M34513M8-XXXFP [RENESAS]

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER; 单片4位微机的CMOS
M34513M8-XXXFP
型号: M34513M8-XXXFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
单片4位微机的CMOS

计算机
文件: 总97页 (文件大小:1262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been  
made to the contents of the document, and these changes do not constitute any alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
DESCRIPTION  
Timers  
The 4513/4514 Group is a 4-bit single-chip microcomputer de-  
signed with CMOS technology. Its CPU is that of the 4500 series  
using a simple, high-speed instruction set. The computer is  
equipped with serial I/O, four 8-bit timers (each timer has a reload  
register), and 10-bit A-D converter.  
Timer 1...................................... 8-bit timer with a reload register  
Timer 2...................................... 8-bit timer with a reload register  
Timer 3...................................... 8-bit timer with a reload register  
Timer 4...................................... 8-bit timer with a reload register  
Interrupt ........................................................................ 8 sources  
Serial I/O....................................................................... 8 bit-wide  
A-D converter .................. 10-bit successive comparison method  
Voltage comparator ........................................................2 circuits  
Watchdog timer ................................................................. 16 bits  
Voltage drop detection circuit  
The various microcomputers in the 4513/4514 Group include varia-  
tions of the built-in memory type and package as shown in the  
table below.  
FEATURES  
Minimum instruction execution time ................................ 0.75 µs  
(at 4.0 MHz oscillation frequency, in high-speed mode, VDD = 4.0  
V to 5.5 V)  
Clock generating circuit (ceramic resonator)  
LED drive directly enabled (port D)  
Supply voltage  
APPLICATION  
Electrical household appliance, consumer electronic products, of-  
• Middle-speed mode  
...... 2.5 V to 5.5 V (at 4.2 MHz oscillation frequency, for Mask  
ROM version and One Time PROM version)  
...... 2.0 V to 5.5 V (at 3.0 MHz oscillation frequency, for Mask  
ROM version)  
fice automation equipment, etc.  
(Operation voltage of A-D conversion: 2.7 V to 5.5 V)  
• High-speed mode  
...... 4.0 V to 5.5 V (at 4.2 MHz oscillation frequency, for Mask  
ROM version and One Time PROM version)  
...... 2.5 V to 5.5 V (at 2.0 MHz oscillation frequency, for Mask  
ROM version and One Time PROM version)  
...... 2.0 V to 5.5 V (at 1.5 MHz oscillation frequency, for Mask  
ROM version)  
(Operation voltage of A-D conversion: 2.7 V to 5.5 V)  
ROM (PROM) size  
RAM size  
(4 bits)  
Product  
Package  
ROM type  
(10 bits)  
M34513M2-XXXSP/FP  
M34513M4-XXXSP/FP  
M34513E4SP/FP (Note)  
M34513M6-XXXFP  
M34513M8-XXXFP  
M34513E8FP (Note)  
M34514M6-XXXFP  
M34514M8-XXXFP  
M34514E8FP (Note)  
2048 words  
4096 words  
4096 words  
6144 words  
8192 words  
8192 words  
6144 words  
8192 words  
8192 words  
SP: 32P4B FP: 32P6U-A  
SP: 32P4B FP: 32P6U-A  
SP: 32P4B FP: 32P6U-A  
32P6U-A  
Mask ROM  
Mask ROM  
128 words  
256 words  
256 words  
384 words  
384 words  
384 words  
384 words  
384 words  
384 words  
One Time PROM  
Mask ROM  
32P6U-A  
Mask ROM  
32P6U-A  
One Time PROM  
Mask ROM  
42P2R-A  
42P2R-A  
Mask ROM  
42P2R-A  
One Time PROM  
Note: shipped in blank  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW) 4513 Group  
1
2
32  
D
D
D
D
D
D
0
1
2
3
4
5
P1  
3
2
1
0
3
2
1
0
31 P1  
3
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P1  
P1  
P0  
P0  
P0  
P0  
4
5
6
7
D
6
/CNTR0  
8
D
7/CNTR1  
9
AIN3/CMP1+  
AIN2/CMP1-  
AIN1/CMP0+  
AIN0/CMP0-  
P2  
P2  
P2  
0/SCK  
10  
11  
12  
13  
14  
15  
16  
1
/SOUT  
2
/SIN  
RESET  
CNVSS  
P3  
1
0
/INT1  
/INT0  
P3  
X
OUT  
IN  
SS  
VDCE  
X
V
VDD  
Outline 32P4B  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
D
D
D
3
4
5
0
1
P0  
P0  
P0  
2
1
0
M34513Mx-XXXFP  
M34513ExFP  
D
D
6
7
/CNTR  
/CNTR  
AIN3/CMP1+  
AIN2/CMP1-  
AIN1/CMP0+  
AIN0/CMP0-  
P2  
P2  
P2  
0
/SCK  
/SOUT  
/SIN  
1
2
P31/INT1  
Outline 32P6U-A  
2
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW) 4514 Group  
1
42  
41  
40  
39  
38  
P1  
P1  
P1  
P0  
P0  
P0  
P0  
2
1
0
3
2
1
0
P1  
D
D
D
D
D
D
3
0
1
2
3
4
5
2
3
4
5
6
37  
36  
35  
34  
7
8
P4  
P4  
P4  
3
2
1
0
/AIN7  
/AIN6  
/AIN5  
/AIN4  
D
6
7
/CNTR0  
/CNTR1  
9
D
33  
10  
11  
P5  
P5  
P5  
P5  
0
1
2
3
32 P4  
31  
30  
A
IN3/CMP1+  
IN2/CMP1-  
IN1/CMP0+  
IN0/CMP0-  
12  
13  
14  
15  
A
29  
28  
27  
26  
25  
A
P20/SCK  
A
P2  
1
/SOUT  
P3  
3
2
16  
17  
P2  
2
/SIN  
P3  
RESET  
CNVSS  
P3  
1
/INT1  
/INT0  
18  
X
OUT 19  
P3  
0
24  
23  
20  
21  
X
IN  
VDCE  
22  
V
DD  
V
SS  
Outline 42P2R-A  
3
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
BLOCK DIAGRAM (4513 Group)  
4
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
BLOCK DIAGRAM (4514 Group)  
5
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PERFORMANCE OVERVIEW  
Parameter  
Function  
4513 Group  
4514 Group  
Number of  
123  
128  
basic instructions  
Minimum instruction execution time  
0.75 µs (at 4.0 MHz oscillation frequency, in high-speed mode)  
2048 words 10 bits  
4096 words 10 bits  
6144 words 10 bits  
8192 words 10 bits  
6144 words 10 bits  
8192 words 10 bits  
128 words 4 bits  
ROM  
M34513M2  
Memory sizes  
M34513M4/E4  
M34513M6  
M34513M8/E8  
M34514M6  
M34514M8/E8  
M34513M2  
RAM  
M34513M4/E4  
M34513M6  
256 words 4 bits  
384 words 4 bits  
M34513M8/E8  
M34514M6  
384 words 4 bits  
384 words 4 bits  
M34514M8/E8  
384 words 4 bits  
D0D7  
I/O (Input is  
examined by  
skip decision)  
Input/Output  
ports  
Eight independent I/O ports;  
ports D6 and D7 are also used as CNTR0 and CNTR1, respectively.  
P00P03 I/O  
4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both  
functions can be switched by software.  
P10P13 I/O  
4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both  
functions can be switched by software.  
P20P22 Input  
P30P33 I/O  
3-bit input port; ports P20, P21 and P22 are also used as SCK, SOUT and SIN, respectively.  
4-bit I/O port (2-bit I/O port for the 4513 Group); ports P30 and P31 are also used as INT0 and  
INT1, respectively. The 4513 Group does not have ports P32, P33.  
P40P43 I/O  
P50P53 I/O  
CNTR0 I/O  
CNTR1 I/O  
4-bit I/O port; The 4513 Group does not have this port.  
4-bit I/O port with a direction register; The 4513 Group does not have this port.  
1-bit I/O; CNTR0 pin is also used as port D6.  
1-bit I/O; CNTR1 pin is also used as port D7.  
1-bit input; INT0 pin is also used as port P30 and equipped with a key-on wakeup function.  
1-bit input; INT1 pin is also used as port P31 and equipped with a key-on wakeup function.  
8-bit programmable timer with a reload register.  
8-bit programmable timer with a reload register is also used as an event counter.  
8-bit programmable timer with a reload register.  
8-bit programmable timer with a reload register is also used as an event counter.  
10-bit wide, This is equipped with an 8-bit comparator function.  
2 circuits (CMP0, CMP1)  
INT0  
Input  
Input  
INT1  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
Timers  
A-D converter  
Voltage comparator  
Serial I/O  
8-bit 1  
Sources  
Nesting  
Interrupt  
8 (two for external, four for timer, one for A-D, and one for serial I/O)  
1 level  
Subroutine nesting  
Device structure  
8 levels  
CMOS silicon gate  
4513 Group  
4514 Group  
Package  
32-pin plastic molded SDIP (32P4B)/LQFP(32P6U-A)  
42-pin plastic molded SSOP (42P2R-A)  
Operating temperature range  
Supply voltage  
20 °C to 85 °C  
2.0 V to 5.5 V for Mask ROM version, 2.5 V to 5.5 V for One Time PROM version (Refer to the  
electrical characteristics because the supply voltage depends on the oscillation frequency.)  
Active mode  
Power  
1.8 mA (at VDD = 5.0 V, 4.0 MHz oscillation frequency, in middle- speed mode, output transis-  
tors in the cut-off state)  
dissipation  
(typical value)  
3.0 mA (at VDD = 5.0 V, 4.0 MHz oscillation frequency, in high-speed mode, output transistors  
in the cut-off state)  
RAM back-up mode  
0.1 µA (at room temperature, VDD = 5 V, output transistors in the cut-off state)  
6
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Name  
Function  
Pin  
Input/Output  
Power supply  
Ground  
Connected to a plus power supply.  
VDD  
VSS  
Connected to a 0 V power supply.  
Voltage drop detec-  
tion circuit enable  
VDCE pin is used to control the operation/stop of the voltage drop detection circuit.  
When Hlevel is input to this pin, the circuit is operating. When Llevel is inpu to  
this pin, the circuit is stopped.  
VDCE  
Input  
CNVSS  
RESET  
CNVSS  
Connect CNVSS to VSS and apply L(0V) to CNVSS certainly.  
Reset input  
An N-channel open-drain I/O pin for a system reset. When the watchdog timer  
causes the system to be reset or system reset is performed by the voltage drop de-  
tection circuit, the RESET pin outputs Llevel.  
I/O  
XIN  
System clock input  
System clock output  
I/O pins of the system clock generating circuit. XIN and XOUT can be connected to  
ceramic resonator. A feedback resistor is built-in between them.  
Input  
Output  
I/O  
XOUT  
D0D7  
Each pin of port D has an independent 1-bit wide I/O function. Each pin has an out-  
put latch. For input use, set the latch of the specified bit to 1.The output structure  
is N-channel open-drain.  
I/O port D  
(Input is examined  
by skip decision.)  
Ports D6 and D7 are also used as CNTR0 and CNTR1, respectively.  
P00P03  
I/O port P0  
Each of ports P0 and P1 serves as a 4-bit I/O port, and it can be used as inputs  
when the output latch is set to 1.The output structure is N-channel open-drain.  
Every pin of the ports has a key-on wakeup function and a pull-up function. Both  
functions can be switched by software.  
I/O  
I/O  
P10P13  
P20P22  
I/O port P1  
Input port P2  
3-bit input port. Ports P20, P21 and P22 are also used as SCK, SOUT and SIN, re-  
spectively.  
