M37735S4BFP [RENESAS]

16-BIT CMOS MICROCOMPUTER; 16位微机的CMOS
M37735S4BFP
型号: M37735S4BFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

16-BIT CMOS MICROCOMPUTER
16位微机的CMOS

微控制器和处理器 外围集成电路 计算机 时钟
文件: 总37页 (文件大小:846K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no ces whatsoever have been  
made to the contents of the document, and these changes do not cony alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business opof high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
DESCRIPTION  
10-bit A-D converter ..............................................8-channel inputs  
12-bit watchdog timer  
The M37735S4BFP is a microcomputer using the 7700 Family core.  
This microcomputer has a CPU and a bus interface unit. The CPU is  
a 16-bit parallel processor that can be an 8-bit parallel processor,  
and the bus interface unit enhances the memory access efficiency to  
execute instructions fast. This microcomputer also includes a 32 kHz  
oscillation circuit, in addition to the RAM, multiple-function timers,  
serial I/O, A-D converter, and so on.  
Programmable input/output  
(ports P4, P5, P6, P7, P8) ..............................................................37  
Clock generating circuit ........................................ 2 circuits built-in  
APPLICATION  
Control devices for general commercial equipment such as office  
automation, office equipment, and so on.  
FEATURES  
Number of basic instructions .................................................. 103  
Control devices for general industrial equipment such as  
communication equipment, and so on.  
Memory size  
RAM ................................................ 2048 bytes  
Instruction execution time  
The fastest instruction at 25 MHz frequency ...................... 160 ns  
Single power supply ...................................................... 5 V ± 10%  
Low power dissipation (at 25 MHz frequency)  
............................................ 47.5 mW (Typ.)  
Interrupts ............................................................ 19 types, 7 levels  
Multiple-function 16-bit timer ................................................. 5 + 3  
Serial I/O (UART or clock synchronous)..........................................3  
PIN CONFIGURATION (TOP VIEW)  
P8  
/CLKS  
P8  
/RTS  
3
/T  
X
D
0
0
65  
72  
73  
74  
75  
76  
77  
40  
39  
38  
37  
36  
P2  
P2  
P2  
P2  
4
5
6
7
/A  
/A  
/A  
/A  
4
5
6
7
/D  
/D  
/D  
/D  
4
5
6
7
P8  
2/RXD0  
1/CLK  
0
P8  
0
/CTS  
0
0
/
CLKS  
1
V
P3  
0
/WEL  
35  
34  
33  
32  
31  
30  
29  
28  
A
P3  
1
/
WEH  
ALE  
V
P32  
/
/
AVS
P33  
HLDA  
M37735S4BFP  
V
ss  
V
SS  
P7  
P7 /AN  
/AN  
P7  
P7  
P7  
7
/AN  
6
7
/XcIN  
/XcOUT  
ADTRG/T  
RDE  
6
X
OUT  
X
IN  
P7  
5
5
/
XD2  
4
/AN  
/AN  
/AN  
P7  
4
/R  
/CLK  
CTS  
/AN  
X
D
2
RESET  
CNVSS  
BYTE  
27  
26  
25  
78  
79  
80  
3
3
2
2
2
/
2
1
1
HOLD  
Outline 80P6N-A  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Data Bus(Even)  
Data Bus(Odd)  
Data Buffer DBH(8)  
Data Buffer DB  
L(8)  
Instruction Queue Buffer Q  
0(8)  
Instruction Queue Buffer Q  
1(8)  
Instruction Queue Buffer Q  
2(8)  
s  
Incrementer(24)  
Program Address Register PA(24)  
Data Address Register DA(24)  
Incrementer/Decrementer(24)  
Program Counter P
Program Bank R
Data Ba
Register IB(16)  
cessor Status Register PS(11)  
Direct Page Register DPR(16)  
Stack Pointer S(16)  
Index Register Y(16)  
Index Register X(16)  
Accumulatcr B(16)  
Accumulator A(16)  
X
X
COUT  
CIN  
Arithmetic Logic  
Unit(16)  
2
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
FUNCTIONS OF M37735S4BFP  
Parameter  
Functions  
Number of basic instructions  
Instruction execution time  
103  
160ns (the fastest instruction at external clock 25 MHz frequency)  
Memory size  
RAM  
2048 bytes  
P5 – P8  
P4  
8-bit 4  
5-bit 1  
Input/Output ports  
TA0, TA1, TA2, TA3, TA4  
TB0, TB1, TB2  
16-bit 5  
16-bit 3  
Multi-function timers  
Serial I/O  
A-D converter  
Watchdog timer  
(UART or clock synchronous serial I/O) 3  
10-bit 1 (8 channels)  
12-bit 1  
3 external types, 16 internal types  
Interrupts  
Each interrupt can be set to the priority level (0 – 7.)  
2 circuits built-in (externally connected to a ceramic resonator or a  
quartz-crystal oscillator)  
Clock generating circuit  
Supply voltage  
5 V ± 10%  
Power dissipation  
47.5 mW (at external clocHz frequency)  
Input/Output voltage  
Output current  
5 V  
5 mA  
Input/Output characteristic  
Memory expansion  
Operating temperature range  
Device structure  
Maximum 1 Mby
–20 to 85 °C  
CMOS hige silicon gate process  
80-pin pd QFP (80P6N-A)  
Package  
3
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Pin  
Vcc,  
Name  
Input/Output  
Functions  
Power source  
Apply 5 V ± 10% to Vcc and 0 V to Vss.  
Vss  
CNVss  
RESET  
XIN  
CNVss input  
Reset input  
Input  
Input  
Connect to Vcc.  
_____  
When “L” level is applied to this pin, the microcomputer enters the reset state.  
These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartz-crystal  
oscillator between XIN and XOUT. When an external clock is used, the clock source should be  
Clock input  
Input  
XOUT  
____  
Clock output  
Output  
connected to the XIN pin, and the XOUT pin should be left open.  
____  
RDE  
Read enable output  
Bus width  
selection input  
Output  
Input  
When data/instruction read is performed, output level of RDE signal is “L”.  
BYTE  
This pin determines whether the external data bus has an 8-bit width or a 16-bit width.  
The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal  
is input.  
AVcc,  
AVss  
VREF  
Analog power  
source input  
Reference  
Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss.  
Input  
This is reference voltage input pin for the A-D converter.  
voltage input  
P00/_C_S_0_– Chip selection  
Output  
Output  
Output  
I/O  
When the specified external memory area is accessed,_C_____S_4_ signals are “L”.  
P04/_C_S_4_  
output  
P05/RSMP Ready sampling  
output  
_____  
____  
The timing signal to be input to the RDY pin is output
P06/A16,  
P07/A17  
Address output  
An address (A16, A17) is output.  
P10/A  
8/D  
8
– Address output  
/A15/D15 /data (high  
-order) I/O  
When the BYTE pin is set to “L” and exterhas a 16-bit width, high-order data  
(D8 – D15) is input/output or an addresoutput. When the BYTE pin is “H” and an  
external data bus has an 8-bit widths (A8 – A15) is output.  
P17  
P2  
P27  
0
/A  
7
0
/D  
0
Address output  
/data (low  
I/O  
Low-order data (D0 – D7) is input/address (A0 – A7) is output.  
/A  
/D  
7
-order) I/O  
____  
____  
P30/WEL  
Write enable  
output  
Output  
When the BYTE pin is “Lto an even address is performed, output level of WEL signal  
is “L”. When the BYTE nd writing to an even address or an odd address is performed,  
____  
output level of WEL
____  
____  
P31/WEH Write enable  
high output  
Output  
Output  
Output  
When the BYTE d writing to an odd address is performed, output level of WEH signal  
____  
is “L”. When tis “H”, WEH signal is always “H”.  
This is useonly the address from the multiplex signal which consists of address and  
data.  
P32/ALE  
Address latch  
enable output  
_____  
P33/HLDA Hold acknow-  
This evel when the microcomputer enters hold state after a hold request is accepted.  
ledge output  
_____  
_____  
HOLD  
Hold request  
input  
Input  
Inpu
nput pin for HOLD request signal. The microcomputer enters hold state while this  
“L”.  
____  
RDY  
____  
Ready input  
s an input pin for RDY signal. The microcomputer enters ready state while this signal is “L”.  
This pin outputs the clock 1.  
These pins become a 5-bit I/O port. An I/O direction register is available so that each pin can be  
programmed for input or output. These ports are in the input mode when reset.  
P42/  
1
Clock output  
O
I/O  
P43 – P47 I/O port P4  
P50 – P57 I/O port P5  
P60 – P67 I/O port P6  
I/O  
I/O  
In addition to having the same functions as port P4, these pins also function as I/O pins for timers  
A0 to A3 and input pins for key input interrupt input (_K_I0_ _K_I3_).  
In addition to having the same functions as port P4, these pins also function as I/O pins for timer  
____ ____  
A4, input pins for external interrupt input (INT0 INT2) and input pins for timers B0 to B2. P67 also  
functions as sub-clock SUB output pin.  
P70 – P77 I/O port P7  
P80 – P87 I/O port P8  
I/O  
I/O  
In addition to having the same functions as port P4, these pins function as input pins for A-D  
converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76 and P77 have the  
function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation  
circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator  
or an oscillator between the both.  
In addition to having the same functions as port P4, these pins also function as I/O pins for UART  
0 and UART 1.  
4
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
BASIC FUNCTION BLOCKS  
The M37735S4BFP has the same functions as the  
M37735MHBXXXFP except for the following:  
(1) The memory map is different.  
Built-in RAM and control registers for internal peripheral devices are  
assigned to bank 016.  
Addresses FFD616 to FFFF16 are the RESET and interrupt vector  
addresses and contain the interrupt vectors. Use ROM for memory  
of this address.  
(2) The processor mode is different.  
(3) The reset circuit is different.  
The 2048-byte area allocated to addresses from 8016 to 87F16 is the  
built-in RAM. In addition to storing data, the RAM is used as stack  
during a subroutine call or interrupts.  
(4) Pulse output port mode of timer A is available.  
(5) The function of ROM area modification is not available.  
Refer to the section on the M37735MHBXXXFP, except for above  
(1)–(5).  
Peripheral devices such as I/O ports, A-D converter, serial I/O, timer,  
and interrupt control registers are allocated to addresses from 016 to  
7F16.  
MEMORY  
A 256-byte direct page area can be allocated anywhere in bank 016  
by using the direct page register (DPR). In the direct page addressing  
mode, the memory in the direct page area can be accessed with two  
words. Hence program steps can be reduced.  
The memory map is shown in Figure 1. The address space has a  
capacity of 16 Mbytes and is allocated to addresses from 016 to  
FFFFFF16. The address space is divided by 64-Kbyte unit called bank.  
The banks are numbered from 016 to FF16.  
However, banks 1016–FF16 of the M37735S4BFP cannot be  
accessed.  
00000016  
00007F16  
00008016  
00000016  
00000016  
Internal peripheral  
devices  
Bank 016  
Bank 116  
control registers  
refer to Fig. 2 for  
detail information  
00FFFF16  
01000016  
Internal RAM  
00007F16  
2048 bytes  
Interrupt vector table  
00FFD616  
A-D/UART2 trans./rece.  
00087F16  
UART1 transmission  
UART1 receive  
01FFFF16  
UART0 transmission  
UART0 receive  
Timer B2  
Timer B1  
Timer B0  
Timer A4  
Timer A3  
Timer A2  
FE000016  
Timer A1  
Timer A0  
Bank FE16  
Bank FF16  
INT /Key input  
2
INT1  
INT0  
FEFFFF16  
FF000016  
Watchdog timer  
DBC  
BRK instruction  
00FFD616  
00FFFF16  
Zero divide  
RESET  
00FFFE16  
FFFFFF16  
: Internal  
: External  
Note. Banks 1016–FF16 cannot be accessed in the M37735S4BFP.  
Fig. 1 Memory map  
5
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Address (Hexadecimal notation)  
Address (Hexadecimal notation)  
Count start flag  
One-shot start flag  
Up-down flag  
000000  
000001  
000002  
000003  
000004  
000040  
000041  
000042  
000043  
000044  
000045  
000046  
000047  
000048  
000049  
00004A  
00004B  
00004C  
00004D  
00004E  
00004F  
000050  
000051  
000052  
000053  
000054  
000055  
000056  
00005
000
0
C  
05D  
0005E  
00005F  
000060  
000061  
000062  
000063  
000064  
000065  
000066  
000067  
000068  
000069  
00006A  
00006B  
00006C  
00006D  
00006E  
00006F  
000070  
000071  
000072  
000073  
000074  
000075  
000076  
000077  
000078  
000079  
00007A  
00007B  
00007C  
00007D  
00007E  
Port P0 register  
Port P1 register  
Port P0 direction register  
000005 Port P1 direction register  
Port P2 register  
000006  
000007  
000008  
000009  
00000A  
00000B  
00000C  
00000D  
00000E  
00000F  
000010  
000011  
000012  
000013  
000014  
000015  
000016  
000017  
000018  
000019  
00001A  
00001B  
00001C  
00001D  
00001E  
00001F  
000020  
000021  
000022  
000023  
000024  
000025  
000026  
000027  
000028  
000029  
00002A  
00002B  
00002C  
00002D  
00002E  
00002F  
000030  
000031  
000032  
000033  
000034  
000035  
000036  
000037  
000038  
000039  
00003A  
00003B  
00003C  
00003D  
00003E  
00003F  
Timer A0 register  
Timer A1 register  
Timer A2 register  
Timer A3 register  
Timer A4 register  
Timer B0 regist
Timer B1
Tim
Port P3 register  
Port P2 direction register  
Port P3 direction register  
Port P4 register  
Port P5 register  
Port P4 direction register  
Port P5 direction register  
Port P6 register  
Port P7 register  
Port P6 direction register  
Port P7 direction register  
Port P8 register  
Port P8 direction register  
e register  
ode register  
mode register  
A3 mode register  
mer A4 mode register  
Timer B0 mode register  
Timer B1 mode register  
Pulse output data register 1  
Pulse output data register 0  
A-D control register 0  
Timer B2 mode register  
Processor mode register 0  
Processor mode register 1  
Watchdog timer register  
Watchdog timer frequency selection flag  
Waveform output mode register  
Reserved area (Note)  
A-D control register 1  
A-D register 0  
A-D register 1  
A-D register 2  
A-D register 3  
A-D register 4  
A-D register 5  
A-D register 6  
A-D register 7  
UART2 transmit/receive mode register  
UART2 baud rate register (BRG2)  
UART2 transmission buffer register  
UART2 transmit/receive control register 0  
UART2 transmit/receive control register 1  
UART2 receive buffer register  
Oscillation circuit control register 0  
Port function control register  
Serial transmit control register  
Oscillation circuit control register 1  
A-D/UART2 trans./rece. interrupt control register  
UART 0 transmission interrupt control register  
UART 0 receive interrupt control register  
UART 1 transmission interrupt control register  
UART 1 receive interrupt control register  
Timer A0 interrupt control register  
Timer A1 interrupt control register  
Timer A2 interrupt control register  
Timer A3 interrupt control register  
Timer A4 interrupt control register  
Timer B0 interrupt control register  
Timer B1 interrupt control register  
Timer B2 interrupt control register  
UART 0 transmit/receive mode register  
UART 0 baud rate register (BRG0)  
UART 0 transmission buffer register  
UART 0 transmit/receive control register 0  
UART 0 transmit/receive control register 1  
UART 0 receive buffer register  
UART 1 transmit/receive mode register  
UART 1 baud rate register (BRG1)  
UART 1 transmission buffer register  
UART 1 transmit/receive control register 0  
UART 1 transmit/receive control register 1  
INT  
0
interrupt control register  
interrupt control register  
INT1  
UART 1 receive buffer register  
00007F INT  
2/Key input interrupt control register  
Note. Writing to reserved area is disabled.  
Fig. 2 Location of internal peripheral devices and interrupt control registers  
6
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
shows the bit configuration of the pulse output data register. The  
contents of the pulse output data register 1 (low-order four bits of  
1C16 address) corresponding to RTP10, RTP11, RTP12, and RTP13  
is output to the ports each time the counter of timer A2 becomes  
000016. The contents of the pulse output data register 0 (low-order  
four bits of 1D16 address) corresponding to RTP00, RTP01, RTP02,  
and RTP03 is output to the ports each time the counter of timer A0  
becomes 000016.  
Pulse output port mode  
The pulse motor drive waveform can be output by using plural internal  
timer A.  
Figure 3 shows a block diagram for pulse output port mode. In the  
pulse output port mode, two pairs of four-bit pulse output ports are  
used. Whether using pulse output port or not can be selected by  
waveform output selection bit (bit 0, bit 1) of waveform output mode  
register (6216 address) shown in Figure 4. When bit 0 of waveform  
output selection bit is set to “1”, RTP10, RTP11, RTP12, and RTP13  
are used as pulse output ports, and when bit 1 of waveform output  
selection bit is set to “1”, RTP00, RTP01, RTP02, and RTP03 are  
used as pulse output ports. When bits 1 and 0 of waveform output  
selection bit are set to“1”, RTP10, RTP11, RTP12, and RTP13, and  
RTP00, RTP01, RTP02, and RTP03 are used as pulse output ports.  
The ports not used as pulse output ports can be used as normal  
parallel ports, timer input/output or key input interruput input.  
In the pulse output port mode, set timers A0 and A2 to timer mode as  
timers A0 and A2 are used. Figure 5 shows the bit configuration of  
timer A0, A2 mode registers in pulse output port mode.  
Figure 7 shows example of waveforms in pulse output port mode.  
