any V /R .................................................................V-  
L
L
Lead temperature (soldering, 10s) .................. +300C  
(10s)............................................................±15mA  
I
W
RECOMMENDED OPERATING CONDITIONS  
(4)  
Temp  
Min.  
0C  
-40C  
Max.  
+70C  
+85C  
Device  
X9250  
Supply Voltage (V ) Limits  
CC  
Commercial  
Industrial  
5V 10%  
2.7V to 5.5V  
X9250-2.7  
POTENTIOMETER CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)  
Limits  
Symbol  
Parameter  
End to end resistance tolerance  
Power rating  
Min.  
Typ.  
Max.  
±20  
50  
Unit  
%
Test Conditions  
mW  
mA  
+25°C, each pot  
I
Wiper current  
±7.5  
250  
+5.5  
+5.5  
-4.5  
-2.7  
V+  
W
R
Wiper resistance  
150  
Wiper current = 1mA  
W
Vv+  
Voltage on V+ pin  
X9250  
+4.5  
+2.7  
-5.5  
-5.5  
V-  
V
X9250-2.7  
X9250  
Vv-  
Voltage on V- pin  
V
X9250-2.7  
V
Voltage on any V /R or V /R pin  
V
dBV  
%
TERM  
H
H
L
L
Noise  
-120  
0.6  
Ref: 1kHz  
(4)  
Resolution  
(1)  
(3)  
Absolute linearity  
Relative linearity  
±1  
MI  
V
V
- V  
w(n)(expected)  
w(n)(actual)  
[V  
(2)  
(3)  
MI  
±0.6  
]
w(n + 1 - w(n) + MI  
Temperature coefficient of R  
300  
ppm/°C  
ppm/°C  
TOTAL  
Ratiometric Temperature  
Coefficient  
±20  
C /C /C  
W
Potentiometer Capacitances  
10/10/25  
pF  
See Circuit #3  
H
L
Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a  
potentiometer.  
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiom-  
eter. It is a measure of the error in step size.  
(3) MI = RTOT/255 or (V /R - V /R )/255, single pot  
H
H
L
L
(4) Individual array resolutions.  
FN8165 Rev.3.00  
August 29, 2006  
Page 11 of 20  
X9250  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
I
V
supply current  
400  
µA  
f = 2MHz, SO = Open,  
SCK  
CC1  
CC  
(active)  
Other Inputs = V  
SS  
I
V
supply current  
1
mA  
f
= 2MHz, SO = Open,  
CC2  
CC  
(nonvolatile write)  
SCK  
Other Inputs = V  
SS  
I
V
current (standby)  
CC  
5
µA  
µA  
µA  
V
SCK = SI = V , Addr. = V  
SS SS  
SB  
I
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
Output LOW voltage  
10  
10  
V
V
= V to V  
SS  
LI  
IN  
CC  
CC  
I
= V to V  
SS  
LO  
OUT  
V
V
x 0.7  
V
+ 0.1  
IH  
CC  
-0.5  
CC  
V
V
x 0.3  
V
IL  
CC  
0.4  
V
V
I
= 3mA  
OL  
OL  
ENDURANCE AND DATA RETENTION  
Parameter  
Minimum endurance  
Data retention  
Min.  
100,000  
100  
Unit  
Data changes per bit per register  
Years  
CAPACITANCE  
Symbol  
Test  
Output capacitance (SO)  
Input capacitance (A0, A1, SI, and SCK, CS)  
Max.  
Unit  
pF  
Test Conditions  
= 0V  
(5)  
C
8
6
V
OUT  
OUT  
(5)  
C
pF  
V
= 0V  
IN  
IN  
POWER-UP TIMING  
Symbol  
Parameter  
Min.  
Max.  
Unit  
ms  
(6)  
t
Power-up to initiation of read operation  
Power-up to initiation of write operation  
1
5
PUR  
(6)  
t
ms  
PUW  
(7)  
t
V
V power up ramp rate  
CC  
0.2  
50  
V/msec  
R
CC  
POWER UP AND DOWN REQUIREMENT  
The are no restrictions on the sequencing of the bias supplies V , V+, and V- provided that all three supplies reach  
CC  
their final values within 1msec of each other. At all times, the voltages on the potentiometer pins must be less than V+  
and more than V-. The recall of the wiper position from nonvolatile memory is not in effect until all supplies reach their  
final value. The V  
ramp rate spec is always in effect.  
CC  
Notes: (5) This parameter is periodically sampled and not 100% tested  
(6) t and t are the delays required from the time the third (last) power supply (V , V+ or V-) is stable until the specific instruction can be  
PUR PUW CC  
issued. These parameters are periodically sampled and not 100% tested.  
(7) Sample tested only.  
A.C. TEST CONDITIONS  
Input pulse levels  
V
x 0.1 to V  
x 0.9  
CC  
CC  
10ns  
Input rise and fall times  
Input and output timing level  
V
x 0.5  
CC  
FN8165 Rev.3.00  
August 29, 2006  
Page 12 of 20  
X9250  
Circuit #3 SPICE Macro Model  
EQUIVALENT A.C. LOAD CIRCUIT  
5V  
2.7V  
R
TOTAL  
R
R
L
H
C
L
1533  
C
H
C
W
10pF  
SDA Output  
10pF  
25pF  
100pF  
100pF  
R
W
AC TIMING  
Symbol  
Parameter  
Min.  
Max.  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
f
SSI/SPI clock frequency  
SSI/SPI clock cycle time  
SSI/SPI clock high time  
SSI/SPI clock low time  
Lead time  
2.0  
SCK  
t
500  
200  
200  
250  
250  
50  
CYC  
t
WH  
t
WL  
t
LEAD  
t
Lag time  
LAG  
t
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable Time  
SU  
t
75  
H
t
2
RI  
t
2
FI  
t
0
0
500  
100  
DIS  
t
SO output valid time  
V
t
SO output hold time  
HO  
RO  
t
SO output rise time  
50  
50  
t
SO output fall time  
FO  
t
HOLD time  
400  
100  