Input  
I/O  
P30P33  
P40P43  
P50P53  
I/O port P3  
I/O port P4  
I/O port P5  
4-bit I/O port (2-bit I/O port for the 4513 Group). For input use, set the latch of the  
specified bit to 1.The output structure is N-channel open-drain. Ports P30 and  
P31 are also used as INT0 and INT1, respectively.  
The 4513 Group does not have ports P32, P33.  
I/O  
I/O  
4-bit I/O port. For input use, set the latch of the specified bit to 1.The output  
structure is N-channel open-drain. Ports P40P43 are also used as analog input  
pins AIN4AIN7, respectively.  
The 4513 Group does not have port P4.  
4-bit I/O port. Each pin has a direction register and an independent 1-bit wide I/O  
function. For input use, set the direction register to 0.For output use, set the di-  
rection regiser to 1.The output structure is CMOS.  
The 4513 Group does not have port P5.  
AIN0AIN7  
CNTR0  
Analog input  
Input  
I/O  
Analog input pins for A-D converter. AIN0AIN3 are also used as voltage compara-  
tor input pins and AIN4AIN7 are also used as port P4.  
The 4513 Group does not have AIN4AIN7.  
Timer input/output  
Timer input/output  
CNTR0 pin has the function to input the clock for the timer 2 event counter, and to  
output the timer 1 underflow signal divided by 2.  
CNTR0 pin is also used as port D6.  
CNTR1  
I/O  
CNTR1 pin has the function to input the clock for the timer 4 event counter, and to  
output the timer 3 underflow signal divided by 2.  
CNTR1 pin is also used as port D7.  
INT0, INT1 Interrupt input  
Input  
INT0, INT1 pins accept external interrupts. They also accept the input signal to re-  
turn the system from the RAM back-up state.  
INT0, INT1 pins are also used as ports P30 and P31, respectively.  
SIN  
Serial data input  
Serial data output  
Input  
Output  
I/O  
SIN pin is used to input serial data signals by software.  
SIN pin is also used as port P22.  
SOUT  
SCK  
SOUT pin is used to output serial data signals by software.  
SOUT pin is also used as port P21.  
Serial I/O clock  
input/output  
SCK pin is used to input and output synchronous clock signals for serial data trans-  
fer by software.  
SCK pin is also used as port P20.  
CMP0-  
CMP0+  
Voltage comparator  
input  
Input  
Input  
CMP0-, CMP0+ pins are used as the voltage comparator input pin when the volt-  
age comparator function is selected by software.  
CMP0-, CMP0+ pins are also used as AIN0 and AIN1.  
CMP1-  
CMP1+  
Voltage comparator  
input  
CMP1-, CMP1+ pins are used as the voltage comparator input pin when the volt-  
age comparator function is selected by software.  
CMP1-, CMP1+ pins are also used as AIN2 and AIN3.  
7
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MULTIFUNCTION  
Pin  
CNTR0  
CNTR1  
SCK  
Pin  
Multifunction  
Multifunction  
Pin  
Pin  
CMP0-  
CMP0+  
CMP1-  
CMP1+  
AIN4  
Multifunction  
CMP0-  
Multifunction  
D6  
D7  
CNTR0  
CNTR1  
SCK  
D6  
D7  
AIN0  
AIN0  
AIN1  
AIN2  
AIN3  
P40  
P41  
P42  
P43  
CMP0+  
CMP1-  
CMP1+  
AIN4  
AIN1  
AIN2  
AIN3  
P40  
P41  
P42  
P43  
P20  
P21  
P22  
P30  
P31  
P20  
P21  
P22  
P30  
P31  
SOUT  
SIN  
SOUT  
SIN  
INT0  
INT0  
INT1  
AIN5  
AIN5  
INT1  
AIN6  
AIN6  
AIN7  
AIN7  
Notes 1: Pins except above have just single function.  
2: The input of D6, D7, P20P22, CMP0-, CMP0+, CMP1-, CMP1+ and the input/output of P30, P31, P40P43 can be used even when CNTR0, CNTR1,  
SCK, SOUT, SIN, INT0, INT1, and AIN0AIN7 are selected.  
3: The 4513 Group does not have P40/AIN4P43/AIN7.  
CONNECTIONS OF UNUSED PINS  
Notes 1: After system is released from reset, port P5 is in an input mode (di-  
rection register FR0 = 00002)  
Connection  
Open (when using an external clock).  
Connect to VSS.  
Pin  
XOUT  
2: When the P00P03 and P10P13 are connected to VSS, turn off  
their pull-up transistors (register PU0i=0) and also invalidate the  
key-on wakeup functions (register K0i=0) by software. When  
these pins are connected to VSS while the key-on wakeup func-  
tions are left valid, the system fails to return from RAM back-up  
state. When these pins are open, turn on their pull-up transistors  
(register PU0i=1) by software, or set the output latch to 0.”  
Be sure to select the key-on wakeup functions and the pull-up  
functions with every two pins. If only one of the two pins for the  
key-on wakeup function is used, turn on their pull-up transistors by  
software and also disconnect the other pin. (i = 0, 1, 2, or 3.)  
VDCE  
D0D5  
Connect to VSS, or set the output latch to  
0and open.  
D6/CNTR0  
D7/CNTR1  
Connect to VSS.  
P20/SCK  
P21/SOUT  
P22/SIN  
P30/INT0  
P31/INT1  
P32, P33  
Connect to VSS, or set the output latch to  
0and open.  
(Note when the output latch is set to 0and pins are open)  
After system is released from reset, port is in a high-impedance state un-  
til it is set the output latch to 0by software. Accordingly, the voltage  
level of pins is undefined and the excess of the supply current may occur  
while the port is in a high-impedance state.  
To set the output latch periodically by software is recommended because  
value of output latch may change by noise or a program run away  
(caused by noise).  
P40/AIN4P43/AIN7  
Connect to VSS, or set the output latch to  
0and open.  
P50P53 (Note 1)  
When the input mode is selected by soft-  
ware, pull-up to VDD through a resistor or  
pull-down to VDD.  
When selecting the output mode, open.  
AIN0/CMP0-  
AIN1/CMP0+  
AIN2/CMP1-  
AIN3/CMP1+  
Connect to VSS.  
(Note when connecting to VSS and VDD)  
Connect the unused pins to VSS and VDD using the thickest wire at the  
shortest distance against noise.  
P00P03  
P10P13  
Open or connect to VSS (Note 2)  
Open or connect to VSS (Note 2)  
8
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PORT FUNCTION  
Input  
Output  
I/O  
unit  
Control  
instructions registers  
Control  
Port  
Pin  
Output structure  
Remark  
I/O  
(8)  
1
SD, RD  
SZD  
CLD  
Port D  
D0D5  
D6/CNTR0  
D7/CNTR1  
N-channel open-drain  
W6  
I/O  
(4)  
4
OP0A  
IAP0  
PU0, K0  
PU0, K0  
Port P0  
Port P1  
Port P2  
P00P03  
N-channel open-drain  
N-channel open-drain  
Built-in programmable pull-up  
functions  
Key-on wakeup functions  
(programmable)  
I/O  
(4)  
4
OP1A  
IAP1  
P10P13  
Built-in programmable pull-up  
functions  
Key-on wakeup functions  
(programmable)  
Input  
(3)  
3
4
IAP2  
J1  
P20/SCK  
P21/SOUT  
P22/SIN  
I/O  
(4)  
OP3A  
IAP3  
I1, I2  
Port P3  
(Note 1)  
P30/INT0  
P31/INT1  
P32, P33  
N-channel open-drain  
Built-in key-on wakeup  
function  
(P30/INT0, P31/INT1)  
I/O  
(4)  
4
4
OP4A  
IAP4  
Q2  
Port P4  
(Note 2)  
P40/AIN4  
P43/AIN7  
N-channel open-drain  
CMOS  
I/O  
(4)  
OP5A  
IAP5  
FR0  
Port P5  
(Note 2)  
P50P53  
Notes 1: The 4513 Group does not have P32 and P33.  
2: The 4513 Group does not have these ports.  
DEFINITION OF CLOCK AND CYCLE  
System clock  
The system clock is the basic clock for controlling this product.  
The system clock is selected by the bit 3 of the clock control reg-  
ister MR.  
Table Selection of system clock  
Register MR  
System clock  
MR3  
0
1
f(XIN)  
f(XIN)/2  
Note: f(XIN)/2 is selected after system is released from reset.  
Instruction clock  
The instruction clock is a signal derived by dividing the system  
clock by 3. The one instruction clock cycle generates the one  
machine cycle.  
Machine cycle  
The machine cycle is the standard cycle required to execute the  
instruction.  
9
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PORT BLOCK DIAGRAMS  
K00  
Pull-up transistor  
PU0  
Key-on wakeup input  
0
IAP0 instruction  
D
Register A  
Ai  
P00,P01  
T
Q
OP0A instruction  
K01  
Pull-up transistor  
PU0  
Key-on wakeup input  
1
IAP0 instruction  
D
P02,P03  
Register A  
Ai  
Q
T
OP0A instruction  
K02  
Pull-up transistor  
PU0  
Key-on wakeup input  
2
IAP1 instruction  
D
P10,P11  
Register A  
Ai  
T
Q
OP1A instruction  
K03  
Pull-up transistor  
Key-on wakeup input  
PU0  
3
IAP1 instruction  
D
Register A  
Ai  
P12,P13  
T
OP1A instruction  
Q
This symbol represents a parasitic diode on the port.  
i represents 0, 1, 2, or 3.  
10  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PORT BLOCK DIAGRAMS (continued)  
IAP2 instruction  
Register A  
Synchronous clock input for serial transfer  
J1  
1
P20/SCK  
0
Synchronous clock output for serial transfer  
J1  
1
0
IAP2 instruction  
Register A  
J1  
0
1
P21/SOUT  
1
Serial data output  
Serial data input  
IAP2 instruction  
Register A  
P22/SIN  
Key-on wakeup input  
External interrupt circuit  
IAP3 instruction  
Register A  
Ai  
P30/INT0,P31/INT1  
D
T
OP3A instruction  
Q
IAP3 instruction  
Register A  
Ai  
P32,P33  
D
OP3A instruction  
T
Q
This symbol represents a parasitic diode on the port.  
Applied potential to ports P2  
0
P2  
2
must be VDD  
.
i represents 0, 1, 2, or 3.  
The 4513 Group does not have ports P3  
2, P33.  
11  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PORT BLOCK DIAGRAMS (continued)  
Q1  
Decoder  
Analog input  
A
IN0/CMP0-  
-
Q30  
+
Q32  
CMP0  
Q1  
Decoder  
AIN1/CMP0+  
Analog input  
Q1  
Decoder  
Analog input  
AIN2/CMP1-  
-
Q31  
+
Q33  
CMP1  
Q1  
Decoder  
AIN3/CMP1+  
Analog input  
IAP4 instruction  
P40/AIN4P43/AIN7  
Register A  
Q1  
Ai  
D
OP4A instruction  
T
Q
Decoder  
Analog input  
This symbol represents a parasitic diode on the port.  
i represents 0, 1, 2, or 3.  
The 4513 Group does not have port P4.  
12  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PORT BLOCK DIAGRAMS (continued)  
Direction register FR0i  
Ai  
D
T
Q
P50P53  
OP5A instruction  
Register A  
IAP5 instruction  
Skip decision  
(SZD instruction)  
Register Y  
Decoder  
CLD instruction  
D0D5  
S
R
SD instruction  
RD instruction  
Q
(SZD instruction)  
Skip decision  
Clock input for timer 2 event count  
Decoder  
Register Y  
CLD instruction  
S
W6  
0
D6/CNTR0  
SD instruction  
RD instruction  
0
R
Q
1
Timer 1 underflow signal divided by 2 or  
signal of AND operation between  
timer 1 underflow signal divided by 2 and  
timer 2 underflow signal divided by 2  
Skip decision  
(SZD instruction)  
Clock input for timer 4 event count  
Decoder  
CLD instruction  
Register Y  
S
W6  
2
D7/CNTR1  
SD instruction  
RD instruction  
R
0
Q
Timer 3 underflow signal divided by 2 or  
signal of AND operation between  
1
timer 3 underflow signal divided by 2 and  
timer 4 underflow signal divided by 2  
This symbol represents a parasitic diode on the port.  