When “0” is written to a specified bit of the pulse output data register,“L”  
level is output to the corresponding pulse output port when the counter  
of corresponding timer becomes 000016, and when “1” is written, “H”  
level is output to the pulse output port.  
Pulse width modulation can be applied to each pulse output port.  
Since pulse width modulation involves the use of timers A1 and A3,  
activate these timers in puldth modulation mode.  
Data can be set in each bit of the pulse output data register  
corresponding to four ports selected as pulse output ports. Figure 6  
4
5
Pulse width modulation selection bit  
(Bit 4, 5 of 6216 address)  
Pulse width modulation output  
by timer A3  
Pulse width modulation output  
by timer A1  
Timer A2  
Pulse o
regisress)  
T
RTP13 (P57)  
D3  
D
Q
RTP12 (P56)  
RTP11 (P55)  
RTP10 (P54)  
D2  
D1  
D
D
Q
Q
D0  
D
Q
RTP03 (P53)  
D11  
D10  
D
D
Q
Q
RTP02 (P52)  
RTP01 (P51)  
D9  
D8  
D
D
Q
Q
RTP00 (P50)  
T
Pulse output data  
register 0 (1D16 address)  
Polarity selection bit  
(Bit 3 of 6216 address)  
Timer A0  
Fig. 3 Block diagram for pulse output port mode  
7
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
RTP10, RTP11, RTP12, and RTP13 are applied pulse width modulation  
by timer A3 by setting the pulse width modulation selection bit by  
timer A3 (bit 5) of the waveform output mode register to “1”.  
Address  
7
6
5
0
4
0
3
2
1
1
0
0
0
RTP00, RTP01, RTP02, and RTP03 are applied pulse width modulation  
by timer A1 by setting the pulse width modulation selection bit by  
timer A1 (bit 4) of the waveform output mode register to “1”.  
Timer A0 mode register 5616  
Timer A2 mode register 5816  
X
Always “100” in pulse output  
port mode  
The contents of the pulse output data register 0 can be reversed and  
output to pulse output ports RTP00, RTP01, RTP02, and RTP03 by  
the polarity selection bit (bit 3) of the waveform output mode register.  
When the polarity selection bit is “0”, the contents of the pulse output  
data register 0 is output unchangeably, and when “1”, the contents of  
the pulse output data register 0 is reversed and output. When pulse  
width modulation is applied, likewise the polarity reverse to pulse  
width modulation can be selected by the polarity selection bit.  
Not used in pulse output port mode  
Always “00” in pulse output port mode  
Clock source selection bit  
0 0 : Select f  
2
0 1 : Select f16  
1 0 : Select f64  
1 1 : Select f512  
Fig. 5 Timer A0, A2 er bit configuration in pulse output  
port mode  
7
0
6 5 4 3 2 1 0  
Address  
Weveform output mode register 6216  
Weveform output selection bit  
0 0 : Parallel port  
0 1 : RTP1 selected  
1 0 : RTP0 selected  
4 3 2 1 0  
Address  
1 1 : RTP1 and RTP0 selected  
Pulse output data register 0 1D16  
Polarity selection bit  
0 : Positive polarity  
1 : Negative polarity  
RTP0  
RTP0  
RTP0  
RTP0  
0
1
2
3
output data  
output data  
output data  
output data  
Pulse width modulation selection
by timer A1  
0 : Not modulated  
1 : Modulated  
Pulse width modulation
by timer A3  
0 : Not modulated  
1 : Modulated  
7
6 5 4 3 2 1 0  
Address  
Pulse output data register 1 1C16  
Always “0”  
RTP1  
RTP1  
RTP1  
RTP1  
0
1
2
3
output data  
output data  
output data  
output data  
Fig. 4 Waveform output mode rnfiguration  
Fig. 6 Pulse output data register bit configuration  
8
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Example of pulse output port (RTP10 – RTP13)  
Output signal at each time  
when timer A2 becomes 000016  
RTP13(P57)  
RTP12(P56)  
RTP11(P55)  
RTP10(P54)  
Example of pulse output port (RTP10 – RTP13) whemodulation is applied by timer A3.  
Output signal at each time  
when timer A2 becomes 000016  
RTP13(P57)  
RTP12(P56)  
RTP11(P55)  
RTP10(P54)  
Example of pulse output port (RTP00 – RTP03) when pulse width modulation is applied  
by timer A1 with polarity selection bit = “1”.  
Output signal at each time  
when timer A0 becomes 000016  
RTP03(P53)  
RTP02(P52)  
RTP01(P51)  
RTP00(P50)  
Fig. 7 Example of waveforms in pulse output port mode  
9
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
PROCESSOR MODE  
Only the microprocessor mode can be selected.  
• BYTE pin  
___  
Figure 9 shows the functions of pins P00/CS0 — P47 in the  
microprocessor mode.  
When accessing the external memory, the level of the BYTE pin is  
used to determine whether to use the data bus as 8-bit width or 16-  
bit width.  
Figure 10 shows external memory area for the microprocessor mode.  
Access to the external memory is affected by the BYTE pin, the wait  
bit (bit 2 of the processor mode register 0 at address 5E16), and the  
wait selection bit (bit 0 of the processor mode register 1 at address  
5F16) .  
The data bus has a width of 8 bits when level of the BYTE pin is “H”,  
and pins P20/A0/D0 — P27/A7/D7 are the data I/O pins.  
The data bus has a width of 16 bits when the level of the BYTE pin is  
“L”, and pins P20/A0/D0 — P27/A7/D7 and pins P10/A8/D8 — P17/A15/  
D15 are the data I/O pins.  
When accessing the internal memory, the data bus always has a  
width of 16 bits regardless of the BYTE pin level.  
7
6
0
5
4
3
2
1
0
0
7 6 5 4 3 2 1 0  
Address  
5E16  
Address  
5F16  
1
Processor mode register 0  
sor mode register 1  
ait selection bit  
0 : Wait 0  
1 : Wait 1  
Must be “10” (“10” after reset)  
Wait bit  
0 : Wait  
1 : No wait  
Software reset bit  
Reset occurs when this bit i
Interrupt priority dselection bit  
0 0 : Internal cycle)  
0 1 : Interna
4 (cycle)  
1 0 : Inte2 (cycle)  
Not used  
Fig. 8 Processor mode register bit configuration  
10  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
PM  
1
1
0
PM  
0
Mode  
Microprocessor mode  
Pin  
RDE  
RDE  
(Note)  
RDE, WEL, WEH  
P0  
0
to  
/
CS  
0
CS  
0
to CS  
4
CS0  
— CS  
4
P04/CS  
4
RSMP, A16, A17  
P05/RSMP  
RSMP  
P0  
6
/A16  
/A17  
Address A16, A17  
P07  
RDE, WEL, WEH  
A8  
to A15  
Address  
P1  
0
/A  
to  
/A15 /D15  
8/D8  
BYTE = “L”  
BYTE = “H”  
Data(odd)  
P10/A8/D8  
P17  
to  
P17/A15/D15  
RDE, WEL, WEH  
P1 /A /D  
to  
/A15/D15  
0
8
8
Address A8 – A15  
P17  
RDE, WEL, WEH  
A0 to A7  
P2  
0
/A  
to  
/A  
0
/D  
0
BYTE = “L”  
BYTE = “H”  
Data(even)  
Address  
P2  
0
/A  
to  
/A  
0
/D  
0
7
P2  
7
7/D  
7
RDE, WEL, WEH  
P27  
7/D  
A0 to A7  
P2  
0
/A  
to  
/A  
0
/D  
0
Address  
P2  
7
7
/D  
7
P3  
0
1
2
3
/
WEL  
WEH  
ALE  
WEL  
WEH  
(Note)  
(Note)  
P30  
P31  
P32  
P33  
/
/
WEL,  
WEH  
P3  
P3  
P3  
/
/
/
,
/ALE,  
ALE  
/HLDA  
HLDA  
EH  
HOLD  
RDY  
HOLD  
RDY  
HOLD  
,
RDY  
,
P4  
Ports P4  
2
/
1,  
(Note)  
P42  
/
1
3
to P47  
P4  
to  
P4  
3
7
I/O Port  
___  
Fig. 9 Functions of pins P00/CS0 to P47 in microprocessor mode  
Note. The signal output disable selection bit (bit 6 of the oscillation circuit control register 0) can stop the  
1 output in the microprocessor  
___ ___ ___  
mode. In this mode, signals RDE, WEL, WEH can also be fixed to “H” when the internal memory area is accessed.  
11  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
• Wait bit  
Internal clock  
As shown in Figure 11, when the external memory area is accessed  
with the wait bit (bit 2 of the processor mode register 0 at address  
5E16) cleared to “0”, the access time can be extended compared with  
no wait (the wait bit is “1”).  
Address  
Address  
Data  
Data  
Ai/Di  
Wait bit “1”  
RDE or  
(No wait)  
WEL, WEH  
The access time is extended in two ways and this is selected with the  
wait selection bit (bit 0 of the processor mode register 1 at address  
5F16).  
ALE  
Ai/Di  
Access time  
When this bit is “1”, the access time is 1.5 times compared to that for  
no wait. When this bit is “0”, the access time is twice compared to  
that for no wait.  
Address  
Address  
Data  
Data  
Wait bit “0”  
(Wait 1)  
RDE or  
WEL, WEH  
At reset, the wait bit and the wait selection bit are “0”.  
Access to internal memory area is always performed in the no wait  
mode regardless of the wait bit.  
ALE  
Ai/Di  
Access time  
The processor modes are described below.  
Address  
Address  
Data  
Wait bit “0”  
(Wait 0)  
RDE or  
WEL,
Microprocessor  
mode  
A
0016  
SFR  
Access time  
Fig. 11 etween wait bit, wait selection bit, and access time  
8016  
RAM  
oprocessor mode [10]  
rocomputer enters the microprocessor mode after connecting  
87F16  
CNVss pin to Vcc and starting from reset.  
___  
___  
in RDE is the output pin for the read enable signal (RDE).  
__  
RDE is “L” during the data read term in the read cycle. When the  
