PD46184184BF1-E33-EQ1-A [RENESAS]

18M-BIT DDR II SRAM 4-WORD BURST OPERATION; 18M位DDR II SRAM 4字突发操作
PD46184184BF1-E33-EQ1-A
型号: PD46184184BF1-E33-EQ1-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

18M-BIT DDR II SRAM 4-WORD BURST OPERATION
18M位DDR II SRAM 4字突发操作

静态存储器 双倍数据速率
文件: 总39页 (文件大小:598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
μPD46185084B  
μPD46185094B  
μPD46185184B  
μPD46185364B  
R10DS0113EJ0200  
Rev.2.00  
18M-BIT QDRTM II SRAM  
4-WORD BURST OPERATION  
Nov 09, 2012  
Description  
The μPD46185084B is a 2,097,152-word by 8-bit, the μPD46185094B is a 2,097,152-word by 9-bit, the  
μPD46185184B is a 1,048,576-word by 18-bit and the μPD46185364B is a 524,288-word by 36-bit synchronous  
quad data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory  
cell.  
The μPD46185084B, μPD46185094B, μPD46185184B and μPD46185364B integrate unique synchronous  
peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and K#) are  
latched on the positive edge of K and K#. These products are suitable for application which require  
synchronous operation, high speed, low voltage, high density and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 ± 0.1 V power supply  
165-pin PLASTIC BGA (13 x 15)  
HSTL interface  
PLL circuitry for wide output data valid window and future frequency scaling  
Separate independent read and write data ports with concurrent transactions  
100% bus utilization DDR READ and WRITE operation  
Four-tick burst for reduced address frequency  
Two input clocks (K and K#) for precise DDR timing at clock rising edges only  
Two output clocks (C and C#) for precise flight time  
and clock skew matching-clock and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability. Normal operation is restored in 20 μs after clock is resumed.  
User programmable impedance output (35 to 70 Ω)  
Fast clock cycle time : 3.3 ns (300 MHz), 4.0 ns (250 MHz)  
Simple control logic for easy depth expansion  
JTAG 1149.1 compatible test access port  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 1 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Ordering Information  
Core  
Supply  
Voltage  
Operating  
Ambient  
Organization  
(word x bit)  
Cycle  
time  
Clock  
frequency  
Part No.  
Package  
Temperature  
μPD46185084BF1-E33-EQ1-A  
μPD46185084BF1-E40-EQ1-A  
μPD46185094BF1-E33-EQ1-A  
μPD46185094BF1-E40-EQ1-A  
μPD46185184BF1-E33-EQ1-A  
μPD46185184BF1-E40-EQ1-A  
μPD46185364BF1-E33-EQ1-A  
μPD46185364BF1-E40-EQ1-A  
μPD46185084BF1-E33Y-EQ1-A  
μPD46185084BF1-E40Y-EQ1-A  
μPD46185094BF1-E33Y-EQ1-A  
μPD46185094BF1-E40Y-EQ1-A  
μPD46185184BF1-E33Y-EQ1-A  
μPD46185184BF1-E40Y-EQ1-A  
μPD46185364BF1-E33Y-EQ1-A  
μPD46185364BF1-E40Y-EQ1-A  
μPD46185084BF1-E33-EQ1  
μPD46185084BF1-E40-EQ1  
μPD46185094BF1-E33-EQ1  
μPD46185094BF1-E40-EQ1  
μPD46185184BF1-E33-EQ1  
μPD46185184BF1-E40-EQ1  
μPD46185364BF1-E33-EQ1  
μPD46185364BF1-E40-EQ1  
μPD46185084BF1-E33Y-EQ1  
μPD46185084BF1-E40Y-EQ1  
μPD46185094BF1-E33Y-EQ1  
μPD46185094BF1-E40Y-EQ1  
μPD46185184BF1-E33Y-EQ1  
μPD46185184BF1-E40Y-EQ1  
μPD46185364BF1-E33Y-EQ1  
μPD46185364BF1-E40Y-EQ1  
2M x 8  
2M x 9  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
TA = 0 to 70°C  
165-pin  
PLASTIC  
BGA  
1.8 0.1 V  
(13 x 15)  
Lead-free  
1M x 18  
512K x 36  
2M x 8  
1.8 0.1 V TA = 40 to 85°C  
2M x 9  
1M x 18  
512K x 36  
2M x 8  
TA = 0 to 70°C  
165-pin  
PLASTIC  
BGA  
1.8 0.1 V  
2M x 9  
(13 x 15)  
Lead  
1M x 18  
512K x 36  
2M x 8  
1.8 0.1 V TA = 40 to 85°C  
2M x 9  
1M x 18  
512K x 36  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 2 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Pin Arrangement  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD46185084B]  
2M x 8  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ#  
NC  
A
NC  
NC  
NC  
Q4  
NC  
Q5  
VDDQ  
NC  
NC  
D6  
W#  
A
NW1#  
NC/288M  
A
K#  
K
R#  
A
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
CQ  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
VSS/72M  
NC  
NC/144M  
NW0#  
A
VSS/36M  
NC  
NC  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
NC  
NC  
D4  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D2  
NC  
NC  
NC  
G
H
J
NC  
D5  
NC  
DLL#  
NC  
VREF  
NC  
VREF  
Q1  
K
L
NC  
NC  
NC  
NC  
Q6  
NC  
M
N
P
R
NC  
NC  
NC  
NC  
Q7  
A
NC  
NC  
D7  
VSS  
VSS  
NC  
NC  
NC  
A
A
C
A
A
NC  
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D7  
Q0 to Q7  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
NW0#, NW1#  
K, K#  
: Nibble Write data select  
: Input clock  
VDD  
VSS  
NC  
Q
: Power Supply  
C, C#  
: Output clock  
: Ground  
CQ, CQ#  
ZQ  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 7A, 10A and 5B are expansion addresses : 10A for 36Mb  
: 10A and 2A for 72Mb  
: 10A, 2A and 7A for 144Mb.  
: 10A, 2A, 7A and 5B for 288Mb.  
2A and 10A of this product can also be used as NC.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 3 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Pin Arrangement  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD46185094B]  
2M x 9  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ#  
NC  
A
NC  
NC  
NC  
Q5  
NC  
Q6  
VDDQ  
NC  
NC  
D7  
W#  
A
NC  
NC/288M  
A
K#  
K
R#  
A
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
VSS/72M  
NC  
NC/144M  
BW0#  
A
VSS/36M  
NC  
NC  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
NC  
NC  
D5  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D3  
NC  
NC  
NC  
G
H
J
NC  
D6  
NC  
DLL#  
NC  
VREF  
NC  
VREF  
Q2  
K
L
NC  
NC  
NC  
NC  
Q7  
NC  
M
N
P
R
NC  
NC  
NC  
NC  
Q8  
A
NC  
NC  
D8  
VSS  
VSS  
NC  
NC  
NC  
A
A
C
A
A
D0  
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D8  
Q0 to Q8  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0#  
K, K#  
C, C#  
CQ, CQ#  
ZQ  
: Byte Write data select  
: Input clock  
V
DDQ  
: Power Supply  
: Output clock  
VSS  
NC  
: Ground  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 7A, 10A and 5B are expansion addresses : 10A for 36Mb  
: 10A and 2A for 72Mb  
: 10A, 2A and 7A for 144Mb  
: 10A, 2A, 7A and 5B for 288Mb  
2A and 10A of this product can also be used as NC.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 4 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Pin Arrangement  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD46185184B]  
1M x 18  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ#  
NC  
W#  
A
BW1#  
NC  
A
K#  
K
R#  
A