Applied potential to ports D  
i represents 0, 1, 2, or 3.  
0D7 must be 12 V.  
The 4513 Group does not have port P5.  
13  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
I1  
2
One-sided edge  
detection circuit  
I11  
Falling  
0
0
External 0  
EXF0  
P30/INT0  
interrupt  
1
1
Both edges  
detection circuit  
Rising  
Wakeup  
Skip  
SNZI0  
I2  
2
One-sided edge  
detection circuit  
I21  
Falling  
0
0
External 1  
interrupt  
EXF1  
P31/INT1  
1
1
Both edges  
detection circuit  
Rising  
Wakeup  
Skip  
SNZI1  
This symbol represents a parasitic diode on the port.  
External interrupt circuit structure  
14  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
FUNCTION BLOCK OPERATIONS  
CPU  
<Carry>  
(CY)  
(1) Arithmetic logic unit (ALU)  
(M(DP))  
The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-  
bit data addition, comparison, AND operation, OR operation, and  
bit manipulation.  
Addition  
ALU  
(A)  
<Result>  
(2) Register A and carry flag  
Register A is a 4-bit register used for arithmetic, transfer, ex-  
change, and I/O operation.  
Fig. 1 AMC instruction execution example  
Carry flag CY is a 1-bit flag that is set to “1” when there is a carry  
with the AMC instruction (Figure 1).  
<Set>  
SC instruction  
<Clear>  
RC instruction  
It is unchanged with both A n instruction and AM instruction. The  
value of A0 is stored in carry flag CY with the RAR instruction (Fig-  
ure 2).  
Carry flag CY can be set to “1” with the SC instruction and cleared  
to “0” with the RC instruction.  
CY  
A3  
A2  
A1 A0  
(3) Registers B and E  
<Rotation>  
RAR instruction  
Register B is a 4-bit register used for temporary storage of 4-bit  
data, and for 8-bit data transfer together with register A.  
Register E is an 8-bit register. It can be used for 8-bit data transfer  
with register B used as the high-order 4 bits and register A as the  
low-order 4 bits (Figure 3).  
A0  
CY A  
3
A2 A1  
Fig. 2 RAR instruction execution example  
TAB instruction  
Register B  
(4) Register D  
Register D is a 3-bit register.  
Register A  
B
3
B
2
B
1
B
0
A
3
A
2
A
1
A0  
It is used to store a 7-bit ROM address together with register A and  
is used as a pointer within the specified page when the TABP p,  
BLA p, or BMLA p instruction is executed (Figure 4).  
TEAB instruction  
Register E E  
7 E6 E5 E4 E3 E2  
E
1
E
0
TABE instruction  
A
3 A2 A1 A0  
B
3 B2 B1 B0  
TBA instruction  
Register B  
Register A  
Fig. 3 Registers A, B and register E  
TABP p instruction  
ROM  
8
4
0
Specifying address  
Low-order 4bits  
PCH  
PCL  
Register A (4)  
Register B (4)  
p6  
p5  
p
4
p
3
p
2
p1  
p0  
A
3 A2 A1 A0  
DR2DR1DR0  
Middle-order 4 bits  
The contents of The contents of  
register D register A  
Immediate field  
value p  
Fig. 4 TABP p instruction execution example  
15  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(5) Stack registers (SKS) and stack pointer (SP)  
Stack registers (SKs) are used to temporarily store the contents of  
program counter (PC) just before branching until returning to the  
original routine when;  
Program counter (PC)  
Executing BM  
Executing RT  
instruction  
instruction  
branching to an interrupt service routine (referred to as an inter-  
rupt service routine),  
SK  
0
(SP) = 0  
(SP) = 1  
(SP) = 2  
SK  
1
2
performing a subroutine call, or  
SK  
executing the table reference instruction (TABP p).  
Stack registers (SKs) are eight identical registers, so that subrou-  
tines can be nested up to 8 levels. However, one of stack registers  
is used respectively when using an interrupt service routine and  
when executing a table reference instruction. Accordingly, be care-  
ful not to over the stack when performing these operations  
together. The contents of registers SKs are destroyed when 8 lev-  
els are exceeded.  
SK  
SK  
SK  
SK  
SK  
3
4
5
6
7
(SP) = 3  
(SP) = 4  
(SP) = 5  
(SP) = 6  
(SP) = 7  
Stack pointer (SP) points 7at reset or  
returning from RAM back-up mode. It points 0”  
by executing the first BM instruction, and the  
contents of program counter is stored in SK0.  
When the BM instruction is executed after eight  
The register SK nesting level is pointed automatically by 3-bit  
stack pointer (SP). The contents of the stack pointer (SP) can be  
transferred to register A with the TASP instruction.  
Figure 5 shows the stack registers (SKs) structure.  
Figure 6 shows the example of operation at subroutine call.  
stack registers are used ((SP) = 7), (SP) = 0  
and the contents of SK0 is destroyed.  
Fig. 5 Stack registers (SKs) structure  
(6) Interrupt stack register (SDP)  
Interrupt stack register (SDP) is a 1-stage register. When an inter-  
rupt occurs, this register (SDP) is used to temporarily store the  
contents of data pointer, carry flag, skip flag, register A, and regis-  
ter B just before an interrupt until returning to the original routine.  
Unlike the stack registers (SKs), this register (SDP) is not used  
when executing the subroutine call instruction and the table refer-  
ence instruction.  
(SP) 0  
(SK0) 000116  
(PC) SUB1  
Main program  
Address  
Subroutine  
SUB1 :  
(7) Skip flag  
000016 NOP  
NOP  
·
·
·
Skip flag controls skip decision for the conditional skip instructions  
and continuous described skip instructions. When an interrupt oc-  
curs, the contents of skip flag is stored automatically in the interrupt  
stack register (SDP) and the skip condition is retained.  
000116 BM SUB1  
000216 NOP  
RT  
(PC) (SK  
(SP) 7  
0)  
Returning to the BM instruction execution  
address with the RT instruction, and the BM  
instruction becomes the NOP instruction.  
Note :  
Fig. 6 Example of operation at subroutine call  
16  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Program counter  
(8) Program counter (PC)  
Program counter (PC) is used to specify a ROM address (page and  
address). It determines a sequence in which instructions stored in  
ROM are read. It is a binary counter that increments the number of  
instruction bytes each time an instruction is executed. However,  
the value changes to a specified address when branch instructions,  
subroutine call instructions, return instructions, or the table refer-  
ence instruction (TABP p) is executed.  
p6  
p
5
p4  
p3  
p2  
p1  
p0  
a6 a5 a4 a3 a2 a1 a0  
PC  
H
PC  
L
Specifying page  
Specifying address  
Program counter consists of PCH (most significant bit to bit 7)  
which specifies to a ROM page and PCL (bits 6 to 0) which speci-  
fies an address within a page. After it reaches the last address  
(address 127) of a page, it specifies address 0 of the next page  
(Figure 7).  
Fig. 7 Program counter (PC) structure  
Data pointer (DP)  
Make sure that the PCH does not specify after the last page of the  
built-in ROM.  
Z1 Z0 X3 X2 X1 X0 Y3 Y2 Y1 Y0  
(9) Data pointer (DP)  
Data pointer (DP) is used to specify a RAM address and consists  
of registers Z, X, and Y. Register Z specifies a RAM file group, reg-  
ister X specifies a file, and register Y specifies a RAM digit (Figure  
8).  
Specifying  
RAM digit  
Register Y (4)  
Register X (4)  
Specifying RAM file  
Register Y is also used to specify the port D bit position.  
When using port D, set the port D bit position to register Y certainly  
and execute the SD, RD, or SZD instruction (Figure 9).  
Register Z (2)  
Specifying RAM file group  
Fig. 8 Data pointer (DP) structure  
Specifying bit position  
Set  
D6  
D5  
D4  
D0  
D7  
0
1
0
1
1
Port D output latch  
Register Y (4)  
Fig. 9 SD instruction execution example  
17  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PROGRAM MEMOY (ROM)  
9
8
7
6
5
4
3
2
1
0
The program memory is a mask ROM. 1 word of ROM is composed  
of 10 bits. ROM is separated every 128 words by the unit of page  
(addresses 0 to 127). Table 1 shows the ROM size and pages. Fig-  
ure 10 shows the ROM map of M34514M8/E8.  
000016  
Page 0  
Page 1  
Page 2  
Page 3  
007  
F
00801166  
Interrupt address page  
Subroutine special page  
00FF  
01001166  
Table 1 ROM size and pages  
017  
F
01801166  
ROM size  
Product  
M34513M2  
Pages  
(10 bits)  
2048 words  
4096 words  
6144 words  
8192 words  
6144 words  
8192 words  
16 (0 to 15)  
32 (0 to 31)  
48 (0 to 47)  
64 (0 to 63)  
48 (0 to 47)  
64 (0 to 63)  
M34513M4/E4  
M34513M6  
0FFF16  
Page 31  
Page 63  
M34513M8/E8  
M34514M6  
M34514M8/E8  
1
FFF16  
A part of page 1 (addresses 008016 to 00FF16) is reserved for in-  
terrupt addresses (Figure 11). When an interrupt occurs, the  
address (interrupt address) corresponding to each interrupt is set  
in the program counter, and the instruction at the interrupt address  
is executed. When using an interrupt service routine, write the in-  
struction generating the branch to that routine at an interrupt  
address.  
Fig. 10 ROM map of M34514M8/E8  
9 8  
7
6
5
4
3
2
1 0  
008016 External 0 interrupt address  
Page 2 (addresses 010016 to 017F16) is the special page for sub-  
routine calls. Subroutines written in this page can be called from  
any page with the 1-word instruction (BM). Subroutines extending  
from page 2 to another page can also be called with the BM in-  
struction when it starts on page 2.  
008216 External 1 interrupt address  
Timer 1 interrupt address  
008416  
008616  
Timer 2 interrupt address  
Timer 3 interrupt address  
ROM pattern (bits 7 to 0) of all addresses can be used as data ar-  
eas with the TABP p instruction.  
008816  
008A16  
Timer 4 interrupt address  
A-D interrupt address  
008C16  
008E16  
Serial I/O interrupt address  
00FF16  
Fig. 11 Page 1 (addresses 008016 to 00FF16) structure  
18  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
DATA MEMORY (RAM)  
Table 2 RAM size  
1 word of RAM is composed of 4 bits, but 1-bit manipulation (with  
the SB j, RB j, and SZB j instructions) is enabled for the entire  
memory area. A RAM address is specified by a data pointer. The  
data pointer consists of registers Z, X, and Y. Set a value to the  
data pointer certainly when executing an instruction to access  
RAM.  
Product  
M34513M2  
RAM size  
128 words 4 bits (512 bits)  
256 words 4 bits (1024 bits)  
384 words 4 bits (1536 bits)  
384 words 4 bits (1536 bits)  
384 words 4 bits (1536 bits)  
384 words 4 bits (1536 bits)  
M34513M4/E4  
M34513M6  
M34513M8/E8  
M34514M6  
Table 2 shows the RAM size. Figure 12 shows the RAM map.  
M34514M8/E8  
RAM 384 words 4 bits (1536 bits)  
Register Z  
0
1
4 5  
4 5  
6 7  
0 1  
2
3
6 7  
15 0 1 2 3  
Register X  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
M34513M6  
M34513M8/E8  
M34514M6  
Z=0, X=0 to 15  
Z=1, X=0 to 7  
384 words  
M34514M8/E8  
256 words  
M34513M4/E4 Z=0, X=0 to 15  
Z=0, X=0 to 7  
128 words  
M34513M2  
Fig. 12 RAM map  
19  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Table 3 Interrupt sources  
INTERRUPT FUNCTION  
Priority  
level  
Interrupt  
address  
The interrupt type is a vectored interrupt branching to an individual  
address (interrupt address) according to each interrupt source. An  
interrupt occurs when the following 3 conditions are satisfied.  