___  
internal memory area is read, RDE can be fixed to “H” by setting the  
signal output disabe selection bit (bit 6 of the oscillation circuit control  
register 0) to “1”.  
The shaded area is the external memory area.  
Note that banks 1016 to FF16 cannot be accessed.  
Fig. 10 External memory area for microprocessor mode  
12  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
___ ___  
___  
RDY is a ready signal. If this signal goes “L”, the internal clock  
___  
CS0 to CS4 are the chip select signals and are “L” when the address  
____  
shown in Table 2 is accessed. RSMP is the ready-sampling signal  
___  
stops at “L”. RDY is used when slow external memory is attached.  
which is output for the RDY input described later when the external  
P42/  
1 pin is an output pin for clock  
1. The  
1 output is  
____  
memory area is accessed. By inputting logical AND of RSMP and  
___  
independent of RDY and does not stop even when internal clock  
___  
___  
____  
CSn (n = 0 to 4) to the RDY pin, read/write term for any address areas  
can be extended by 1 cycle of clock 1. In addition, the read/write  
term can also be extended by 2 cycles of clock 1 if the above  
stops because of “L” input to the RDY pin.  
function and wait 0/1 function specified with the wait bit are used  
together.  
Pins P10/A8/D8 — P17/A15/D15 have two functions depending on the  
level of the BYTE pin.  
When the BYTE pin level is “L”, pins P10/A8/D8 — P17/A15/D15 function  
___ ___ ___  
as address (A8 to A15) output pins while RDE or WEL, WEH are “H”  
and as odd address data I/O pins while these signals are “L”. However,  
___  
if an internal memory is read, external data is ignored while RDE is  
“L”.  
When the BYTE pin level is “H”, pins P10/A8/D8 — P17/A15/D15 function  
as address (A8 to A15) output pins.  
Pins P20/A0/D0 — P27/A7/D7 have two functions depending on the  
level of the BYTE pin.  
When the BYTE pin level is “L”, pins P20/A0/D0 — P27/A7/D7 function  
___ ___ ___  
as address (A0 to A7) output pins while RDE or WEL, WEH are “H” and  
as even address data I/O pins while these signals are “L”. However,  
___  
if an internal memory is read, external data is ignored while RDE is  
“L”.  
When the BYTE pin level is “H”, pins P20/A0/D0 — P27/A7/D7 function  
___ ___ ___  
as address (A0 to A7) output pins while RDE or WEL, WEH are “H” a
as even and odd address data I/O pins while these signals ar
However, if an internal memory is read, external data is igno
___  
RDE is “L”.  
___ ___  
WEL, WEH are the write-enable low signal and the wgh  
signal, respectively. These signals are “L” during e term  
of the write cycle, but their operations differ dehe BYTE  
pin level.  
_
In the case the BYTE pin level is “L”, when writing to  
___  
an even address, WEH is “L” when odd address, and  
___  
___  
both WEL and WEH are “L” when en and odd addresses.  
In the case the BYTE pin level is ardless of address, only  
___  
___  
_
___  
WEL is “L”, and WEH retains “H”. WEL nd WEH can also be fixed to  
___  
“H” when the internal memory is accessed, same as RDE, by writing  
“1” to the signal output disable selection bit.  
ALE is an address latch enable signal used to latch the address signal  
from a multiplexed signal of address and data. The latch is transparent  
while ALE is “H” to let the address signal pass through and held  
while ALE is “L”.  
____  
HLDA is a hold acknowledge signal and is used to notify externally  
____  
when the microcomputer receives HOLD input and enters into hold  
state.  
____  
HOLD is a hold request signal. It is an input signal used to put the  
____  
microcomputer in hold state. HOLD input is accepted when the internal  
clock  
falls from “H” level to “L” level while the bus is not used.  
___ ____ ___  
Pins P00/CS0 P31/WEH and RDE are floating while the microcomputer  
____  
stays in hold state. After HLDA signal changes to “L” level and one  
cycle of internal clock  
passed, these ports become floating. After  
____  
HLDA signal changes to “H” level and one cycle of internal clock  
passed, these ports are released from floating state.  
13  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
As shown in Table 3,  
1 output can be stopped with the signal  
Table 1. Relationship between CNVss pin input levels and processor  
mode  
output disable selection bit = “1”. In this case, write “1” to the port P42  
direction register.  
CNVss  
Mode  
Description  
• Microprocessor  
Microprocessor mode upon  
starting after reset.  
Table 1 shows the relationship between the CNVss pin input level  
and the processor mode.  
Vcc  
Table 2. Relationship between access addresses and chip-select signals CS0 to CS4  
Access address  
Chip-select  
signal  
Area  
Microprocessor mode  
00 088016  
to  
00 7FFF16  
00 800016  
to  
03 FFFF16  
04 000016  
to  
07 FFFF16  
08 000016  
to  
____  
The first half of bank 0016 except  
internal memory area  
CS0  
The latter half of bank 0016 except  
internal memory area and banks  
0116 to 0316.  
____  
CS1  
____  
CS2  
Banks 0416 to 0716  
Banks 0816 to 0B16  
Banks 0C16 to 0F16  
____  
CS3  
0B FFFF16  
0C 000016  
to  
____  
CS4  
0F F
Table 3. Function of signal output disable selection bit CM6 (bit 6 of rcuit control register 0)  
Function  
Processor mode  
Pin  
“0”  
CM6 = “1”  
___ ___ ___  
___ ___
RDE, Woutput when the  
___  
_R_D_E,  
RDE, WEL, WEH are output only when the  
external memory area is accessed.  
“L” is output after WIT/STP instruction is  
executed  
Standby state selection bit (bit 0 of port  
function control register) must be set to “1”.  
“H” or “L” is output. (Contents of P42 port  
latch is output.)  
intermemory area is accessed.  
WEL, WEH  
___  
RDE  
TP instruction is executed,  
tput.  
Microprocessor mode  
Clock  
1 is output independent of  
1
1
Port P42 direction register must be set to  
“1”.  
output selection bit.  
Note. Functions shown in Table 3 ot be emulated with a debugger. For the oscillation circuit control register 0 and port function control  
register, refer to Figures 64 and 11 in data sheet “M37735MHBXXXFP”, respectively.  
14  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
input voltage must be 0.9 V or less when the power source voltage  
reaches 4.5 V. If a resonator/oscillator is connected to the main-clock  
oscillation circuit, change the reset input voltage from “L” to “H” after  
the main-clock oscillation is fully stabilized.  
_____  
The microcomputer is released from the reset state when the RESET  
pin is returned to “H” level after holding it at “L” level with the power  
source voltage at 5 V ± 10%. Program execution starts at the address  
formed by setting address A23 – A16 to 0016, A15 – A8 to the contents  
of address FFFF16, and A7 – A0 to the contents of address FFFE16.  
Figure 13 shows an example of a reset circuit. If the stabilized clock  
is input from the external to the main-clock oscillation circuit, the reset  
Figure 12 shows the status of the internal registers during reset.  
Address  
Address  
0016  
(6116  
)
•••  
0
(0416  
(0516  
(0816  
(0916  
)
)
)
)
•••  
Port P0 direction register  
Port P1 direction register  
Port P2 direction register  
Port P3 direction register  
Watchdog timer frequency selection flag  
Waveform output mode register  
UART2 transmit/receive mode register  
(6216  
(6416  
(6816  
6916  
)
•••  
•••  
•••  
•••  
0
0
0 0 0  
0 0  
0016  
0016  
•••  
•••  
)
)
)
0 0 0 0 0 0 0  
1 0 0 0  
UART2 transmit/receive control registe
UART2 transmit/receive control r
Oscillation circuit cont
Port function con
0 0 0 0  
•••  
0 0 0 0 0 1 0  
(0C16  
)
•••  
0016  
Port P4 direction register  
Port P5 direction register  
Port P6 direction register  
Port P7 direction register  
Port P8 direction register  
A-D control register 0  
(6C16  
)•••  
0 0 0 0 0  
0016  
1
(0D16  
)
•••  
0016  
(6D16  
)•••  
0016  
0016  
(1016  
(1116  
(1416  
)
•••  
•••  
•••  
(6E16  
)
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
0 0  
)
)
Serial transster  
(6F16  
)
0
0 0 0 0 0  
0 0 0 0  
0016  
Oscillatrol register 1  
Aece. interrupt control register  
(7016  
(7116  
(7216  
(7316  
(7416  
(7516  
(7616  
(7716  
(7816  
(7916  
)
0 0 0 0 0 ? ? ?  
(1E16  
)
•••  
mission interrupt control register  
0 receive interruupt control register  
ART 1 transmission interrupt control register  
0 0 0 0  
)
)
)
)
)
)
)
)
)
(1F16  
(3016  
(3816  
(3416  
)
•••  
0
0 0  
0016  
0016  
1 1  
A-D control register 1  
0 0 0 0  
)
•••  
UART 0 transmit/receive mode register  