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
VSS/144M NC/36M  
NC/288M  
BW0#  
A
VSS/72M  
NC  
Q9  
NC  
D9  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
A
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
Q7  
NC  
D11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D6  
NC  
Q12  
D13  
VREF  
NC  
NC  
G
H
J
NC  
NC  
DLL#  
NC  
VREF  
Q4  
K
L
NC  
NC  
D3  
NC  
Q15  
NC  
NC  
M
N
P
R
NC  
Q1  
NC  
D17  
NC  
VSS  
VSS  
NC  
NC  
A
A
C
A
A
D0  
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D17  
Q0 to Q17  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0#, BW1#  
K, K#  
: Byte Write data select  
: Input clock  
VDD  
VSS  
NC  
Q
: Power Supply  
C, C#  
: Output clock  
: Ground  
CQ, CQ#  
ZQ  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 3A, 7A and 10A are expansion addresses : 3A for 36Mb  
: 3A and 10A for 72Mb  
: 3A, 10A and 2A for 144Mb  
: 3A, 10A, 2A and 7A for 288Mb  
2A and 10A of this product can also be used as NC.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 5 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Pin Arrangement  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD46185364B]  
512K x 36  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ#  
Q27  
D27  
D28  
Q29  
Q30  
D30  
DLL#  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
W#  
A
BW2#  
BW3#  
A
K#  
K
BW1#  
BW0#  
A
R#  
A
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
VSS/288M NC/72M  
NC/36M VSS/144M  
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
A
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
Q17  
Q7  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
D15  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
VREF  
Q4  
G
H
J
K
L
D3  
Q11  
Q1  
M
N
P
R
VSS  
VSS  
D9  
A
A
C
A
A
D0  
A
A
C#  
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D35  
Q0 to Q35  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0# to BW3# : Byte Write data select  
K, K#  
C, C#  
CQ, CQ#  
ZQ  
: Input clock  
VDD  
VSS  
NC  
Q
: Power Supply  
: Output clock  
: Ground  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 3A and 10A are expansion addresses : 9A for 36Mb  
: 9A and 3A for 72Mb  
: 9A, 3A and 10A for 144Mb  
: 9A, 3A, 10A and 2A for 288Mb  
2A and 10A of this product can also be used as NC.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 6 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Pin Description  
(1/2)  
Symbol  
Type  
Input  
Description  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and  
hold times around the rising edge of K. All transactions operate on a burst of four words  
(two clock periods of bus activity). These inputs are ignored when device is deselected,  
i.e., NOP (R# = W# = HIGH).  
D0 to Dxx  
Input  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising  
edges of K and K# during WRITE operations. See Pin Arrangement for ball site location  
of individual signals.  
x8 device uses D0 to D7.  
x9 device uses D0 to D8.  
x18 device uses D0 to D17.  
x36 device uses D0 to D35.  
Q0 to Qxx  
Output  
Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to  
K and K# rising edges if C and C# are tied HIGH. Data is output in synchronization with C  
and C# (or K and K#), depending on the R# command. See Pin Arrangement for ball site  
location of individual signals.  
x8 device uses Q0 to Q7.  
x9 device uses Q0 to Q8.  
x18 device uses Q0 to Q17.  
x36 device uses Q0 to Q35.  
R#  
Synchronous Read: When LOW this input causes the address inputs to be registered and  
a READ cycle to be initiated. This input must meet setup and hold times around the rising  
edge of K. If a READ command (R# = LOW) is input, an input of R# on the subsequent  
rising edge of K is ignored.  
Synchronous Write: When LOW this input causes the address inputs to be registered and  
a WRITE cycle to be initiated. This input must meet setup and hold times around the rising  
edge of K. If a WRITE command (W# = LOW) is input, an input of W# on the subsequent  
rising edge of K is ignored.  
Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their  
respective byte or nibble to be registered and written during WRITE cycles. These signals  
must meet setup and hold times around the rising edges of K and K# for each of the two  
rising edges comprising the WRITE cycle. See Pin Arrangement for signal to data  
relationships.  
Input  
Input  
Input  
W#  
BWx#  
NWx#  
x8 device uses NW0#, NW1#.  
x9 device uses BW0#.  
x18 device uses BW0#, BW1#.  
x36 device uses BW0# to BW3#.  
See Byte Write Operation for relation between BWx#, NWx# and Dxx.  
Input Clock: This input clock pair registers address and control inputs on the rising edge of  
K, and registers data on the rising edge of K and the rising edge of K#. K# is ideally 180  
degrees out of phase with K. All synchronous inputs must meet setup and hold times  
around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output  
data. The rising edge of C# is used as the output timing reference for first and third output  
data. The rising edge of C is used as the output reference for second and fourth output  
data. Ideally, C# is 180 degrees out of phase with C. When use of K and K# as the  
reference instead of C and C#, then fixed C and C# to HIGH. Operation cannot be  
guaranteed unless C and C# are fixed to HIGH (i.e. toggle of C and C#).  
K, K#  
C, C#  
Input  
Input  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 7 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
(2/2)  
Symbol  
Type  
Output  
Description  
CQ, CQ#  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched  
to the synchronous data outputs and can be used as a data valid indication. These signals  
run freely and do not stop when Q tristates. If C and C# are stopped (if K and K# are  
stopped in the single clock mode), CQ and CQ# will also stop.  
ZQ  
Input  
Input  
Output Impedance Matching Input: This input is used to tune the device outputs to the  
system data bus impedance. Q, CQ and CQ# output impedance are set to 0.2 x RQ,  
where RQ is a resistor from this bump to ground. The output impedance can be minimized  
by directly connect ZQ to VDDQ. This pin cannot be connected directly to GND or left  
unconnected. The output impedance is adjusted every 20 μs upon power-up to account  
for drifts in supply voltage and temperature. After replacement for a resistor, the new  
output impedance is reset by implementing power-on sequence.  
PLL Disable: When debugging the system or board, the operation can be performed at a  