An interrupt activated condition is satisfied (request flag = 1)  
Interrupt enable bit is enabled (1)  
Interrupt name  
Activated condition  
1
2
3
4
5
6
7
8
External 0 interrupt Level change of  
INT0 pin  
Address 0  
in page 1  
External 1 interrupt  
Timer 1 interrupt  
Timer 2 interrupt  
Timer 3 interrupt  
Timer 4 interrupt  
A-D interrupt  
Address 2  
in page 1  
Level change of  
INT1 pin  
Interrupt enable flag is enabled (INTE = 1)  
Timer 1 underflow  
Timer 2 underflow  
Timer 3 underflow  
Timer 4 underflow  
Address 4  
in page 1  
Table 3 shows interrupt sources. (Refer to each interrupt request  
flag for details of activated conditions.)  
Address 6  
in page 1  
Address 8  
in page 1  
(1) Interrupt enable flag (INTE)  
The interrupt enable flag (INTE) controls whether the every inter-  
rupt enable/disable. Interrupts are enabled when INTE flag is set to  
1with the EI instruction and disabled when INTE flag is cleared to  
0with the DI instruction. When any interrupt occurs, the INTE flag  
is automatically cleared to 0,so that other interrupts are disabled  
until the EI instruction is executed.  
Address A  
in page 1  
Completion of  
A-D conversion  
Address C  
in page 1  
Serial I/O interrupt  
Address E  
in page 1  
Completion of  
serial I/O transfer  
(2) Interrupt enable bit  
Use an interrupt enable bit of interrupt control registers V1 and V2  
to select the corresponding interrupt or skip instruction.  
Table 4 shows the interrupt request flag, interrupt enable bit and  
skip instruction.  
Table 4 Interrupt request flag, interrupt enable bit and skip in-  
struction  
Request flag Skip instruction Enable bit  
Interrupt name  
External 0 interrupt  
External 1 interrupt  
Timer 1 interrupt  
Timer 2 interrupt  
Timer 3 interrupt  
Timer 4 interrupt  
A-D interrupt  
EXF0  
EXF1  
T1F  
SNZ0  
SNZ1  
V10  
V11  
V12  
V13  
V20  
V21  
V22  
V23  
Table 5 shows the interrupt enable bit function.  
SNZT1  
SNZT2  
SNZT3  
SNZT4  
SNZAD  
SNZSI  
(3) Interrupt request flag  
T2F  
When the activated condition for each interrupt is satisfied, the cor-  
responding interrupt request flag is set to 1.Each interrupt  
request flag is cleared to 0when either;  
T3F  
T4F  
an interrupt occurs, or  
ADF  
SIOF  
the next instruction is skipped with a skip instruction.  
Each interrupt request flag is set when the activated condition is  
satisfied even if the interrupt is disabled by the INTE flag or its in-  
terrupt enable bit. Once set, the interrupt request flag retains set  
until a clear condition is satisfied.  
Serial I/O interrupt  
Table 5 Interrupt enable bit function  
Occurrence of interrupt  
Interrupt enable bit  
Skip instruction  
Invalid  
Enabled  
Disabled  
1
0
Accordingly, an interrupt occurs when the interrupt disable state is  
released while the interrupt request flag is set.  
Valid  
If more than one interrupt request flag is set when the interrupt dis-  
able state is released, the interrupt priority level is as follows  
shown in Table 3.  
20  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(4) Internal state during an interrupt  
The internal state of the microcomputer during an interrupt is as  
follows (Figure 14).  
Program counter (PC)  
............................................................... Each interrupt address  
Program counter (PC)  
Stack register (SK)  
An interrupt address is set in program counter. The address to be  
executed when returning to the main routine is automatically  
stored in the stack register (SK).  
The address of main routine to be  
.............................................
executed when returning  
Interrupt enable flag (INTE)  
Interrupt enable flag (INTE)  
INTE flag is cleared to 0so that interrupts are disabled.  
Interrupt request flag  
.................................................................. 0 (Interrupt disabled)  
Only the request flag for the current interrupt source is cleared to  
0.”  
Interrupt request flag (only the flag for the current interrupt  
source) ................................................................................... 0  
Data pointer, carry flag, skip flag, registers A and B  
The contents of these registers and flags are stored automati-  
cally in the interrupt stack register (SDP).  
Data pointer, carry flag, registers A and B, skip flag  
........ Stored in the interrupt stack register (SDP) automatically  
(5) Interrupt processing  
Fig. 14 Internal state when interrupt occurs  
When an interrupt occurs, a program at an interrupt address is ex-  
ecuted after branching a data store sequence to stack register.  
Write the branch instruction to an interrupt service routine at an in-  
terrupt address.  
INT0 pin  
Address 0  
in page 1  
(LH or  
HL input)  
EXF0  
Use the RTI instruction to return from an interrupt service routine.  
Interrupt enabled by executing the EI instruction is performed after  
executing 1 instruction (just after the next instruction is executed).  
Accordingly, when the EI instruction is executed just before the RTI  
instruction, interrupts are enabled after returning the main routine.  
(Refer to Figure 13)  
V10  
V11  
V12  
INT1 pin  
Address 2  
in page 1  
(LH or  
HL input)  
EXF1  
T1F  
Timer 1  
underflow  
Address 4  
in page 1  
Main  
routine  
Address 6  
in page 1  
Timer 2  
underflow  
T2F  
T3F  
V1  
3
Interrupt  
service routine  
Address 8  
in page 1  
Timer 3  
underflow  
V2  
V2  
0
1
Interrupt  
occurs  
Address A  
in page 1  
Timer 4  
underflow  
T4F  
Address C  
in page 1  
Completion of  
A-D conversion  
ADF  
V2  
2
EI  
RTI  
Interrupt is  
enabled  
Address E  
in page 1  
Completion of  
serial I/O transfer  
INTE  
SIOF  
V2  
3
Request flag  
(state retained)  
Enable  
bit  
Enable  
flag  
Activated  
condition  
Fig. 15 Interrupt system diagram  
: Interrupt enabled state  
: Interrupt disabled state  
Fig. 13 Program example of interrupt processing  
21  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(6) Interrupt control registers  
Interrupt control register V2  
Interrupt control register V1  
Interrupt enable bits of timer 3, timer 4, A-D and serial I/O are as-  
signed to register V2. Set the contents of this register through  
register A with the TV2A instruction. The TAV2 instruction can be  
used to transfer the contents of register V2 to register A.  
Interrupt enable bits of external 0, external 1, timer 1 and timer 2  
are assigned to register V1. Set the contents of this register  
through register A with the TV1A instruction. The TAV1 instruction  
can be used to transfer the contents of register V1 to register A.  
Table 6 Interrupt control registers  
Interrupt control register V1  
Timer 2 interrupt enable bit  
at reset : 00002  
at RAM back-up : 00002  
R/W  
0
1
0
1
0
1
0
1
Interrupt disabled (SNZT2 instruction is valid)  
Interrupt enabled (SNZT2 instruction is invalid)  
Interrupt disabled (SNZT1 instruction is valid)  
Interrupt enabled (SNZT1 instruction is invalid)  
Interrupt disabled (SNZ1 instruction is valid)  
Interrupt enabled (SNZ1 instruction is invalid)  
Interrupt disabled (SNZ0 instruction is valid)  
Interrupt enabled (SNZ0 instruction is invalid)  
V13  
V12  
V11  
V10  
Timer 1 interrupt enable bit  
External 1 interrupt enable bit  
External 0 interrupt enable bit  
Interrupt control register V2  
Serial I/O interrupt enable bit  
A-D interrupt enable bit  
at RAM back-up : 00002  
at reset : 00002  
R/W  
0
1
0
1
0
1
0
1
Interrupt disabled (SNZSI instruction is valid)  
Interrupt enabled (SNZSI instruction is invalid)  
Interrupt disabled (SNZAD instruction is valid)  
Interrupt enabled (SNZAD instruction is invalid)  
Interrupt disabled (SNZT4 instruction is valid)  
Interrupt enabled (SNZT4 instruction is invalid)  
Interrupt disabled (SNZT3 instruction is valid)  
Interrupt enabled (SNZT3 instruction is invalid)  
V23  
V22  
V21  
V20  
Timer 4 interrupt enable bit  
Timer 3 interrupt enable bit  
Note: Rrepresents read enabled, and Wrepresents write enabled.  
22  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(7) Interrupt sequence  
curs after 3 machine cycles only when the three interrupt condi-  
tions are satisfied on execution of other than one-cycle instructions  
(Refer to Figure 16).  
Interrupts only occur when the respective INTE flag, interrupt en-  
able bits (V10V13 and V20V23), and interrupt request flag are  
1.The interrupt actually occurs 2 to 3 machine cycles after the  
cycle in which all three conditions are satisfied. The interrupt oc-  
When an interrupt request flag is set after its interrupt is enabled (Note 1)  
f (XIN) (middle-speed mode)  
f (XIN) (high-speed mode)  
1 machine cycle  
T2  
T3  
T2  
T3  
T2  
T3  
T2  
T3  
T2  
T3  
T1  
T1  
T1  
T1  
T1  
System clock  
EI instruction  
execution cycle  
Interrupt enable  
flag (INTE)  
Interrupt disabled state  
Interrupt enabled state  
Retaining level of system  
clock for 4 periods or more  
is necessary.  
INT0, INT1  
External  
interrupt  
EXF0, EXF1  
Interrupt activated  
condition is satisfied.  
Timer 1,  
Timer 2,  
Timer 3,  
Timer 4,  
A-D, and  
Serial I/O  
interrupts  
T1F, T2F, T3F,  
T4F, ADF,SIOF  
The program starts from  
the interrupt address.  
Flag cleared  
2 to 3 machine cycles  
(Notes 2, 3)  
Notes 1: The 4513/4514 Group operates in the middle-speed mode after system is released from reset.  
2: The address is stacked to the last cycle.  
3: This interval of cycles depends on the executed instruction at the time when each interrupt activated condition is satisfied.  
Fig. 16 Interrupt sequence  
23  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
EXTERNAL INTERRUPTS  
The 4513/4514 Group has two external interrupts (external 0 and  
external 1). An external interrupt request occurs when a valid  
waveform is input to an interrupt input pin (edge detection).  
The external interrupts can be controlled with the interrupt control  
registers I1 and I2.  
Table 7 External interrupt activated conditions  
Valid waveform  
selection bit  
Name  
Input pin  
P30/INT0  
Activated condition  
I11  
I12  
External 0 interrupt  
When the next waveform is input to P30/INT0 pin  
• Falling waveform (“H”“L”)  
• Rising waveform (“L”“H”)  
• Both rising and falling waveforms  
When the next waveform is input to P31/INT1 pin  
• Falling waveform (“H”“L”)  
I21  
I22  
External 1 interrupt  
P31/INT1  
• Rising waveform (“L”“H”)  
• Both rising and falling waveforms  
I1  
2
One-sided edge  
detection circuit  
I11  
Falling  
0
0
External 0  
interrupt  
EXF0  
P30/INT0  
1
1
Both edges  
detection circuit  
Rising  
Wakeup  
Skip  
SNZI0  
I2  
2
One-sided edge  
detection circuit  
I21  
Falling  
0
0
External 1  
interrupt  
EXF1  
P31/INT1  
1
1
Both edges  
detection circuit  
Rising  
Wakeup  
Skip  
SNZI1  
This symbol represents a parasitic diode on the port.  