UART 1 transmit/receive mode register  
)
)
•••  
0 0 0 0  
0 0 0 0  
•••  
0 0 0
UART 0 transmit/receive  
control register 0  
UART 1 transmit/receive  
control register 0  
UART 0 transmit/receive  
control register 1  
UART 1 transmit/receive  
control register 1  
UART 1 receive interruupt control register  
Timer A0 interrupt control register  
0 0 0 0  
0 0 0 0  
(3C16  
)
•••  
0 0 0 0  
0 1 0  
(3516  
)
•••  
Timer A1 interrupt control register  
Timer A2 interrupt control register  
0 0 0 0  
0 0 0 1 0  
(3D
Timer A3 interrupt control register  
Timer A4 interrupt control register  
Timer B0 interrupt control register  
0 0 0 0  
16  
(5616  
(5716  
(5816  
(5916  
0016  
Count start flag  
0 0 0 0  
)
)
)
)
)
0 0 0 0 0  
One- shot start flag  
Up-down flag  
0 0 0 0  
0016  
(7A16  
)
•••  
•••  
0 0 0 0  
Timer A0 mode register  
Timer A1 mode register  
0016  
(7B16  
)
•••  
•••  
•••  
Timer B1 interrupt control register  
Timer B2 interrupt control register  
0 0 0 0  
0016  
(7C16  
)•••  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
•••  
•••  
0016  
0016  
(7D16  
)•••  
INT  
0
1
interrupt control register  
interrupt control register  
Timer A2 mode register  
Timer A3 mode register  
Timer A4 mode register  
Timer B0 mode register  
Timer B1 mode register  
Timer B2 mode register  
INT  
(7E16  
)
•••  
(5A16  
)
•••  
INT2/key input interrupt control register  
0016  
(7F16  
)
•••  
(5B16  
)
•••  
Processor status register (PS)  
Program bank register (PG)  
0
0 0 ? ? 0 0 0 1 ? ?  
0016  
0 0 1 0 0 0 0 0  
(5C16  
)
••• 0 0 1  
0 0 0 0  
0 0 0 0  
Content of FFFF16  
Content of FFFE16  
000016  
(5D16  
)
••• 0 0 1  
Program counter (PC  
H)  
(5E16  
(5F16  
(6016  
)
•••  
0016  
Program counter (PC  
L)  
Processor mode register 0  
Processor mode register 1  
Watchdog timer register  
)
•••  
0
Direct page register (DPR)  
Data bank register (DT)  
)•••  
0016  
FFF16  
Contents of other registers and RAM are undefined during reset. Initialize them by software.  
Fig. 12 Microcomputer internal status during reset  
15  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
ADDRESSING MODES  
The M37735S4BFP has 28 powerful addressing modes.Refer to the  
MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE-CHIP 16-  
BIT MICROCOMPUTERS for the details of each addressing mode.  
Power on  
4.5 V  
VCC  
RESET  
VCC  
MACHINE INSTRUCTION LIST  
0 V  
The M37735S4BFP has 103 machine instructions. Refer to the  
MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE-CHIP 16-  
BIT MICROCOMPUTERS for details.  
RESET  
0.9 V  
0 V  
Note. In this case, stabilized clock is input from the  
external to the main-clock oscillation circuit.  
Perform careful evaluation at the system design  
level before using.  
Fig. 13 Example of a reset circuit  
16  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Vcc  
AVcc  
VI  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
V
–0.3 to +7  
–0.3 to +7  
–0.3 to +12  
Analog power source voltage  
_____  
Input voltage RESET, CNVss, BYTE  
V
Input voltage P10/A8/D8 – P17/A15/D15, P20/A0/D0 – P27/A7/D7,  
P43 – P47, P50 – P57, P60 – P67, P70 – P77,  
VI  
–0.3 to Vcc + 0.3  
–0.3 to Vcc + 0.3  
V
V
_____ ____  
P80 – P87, VREF, XIN, HOLD, RDY  
___  
Output voltage P00/CS – P07/A17, P10/A8/D8 – P17/A15/D15,  
0
____ _____  
P20/A0/D0 – P27/A7/D7, P30/WEL – P33/HLDA ,P42/  
1,  
VO  
P43 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87,  
____  
XOUT, RDE  
Pd  
Topr  
Tstg  
Power dissipation  
Operating temperature  
Storage temperature  
Ta = 25 °C  
300  
–20 to +85  
–40 to +150  
mW  
°C  
°C  
RECOMMENDED OPERATING CONDITIONS (Vcc = 5 V ± 10%, Ta = –20 to +less otherwise noted)  
Limits  
Typ.  
5.0  
Symbol  
Parameter  
Unit  
V
n.  
4.5  
2.7  
Max.  
5.5  
5.5  
f(XIN) : Operating  
f(XIN) : Stopped, f(XCIN) = 32.768 kHz  
Vcc  
Power source voltage  
AVcc  
Vss  
AVss  
Analog power source voltage  
Power source voltage  
Vcc  
0
0
V
V
V
Analog power source voltage  
____ ___  
High-level input voltage HOLD, RDY, P43 – P47, P50 – P57, P60 ,  
_____  
Vcc  
Vcc  
VIH  
VIH  
VIL  
0.8 Vcc  
0.5 Vcc  
V
V
P80 – P87, XIN, RESET, CNVss, BYT
High-level input voltage P10/A8/D8 – P17/A15/D15, P7/A7/D7  
____ ___  
Low-level input voltage HOLD, RDY, P43 – P47, P50 P70 – P77,  
_____  
0.2Vcc  
0
0
V
V
P80 – P87, XIN, RESET, CNN (Note 3)  
Low-level input voltage P10/A8/D8 – P17/A1/D0 – P27/A7/D7  
VIL  
0.16Vcc  
___  
High-level peak output current P00/CS0 0/A8/D8 – P17/A15/D15,  
____  
P20/A/D7, P30/WEL – P33/_H_L_D_A_  
P4P47, P50 – P57, P60 – P67,  
,
IOH(peak)  
–10  
–5  
mA  
mA  
mA  
80 – P87  
High-level average output cu0 – P07/A17, P10/A8/D8 – P17/A15/D15,  
____  
A0/D0 – P27/A7/D7, P30/WEL – P33/H__L_D_A_  
,
IOH(avg)  
IOL(peak)  
42/ 1, P43 – P47, P50 – P57, P60 – P67,  
P70 – P77, P80 – P87  
___  
Low-level peak ot P00/CS0 – P07/A17, P10/A8/D8 – P17/A15/D15,  
____  
P20/A0/D0 – P27/A7/D7, P30/WEL – P33/_H_L_D_A_  
,
10  
P42/ 1, P43, P54 – P57, P60 – P67, P70 – P77,  
P80 – P87  
Low-level peak output current P44 – P47, P50 – P53  
20  
5
mA  
mA  
IOL(peak)  
IOL(avg)  
___  
Low-level average output current P00/CS0 – P07/A17, P10/A8/D8 – P17/A15/D15,  
____  
P20/A0/D0 – P27/A7/D7, P30/WEL – P33/_H_L_D_A_  
,
P42/ 1, P43, P54 – P57,P60 – P67, P70 – P77,  
P80 – P87  
IOL(avg)  
f(XIN)  
Low-level average output current P44 – P47, P50 – P53  
Main-clock oscillation frequency (Note 4)  
Sub-clock oscillation frequency  
15  
25  
50  
mA  
MHz  
kHz  
f(XCIN)  
32.768  
____  
Notes 1. Average output current is the average value of a 100 ms interval.  
___  
2. The sum of IOL(peak) for ports P00/CS0 – P07/A17, P10/A8/D8 – P17/A15/D15, P20/A0/D0 – P27/A7/D7, P30/WEL – P33/H__L_D_A_ and P8 must  
___  
____  
be 80 mA or less, the sum of IOH(peak) for ports P00/CS0 – P07/A17, P10/A8/D8 – P17/A15/D15, P20/A0/D0 – P27/A7/D7, P30/WEL – P33/  
_H_L_D_A_ and P8 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and the sum of IOH(peak)  
for ports P4, P5, P6, and P7 must be 80 mA or less.  
3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”.  
4. The maximum value of f(XIN) = 12.5 MHz when the main clock division selection bit = “1”.  
17  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to +85 °C, f(XIN) = 25 MHz, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
___  
Test conditions  
Unit  
Min.  
Max.  
High-level output voltage P00/CS  
0
– P07/A17, P10/A8/D8 – P17/A15/D15,  
_____  
P20/A0/D0 – P27/A7/D7, P33/HLDA, P42/  
1,  
3
VOH  
IOH = –10 mA  
V
P43 – P47, P50 – P57, P60 – P67, P70 – P77,  
P80 – P87  
___  
High-level output voltage P00/CS  
0
– P07/A17, P10/A8/D8 – P17/A15/D15,  
_____  
VOH  
VOH  
VOH  
4.7  
IOH = –400  
A
V
V
P20/A0/D0 – P27/A7/D7, P33/HLDA, P42/  
1
____ ____  
IOH = –10 mA  
IOH = –400  
3.1  
4.8  
3.4  
4.8  
High-level output voltage P30/WEL, P31/WEH, P32/ALE  
A
A
____  
IOH = –10 mA  
IOH = –400  
High-level output voltage RDE  
___  
V
V
Low-level output voltage P00/CS  
0
– P07/A17, P10/A8/D8 – P17/A15/D15,  
_____  
P20/A0/D0 – P27/A7/D7, P33/HLDA, P42/  
P43, P54 – P57, P60 – P67, P70 – P77,  
P80 – P87  
1,  
VOL  
IOL = 10 mA  
2
Low-level output voltage P44 – P47, P50 – P53  
VOL  
VOL  
IOL = 20 mA  
IOL = 2 mA  
2
V
V
___  
Low-level output voltage P00/CS  
0
– P07/A17, P10/A8/D8 – P17/A15/D15,  
_____  
0.45  
P20/A0/D0 – P27/A7/D7, P33/HLDA, P42/  
____ ____  
1
IOL = 10 mA  
IOL = 2 mA  
IOL = 10
IOL
1.9  
0.43  
1.6  
VOL  
VOL  
Low-level output voltage P30/WEL, P31/WEH, P32/ALE  
V
V
____  
Low-level output voltage RDE  
____ ___  
0.4  
Hysteresis HOLD, RDY, TA0IN – TA4IN, TB0IN – TB2IN,  
____ ____ _____ ____ ____ ____  
VT+ – VT–  
0.4  
1
V
INT0 INT2, ADTRG, CTS0, CTS1, CTS2, CLK0,  
___ ___  
CLK1, CLK2, KI0 KI3  
_____  
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
0.2  
0.1  
0.1  
0.5  
0.4  
0.4  
V
V
V
Hysteresis RESET  
Hysteresis XIN  
Hysteresis XCIN (When external clock is input)  
High-level input current P10/A8/D8 – P17/A15/D15,  
P20/A0/D0 – P27/A7/D7, P4
IIH  
VI = 5 V  
A
5
P50 – P57, P60 – P67,
_____  
P80 – P87, XIN, RETE  
Low-level input current P10/A8/D8 – P1
P20/A0/D0 – P47,  
IIL  
–5  
A
A
VI = 0 V  
VI = 0 V,  
P50 – P55 – P67, P70 – P77,  
P80 T, CNVss, BYTE  
without a pull-up  
–5  
transistor  
Low-level input c– P57, P62 – P64  
IIL  
VI = 0 V,  
–0.5  
–1.0  
–0.25  
mA  
V
with a pull-up  
transistor  
RAM hold voltage  
When clock is stopped.  
2
VRAM  
18  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to +85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