100  
HOLD  
t
HOLD setup time  
HSU  
t
HOLD hold time  
HH  
t
HOLD low to output in high Z  
HOLD high to output in low Z  
Noise suppression time constant at SI, SCK, HOLD and CS inputs  
CS deselect time  
100  
100  
HZ  
t
LZ  
T
TBD  
I
t
2
0
0
CS  
t
WP, A0 and A1 setup time  
WP, A0 and A1 hold time  
WPASU  
t
WPAH  
FN8165 Rev.3.00  
August 29, 2006  
Page 13 of 20  
X9250  
HIGH-VOLTAGE WRITE CYCLE TIMING  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
XDCP TIMING  
Symbol  
Parameter  
Min. Max. Unit  
t
Wiper response time after the third (last) power supply is stable  
Wiper response time after instruction issued (all load instructions)  
10  
10  
40  
µs  
µs  
µs  
WRPO  
t
WRL  
t
Wiper response time from an active SCL/SCK edge (increment/decrement instruc-  
tion)  
WRID  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from Low to  
High  
Will change  
from Low to  
High  
May change  
from High to  
Low  
Will change  
from High to  
Low  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
TIMING DIAGRAMS  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
...  
WH  
t
t
FI  
t
RI  
t
t
t
WL  
SU  
H
...  
MSB  
LSB  
SI  
High Impedance  
SO  
FN8165 Rev.3.00  
August 29, 2006  
Page 14 of 20  
X9250  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
...  
t
t
FO  
RO  
SO  
SI  
t
t
LZ  
HZ  
t
HOLD  
HOLD  
XDCP Timing (for all Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
MSB  
LSB  
SI  
VWx  
High Impedance  
SO  
FN8165 Rev.3.00  
August 29, 2006  
Page 15 of 20  
X9250  
XDCP Timing (for Increment/Decrement Instruction)  
CS  
SCK  
VWx  
...  
t
WRID  
...  
...  
ADDR  
Inc/Dec  
SI  
Inc/Dec  
High Impedance  
SO  
Write Protect and Device Address Pins Timing  
(Any Instruction)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
FN8165 Rev.3.00  
August 29, 2006  
Page 16 of 20  
X9250  
APPLICATIONS INFORMATION  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
V
/R  
W
W
I
Three terminal Potentiometer;  
Variable voltage divider  
Two terminal Variable Resistor;  
Variable current  
Application Circuits  
Noninverting Amplifier  
Voltage Regulator  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
adj 2  
O
2
1
S
O
2
1
Offset Voltage Adjustment  
Comparator with Hysterisis  
R
R
2
1
V
+
S
V
V
S
O
100k  
+
V
O
TL072  
R
R
1
2
10k  
10k  
+12V  
V
V
= {R /(R +R ) V (max)  
1 1 2 O  
UL  
LL  
10k  
-12V  
= {R /(R +R ) V (min)  
1
1
2
O
FN8165 Rev.3.00  
August 29, 2006  
Page 17 of 20  
X9250  
Application Circuits (continued)  
Attenuator  
Filter  
C
V
+
S
R
V
R
R
2
O
1
+
R
V
O
V
S
3
R
2
R
4
R
= R = R = R = 10k  
2 3 4  
1
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2RC)  
-1/2 G +1/2  
Inverting Amplifier  
Equivalent L-R Circuit  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
3
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
C
R
R
1
2
+
+
R
}
}
A
R
B
frequency R , R , C  
1
2
amplitude R , R  
A
B
FN8165 Rev.3.00  
August 29, 2006  
Page 18 of 20  
X9250  
Thin Shrink Small Outline Package Family (TSSOP)  
MDP0044  
0.25 M C A B  
N
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY  
D
A
(N/2)+1  
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE  
A
A1  
A2  
b
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
6.50  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
7.80  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
9.70  
6.40  
4.40  
0.65  
0.60  
1.00  
Max  
±0.05  
PIN #1 I.D.  
E
E1  
±0.05  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
c
0.20 C B A  
2X  
1
(N/2)  
D
N/2 LEAD TIPS  
B
E
Basic  
TOP VIEW  
E1  
e
±0.10  
Basic  
L
±0.15  
0.05  
H
e
L1  
Reference  
Rev. E 12/02  
C
NOTES:  
SEATING  
PLANE  
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
0.10 M C A B  
b
0.10 C  
N LEADS  
SIDE VIEW  
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
3. Dimensions “D” and “E1” are measured at dAtum Plane H.  
SEE DETAIL “X”  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
L
A1  
0° - 8°  
DETAIL X  
FN8165 Rev.3.00  
August 29, 2006  
Page 19 of 20  
X9250  
Small Outline Plastic Packages (SOIC)  
M24.3 (JEDEC MS-013-AD ISSUE C)  
N
24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.020  
-
0.30  
-
1
2
3
L
0.51  
9
SEATING PLANE  
A
0.0091  
0.5985  
0.2914  
0.0125  
0.32  
-
-A-  
0.6141 15.20  
15.60  
7.60  
3
h x 45°  
D
0.2992  
7.40  
4
-C-  
0.05 BSC  
1.27 BSC  
-
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
24  
24  
7
0°  
8°  
0°  
8°  
-
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
© Copyright Intersil Americas LLC 2005-2006. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8165 Rev.3.00  
August 29, 2006  
Page 20 of 20  