Fig. 17 External interrupt circuit structure  
24  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(1) External 0 interrupt request flag (EXF0)  
External 0 interrupt request flag (EXF0) is set to 1when a valid  
waveform is input to P30/INT0 pin.  
(2) External 1 interrupt request flag (EXF1)  
External 1 interrupt request flag (EXF1) is set to 1when a valid  
waveform is input to P31/INT1 pin.  
The valid waveforms causing the interrupt must be retained at their  
level for 4 clock cycles or more of the system clock (Refer to Figure  
16).  
The valid waveforms causing the interrupt must be retained at their  
level for 4 clock cycles or more of the system clock (Refer to Figure  
16).  
The state of EXF0 flag can be examined with the skip instruction  
(SNZ0). Use the interrupt control register V1 to select the interrupt  
or the skip instruction. The EXF0 flag is cleared to 0when an in-  
terrupt occurs or when the next instruction is skipped with the skip  
instruction.  
The state of EXF1 flag can be examined with the skip instruction  
(SNZ1). Use the interrupt control register V1 to select the interrupt  
or the skip instruction. The EXF1 flag is cleared to 0when an in-  
terrupt occurs or when the next instruction is skipped with the skip  
instruction.  
The P30/INT0 pin need not be selected the external interrupt input  
INT0 function or the normal I/O port P30 function. However, the  
EXF0 flag is set to 1when a valid waveform is input even if it is  
used as an I/O port P30.  
The P31/INT1 pin need not be selected the external interrupt input  
INT1 function or the normal I/O port P31 function. However, the  
EXF1 flag is set to 1when a valid waveform is input even if it is  
used as an I/O port P31.  
External 0 interrupt activated condition  
External 1 interrupt activated condition  
External 0 interrupt activated condition is satisfied when a valid  
waveform is input to P30/INT0 pin.  
External 1 interrupt activated condition is satisfied when a valid  
waveform is input to P31/INT1 pin.  
The valid waveform can be selected from rising waveform, falling  
waveform or both rising and falling waveforms. An example of  
how to use the external 0 interrupt is as follows.  
The valid waveform can be selected from rising waveform, falling  
waveform or both rising and falling waveforms. An example of  
how to use the external 1 interrupt is as follows.  
Select the valid waveform with the bits 1 and 2 of register I1.  
Clear the EXF0 flag to 0with the SNZ0 instruction.  
Set the NOP instruction for the case when a skip is performed  
with the SNZ0 instruction.  
Select the valid waveform with the bits 1 and 2 of register I2.  
Clear the EXF1 flag to 0with the SNZ1 instruction.  
Set the NOP instruction for the case when a skip is performed  
with the SNZ1 instruction.  
Set both the external 0 interrupt enable bit (V10) and the INTE  
flag to 1.”  
Set both the external 1 interrupt enable bit (V11) and the INTE  
flag to 1.”  
The external 0 interrupt is now enabled. Now when a valid wave-  
form is input to the P30/INT0 pin, the EXF0 flag is set to 1and the  
external 0 interrupt occurs.  
The external 1 interrupt is now enabled. Now when a valid wave-  
form is input to the P31/INT1 pin, the EXF1 flag is set to 1and the  
external 1 interrupt occurs.  
25  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Interrupt control register I2  
(3) External interrupt control registers  
Interrupt control register I1  
Register I2 controls the valid waveform for the external 1 inter-  
rupt. Set the contents of this register through register A with the  
TI2A instruction. The TAI2 instruction can be used to transfer the  
contents of register I2 to register A.  
Register I1 controls the valid waveform for the external 0 inter-  
rupt. Set the contents of this register through register A with the  
TI1A instruction. The TAI1 instruction can be used to transfer the  
contents of register I1 to register A.  
Table 8 External interrupt control registers  
Interrupt control register I1  
Not used  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
1
I13  
I12  
This bit has no function, but read/write is enabled.  
Falling waveform (Llevel of INT0 pin is recognized with the SNZI0  
0
1
Interrupt valid waveform for INT0 pin/  
return level selection bit (Note 2)  
instruction)/Llevel  
Rising waveform (Hlevel of INT0 pin is recognized with the SNZI0  
instruction)/Hlevel  
One-sided edge detected  
Both edges detected  
Disabled  
0
1
0
1
I11  
I10  
INT0 pin edge detection circuit control bit  
INT0 pin  
timer 1 control enable bit  
Enabled  
Interrupt control register I2  
Not used  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
1
I23  
I22  
This bit has no function, but read/write is enabled.  
Falling waveform (Llevel of INT1 pin is recognized with the SNZI1  
0
1
instruction)/Llevel  
Interrupt valid waveform for INT1 pin/  
return level selection bit (Note 3)  
Rising waveform (Hlevel of INT1 pin is recognized with the SNZI1  
instruction)/Hlevel  
One-sided edge detected  
Both edges detected  
Disabled  
0
1
0
1
I21  
I20  
INT1 pin edge detection circuit control bit  
INT1 pin  
Enabled  
timer 3 control enable bit  
Notes 1: Rrepresents read enabled, and Wrepresents write enabled.  
2: When the contents of I12 is changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction.  
3: When the contents of I22 is changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction.  
26  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
TIMERS  
Fixed dividing frequency timer  
The 4513/4514 Group has the programmable timers.  
The fixed dividing frequency timer has the fixed frequency divid-  
ing ratio (n). An interrupt request flag is set to 1after every n  
count of a count pulse.  
Programmable timer  
The programmable timer has a reload register and enables the  
frequency dividing ratio to be set. It is decremented from a setting  
value n. When it underflows (count to n + 1), a timer interrupt re-  
quest flag is set to 1,new data is loaded from the reload  
register, and count continues (auto-reload function).  
FF16  
n : Counter initial value  
Count starts  
Reload  
Reload  
n
1st underflow  
2nd underflow  
0016  
Time  
n+1 count  
n+1 count  
1”  
Timer interrupt  
request flag  
0”  
An interrupt occurs or  
a skip instruction is executed.  
Fig. 18 Auto-reload function  
27  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
The 4513/4514 Group timer consists of the following circuits.  
Prescaler : frequency divider  
Timer 1 : 8-bit programmable timer  
Timer 2 : 8-bit programmable timer  
Timer 3 : 8-bit programmable timer  
Timer 4 : 8-bit programmable timer  
(Timers 1 to 4 have the interrupt function, respectively)  
16-bit timer  
Prescaler and timers 1 to 4 can be controlled with the timer control  
registers W1 to W6. The 16-bit timer is a free counter which is not  
controlled with the control register.  
Each function is described below.  
Table 9 Function related timers  
Frequency  
dividing ratio  
Control  
register  
Circuit  
Count source  
Use of output signal  
Structure  
Prescaler  
Timer 1  
Instruction clock  
4, 16  
Timer 1, 2, 3 and 4 count sources  
Timer 2 count source  
CNTR0 output  
W1  
W1  
W6  
Frequency divider  
8-bit programmable  
binary down counter  
(link to P30/INT0 input)  
8-bit programmable  
binary down counter  
Prescaler output (ORCLK) 1 to 256  
Timer 1 interrupt  
Timer 2  
Timer 1 underflow  
1 to 256  
Timer 3 count source  
Timer 2 interrupt  
W2  
W6  
Prescaler output (ORCLK)  
CNTR0 input  
CNTR0 output  
16-bit timer underflow  
Timer 2 underflow  
Timer 3  
Timer 4  
8-bit programmable  
binary down counter  
(link to P31/INT1 input)  
8-bit programmable  
binary down counter  
1 to 256  
1 to 256  
65536  
Timer 4 count source  
Timer 3 interrupt  
CNTR1 output  
W3  
W6  
Prescaler output (ORCLK)  
Timer 3 underflow  
Prescaler output (ORCLK)  
CNTR1 input  
Timer 4 interrupt  
CNTR1 output  
W4  
W6  
16-bit timer 16-bit fixed dividing  
frequency  
Instruction clock  
Watchdog timer  
(The 15th bit is counted twice)  
Timer 2 count source  
(16-bit timer underflow)  
28  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Instruction clock  
W1  
Prescaler  
3
W12  
Divistion circuit  
(divided by 2)  
MR  
3
0
0
1/4  
Internal clock  
generating circuit  
(divided by 3)  
1
0
1
1
1/16  
X
IN  
ORCLK  
I1  
2
I1  
0
1
Falling One-sided edge  
detection circuit  
(Note 1)  
W1  
0
0
Q
P30/INT0  
S
1
1
Both edges  
detection circuit  
1
0
Rising  
I10  
R
W1  
1
(Note 3)  
0
Timer 1  
interrupt  
T1F  
Timer 1 (8)  
Reload register R1 (8)  
1
T1AB  
T1AB  
(TR1AB)  
(TAB1)  
Register B  
Register A  
Timer 1 underflow signal  
3(Note 3)  
W2  
1,W20  
W2  
00  
0
Timer 2  
interrupt  
01  
Timer 2 (8)  
T2F  
1
10Not available  
11  
Reload register R2 (8)  
(T2AB)  
(TAB2)  
Register B  
Register A  
I2  
2
Timer 2 underflow signal  
I2  
1
0
Falling  
One-sided edge  
detection circuit  
(Note 2)  
0
W32  
Q
P31/INT1  
S
1
1
Both edges  
detection circuit  
1
0
Rising  
I20  
R
W3  
00  
1,W30  
W33(Note 3)  
0
01  
T3F  
Timer 3  
interrupt  
Timer 3 (8)  
1
10Not available  
11Not available  
Reload register R3 (8)  
T3AB  
T3AB  
(TR3AB)  
(TAB3)  
Register B  
Register A  
Timer 3 underflow signal  
Timer 4 (8)  
W4  
00  
1,W40  
W43(Note 3)  
0
1
01  
Timer 4  
interrupt  
T4F  
Not available  
Not available  
10  
11  
Reload register R4 (8)  
(T4AB)  
(TAB4)  
Register B  
Register A  
Data is set automatically from each reload  
register when timer 1, 2, 3, or 4 underflows  
(auto-reload function)  
16-bit timer (WDT)  
1 - - - - - - - - - - - 15 16  
Instruction clock  
Notes 1: Timer 1 count start synchronous circuit is set  
System reset  
by the valid edge of P3  
bits 1 (I1 ) and 2 (I1 ) of register I1.  
2: Timer 3 count start synchronous circuit is set  
by the valid edge of P3 /INT1 pin selected by  
bits 1 (I2 ) and 2 (I2 ) of register I2.  
3: Count source is stopped by clearing to 0.”  
0/INT0 pin selected by  
S
WRST instruction  
Reset signal  
WDF1 WDF2  
1
2
WEF  
Q
R
1
1
2
Fig. 19 Timers structure  
29  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Table 10 Timer control registers  
Timer control register W1  
Prescaler control bit  
at reset : 00002  
Stop (state initialized)  
Operating  
at RAM back-up : 00002  
R/W  
0
1
0
1
0
1
0
1
W13  
W12  
W11  
W10  
Instruction clock divided by 4  
Instruction clock divided by 16  
Stop (state retained)  
Prescaler dividing ratio selection bit  
Timer 1 control bit  
Operating  
Count start synchronous circuit not selected  
Count start synchronous circuit selected  
Timer 1 count start synchronous circuit  
control bit  
Timer control register W2  
Timer 2 control bit  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
1
0
1
Stop (state retained)  
Operating  
W23  
W22  
Not used  
This bit has no function, but read/write is enabled.  