mA  
Min.  
Max.  
22.8  
VCC = 5 V,  
f(XIN) = 25 MHz (square waveform),  
(f(f2) = 12.5 MHz),  
f(XCIN) = 32.768 kHz,  
in operating (Note 1)  
11.4  
1.6  
VCC = 5 V,  
f(XIN) = 25 MHz (square waveform),  
(f(f2) = 1.5625 MHz),  
f(XCIN): Stopped  
3.2  
mA  
in operating (Note 1)  
VCC = 5 V,  
f(XIN) = 25 MHz (square waveform),  
f(XCIN) = 32.768 kHz,  
When external bus  
is in use, output  
pins are open, and  
other pins are VSS.  
Power source  
current  
10  
60  
5
20  
120  
10  
ICC  
A
A
A
when a WIT instruction is executed (Note 2)  
VCC = 5 V,  
f(XIN) : Stopped,  
f(XCIN) = 32.768 kHz,  
in operating (Note 3)  
VCC = 5 V,  
f(XIN) : Stopped,  
f(XCIN) = 32.768 kHz,  
when a WIT instruction is ote 4)  
Ta = 25 °C,  
when clock is stopp
A
A
1
Ta = 85 °C,  
when clock is
20  
Notes 1. This applies when the main clock external input selecthe main clock division selection bit = “0”, and the signal output stop  
bit = “1”.  
2. This applies when the main clock external inpit = “1” and the system clock stop bit at wait state = “1”.  
3. This applies when CPU and the clock timeng with the sub clock (32.768 kHz) selected as the system clock.  
4. This applies when the XCOUT drivability = “0” and the system clock stop bit at wait state = “1”.  
A–D CONVERTER CHARAICS  
(VCC = AVCC = 5 V, VSS = AVSS = 0 to +85 °C, f(XIN) = 25 MHz, unless otherwise noted (Note))  
Limits  
Typ.  
Symbol  
Test conditions  
Unit  
Min.  
Max.  
10  
± 3  
25  
RLADDER  
tCONV  
VREF  
VIA  
Resolution  
VREF = VCC  
VREF = VCC  
VREF = VCC  
Bits  
LSB  
kΩ  
s
V
V
Absolute accuracy  
Ladder resistance  
Conversion time  
Reference voltage  
Analog input voltage  
10  
9.44  
2
VCC  
VREF  
0
Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.  
19  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to +85 °C, f(XIN) = 25 MHz, unless otherwise noted (Note 1))  
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHZ.  
2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.  
External clock input  
Limits  
Symbol  
Parameter  
Unit  
Min.  
40  
15  
Max.  
tc  
External clock input cycle time (Note 1)  
ns  
ns  
ns  
ns  
ns  
tw(H)  
tw(L)  
tr  
External clock input high-level pulse width (Note 2)  
External clock input low-level pulse width (Note 2)  
External clock rise time  
15  
8
8
tf  
External clock fall time  
Notes 1. When the main clock division selection bit = “1”, the minimum value of tc = 80 ns.  
2. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55.  
Microprocessor mode  
Limits  
Symbol  
Parameter  
Unit  
Min.  
60  
60  
60  
60  
60  
0
0
0
0
0
Max.  
tsu(P4D–RDE)  
tsu(P5D–RDE)  
tsu(P6D–RDE)  
tsu(P7D–RDE)  
tsu(P8D–RDE)  
th(RDE–P4D)  
th(RDE–P5D)  
th(RDE–P6D)  
th(RDE–P7D)  
th(RDE–P8D)  
Port P4 input setup time  
Port P5 input setup time  
Port P6 input setup time  
Port P7 input setup time  
Port P8 input setup time  
Port P4 input hold time  
Port P5 input hold time  
Port P6 input hold time  
Port P7 input hold time  
Port P8 input hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Microprocessor mode  
Limits  
Symbol  
ameter  
Unit  
Min.  
32  
55  
55  
0
Max.  
tsu(D–RDE)  
tsu(RDY– 1) RDY input setup time  
tsu(HOLD– 1) HOLD input setup tim
th(RDE–D)  
th( 1–RDY)  
Data input setup time  
ns  
ns  
ns  
ns  
ns  
ns  
___  
____  
Data input hold ti
___  
RDY input hold ti
0
0
____  
th( 1–HOLD) HOLD input hold tim
20  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Timer A input (Count input in event counter mode)  
Symbol Parameter  
Limits  
Unit  
Min.  
80  
40  
Max.  
Max.  
tc(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
40  
Timer A input (Gating input in timer mode)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
320  
160  
160  
tc(TA)  
TAiIN input cycle time (Note)  
ns  
ns  
ns  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width (Note)  
TAiIN input low-level pulse width (Note)  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.  
Timer A input (External trigger input in one-shot pulse mode)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
320  
80  
Max.  
tc(TA)  
tw(TAH)  
tw(TAL)  
TAiIN input cycle time (Note)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
ns  
ns  
ns  
80  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.  
Timer A input (External trigger input in pulse width modulation mode
Limits  
Symbol  
Parameter  
Unit  
Min.  
80  
80  
Max.  
Max.  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
ns  
ns  
Timer A input (Up-down input in event counter m
Symbol eter  
Limits  
Unit  
Min.  
2000  
1000  
1000  
400  
tc(UP)  
tw(UPH)  
tw(UPL)  
TAiOUT input cycle time  
ns  
ns  
ns  
ns  
ns  
TAiOUT input high-level pul
TAiOUT input low-level p
TAiOUT input setup ti
tsu(UP–TIN)  
th(TIN–UP)  
TAiOUT input hold
400  
Timer A input (Two-phase pulsinput in event counter mode)  
Symbol Parameter  
Limits  
Unit  
Min.  
800  
200  
200  
Max.  
tc(TA)  
TAjIN input cycle time  
ns  
ns  
ns  
tsu(TAjIN–TAjOUT) TAjIN input setup time  
tsu(TAjOUT–TAjIN) TAjOUT input setup time  
21  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Timer B input (Count input in event counter mode)  
Symbol Parameter  
Limits  
Unit  
Min.  
80  
40  
40  
160  
80  
Max.  
tc(TB)  
TBiIN input cycle time (one edge count)  
ns  
ns  
ns  
ns  
ns  
ns  
tw(TBH)  
tw(TBL)  
tc(TB)  
TBiIN input high-level pulse width (one edge count)  
TBiIN input low-level pulse width (one edge count)  
TBiIN input cycle time (both edges count)  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width (both edges count)  
TBiIN input low-level pulse width (both edges count)  
80  
Timer B input (Pulse period measurement mode)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
320  
160  
160  
Max.  
Max.  
Max.  
tc(TB)  
tw(TBH)  
tw(TBL)  
TBiIN input cycle time (Note)  
TBiIN input high-level pulse width (Note)  
TBiIN input low-level pulse width (Note)  
ns  
ns  
ns  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.  
Timer B input (Pulse width measurement mode)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
320  
160  
160  
tc(TB)  
tw(TBH)  
tw(TBL)  
TBiIN input cycle time (Note)  
TBiIN input high-level pulse width (Note)  
TBiIN input low-level pulse width (Note)  
ns  
ns  
ns  
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS
A-D trigger input  
Limits  
Limits  
Symbol  
Pa
Unit  
Min.  
1000  
125  
_____  
tc(AD)  
tw(ADL)  
ADTRG input cycle time (minimum allow
_____  
ns  
ns  
ADTRG input low-level pulse width  
Serial I/O  
Symbol  
Parameter  
Unit  
Min.  
200  
100  
100  
Max.  
80  
tc(CK)  
CLKi input cycle ti
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(CKH)  
tw(CKL)  
td(C–Q)  
th(C–Q)  
tsu(D–C)  
th(C–D)  
CLKi input high-lidth  
CLKi input low-levewidth  
TXDi output delay time  
TXDi hold time  
RXDi input setup time  
RXDi input hold time  
0
30  
90  
____  
___  
External interrupt INTi input, key input interrupt KIi input  
Limits  
Symbol  
Parameter  
Unit  
Min.  
250  
250  
250  
Max.  
____  
tw(INH)  
tw(INL)  
tw(KIL)  
INTi input high-level pulse width  
____  
ns  
ns  
ns  
INTi input low-level pulse width  
___  
KIi input low-level pulse width  
22  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
DATA FORMULAS  
Timer A input (Gating input in timer mode)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Max.  
8 109  
2 • f(f2)  
4 109  
2 • f(f2)  
4 109  
2 • f(f2)  
tc(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
Timer A input (External trigger input in one-shot pulse mode)  
Symbol Parameter  
Limits  
Unit  
ns  
Min.  
Max.  
109  
• f(f2)  
tc(TA)  
TAiIN input cycle time  
Timer B input (In pulse period measurement mode or pulse width measure
Symbol Parameter  
Limits  
Unit  
ns  
Min.  
Max.  
8 109  
2 • f(f2)  
4 109  
2 • f(f2)  
109  
2 • f(f2)  
tc(TB)  
TBiIN input cycle time  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width  
TBiIN input low-level pulse width  
ns  
4
ns  
Note. f(f2) represents the clock f2 frequency.  
For the relation to the main clock and sub to Table 10 in data sheet “M37735MHBXXXFP”.  
23  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS  
(VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to +85°C, f(XIN) = 25 MHz, unless otherwise noted (Note))  
Microprocessor mode  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Fig. 14  
Min.  
Max.  
80  
td(WE–P4Q)  
td(WE–P5Q)  
td(WE–P6Q)  
td(WE–P7Q)  
td(WE–P8Q)  
Port P4 data output delay time  
Port P5 data output delay time  
Port P6 data output delay time  