clock frequency slower than TKHKH (MAX.) without the PLL circuit being used, if DLL# =  
LOW. The AC/DC characteristics cannot be guaranteed. For normal operation, DLL#  
must be HIGH and it can be connected to VDDQ through a 10 kΩ or less resistor.  
IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the  
JTAG function is not used in the circuit.  
IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to VSS if the JTAG function  
is not used in the circuit.  
IEEE 1149.1 Test Output: 1.8 V I/O level.  
When providing any external voltage to TDO signal, it is recommended to pull up to VDD.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the  
input buffers.  
Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC  
Characteristics for range.  
DLL#  
TMS  
TDI  
TCK  
Input  
Input  
Output  
TDO  
VREF  
VDD  
Supply  
Supply  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See  
Recommended DC Operating Conditions and DC Characteristics for range.  
VSS  
Supply  
Power Supply: Ground  
NC  
No Connect: These signals are not connected internally.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 8 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Block Diagram  
[μPD46185084B]  
19  
ADDRESS  
R#  
ADDRESS  
19  
REGISTRY  
W#  
& LOGIC  
K
W#  
MUX  
NW0#  
8
2
16  
16  
16  
NW1#  
Q0 to Q7  
219x 32  
DATA  
32  
8
D0 to D7  
R#  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
16  
K
CQ,  
CQ#  
MUX  
K
K
C, C#  
K#  
OR  
K, K#  
[μPD46185094B]  
19  
ADDRESS  
R#  
ADDRESS  
REGISTRY  
& LOGIC  
19  
W#  
K
W#  
MUX  
MUX  
BW0#  
9
18  
18  
18  
18  
Q0 to Q8  
219x 36  
DATA  
36  
9
D0 to D8  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
2
CQ,  
CQ#  
R#  
K
K
K
C, C#  
OR  
K#  
K, K#  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 9 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
[μPD46185184B]  
18  
ADDRESS  
R#  
ADDRESS  
18  
REGISTRY  
W#  
& LOGIC  
K
W#  
MUX  
BW0#  
36  
36  
36  
18  
2
BW1#  
218x 72  
Q0 to Q17  
DATA  
72  
18  
D0 to D17  
R#  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
36  
K
CQ,  
CQ#  
MUX  
K
K
C, C#  
K#  
OR  
K, K#  
[μPD46185364B]  
17  
ADDRESS  
R#  
ADDRESS  
REGISTRY  
& LOGIC  
17  
W#  
K
W#  
MUX  
MUX  
BW0#  
BW1#  
BW2#  
72  
72  
72  
36  
2
217x 144  
MEMORY  
ARRAY  
Q0 to Q35  
DATA  
144  
BW3#  
36  
D0 to D35  
REGISTRY  
& LOGIC  
72  
K
CQ,  
CQ#  
R#  
K
K
C, C#  
OR  
K#  
K, K#  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 10 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Power-On Sequence in QDR II SRAM  
QDR II SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
The following timing charts show the recommended power-on sequence.  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ  
can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-up. The  
following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ  
can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-down.  
Power-On Sequence  
Apply power and tie DLL# to HIGH.  
Apply VDDQ before VREF or at the same time as VREF  
.
Provide stable clock for more than 20 μs to lock the PLL.  
Continuous min.4 NOP(R# = high) cycles are required after PLL lock up is done.  
PLL Constraints  
The PLL uses K clock as its synchronizing input and the input should have low phase jitter which is specified as  
TKC var. The PLL can cover 120 MHz as the lowest frequency. If the input clock is unstable and the PLL is  
enabled, then the PLL may lock onto an undesired clock frequency.  
Power-On Waveforms  
V
DD/VDDQ  
V
DD/VDDQ Stable (< ±0.1 V DC per 50 ns)  
Fix HIGH (or tied to VDDQ)  
DLL#  
Clock  
20 μs or more  
Stable Clock  
Unstable Clock  
Normal Operation  
Start  
4 Times NOP  
R#  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 11 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Truth Table  
Operation  
CLK  
R# W#  
D or Q  
WRITE cycle  
L H  
H
L
Data in  
Load address, input write data on  
consecutive K and K# rising edge  
READ cycle  
Input data DA(A+0) DA(A+1) DA(A+2) DA(A+3)  
Input clock K(t+1) K#(t+1) K(t+2) K#(t+2) ↑  
L H  
L
×
Data out  
Load address, read data on  
consecutive C and C# rising edge  
NOP (No operation)  
Output data QA(A+0) QA(A+1) QA(A+2) QA(A+3)  
Output clock C#(t+1) C(t+2) C#(t+2) C(t+3) ↑  
L H  
H
H
D = ×, Q = High-Z  
Previous state  
Clock stop  
Stopped  
×
×
Remarks 1. H : HIGH, L : LOW, × : don’t care, : rising edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges  
except if C and C# are HIGH then data outputs are delivered at K and K# rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
7. If R# was LOW to initiate the previous cycle, this signal becomes a don't care for this WRITE operation  
however it is strongly recommended that this signal is brought HIGH as shown in the truth table.  
8. W# during write cycle and R# during read cycle were HIGH on previous K clock rising edge. Initiating  
consecutive READ or WRITE operations on consecutive K clock rising edges is not permitted. The  
device will ignore the second request.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 12 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Byte Write Operation  
[μPD46185084B]  
Operation  
Write D0 to D7  
K
L H  
L H  
L H  
L H  
K#  
L H  
L H  
L H  
NW0#  
NW1#  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
Write D0 to D3  
Write D4 to D7  
Write nothing  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. NW0# and NW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
[μPD46185094B]  
Operation  
K
L H  
L H  
K#  
L H  
BW0#  
Write D0 to D8  
0
0
1
1
Write nothing  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[μPD46185184B]  
Operation  
K
L H  
L H  
L H  
L H  
K#  
L H  
L H  
L H  
BW0#  
BW1#  
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 13 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
[μPD46185364B]  
Operation  
K
L H  
L H  
L H  
L H  
L H  
L H  
K#  
BW0#  
BW1#  
BW2#  
BW3#  
Write D0 to D35  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
L H  
L H  
L H  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 14 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Bus Cycle State Diagram  
LOAD NEW  
READ ADDRESS;  
R_Count = 0;  
R_Init = 1  
LOAD NEW  
WRITE ADDRESS;  
W_Count = 0  
Always  
W# = LOW & W_Count = 4  
R# = LOW & R_Count = 4  
Always  
WRITE DOUBLE;  
READ DOUBLE;  
W_Count = W_Count+2  
R_Count = R_Count+2  
R# = HIGH  
& R_Count = 4  