X9250US24Z-2.7 替代型号

型号 制造商 描述 替代类型 文档
X9250US24-2.7 INTERSIL Low Noise/Low Power/SPI Bus/256 Taps 类似代替

X9250US24Z-2.7 相关器件

型号 制造商 描述 价格 文档
X9250US24Z-2.7T1 RENESAS Quad Digitally Controlled Potentiometer (XDCP&amp;trade;); SOIC24, TSSOP24; Temp Range: See Datasheet 获取价格
X9250US24ZT1 RENESAS Quad Digitally Controlled Potentiometer (XDCP&amp;trade;); SOIC24, TSSOP24; Temp Range: See Datasheet 获取价格
X9250UV24 INTERSIL Low Noise/Low Power/SPI Bus/256 Taps 获取价格
X9250UV24 XICOR Quad Digitally Controlled Potentiometers (XDCP) 获取价格
X9250UV24-2.7 INTERSIL Low Noise/Low Power/SPI Bus/256 Taps 获取价格
X9250UV24-2.7 XICOR Quad Digitally Controlled Potentiometers (XDCP) 获取价格
X9250UV24I INTERSIL Low Noise/Low Power/SPI Bus/256 Taps 获取价格
X9250UV24I XICOR Quad Digitally Controlled Potentiometers (XDCP) 获取价格
X9250UV24I-2.7 INTERSIL Low Noise/Low Power/SPI Bus/256 Taps 获取价格
X9250UV24I-2.7 XICOR Quad Digitally Controlled Potentiometers (XDCP) 获取价格

X9250US24Z-2.7 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6