Port P7 data output delay time  
Port P8 data output delay time  
ns  
ns  
ns  
ns  
ns  
80  
80  
80  
80  
Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.  
CS0 CS4  
RSMP  
A16, A17  
A0/D0 – A15/D15  
50 pF  
WEL  
WE
5  
P 6  
P 7  
P 8  
1
RDE  
Fig. g circuit for each pin  
24  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to +85 °C, f(XIN) = 25 MHz, unless otherwise noted (Note 1))  
Limits  
Test  
conditions  
(Note 2)  
Symbol  
Parameter  
Unit  
Wait mode  
No wait  
Wait 1  
Min.  
Max.  
td(CS–WE)  
td(CS–RDE)  
12  
87  
4
ns  
ns  
ns  
Chip-select output delay time  
Wait 0  
th(WE–CS)  
th(RDE–CS)  
Chip-select hold time  
No wait  
Wait 1  
Wait 0  
No wait  
Wait 1  
Wait 0  
td(An–WE)  
td(An–RDE)  
12  
ns  
Address output delay time  
87  
12  
ns  
ns  
td(A–WE)  
Address output delay time  
Address hold time  
td(A–RDE)  
75  
18  
ns  
ns  
th(WE–An)  
th(RDE–An)  
No wait  
Wait 1  
Wait 0  
No
1  
ait 0  
No wait  
Wait 1  
Wait 0  
22  
57  
5
ns  
ns  
ns  
ns  
tw(ALE)  
ALE pulse width  
. 14  
tsu(A–ALE)  
th(ALE–A)  
Address output setup time  
Address hold time  
45  
9
ns  
ns  
15  
4
ns  
ns  
td(ALE–WE)  
td(ALE–RDE)  
ALE output delay time  
10  
45  
5
td(WE–DQ)  
th(WE–DQ)  
Data output delay time  
Data hold time  
ns  
ns  
ns  
18  
50  
No wait  
Wait 1  
Wait 0  
___ ___  
tw(WE)  
WEL/WEH pulse width  
130  
ns  
tpxz(RDE–DZ)  
tpzx(RDE–DZ)  
ns  
ns  
ns  
Floating start delay time  
Floating release delay time  
20  
48  
No wait  
Wait 1  
Wait 0  
___  
RDE pulse width  
tw(RDE)  
ns  
128  
____  
RSMP output del
____  
RSMP hold time  
td(RSMP–WE)  
td(RSMP–RDE)  
10  
0
ns  
ns  
th(  
1–RSMP)  
td(WE–  
td(RDE–  
1)  
1)  
0
1 output delay time  
____  
ns  
ns  
18  
50  
td( 1–HLDA) HLDA output delay time  
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.  
2. No wait : Wait bit = “1”.  
Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”.  
Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.  
25  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
Bus timing data formulas (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to +85 °C, f(XIN) = 25 MHz (Max.), unless otherwise noted (Note1))  
Limits  
Symbol  
Parameter  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wait mode  
No wait  
Wait 1  
Min.  
1 109  
2 • f(f2)  
3 109  
2 • f(f2)  
Max.  
–28  
td(CS–WE)  
td(CS–RDE)  
Chip-select output delay time  
Chip-select hold time  
Wait 0  
– 33  
th(WE–CS)  
th(RDE–CS)  
4
No wait  
Wait 1  
1 109  
2 • f(f2)  
3 109  
2 • f(f2)  
1 109  
2 • f(f2)  
109  
09  
• f(f2)  
1 109  
2 • f(f2)  
2 109  
2 • f(f2)  
1 109  
2 • f(f2)  
2 109  
2• f(f2)  
– 28  
– 33  
– 28  
– 45  
– 22  
– 18  
– 23  
– 35  
– 35  
td(An–WE)  
Address output delay time  
td(An–RDE)  
Wait 0  
No wait  
Wait 1  
td(A–WE)  
Address output delay time  
td(A–RDE)  
Wait 0  
th(WE–An)  
Address hold time  
ALE pulse width  
th(RDE–An)  
No
tw(ALE)  
wait  
Wait 1  
Address output setup time  
Address hold time  
tsu(A–ALE)  
th(ALE–A)  
Wait 0  
No wait  
Wait 1  
9
1 109  
2 • f(f2)  
– 25  
– 30  
Wait 0  
No wait  
Wait 1  
4
td(ALE–WE)  
td(ALE–RDE)  
ALE output delay time  
1 109  
2 • f(f2)  
Wait 0  
td(WE–DQ)  
th(WE–DQ)  
45  
ns  
ns  
Data output delay time  
Data hold time  
1 109  
2 • f(f2)  
2 109  
2 • f(f2)  
4 109  
2 • f(f2)  
– 22  
– 30  
– 30  
ns  
ns  
No wait  
___ ___  
WEL/WEH pulse widt
tw(WE)  
Wait 1  
Wait 0  
tpxz(RDE–DZ)  
tpzx(RDE–DZ)  
Floating start delay time  
5
ns  
ns  
1 109  
2 • f(f2)  
2 109  
2 • f(f2)  
4 109  
2 • f(f2)  
1 109  
2 • f(f2)  
– 20  
– 32  
– 32  
– 30  
Floating release delay time  
ns  
ns  
ns  
No wait  
___  
RDE pulse width  
tw(RDE)  
Wait 1  
Wait 0  
____  
RSMP output delay time  
____  
td(RSMP–WE)  
td(RSMP–RDE)  
th(  
td(WE–  
td(RDE–  
1–RSMP)  
0
ns  
ns  
RSMP hold time  
1)  
1)  
18  
1 output delay time  
0
Notes 1. This applies when the main clock division selection bit = “0”.  
2. f(f2) represents the clock f2 frequency.  
For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37735MHBXXXFP”.  
26  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
TIMING DIAGRAM  
tw(H)  
tw(L)  
tr  
tf  
tc  
XIN  
RDE, WEL, WEH  
Port P4 output  
Port P4 input  
t
t
t
t
t
d(WE–P4Q)  
h(RDE–P4D)  
d(WE–P5Q)  
h(RDE–P5D)  
t
su(P4D–RDE)  
Port P5 output  
Port P5 input  
tsu(P5D–RDE)  
Port P6 output  
Port P6 input  
tsu(P6D–RDE)  
E–P6D)  
td(WE–P7Q)  
Port P7 output  
Port P7 input  
)  
th(RDE–P7D)  
td(WE–P8Q)  
Port P8 output  
Port P8 input  
tsu(P8D–RDE)  
th(RDE–P8D)  
27  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
t
c(TA)  
tw(TAH)  
TAiIN input  
tw(TAL)  
tc(UP)  
t
w(UPH)  
TAiOUT input  
t
w(UPL)  
In event count mode  
TAiOUT input  
(Up-down input)  
TAiIN input  
(when count by falling)  
TAiIN input  
t
h(TIN–UP)  
tsu(UP–TIN
(when count by rising)  
In event counter mode  
(When two-phase pulse input is selected)  
tc(TA)  
TAjIN input  
t
su(TAjIN–TAjOUT)  
N–TAjOUT)  
t
su(TAjOUT–TAjIN)  
TAjOUT input  
t
su(TAjOUT–TAjIN)  
t
c(TB)  
BH)  
TBiIN input  
tw(TBL)  
28  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
t
t
c(AD)  
t
w(ADL)  
ADTRG input  
c(CK)  
t
w(CKH)  
CLK  
i
t
w(CKL)  
th(C–Q)  
TxD  
i
t
d(C–Q)  
tsu(D–C)  
RxD  
i
t
w(INL)  
INTi input  
Kli input  
tw(KNL)  
29  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(When wait bit = “1”)  
1
WEL  
WEH  
RDE  
RDY input  
t
su(RDY–  
1)  
th(  
1–RDY)  
(When wait bit = “0”)  
1
WEL  
WEH  
RDE  
RDY input  
RDY–  
1)  
t
h(  
1–RDY)  
(When wait bit = “1” or “0” in
1
tsu(HOLD–  
1)  
th(  
1–HOLD)  
HOLD input  
td(  
1–HLDA)  
t
d(  
1–HLDA)  
HLDA output  
Test conditions  
• VCC = 5 V ± 10%  
• Input timing voltage : VIL = 1.0 V, VIH = 4.0 V  
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V  
30  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(No wait : When wait bit = “1”)  
t
w(L)  
t
w(H)  
tf  
tr  
tc  
X
IN  
1
td(WE–  
1)  
t
d(WE–  
1)  
t
d(RDE–  
1)  
t
d(RDE–  
1)  
CS0  
CS4  
td(CS–WE)  
td(CS–RDE)  
th(WE–CS)  
th(RDE–CS)  
An  
Address  
Address  
Address  
td(An–WE)  
)  
t
h(RDE–An)  
t
w(ALE)  
td(ALE–WE)  
th(WE–An)  
ALE  
td(ALE–RDE)  
th(ALE
tsu(A–ALE)  
th(WE–DQ)  
tpxz(RDE–DZ)  
tpzx(RDE–DZ)  
Am/Dm  
Addre
Data  
Address  
Address  
t
d(A–RDE)  
td(WE–DQ)  
t
w(WE)  
th(RDE–D)  
WEL, WEH  
DmIN  
t
su(D–RDE)  
Data  
tw(RDE)  
RDE  
th(  
1–RSMP)  
td(RSMP–RDE)  
td(RSMP–WE)  
RSMP  
Test condition  
• Vcc = 5 V ± 10%  
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V  
• Data input DmIN : VIL = 0.8 V, VIH = 2.5 V  
31  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)  
tw(L)  
tw(H)  
tf  
t
r
tc  
XIN  
1
td(WE–  
1)  
t
d(WE–  
1)  
td(RDE–  
1)  
t
d(RDE-  
1)  
CS0  
CS4  
th(WE–CS)  
t
h(RDE–CS)  
t
d(
td(CS–WE)  
Address  
ss  
Address  
An  
t
h(RDE–An)  
t
d(An–WE)  
An–RDE)  
t
h(WE-A
tw(ALE)  
t
d(ALE–WE)  
ALE  
td(ALE–RDE)  
tpzx(RDE–DZ)  
tpxz(RDE–DZ)  
t
su(A–ALE)  
t
h(WE–DQ)  
Am/Dm  
Data  
Address  
Address  
td(WE–DQ)  
WE)  
td(A–RDE)  
t
w(WE)  
t
h(RDE–D)  
WEL, WEH  
DmIN  
t
su(D–RDE)  
Data  
t
w(RDE)  
RDE  
th(  
1–RSMP)  
t
d(RSMP–RDE)  
td(RSMP–WE)  
RSMP  
Test condition  
• Vcc = 5 V ± 10%  
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V  
• Data input DmIN : VIL = 0.8 V, VIH = 2.5 V  
32  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Microprocessor mode  
(Wait 0 : The external memory are is accessed when wait bit = “0” and wait selection bit = “0”.)  
t
w(L)  
t
w(H)  
t
f
tr  
tc  
X
IN  
1
t
d(WE–  
1)  
td(RDE–  
1)  
td(RDE–  
1)  
t
d(WE–  
1)  
CS  
An  
0
CS4  
t
h(WE–CS)  
t
d(CS–WE)  
t
d(CS–RDE)  
t
h(RDE–CS)  
Address  
ess  
Address  
t
d(An–WE)  
w(ALE)  
t
h(RDE–An)  
t
td(ALE–WE)  
ALE  
LE–RDE)  
t
su(A–ALE)  
t
pxz(RDE–DZ)  
t
h(WE–DQ)  
tpzx(RDE–DZ)  
Am/Dm  
Address  
Data  
Address  
Address  
t
d(WE–DQ)  
t
d
t
d(A–RDE)  
tw(WE)  
WEL, WEH  
tsu(D–RDE)  
th(RDE–D)  
Data  
DmIN  
t
w(RDE)  
RDE  
t
d(RSMP–RDE)  
th(  
1–RSMP)  
t
d(RSMP–WE)  
RSMP  
Test conditions  
• Vcc = 5 V ± 10%  
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V  
• Data input DmIN : VIL = 0.8 V, VIH = 2.5 V  
33  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
34  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
MEMO  
35  
MITSUBISHI MICROCOMPUTERS  
M37735S4BFP  
16-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1996 MITSUBISHI ELECTRIC CORP.  
H-LF426-A KI-9606 Printed in Japan (ROD)  
New publication, effective Jun. 1996.  
Specifications subject to change without notice.  