W# = LOW  
R_Init = 0  
W_Count = 2  
Always  
R_Count = 2  
Always  
R# = LOW  
W# = HIGH  
& W_Count = 4  
INCREMENT READ  
ADDRESS BY TWO  
R_Init = 0  
INCREMENT WRITE  
ADDRESS BY TWO  
R# = HIGH  
W# = HIGH  
READ PORT NOP  
R_Init = 0  
WRITE PORT NOP  
Power UP  
Supply voltage  
provided  
Supply voltage  
provided  
Remarks 1. The address is concatenated with two additional internal LSBs to facilitate burst operation.  
The address order is always fixed as: xxx...xxx+0, xxx...xxx+1, xxx...xxx+2, xxx...xxx+3.  
Bus cycle is terminated at the end of this sequence (burst count = 4).  
2. Read and write state machines can be active simultaneously.  
Read and write cannot be simultaneously initiated. Read takes precedence.  
3. State machine control timing is controlled by K.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 15 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Electrical Characteristics  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
Conditions  
Rating  
0.5 to +2.5  
Unit  
V
VDD  
Output supply voltage  
Input voltage  
VDD  
Q
0.5 to VDD  
V
VIN  
VI/O  
TA  
0.5 to VDD+0.5 (2.5 V MAX.)  
0.5 to VDDQ+0.5 (2.5 V MAX.)  
0 to 70  
V
Input / Output voltage  
Operating ambient temperature  
V
(E** series)  
°C  
°C  
°C  
(E**Y series)  
40 to 85  
Storage temperature  
Tstg  
55 to +125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70°C, TA = 40 to 85°C)  
Parameter  
Supply voltage  
Symbol Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit Note  
VDD  
1.8  
V
Output supply voltage  
Input HIGH voltage  
Input LOW voltage  
Clock input voltage  
Reference voltage  
VDD  
Q
1.4  
VDD  
V
V
V
V
V
1
VIH (DC)  
VIL (DC)  
VIN  
VREF +0.1  
0.3  
VDDQ+0.3  
VREF 0.1  
VDDQ+0.3  
0.95  
1, 2  
1, 2  
1, 2  
0.3  
VREF  
0.68  
Notes 1. During normal operation, VDDQ must not exceed VDD  
.
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70°C, TA = 40 to 85°C)  
Parameter  
Input HIGH voltage  
Input LOW voltage  
Symbol Conditions  
MIN.  
MAX.  
Unit Note  
VIH (AC)  
VIL (AC)  
VREF +0.2  
V
V
1
1
VREF 0.2  
Note 1. Overshoot: VIH (AC) VDD + 0.7 V (2.5 V MAX.) for t TKHKH/2  
Undershoot: VIL (AC) 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 16 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
DC Characteristics 1 (TA = 0 to 70°C, VDD = 1.8 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
MAX.  
Unit Note  
x8 x9 x18 x36  
Input leakage current  
I/O leakage current  
ILI  
2  
2  
+2  
+2  
μA  
μA  
ILO  
IDD  
Operating supply current  
(Read cycle / Write cycle)  
VIN VIL or VIN VIH,  
-E33  
-E40  
-E33  
-E40  
520 520 580 740 mA  
II/O = 0 mA, Cycle = MAX.  
460 460 520 650  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH,  
II/O = 0 mA, Cycle = MAX.  
Inputs static  
390 390 400 430 mA  
370 370 380 400  
Output HIGH voltage  
Output LOW voltage  
VOH(Low)  
VOH  
|IOH| 0.1 mA  
Note1  
VDDQ 0.2  
VDDQ/20.12  
VSS  
VDDQ  
VDDQ/2+0.12  
0.2  
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
VOL(Low)  
VOL  
IOL 0.1 mA  
Note2  
VDDQ/20.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I standards.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 17 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
DC Characteristics 2 (TA = 40 to 85°C, VDD = 1.8 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
MAX.  
Unit Note  
x8  
x9 x18 x36  
Input leakage current  
I/O leakage current  
ILI  
2  
2  
+2  
+2  
μA  
μA  
ILO  
IDD  
Operating supply current  
(Read cycle / Write cycle)  
VIN VIL or VIN VIH,  
-E33Y  
-E40Y  
-E33Y  
-E40Y  
640 640 710 870 mA  
II/O = 0 mA, Cycle = MAX.  
580 580 650 780  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH,  
II/O = 0 mA, Cycle = MAX.  
Inputs static  
510 510 520 550 mA  
490 490 500 520  
Output HIGH voltage  
Output LOW voltage  
VOH(Low) |IOH| 0.1 mA  
VOH  
VOL(Low) IOL 0.1 mA  
VOL  
VDDQ 0.2  
VDDQ/20.12  
VSS  
VDDQ  
VDDQ/2+0.12  
0.2  
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
Note1  
Note2  
VDDQ/20.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I standards.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 18 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Capacitance (TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CIN  
Test conditions  
MIN.  
MAX.  
Unit  
pF  
Input capacitance (Address, Control)  
Input / Output capacitance  
(D, Q, CQ, CQ#)  
VIN = 0 V  
5
7
CI/O  
VI/O = 0 V  
pF  
Clock Input capacitance  
Cclk  
Vclk = 0 V  
6
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Thermal Characteristics  
Parameter  
Thermal resistance  
Symbol  
Substrate  
4-layer  
Airflow  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
TYP.  
Unit  
θ ja  
16.5  
13.2  
15.5  
12.6  
0.07  
0.13  
0.06  
0.12  
3.86  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
from junction to ambient air  
8-layer  
4-layer  
8-layer  
Thermal characterization parameter  
from junction to the top center  
of the package surface  
Ψ jt  
θ jc  
Thermal resistance  
from junction to case  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 19 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
AC Characteristics (TA = 0 to 70°C, TA = 40 to 85°C, VDD = 1.8 0.1 V)  
AC Test Conditions (VDD = 1.8 0.1 V, VDDQ = 1.4 V to VDD)  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 20 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Read and Write Cycle  
Parameter  
Symbol  
-E33, -E33Y  
(300 MHz)  
-E40, -E40Y  
(250 MHz)  
Unit  
ns  
Note  
MIN.  
MAX.  
MIN.  
MAX.  
Clock  
Average Clock cycle time  
(K, K#, C, C#)  
TKHKH  
3.3  
8.4  
0.2  
4.0  
8.4  
0.2  
1
2
Clock phase jitter (K, K#, C, C#)  
Clock HIGH time (K, K#, C, C#)  
Clock LOW time (K, K#, C, C#)  
Clock HIGH to Clock# HIGH  
(K K#, C C#)  
TKC var  
TKHKL  
TKLKH  
ns  
ns  
ns  
ns  
1.32  
1.32  
1.49  
1.6  
1.6  
1.8  
TKHK#H  
Clock# HIGH to Clock HIGH  
(K# K, C# C)  
Clock to data clock  
TK#HKH  
TKHCH  
1.49  
0
1.8  
0
ns  
ns  
1.45  
1.8  
(K C, K# C#)  
PLL lock time (K, C)  
TKC lock  
20  
30  
20  
30  
μs  
ns  
3
4
K static to PLL reset  
TKC reset  
Output Times  
CQ HIGH to CQ# HIGH  
(CQ CQ#)  
CQ# HIGH to CQ HIGH  
TCQHCQ#H  
TCQ#HCQH  
1.24  
1.24  
1.55  
1.55  
ns  
ns  
5
5
(CQ# CQ)  
C, C# HIGH to output valid  
C, C# HIGH to output hold  
C, C# HIGH to echo clock valid  
C, C# HIGH to echo clock hold  
CQ, CQ# HIGH to output valid  
CQ, CQ# HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
TCHQV  
TCHQX  
0.45  
0.45  
0.27  
0.45  
0.45  