W21  
Count source  
Timer 1 underflow signal  
Prescaler output  
W20  
W21  
W20  
0
0
1
1
0
1
0
1
Timer 2 count source selection bits  
CNTR0 input  
16 bit timer (WDT) underflow signal  
Timer control register W3  
Timer 3 control bit  
at reset : 00002  
at RAM back-up : state retained  
R/W  
R/W  
R/W  
0
Stop (state retained)  
Operating  
W33  
W32  
1
0
1
Count start synchronous circuit not selected  
Count start synchronous circuit selected  
Count source  
Timer 3 count start synchronous circuit  
control bit  
W31 W30  
W31  
W30  
0
0
1
1
0
1
0
1
Timer 2 underflow signal  
Prescaler output  
Timer 3 count source selection bits  
Not available  
Not available  
Timer control register W4  
Timer 4 control bit  
at reset : 00002  
at RAM back-up : state retained  
0
1
0
1
Stop (state retained)  
Operating  
W43  
W42  
Not used  
This bit has no function, but read/write is enabled.  
W41  
Count source  
Timer 3 underflow signal  
Prescaler output  
W40  
W41  
W40  
0
0
1
1
0
1
0
1
Timer 4 count source selection bits  
CNTR1 input  
Not available  
Timer control register W6  
CNTR1 output control bit  
at reset : 00002  
at RAM back-up : state retained  
0
Timer 3 underflow signal output divided by 2  
W63  
W62  
W61  
W60  
1
0
1
0
1
0
1
CNTR1 output control by timer 4 underflow signal divided by 2  
D7(I/O)/CNTR1 input  
D7/CNTR1 function selection bit  
CNTR0 output control bit  
CNTR1 (I/O)/D7(input)  
Timer 1 underflow signal output divided by 2  
CNTR0 output control by timer 2 underflow signal divided by 2  
D6(I/O)/CNTR0 input  
D6/CNTR0 output control bit  
CNTR0 (I/O)/D6(input)  
Note: Rrepresents read enabled, and Wrepresents write enabled.  
30  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(1) Timer control registers  
(4) Timer 1 (interrupt function)  
Timer control register W1  
Timer 1 is an 8-bit binary down counter with the timer 1 reload reg-  
ister (R1). Data can be set simultaneously in timer 1 and the reload  
register (R1) with the T1AB instruction. Data can be written to re-  
load register (R1) with the TR1AB instruction.  
Register W1 controls the count operation of timer 1, the selection  
of count start synchronous circuit, and the frequency dividing ra-  
tio and count operation of prescaler. Set the contents of this  
register through register A with the TW1A instruction. The TAW1  
instruction can be used to transfer the contents of register W1 to  
register A.  
When writing data to reload register R1 with the TR1AB instruction,  
the downcount after the underflow is started from the setting value  
of reload register R1.  
Timer control register W2  
Timer 1 starts counting after the following process;  
set data in timer 1, and  
Register W2 controls the count operation and count source of  
timer 2. Set the contents of this register through register A with  
the TW2A instruction. The TAW2 instruction can be used to trans-  
fer the contents of register W2 to register A.  
set the bit 1 of register W1 to 1.”  
However, P30/INT0 pin input can be used as the start trigger for  
timer 1 count operation by setting the bit 0 of register W1 to 1.”  
When a value set in timer 1 is n, timer 1 divides the count source  
signal by n + 1 (n = 0 to 255).  
Timer control register W3  
Register W3 controls the count operation and count source of  
timer 3 and the selection of count start synchronous circuit. Set  
the contents of this register through register A with the TW3A in-  
struction. The TAW3 instruction can be used to transfer the  
contents of register W3 to register A.  
Once count is started, when timer 1 underflows (the next count  
pulse is input after the contents of timer 1 becomes 0), the timer  
1 interrupt request flag (T1F) is set to 1,new data is loaded from  
reload register R1, and count continues (auto-reload function).  
Data can be read from timer 1 with the TAB1 instruction. When  
reading the data, stop the counter and then execute the TAB1 in-  
struction. Timer 1 underflow signal divided by 2 can be output from  
D6/CNTR0 pin.  
Timer control register W4  
Register W4 controls the count operation and count source of  
timer 4. Set the contents of this register through register A with  
the TW4A instruction. The TAW4 instruction can be used to trans-  
fer the contents of register W4 to register A.  
Timer control register W6  
(5) Timer 2 (interrupt function)  
Register W6 controls the D6/CNTR0 pin and D7/CNTR1 func-  
tions, the selection and operation of the CNTR0 and CNTR1  
output. Set the contents of this register through register A with  
the TW6A instruction. The TAW6 instruction can be used to trans-  
fer the contents of register W6 to register A.  
Timer 2 is an 8-bit binary down counter with the timer 2 reload reg-  
ister (R2). Data can be set simultaneously in timer 2 and the reload  
register (R2) with the T2AB instruction.  
Timer 2 starts counting after the following process;  
set data in timer 2,  
select the count source with the bits 0 and 1 of register W2, and  
set the bit 3 of register W2 to 1.”  
(2) Precautions  
Note the following for the use of timers.  
When a value set in timer 2 is n, timer 2 divides the count source  
signal by n + 1 (n = 0 to 255).  
Prescaler  
Stop the prescaler operation to change its frequency dividing ra-  
tio.  
Once count is started, when timer 2 underflows (the next count  
pulse is input after the contents of timer 2 becomes 0), the timer  
2 interrupt request flag (T2F) is set to 1,new data is loaded from  
reload register R2, and count continues (auto-reload function).  
Data can be read from timer 2 with the TAB2 instruction. When  
reading the data, stop the counter and then execute the TAB2 in-  
struction. The output from D6/CNTR0 pin by timer 2 underflow  
signal divided by 2 can be controlled.  
Count source  
Stop timer 1, 2, 3, or 4 counting to change its count source.  
Reading the count value  
Stop timer 1, 2, 3, or 4 counting and then execute the TAB1,  
TAB2, TAB3, or TAB4 instruction to read its data.  
Writing to reload registers R1 and R3  
When writing data to reload registers R1 or R3 while timer 1 or  
timer 3 is operating, avoid a timing when timer 1 or timer 3  
underflows.  
(3) Prescaler  
Prescaler is a frequency divider. Its frequency dividing ratio can be  
selected. The count source of prescaler is the instruction clock.  
Use the bit 2 of register W1 to select the prescaler dividing ratio  
and the bit 3 to start and stop its operation. Prescaler is initialized,  
and the output signal (ORCLK) stops when the bit 3 of register W1  
is cleared to 0.”  
31  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(6) Timer 3 (interrupt function)  
(9) Timer I/O pin (D6/CNTR0, D7/CNTR1)  
D6/CNTR0 pin has functions to input the timer 2 count source, and  
to output the timer 1 and timer 2 underflow signals divided by 2. D7/  
CNTR1 pin has functions to input the timer 4 count source, and to  
output the timer 3 and timer 4 underflow signals divided by 2.  
The selection of D6/CNTR0 pin function can be controlled with the  
bit 0 of register W6. The selection of D7/CNTR1 pin function can be  
controlled with the bit 2 of register W6.  
Timer 3 is an 8-bit binary down counter with the timer 3 reload reg-  
ister (R3). Data can be set simultaneously in timer 3 and the reload  
register (R3) with the T3AB instruction. Data can be written to re-  
load register (R3) with the TR3AB instruction.  
When writing data to reload register R3 with the TR3AB instruction,  
the downcount after the underflow is started from the setting value  
of reload register R3.  
Timer 3 starts counting after the following process;  
set data in timer 3,  
The following signals can be selected for the CNTR0 output signal  
with the bit 1 of register W6.  
select the count source with the bits 0 and 1 of register W3, and  
set the bit 3 of register W3 to 1.”  
timer 1 underflow signal divided by 2  
the signal of AND operation between timer 1 underflow signal di-  
vided by 2 and timer 2 underflow signal divide by 2  
The following signals can be selected for the CNTR1 output signal  
with the bit 3 of register W6.  
However, P31/INT1 pin input can be used as the start trigger for  
timer 3 count operation by setting the bit 2 of register W3 to 1.”  
When a value set in timer 3 is n, timer 3 divides the count source  
signal by n + 1 (n = 0 to 255).  
timer 3 underflow signal divided by 2  
Once count is started, when timer 3 underflows (the next count  
pulse is input after the contents of timer 3 becomes 0), the timer  
3 interrupt request flag (T3F) is set to 1,new data is loaded from  
reload register R3, and count continues (auto-reload function).  
Data can be read from timer 3 with the TAB3 instruction. When  
reading the data, stop the counter and then execute the TAB3 in-  
struction. Timer 3 underflow signal divided by 2 can be output from  
D7/CNTR1 pin.  
the signal of AND operation between timer 3 underflow signal di-  
vided by 2 and timer 4 underflow signal divide by 2  
Timer 2 counts the rising waveform of CNTR0 input when the  
CNTR0 input is selected as the count source.  
Timer 4 counts the rising waveform of CNTR1 input when the  
CNTR1 input is selected as the count source.  
(10) Count start synchronous circuit (timer 1  
and 3)  
Each of timer 1 and timer 3 has the count start synchronous circuit  
which synchronizes P30/INT0 pin and P31/INT1 pin, respectively,  
and can start the timer count operation.  
(7) Timer 4 (interrupt function)  
Timer 4 is an 8-bit binary down counter with the timer 4 reload reg-  
ister (R4). Data can be set simultaneously in timer 4 and the reload  
register (R4) with the T4AB instruction.  
Timer 1 count start synchronous circuit function is selected by set-  
ting the bit 0 of register W1 to 1.The control by P30/INT0 pin input  
can be performed by setting the bit 0 of register I1 to 1.”  
The count start synchronous circuit is set by level change (HL”  
or LH) of P30/INT0 pin input. This valid waveform is selected  
by bits 1 (I11) and 2 (I12) of register I1 as follows;  
Timer 4 starts counting after the following process;  
set data in timer 4,  
select the count source with the bits 0 and 1 of register W4, and  
set the bit 3 of register W4 to 1.”  
When a value set in timer 4 is n, timer 4 divides the count source  
signal by n + 1 (n = 0 to 255).  
I11 = 0: Synchronized with one-sided edge (falling or rising)  
I11 = 1: Synchronized with both edges (both falling and rising)  
When register I11=0(synchronized with the one-sided edge), the ris-  
ing or falling waveform can be selected by bit 2 of register I1;  
I12 = 0: Falling waveform  
Once count is started, when timer 4 underflows (the next count  
pulse is input after the contents of timer 4 becomes 0), the timer  
4 interrupt request flag (T4F) is set to 1,new data is loaded from  
reload register R4, and count continues (auto-reload function).  
Data can be read from timer 4 with the TAB4 instruction. When  
reading the data, stop the counter and then execute the TAB4 in-  
struction. The output from D7/CNTR1 pin by timer 4 underflow  
signal divided by 2 can be controlled.  
I12 = 1: Rising waveform  
Timer 3 count start synchronous circuit function is selected by set-  
ting the bit 2 of register W3 to 1.The control by P31/INT1 pin input  
can be performed by setting the bit 0 of register I2 to 1.”  
The count start synchronous circuit is set by level change (HL”  
or LH) of P31/INT1 pin input. This valid waveform is selected  
by bits 1 (I21) and 2 (I22) of register I2 as follows;  
(8) Timer interrupt request flags (T1F, T2F,  
T3F, and T4F)  
Each timer interrupt request flag is set to 1when each timer  
underflows. The state of these flags can be examined with the skip  
instructions (SNZT1, SNZT2, SNZT3, and SNZT4).  
Use the interrupt control registers V1, V2 to select an interrupt or a  
skip instruction.  
I21 = 0: Synchronized with one-sided edge (falling or rising)  
I21 = 1: Synchronized with both edges (both falling and rising)  
When register I21=0(synchronized with the one-sided edge), the ris-  
ing or falling waveform can be selected by bit 2 of register I2;  
I22 = 0: Falling waveform  
An interrupt request flag is cleared to 0when an interrupt occurs  
or when the next instruction is skipped with a skip instruction.  