相关型号:

M37735S4LHP

16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M37735S4LHP

16-BIT CMOS MICROCOMPUTER
RENESAS

M37736EHB

PROM VERSION OF M37736EHBXXXGP
MITSUBISHI

M37736EHBGP

暂无描述
MITSUBISHI

M37736EHBGS

PROM VERSION OF M37736EHBXXXGP
MITSUBISHI

M37736EHBGS

PROM VERSION OF M37736MHBXXXGP
RENESAS

M37736EHBXXXGP

PROM VERSION OF M37736MHBXXXGP(MICROCOMPUTERS)
MITSUBISHI

M37736EHBXXXGP

PROM VERSION OF M37736MHBXXXGP
RENESAS

M37736EHL

PROM VERSION OF M37736MHLXXXHP(MICROCOMPUTERS)
MITSUBISHI

M37736EHLHP

Microcontroller, 16-Bit, OTPROM, MELPS7700 CPU, 12MHz, CMOS, PQFP100, 14 X 14 MM, 0.50 MM PITCH, PLASTIC, LQFP-100
MITSUBISHI

M37736EHLXXXHP

PROM VERSION OF M37736MHLXXXHP(MICROCOMPUTERS)
MITSUBISHI

M37736EHLXXXHP

PROM VERSION OF M37736MHLXXXHP
RENESAS