0.45  
0.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–0.45  
–0.45  
–0.27  
–0.45  
–0.45  
–0.45  
–0.3  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
6
6
0.45  
TCHQX1  
–0.45  
Setup Times  
Address valid to K rising edge  
Control inputs (R#, W#) valid to  
K rising edge  
TAVKH  
TIVKH  
0.4  
0.4  
0.5  
0.5  
ns  
ns  
7
7
Data inputs and write data  
select  
TDVKH  
0.3  
0.35  
ns  
7
inputs (BWx#, NWx#) valid to  
K, K# rising edge  
Hold Times  
K rising edge to address hold  
K rising edge to control inputs  
(R#, W#) hold  
TKHAX  
TKHIX  
0.4  
0.4  
0.5  
0.5  
ns  
ns  
7
7
K, K# rising edge to data inputs  
and write data select inputs  
(BWx#, NWx#) hold  
TKHDX  
0.3  
0.35  
ns  
7
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 21 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH  
(MAX.) without the PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.0 clock  
cycle in this operation. The AC/DC characteristics cannot be guaranteed, however.  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var  
(MAX.) indicates a peak-to-peak value.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for PLL lock retention.  
PLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept NOP (R# = W# = HIGH) during these cycles.  
4. K input is monitored for this operation. See below for the timing.  
K
TKC reset  
or  
K
TKC reset  
5. Guaranteed by design.  
6. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
7. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise  
noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.  
5. VDDQ is 1.5 V DC.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 22 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Read and Write Timing  
WRITE  
READ  
NOP  
WRITE  
READ  
NOP  
1
2
3
4
5
6
7
K
TKHKL TKLKH  
TKHKH  
TKHK#H TK#HKH  
K#  
R#  
TKHIX  
TIVKH  
TKHIX  
TIVKH  
W#  
A0  
A2  
A1  
A3  
Address  
Data in  
TDVKH TKHDX  
TDVKH  
TKHDX  
TAVKH TKHAX  
D10  
D11  
D12  
Q02  
D13  
Q03  
D30  
D31  
Q21  
D32  
D33  
Q23  
Data out  
Q20  
Q22  
Q00  
Q01  
Qx2  
Qx3  
TCQHQX  
TCHQX1  
TCHQX TCHQX  
TCHQZ  
TCQHQV  
TCHQV TCHQV  
CQ  
TCHCQX  
TCQHCQ#H TCQ#HCQH  
TCHCQV  
CQ#  
TCHCQX  
TCHCQV  
TKHCH  
C
TKHKL TKLKH  
TKHKH  
TKHK#H TK#HKH  
TKHCH  
C#  
Remarks 1. Q00 refers to output from address A0+0.  
Q01 refers to output from the next internal burst address following A0,i.e.,A0+1.  
2. Outputs are disabled (high impedance) 3.5 clock cycles after the last READ (R# = LOW) is input in the  
sequences of [READ]-[NOP]-[NOP], [READ]-[WRITE]-[NOP] and [READ]-[NOP]-[WRITE].  
3. In this example, if address A2 = A1, data Q20 = D10, Q21 = D11, Q22 = D12 and Q23 = D13.  
Write data is forwarded immediately as read results.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 23 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Application Example  
R =  
250 Ω  
R =  
250 Ω  
ZQ  
CQ#  
CQ  
Q
ZQ  
CQ#  
CQ  
Q
SRAM#1  
SRAM#4  
. . .  
D
A
D
A
R# W# BWx# C/C# K/K#  
R# W# BWx# C/C# K/K#  
V
t
SRAM  
Controller  
R
Data In  
Vt  
Data Out  
Address  
R#  
R
Vt  
R
W#  
BW#  
SRAM#1 CQ/CQ#  
Vt  
R
R
SRAM#4 CQ/CQ#  
Vt  
Source CLK/CLK#  
Return CLK/CLK#  
Vt  
R
R = 50 Ω  
Vt = Vref  
Remark AC Characteristics are defined at the condition of SRAM outputs, CQ, CQ# and Q with termination.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 24 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
Description  
2R  
Test Clock Input. All input are captured on the rising edge of TCK and all  
outputs propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test Mode Select. This is the command input for the TAP controller state  
machine.  
Test Data Input. This is the input side of the serial registers placed between  
TDI and TDO. The register placed between TDI and TDO is determined by the  
state of the TAP controller state machine and the instruction that is currently  
loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. This is the output side of the serial registers placed between  
TDI and TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
Conditions  
MIN.  
5.0  
5.0  
MAX.  
+5.0  
+5.0  
Unit  
μA  
JTAG Input leakage current  
JTAG I/O leakage current  
ILI  
0 V VIN VDD  
0 V VIN VDDQ,  
Outputs disabled  
ILO  
μA  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
1.3  
0.3  
1.6  
VDD+0.3  
+0.5  
V
V
V
V
V
V
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
1.4  
JTAG output LOW voltage  
I
OLC = 100 μA  
0.2  
0.4  
IOLT = 2 mA  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 25 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0.9 V  
Test Points  
0 V  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 26 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
JTAG AC Characteristics (TA = 0 to 70°C)  
Parameter  
Symbol  
Conditions  
MIN.  
MAX.  
Unit  
Clock  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
tTHTL  
tTLTH  
50  
ns  
MHz  
ns  
20  
20  
20  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCS  
5
5
5
ns  
ns  
ns  
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCH  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
JTAG Timing Diagram  
t
THTH  
TCK  
t
MVTH  
t
THTL  
t
TLTH  
TMS  
TDI  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 27 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller  
when it is moved into the run-test/idle or the various data register state. The register can  
be loaded when it is placed between the TDI and TDO pins. The instruction register is  
automatically preloaded with the IDCODE instruction at power-up whenever the controller  
is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It  
allows serial test data to be passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit  
code when the controller is put in capture-DR state with the IDCODE command loaded in  
the instruction register. The register is then placed between the TDI and TDO pins when  
the controller is moved into shift-DR state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents  
of the RAMs I/O ring when the controller is in capture-DR state and then is placed  
between the TDI and TDO pins when the controller is moved to shift-DR state. Several  
TAP instructions can be used to activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary  
register location. The first column defines the bit’s position in the boundary register. The  
second column is the name of the input or I/O at the bump and the third column is the  
bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
107  
bit  
Boundary register  
bit  
ID Register Definition  
ID [31:28] vendor  
revision no.  
ID [11:1] vendor  
ID no.  
Part number  
Organization  
2M x 8  
ID [27:12] part no.  
ID [0] fix bit  
μPD46185084B  
μPD46185094B  
μPD46185184B  
μPD46185364B  
XXXX  
XXXX  
XXXX  
XXXX  
0000 0000 0000 1111  
0000 0000 0101 0010  
0000 0000 0001 0000  
0000 0000 0001 0001  
00000010000  
00000010000  
00000010000  
00000010000  
1
1
1
1
2M x 9  
1M x 18  
512K x 36  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 28 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x8  
x9  
x18  
x36  
no.  
x8  
x9  
x18  
x36  
no.  
x8  
x9  
x18  
NC  
x36  
1
C#  
C
A
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
NC  
NC  
NC  
NC  
NC  
NC  
Q3  
D3  
NC  
NC  
NC  
NC  
NC  
NC  
Q4  
D4  
NC  
NC  
Q7  
D7  
NC  
NC  
Q8  
D8  
NC  
NC  
D15  
Q15  
Q7  
10D  
9E  
73 NC  
NC  
Q5  
D5  
Q28  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1J  
2
74  
75  
Q4  
D4  
Q11 Q20  
D11 D20  
3
6N  
10C  
11D  
9C  
4
A
7P  
D7  
76 NC  
77 NC  
78 NC  
79 NC  
80 NC  
81 NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q6  
D6  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
D7  
NC  
NC  
NC  
NC  
NC  
NC  
Q8  
D8  
NC  
NC  
NC  
NC  
D29  
Q29  
5
A
7N  
D16  
Q16  
Q8  
6
A
7R  
9D  
Q12 Q21  
D12 D21  
7
A
8R  
11B  
11C  
9B  
8
A
8P  
D8  
NC  
NC  
D30  
Q30  
9
A
9R  
NC  
NC  
NC  
NC  
D17  
Q17  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q0  
D0  
Q0  
D0  
NC  
NC  
NC  
NC  
NC  
NC  
Q1  
D1  
NC  
NC  
NC  
NC  
NC  
NC  
Q2  
D2  
Q0  
D0  
NC  
NC  
Q1  
D1  
NC  
NC  
Q2  
D2  
NC  
NC  
Q3  
D3  
NC  
NC  
Q4  
D4  
Q0  
D0  
11P  
10P  
10N  
9P  
10B  
11A  
Internal  
82  
83  
Q5  
D5  
Q13 Q22  
D13 D22  
CQ  
D9  
84 NC  
85 NC  
86 NC  
87 NC  
88 NC  
89 NC  
NC  
NC  
D31  
Q31  
A
A
A
NC  
Q9  
9A  
8B  
7C  
6C  
8A  
7A  
7B  
6B  
6A  
5B  
5A  
4A  
5C  
4B  
3A  
1H  
1A  
2B  
3B  
1C  
1B  
3D  
3C  
1D  
2J  
Q1  
10M  
11N  
9M  
A
A
Q14 Q23  
D14 D23  
3K  
3J  
D1  
D10  
Q10  
Q2  
NC  
R#  
NC  
NC  
D32  
Q32  
2K  
1K  
2L  
9N  
11L  
11M  
9L  
NC  
NC  
NC BW1#  
90  
91  
Q6  
D6  
Q15 Q24  
D15 D24  
D2  
55 NW0# BW0# BW0# BW0#  
3L  
NC  
NC  
NC  
NC  
NC  
NC  
Q1  
D1  
D11  
Q11  
Q3  
56  
57  
58  
K
92 NC  
93 NC  
94 NC  
95 NC  
96 NC  
97 NC  
NC  
NC  
D33  
Q33  
1M  
1L  
10L  
11K  
10K  
9J  
K#  
NC  
NC  
NC BW3#  
Q16 Q25  
D16 D25  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
D3  
59 NW1# NC BW1# BW2#  
D12  
Q12  
Q4  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
W#  
A
NC  
NC  
D34  
Q34  
9K  
10J  
11J  
11H  
10G  
9G  
A
98  
99  
Q7  
D7  
Q17 Q26  
D17 D26  
D4  
A
A
NC  
NC  
ZQ  
DLL#  
CQ#  
100 NC  
101 NC  
102  
NC  
NC  
D35  
Q35  
NC  
NC  
NC  
NC  
NC  
NC  
Q2  
D2  
NC  
NC  
NC  
NC  
NC  
NC  
Q3  
D3  
NC  
NC  
Q5  
D5  
NC  
NC  
Q6  
D6  
D13  
Q13  
Q5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q9  
D9  
NC  
NC  
Q18  
D18  
D27  
Q27  
A
A
A
A
A
A
11F  
11G  
9F  
103  
D5  
104  
D14  
Q14  
Q6  
105  
10F  
11E  
10E  
Q10 Q19  
106  
D10  
NC  
D19  
D28  
107  
D6  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 29 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
JTAG Instructions  
Instructions  
EXTEST  
Description  
The EXTEST instruction allows circuitry external to the component package to be tested.  
Boundary-scan register cells at output pins are used to apply test vectors, while those at  
input pins capture test results. Typically, the first test vector to be applied using the  
EXTEST instruction will be shifted into the boundary scan register using the PRELOAD  
instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and  
the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the  
controller is in capture-DR mode and places the ID register between the TDI and TDO pins  
in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up  
and any time the controller is placed in the test-logic-reset state.  
When the BYPASS instruction is loaded in the instruction register, the bypass register is  
placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-  
DR state. This allows the board level scan path to be shortened to facilitate testing of other  
devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the  
SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP  
controller into the capture-DR state loads the data in the RAMs input and Q pins into the  
boundary scan register. Because the RAM clock(s) are independent from the TAP clock  
(TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample  
metastable input will not harm the device, repeatable results cannot be expected. RAM  
input signals must be stabilized for long enough to meet the TAPs input data capture setup  
plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other  
TAP operation except capturing the I/O ring contents into the boundary scan register.  
Moving the controller to shift-DR state then places the boundary scan register between the  
TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced  
to an inactive drive state (high impedance) and the boundary register is connected between  
TDI and TDO when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
1
2
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
2
2
1
1
0
1
1
1
Notes 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
2. Do not use this instruction code because the vendor uses it to evaluate this product.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 30 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Output Pin States of CQ, CQ# and Q  
Instructions  
Control-Register Status  
Output Pin Status  
CQ,CQ#  
Update  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
Q
EXTEST  
0
1
0
1
0
1
0
1
0
1
High-Z  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
Remark The output pin statuses during each instruction vary according  
to the Control-Register status (value of Boundary Scan  
Register, bit no. 48).  
Boundary Scan  
Register  
CAPTURE  
Register  
There are three statuses:  
Update : Contents of the “Update Register” are output to  
the output pin (QDR Pad).  
SRAM  
Output  
Update  
Register  
SRAM : Contents of the SRAM internal output “SRAM  
Output” are output to the output pin (QDR Pad).  
High-Z : The output pin (QDR Pad) becomes high  
impedance by controlling of the “High-Z JTAG  
ctrl”.  
Update  
QDR  
Pad  
SRAM  