I22 = 1: Rising waveform  
When timer 1 and timer 3 count start synchronous circuits are  
used, the count start synchronous circuits are set, the count source  
is input to each timer by inputting valid waveform to P30/INT0 pin  
and P31/INT1 pin. Once set, the count start synchronous circuit is  
cleared by clearing the bit I10 or I20 to 0or reset.  
32  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
WATCHDOG TIMER  
When the count value of timer WDT reaches “BFFF16” or “3FFF16,”  
the WDF1 flag is set to “1.” If the WRST instruction is never ex-  
ecuted while timer WDT counts 32767, WDF2 flag is set to “1,” and  
the RESET pin outputs “L” level to reset the microcomputer. Ex-  
ecute the WRST instruction at each period of 32766 machine cycle  
or less by software when using watchdog timer to keep the micro-  
computer operating normally.  
Watchdog timer provides a method to reset the system when a pro-  
gram runs wild. Watchdog timer consists of a 16-bit timer (WDT),  
watchdog timer enable flag (WEF), and watchdog timer flags  
(WDF1, WDF2).  
The timer WDT downcounts the instruction clocks as the count  
source. The underflow signal is generated when the count value  
reaches “000016.” This underflow signal can be used as the timer 2  
count source.  
To prevent the WDT stopping in the event of misoperation, WEF  
flag is designed not to initialize once the WRST instruction has  
been executed. Note also that, if the WRST instruction is never ex-  
ecuted, the watchdog timer does not start.  
When the WRST instruction is executed after system is released  
from reset, the WEF flag is set to “1”. At this time, the watchdog  
timer starts operating.  
FFFF16  
The value of timer (WDT)  
0000 16  
BFFF16  
3FFF16  
WEF flag  
WDF1 flag  
WDF2 flag  
RESET pin output  
WRST  
instruction  
executed  
WRST  
instruction  
executed  
System reset  
Fig. 20 Watchdog timer function  
The contents of WEF, WDF1 and WDF2 flags and timer WDT are  
initialized at the RAM back-up mode.  
If WDF2 flag is set to “1” at the same time that the microcomputer  
enters the RAM back-up state, system reset may be performed.  
When using the watchdog timer and the RAM back-up mode, ini-  
tialize the WDF1 flag with the WRST instruction just before the  
microcomputer enters the RAM back-up state (refer to Figure 21)  
WRST  
; WDF1 flag reset  
EPOF  
POF  
; POF instruction enabled  
Oscillation  
stop  
(RAM back-up state)  
Fig. 21 Program example to enter the RAM back-up mode  
when using the watchdog timer  
33  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
SERIAL I/O  
Table 11 Serial I/O pins  
The 4513/4514 Group has a built-in clock synchronous serial I/O  
which can serially transmit or receive 8-bit data.  
Serial I/O consists of;  
Pin  
Pin function when selecting serial I/O  
Clock I/O (SCK)  
P20/SCK  
P21/SOUT  
P22/SIN  
Serial data output (SOUT)  
Serial data input (SIN)  
serial I/O register SI  
serial I/O mode register J1  
Note: Input ports P20P22 can be used regardless of register J1.  
serial I/O transmission/reception completion flag (SIOF)  
serial I/O counter  
Registers A and B are used to perform data transfer with internal  
CPU, and the serial I/O pins are used for external data transfer.  
The pin functions of the serial I/O pins can be set with the register  
J1.  
Division circuit  
(divided by 2)  
MR  
3
1
0
Internal clock  
generation circuit  
(divided by 3)  
Instruction clock  
XIN  
J12  
Serial I/O mode register J1  
1
J13  
J12  
J11  
J10  
1/4  
1/8  
0
Synchronous  
circuit  
Serial I/O interrupt  
SIOF  
Serial I/O counter (3)  
S
CK  
P20/SCK  
S
OUT  
IN  
P2  
1
/SOUT  
S
P2  
2
/SIN  
MSB  
LSB  
Serial I/O register SI (8)  
TSIAB  
TABSI  
J10  
Register B (4)  
J11  
Register A (4)  
Note: The output structure of SCK and SOUT pins is N-channel open-drain.  
Fig. 22 Serial I/O structure  
Table 12 Serial I/O mode register  
Serial I/O mode register J1  
at reset : 00002  
R/W  
at RAM back-up : state retained  
0
1
0
1
0
1
0
1
J13  
J12  
J11  
J10  
This bit has no function, but read/write is enabled.  
Not used  
Serial I/O internal clock dividing ratio  
selection bit  
Instruction clock signal divided by 8  
Instruction clock signal divided by 4  
Input ports P20, P21, P22 selected  
Serial I/O port selection bit  
Serial I/O ports SCK, SOUT, SIN/input ports P20, P21, P22 selected  
External clock  
Serial I/O synchronous clock selection bit  
Internal clock (instruction clock divided by 4 or 8)  
Note: Rrepresents read enabled, and Wrepresents write enabled.  
34  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
When transmitting (D  
7D0  
: transfer data)  
When receiving  
S
IN pin  
SOUT pin  
Serial I/O register (SI)  
Serial I/O register (SI)  
S
OUT pin  
SIN pin  
D
7
D
6
D
5
D
4
D
3
D
2
2
D
1
D
0
D7  
D
6
7
D5  
D6  
D7  
D4  
D5  
D6  
D3  
D4  
D5  
D
D1  
D2  
D3  
D0  
D1  
D2  
Transfer data to be set  
Transfer started  
D
D
3
4
D0  
D
D
1
7
D
0
6
D
D
D5 D4 D3 D2 D1 D0  
Transfer completed  
Fig. 23 Serial I/O register state when transferring  
(1) Serial I/O register SI  
(3) Serial I/O start instruction (SST)  
Serial I/O register SI is the 8-bit data transfer serial/parallel conver-  
sion register. Data can be set to register SI through registers A and  
B with the TSIAB instruction. The contents of register A is transmit-  
ted to the low-order 4 bits of register SI, and the contents of  
register B is transmitted to the high-order 4 bits of register SI.  
During transmission, each bit data is transmitted LSB first from the  
lowermost bit (bit 0) of register SI, and during reception, each bit  
data is received LSB first to register SI starting from the topmost bit  
(bit 7).  
When the SST instruction is executed, the SIOF flag is cleared to  
0and then serial I/O transmission/reception is started.  
(4) Serial I/O mode register J1  
Register J1 controls the synchronous clock, P20/SCK, P21/SOUT  
and P22/SIN pin function. Set the contents of this register through  
register A with the TJ1A instruction. The TAJ1 instruction can be  
used to transfer the contents of register J1 to register A.  
When register SI is used as a work register without using serial I/O,  
pull up the SCK pin or set the pin function to an input port P20.  
(2) Serial I/O transmission/reception  
completion flag (SIOF)  
Serial I/O transmission/reception completion flag (SIOF) is set to  
1when serial data transmission or reception completes. The  
state of SIOF flag can be examined with the skip instruction  
(SNZSI). Use the interrupt control register V2 to select the inter-  
rupt or the skip instruction.  
The SIOF flag is cleared to 0when the interrupt occurs or when  
the next instruction is skipped with the skip instruction.  
35  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(5) How to use serial I/O  
Figure 24 shows the serial I/O connection example. Serial I/O inter-  
wiring between each pin with a resistor. Figure 25 shows the data  
transfer timing and Table 13 shows the data transfer sequence.  
rupt is not used in this example. In the actual wiring, pull up the  
Slave (external clock)  
Master (clock control)  
SRDY signal  
D5  
D5  
SCK  
SOUT  
SIN  
SCK  
SIN  
SOUT  
(Bit 0)  
1
(Bit 0)  
0
(Bit 3)  
(Bit 3)  
1
1
Serial I/O mode register J1  
Serial I/O mode register J1  
Internal clock selected as  
a synchronous clock  
External clock selected as  
a synchronous clock  
Serial I/O port  
SCK,SOUT,SIN  
Serial I/O port  
SCK,SOUT,SIN  
Instruction clock divided by  
8 or 4 selected as a transfer  
clock  
This bit is not valid  
when J10=0”  
(Bit 3)  
0
(Bit 0)  
(Bit 3)  
0
(Bit 0)  
Interrupt control register V2  
Interrupt control register V2  
Serial I/O interrupt enable bit  
(SNZSI instruction is valid)  
Serial I/O interrupt enable bit  
(SNZSI instruction is valid)  
: Set an arbitrary value.  
Fig. 24 Serial I/O connection example  
36  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Master  
M3  
M4  
M5  
M6  
M7  
S
OUT  
M7  
M0  
M1  
M2  
SIN  
S7  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
SST instruction  
SCK  
Slave  
SST instruction  
SRDY signal  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S
OUT  
S7’  
SIN  
M7  
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M0M7  
: the contents of master serial I/O  
S0  
S : the contents of slave serial I/O register  
7
Rising of SCK : serial input Falling of SCK : serial output  
Fig. 25 Timing of serial I/O data transfer  
37  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Table 13 Processing sequence of data transfer from master to slave  
Master (transmission)  
Slave (reception)  
[Initial setting]  
[Initial setting]  
Setting serial I/O mode register J1, and interrupt control register V2 shown in  
Setting the serial I/O mode register J1 and inter-  
Figure 24.  
rupt control register V2 shown in Figure 24.  
TJ1A and TV2A instructions  
TJ1A and TV2A instructions  
Setting the port transmitted the reception enable signal (SRDY) and outputting  
Hlevel (reception impossible).  
Setting the port received the reception enable  
signal (SRDY) to the input mode.  
(Port D5 is used in this example)  
SD instruction  
(Port D5 is used in this example)  
SD instruction  
*[Reception enable state]  
* [Transmission enable state]  
Storing transmission data to serial I/O register SI. The SIOF flag is cleared to 0.”  
TSIAB instruction  
SST instruction  
• “Llevel (reception possible) is output from port D5.  
RD instruction  
[Reception]  
[Transmission]  
Check port D5 is Llevel.  
SZD instruction  
Serial transfer starts.  
SST instruction  
Check transmission completes.  
SNZSI instruction  
Check reception completes.  
SNZSI instruction  
Wait (timing when continuously transferring)  
• “Hlevel is output from port D5.  
SD instruction  
[Data processing]  
1-byte data is serially transferred on this process. Subsequently, data  
can be transferred continuously by repeating the process from *.  
When an external clock is selected as a synchronous clock, the  
clock is not controlled internally. Control the clock externally be-  
cause serial transfer is performed as long as clock is externally  
input. (Unlike an internal clock, an external clock is not stopped  
when serial transfer is completed.) However, the SIOF flag is set to  
1when the clock is counted 8 times after executing the SST in-  
struction. Be sure to set the initial level of the external clock to H.”  
38  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
Table 14 A-D converter characteristics  
Parameter  
Conversion format  
Resolution  
Characteristics  
Successive comparison method  
10 bits  
The 4513/4514 Group has a built-in A-D conversion circuit that  
performs conversion by 10-bit successive comparison method.  
Table 14 shows the characteristics of this A-D converter. This A-  
D converter can also be used as an 8-bit comparator to compare  
analog voltages input from the analog input pin with preset val-  
ues.  
Relative accuracy  
Linearity error: ±2LSB  
Non-linearity error: ±0.9LSB  
Conversion speed  
Analog input pin  
46.5 µs (High-speed mode at 4.0 MHz  
oscillation frequency)  
4 for 4513 Group  
8 for 4514 Group  
Register B (4)  
Register A (4)  
4
8
4
8
4
4
TAQ2  
TQ2A  
TAQ1  
TQ1A  
IAP4  
(P4 P4  
2
0
3)  
Q23 Q22 Q21 Q20  
Q13  
Q12 Q11 Q10  
TALA  
TABAD  
TADAB  
Instruction clock  
OP4A  
(P4 P4  
1/6  
0
3)  
3
Q23  
0
ADF  
(1)  
A-D control circuit  
(Note 3)  
IN0/CMP0-  
A-D interrupt  
1
A
A
IN1/CMP0+  
IN2/CMP1-  
IN3/CMP1+  
1
Successive comparison  
register (AD) (10)  
Comparator  
A
0
A
Q2  
3
Q2  
3
8
10  
P4  
P4  
P4  
0
1
2
/AIN4  
/AIN5  
/AIN6  
10  
1
0
1
0
1
DAC  
operation  
signal  
Q23  
P43/AIN7  
8
8
8
DA converter  
(Note 1)  
V
DD  
VSS  
Comparator register (8)  
(Note 2)  
Notes 1: This switch is turned ON only when A-D converter is operating and generates the comparison voltage.  