SRAM  
Output  
Driver  
High-Z  
The Control-Register status is set during Update-DR at the  
EXTEST or SAMPLE instruction.  
High-Z  
JTAG ctrl  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 31 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Boundary Scan Register Status of Output Pins CQ, CQ# and Q  
Instructions  
SRAM Status  
Boundary Scan Register Status  
Note  
CQ,CQ#  
Pad  
Pad  
Q
Pad  
Pad  
EXTEST  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
No definition  
Pad  
Pad  
Internal  
Internal  
Pad  
Pad  
Internal  
Pad  
No definition  
Remark The Boundary Scan Register statuses during execution each  
instruction vary according to the instruction code and SRAM  
operation mode.  
Boundary Scan  
Register  
CAPTURE  
Register  
There are two statuses:  
Internal  
Pad  
: Contents of the output pin (QDR Pad) are captured  
in the “CAPTURE Register” in the Boundary Scan  
Register.  
SRAM  
Output  
Update  
Register  
Pad  
Internal : Contents of the SRAM internal output “SRAM  
Output” are captured in the “CAPTURE Register”  
in the Boundary Scan Register.  
QDR  
Pad  
SRAM  
Output  
Driver  
High-Z  
JTAG ctrl  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 32 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS may be left open  
but fix them to VDD via a resistor of about 1 kΩ when the TAP controller is not used. TDO should be left unconnected  
also when the TAP controller is not used.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 33 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Run-Test/Idle  
Update-IR  
Exit1-IR  
Shift-IR  
Exit2-IR  
Pause-IR  
Exit1-IR  
Shift-IR  
Capture-IR  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Test-Logic-Reset  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 34 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Test-Logic-Reset  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Update-DR  
Exit1-DR  
Shift-DR  
Exit2-DR  
Pause-DR  
Exit1-DR  
Shift-DR  
Capture-DR  
Select-DR-Scan  
Run-Test/Idle  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 35 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Package Dimensions  
165-PIN PLASTIC BGA(13x15)  
w
S
B
ZD  
B
E
ZE  
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
w
S A  
INDEX MARK  
A
(UNIT:mm)  
ITEM DIMENSIONS  
A2  
y1  
S
D
E
13.00±0.10  
15.00±0.10  
0.30  
S
w
A
1.35±0.11  
0.37±0.05  
0.98  
A1  
A2  
e
y
e
x
A1  
S
S
1.00  
M
b
A B  
+0.10  
0.05  
b
0.50  
x
0.10  
0.15  
y
y1  
ZD  
ZE  
0.25  
1.50  
0.50  
T165F1-100-EQ1  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 36 of 38  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD46185084BF1-EQ1  
μPD46185094BF1-EQ1  
μPD46185184BF1-EQ1  
μPD46185364BF1-EQ1  
:
:
:
:
165-pin PLASTIC BGA (13 x 15)  
165-pin PLASTIC BGA (13 x 15)  
165-pin PLASTIC BGA (13 x 15)  
165-pin PLASTIC BGA (13 x 15)  
Quality Grade  
• A quality grade of the products is “Standard”.  
• Anti-radioactive design is not implemented in the products.  
• Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to  
the ground and so forth.  
R10DS0113EJ0200 Rev.2.00  
Nov 09, 2012  
Page 37 of 38  
Revision History  
μPD46185084B, μPD46185094B, μPD46185184B, μPD46185364B  
Description  
Summary  
Rev.  
Date  
Page  
-
Rev.1.00  
Rev.2.00  
’12.06.01  
’12.11.09  
New Data Sheet  
Addition : -E33,-E33Y series, Lead series  
Deletion : -E50,-E50Y series  
ALL  
All trademarks and registered trademarks are the property of their respective owners.  
C - 38  
Notice  
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas  
Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to  
be disclosed by Renesas Electronics such as that disclosed through our website.  
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or  
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or  
others.  
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the  
use of these circuits, software, or information.  
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and  
regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to  
the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is  
prohibited under any applicable domestic or foreign laws or regulations.  
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics  
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.  
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product  
depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas  
Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the  
use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.  
The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;  
personal electronic equipment; and industrial robots.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically  
designed for life support.  
"Specific":  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical  
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage  
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the  
use of Renesas Electronics products beyond such specified ranges.  
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and  
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the  
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,  
please evaluate the safety of the final products or system manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics  
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes  
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.  
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.  
SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics America Inc.  
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.  
Tel: +1-408-588-6000, Fax: +1-408-588-6130  
Renesas Electronics Canada Limited  
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada  
Tel: +1-905-898-5441, Fax: +1-905-898-3220  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-585-100, Fax: +44-1628-585-900  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-65030, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China  
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898  
Renesas Electronics Hong Kong Limited  
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2886-9318, Fax: +852 2886-9022/9044  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632  
Tel: +65-6213-0200, Fax: +65-6278-8001  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics Korea Co., Ltd.  
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5141  
© 2012 Renesas Electronics Corporation. All rights reserved.  
Colophon 1.1  

相关型号:

PD46184184BF1-E33Y-EQ1

18M-BIT DDR II SRAM 4-WORD BURST OPERATION
RENESAS

PD46184184BF1-E33Y-EQ1-A

18M-BIT DDR II SRAM 4-WORD BURST OPERATION
RENESAS

PD46184184BF1-E40-EQ1

18M-BIT DDR II SRAM 4-WORD BURST OPERATION
RENESAS

PD46184184BF1-E40-EQ1-A

18M-BIT DDR II SRAM 4-WORD BURST OPERATION
RENESAS

PD46184184BF1-E40Y-EQ1

18M-BIT DDR II SRAM 4-WORD BURST OPERATION
RENESAS

PD46184184BF1-E40Y-EQ1-A

18M-BIT DDR II SRAM 4-WORD BURST OPERATION
RENESAS

PD46184185B

18M-BIT DDR II SRAM SEPARATE I/O 2-WORD BURST OPERATION
RENESAS

PD46184185BF1-E33-EQ1

18M-BIT DDR II SRAM SEPARATE I/O 2-WORD BURST OPERATION
RENESAS

PD46184185BF1-E33-EQ1-A

18M-BIT DDR II SRAM SEPARATE I/O 2-WORD BURST OPERATION
RENESAS

PD46184185BF1-E33Y-EQ1

18M-BIT DDR II SRAM SEPARATE I/O 2-WORD BURST OPERATION
RENESAS

PD46184185BF1-E33Y-EQ1-A

18M-BIT DDR II SRAM SEPARATE I/O 2-WORD BURST OPERATION
RENESAS

PD46184185BF1-E40-EQ1

18M-BIT DDR II SRAM SEPARATE I/O 2-WORD BURST OPERATION
RENESAS