2: Writing/reading data to the comparator register is possible only in the comparator mode (Q2 =1).  
The value of the comparator register is retained even when the mode is switched to the A-D conversion  
mode (Q2 =0) because it is separated from the successive comparison register (AD). Also, the resolution in  
the comparator mode is 8 bits because the comparator register consists of 8 bits.  
3: The 4513 Group does not have ports P4 /AIN4P4 /AIN7 and the IAP4 and OP4A instructions.  
3
3
0
3
Fig. 26 A-D conversion circuit structure  
39  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Table 15 A-D control registers  
at reset : 00002  
A-D control register Q1  
at RAM back-up : state retained  
R/W  
0
1
Not used  
This bit has no function, but read/write is enabled.  
Q13  
Q12  
Q12Q11Q10  
Selected pins  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
AIN2  
Q11  
Q10  
Analog input pin selection bits (Note 2)  
AIN3  
AIN4 (Not available for the 4513 Group)  
AIN5 (Not available for the 4513 Group)  
AIN6 (Not available for the 4513 Group)  
AIN7 (Not available for the 4513 Group)  
A-D control register Q2  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
1
0
1
0
1
0
1
A-D conversion mode  
Comparator mode  
Q23  
Q22  
Q21  
Q20  
A-D operation mode selection bit  
P43/AIN7 and P42/AIN6 pin function selec-  
tion bit (Not used for the 4513 Group)  
P41/AIN5 pin function selection bit  
(Not used for the 4513 Group)  
P43, P42  
(read/write enabled for the 4513 Group)  
AIN7, AIN6/P43, P42 (read/write enabled for the 4513 Group)  
P41  
(read/write enabled for the 4513 Group)  
(read/write enabled for the 4513 Group)  
(read/write enabled for the 4513 Group)  
(read/write enabled for the 4513 Group)  
AIN5/P41  
P40  
P40/AIN4 pin function selection bit  
(Not used for the 4513 Group)  
AIN4/P40  
Notes 1: Rrepresents read enabled, and Wrepresents write enabled.  
2: Select AIN4AIN7 with register Q1 after setting register Q2.  
(1) Operating at A-D conversion mode  
The A-D conversion mode is set by setting the bit 3 of register Q2 to 0.”  
(4) A-D conversion start instruction (ADST)  
A-D conversion starts when the ADST instruction is executed. The  
conversion result is automatically stored in the register AD.  
(2) Successive comparison register AD  
Register AD stores the A-D conversion result of an analog input in  
10-bit digital data format. The contents of the high-order 8 bits of  
this register can be stored in register B and register A with the  
TABAD instruction. The contents of the low-order 2 bits of this reg-  
ister can be stored into the high-order 2 bits of register A with the  
TALA instruction. However, do not execute this instruction during A-  
D conversion.  
(5) A-D control register Q1  
Register Q1 is used to select one of analog input pins. The 4513  
Group does not have AIN4AIN7. Accordingly, do not select these  
pins with register Q1.  
(6) A-D control register Q2  
Register Q2 is used to select the pin function of P40/AIN4, P41/  
AIN5, P42/AIN6, and P43/AIN7. The A-D conversion mode is se-  
lected when the bit 3 of register Q2 is 0,and the comparator  
mode is selected when the bit 3 of register Q2 is 1.After set this  
register, select the analog input with register Q1.  
When the contents of register AD is n, the logic value of the com-  
parison voltage Vref generated from the built-in DA converter can  
be obtained with the reference voltage VDD by the following for-  
mula:  
Even when register Q2 is used to set the pins for analog input,  
P40/AIN4P43/AIN7 continue to function as P40P43 I/O. Accord-  
ingly, when any of them are used as I/O port P4 and others are  
used as analog input pins, make sure to set the outputs of pins that  
are set for analog input to 1.Also, for the port input, the port input  
function of the pin functions as analog input is undefined.  
Logic value of comparison voltage Vref  
VDD  
Vref =  
n  
1024  
n: The value of register AD (n = 0 to 1023)  
(3) A-D conversion completion flag (ADF)  
A-D conversion completion flag (ADF) is set to 1when A-D con-  
version completes. The state of ADF flag can be examined with the  
skip instruction (SNZAD). Use the interrupt control register V2 to  
select the interrupt or the skip instruction.  
The ADF flag is cleared to 0when the interrupt occurs or when  
the next instruction is skipped with the skip instruction.  
40  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(7) Operation description  
The 4513/4514 Group repeats this operation to the lowermost bit of  
the register AD to convert an analog value to a digital value. A-D  
conversion stops after 62 machine cycles (46.5 µs when f(XIN) =  
4.0 MHz in high-speed mode) from the start, and the conversion re-  
sult is stored in the register AD. An A-D interrupt activated condition  
is satisfied and the ADF flag is set to 1as soon as A-D conversion  
completes (Figure 27).  
A-D conversion is started with the A-D conversion start instruction  
(ADST). The internal operation during A-D conversion is as follows:  
When A-D conversion starts, the register AD is cleared to  
00016.”  
Next, the topmost bit of the register AD is set to 1,and the  
comparison voltage Vref is compared with the analog input volt-  
age VIN.  
When the comparison result is Vref < VIN, the topmost bit of the  
register AD remains set to 1.When the comparison result is  
Vref > VIN, it is cleared to 0.”  
Table 16 Change of successive comparison register AD during A-D conversion  
Comparison voltage (Vref) value  
VDD  
At starting conversion  
1st comparison  
Change of successive comparison register AD  
-------------  
VDD  
2
-----  
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
-------------  
-------------  
VDD  
2
-----  
1  
1  
2nd comparison  
3rd comparison  
±
-------------  
4
VDD  
4
-------------  
VDD  
2
VDD  
8
-----  
2  
±
±
±
±
-------------  
A-D conversion result  
After 10th comparison  
completes  
VDD  
2
VDD  
-------------  
-----  
1  
2  
3  
8  
9  
A  
1024  
-------------  
2: 2nd comparison result  
8: 8th comparison result  
A: 10th comparison result  
1: 1st comparison result  
3: 3rd comparison result  
9: 9th comparison result  
41  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(8) A-D conversion timing chart  
Figure 27 shows the A-D conversion timing chart.  
ADST instruction  
62 machine cycles  
A-D conversion  
completion flag (ADF)  
DAC operation signal  
Fig. 27 A-D conversion timing chart  
(9) How to use A-D conversion  
How to use A-D conversion is explained using as example in which  
the analog input from P40/AIN4 pin is A-D converted, and the high-  
order 4 bits of the converted data are stored in address M(Z, X, Y)  
= (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1),  
and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM.  
The A-D interrupt is not used in this example.  
After selecting the AIN4 pin function with the bit 0 of the register  
Q2, select AIN4 pin and A-D conversion mode with the register  
Q1 (refer to Figure 28).  
(Bit 3)  
(Bit 0)  
A-D control register Q2  
0
1
Execute the ADST instruction and start A-D conversion.  
Examine the state of ADF flag with the SNZAD instruction to de-  
termine the end of A-D conversion.  
AIN4 function selected  
A-D conversion mode  
Transfer the low-order 2 bits of converted data to the high-order  
2 bits of register A (TALA instruction).  
(Bit 3)  
(Bit 0)  
Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).  
Transfer the high-order 8 bits of converted data to registers A  
and B (TABAD instruction).  
1
0
0
A-D control register Q1  
AIN4 pin selected  
Transfer the contents of register A to M (Z, X, Y) = (0, 0, 1).  
Transfer the contents of register B to register A, and then, store  
into M(Z, X, Y) = (0, 0, 0).  
: Set an arbitrary value  
Fig. 28 Setting registers  
42  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(10) Operation at comparator mode  
The A-D converter is set to comparator mode by setting bit 3 of the  
register Q2 to 1.”  
(12) Comparison result store flag (ADF)  
In comparator mode, the ADF flag, which shows completion of A-D  
conversion, stores the results of comparing the analog input volt-  
age with the comparison voltage. When the analog input voltage is  
lower than the comparison voltage, the ADF flag is set to 1.The  
state of ADF flag can be examined with the skip instruction  
(SNZAD). Use the interrupt control register V2 to select the inter-  
rupt or the skip instruction.  
Below, the operation at comparator mode is described.  
(11) Comparator register  
In comparator mode, the built-in DA comparator is connected to the  
comparator register as a register for setting comparison voltages.  
The contents of register B is stored in the high-order 4 bits of the  
comparator register and the contents of register A is stored in the  
low-order 4 bits of the comparator register with the TADAB instruc-  
tion.  
The ADF flag is cleared to 0when the interrupt occurs or when  
the next instruction is skipped with the skip instruction.  
(13) Comparator operation start instruction  
(ADST instruction)  
When changing from A-D conversion mode to comparator mode,  
the result of A-D conversion (register AD) is undefined.  
However, because the comparator register is separated from regis-  
ter AD, the value is retained even when changing from comparator  
mode to A-D conversion mode. Note that the comparator register  
can be written and read at only comparator mode.  
In comparator mode, executing ADST starts the comparator oper-  
ating.  
The comparator stops 8 machine cycles after it has started (6 µs at  
f(XIN) = 4.0 MHz in high-speed mode). When the analog input volt-  
age is lower than the comparison voltage, the ADF flag is set to 1.”  
If the value in the comparator register is n, the logic value of com-  
parison voltage Vref generated by the built-in DA converter can be  
determined from the following formula:  
(14) Notes for the use of A-D conversion 1  
Note the following when using the analog input pins also for I/O  
port P4 functions:  
Logic value of comparison voltage Vref  
Even when P40/AIN4P43/AIN7 are set to pins for analog input,  
they continue to function as P40P43 I/O. Accordingly, when any  
of them are used as I/O port P4 and others are used as analog  
input pins, make sure to set the outputs of pins that are set for  
analog input to 1.Also, the port input function of the pin func-  
tions as an analog input is undefined.  
VDD  
Vref =  
n  
256  
n: The value of register AD (n = 0 to 255)  
TALA instruction  
When the TALA instruction is executed, the low-order 2 bits of  
register AD is transferred to the high-order 2 bits of register A, si-  
multaneously, the low-order 2 bits of register A is 0.”  
ADST instruction  
8 machine cycles  
Comparison result  
store flag(ADF)  
DAC operation signal  
Comparator operation completed.  
(The value of ADF is determined)  
Fig. 29 Comparator operation timing chart  
43  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(15) Notes for the use of A-D conversion 2  
Do not change the operating mode (both A-D conversion mode and  
comparator mode) of A-D converter with bit 3 of register Q2 while  
A-D converter is operating.  
(16) Definition of A-D converter accuracy  
The A-D conversion accuracy is defined below (refer to Figure 30).  
Relative accuracy  
When the operating mode of A-D converter is changed from the  
comparator mode to A-D conversion mode with the bit 3 of register  
Q2, note the following;  
Zero transition voltage (V0T)  
This means an analog input voltage when the actual A-D con-  
version output data changes from 0to 1.”  
Full-scale transition voltage (VFST)  
Clear bit 2 of register V2 to 0to change the operating mode of  
the A-D converter from the comparator mode to A-D conversion  
mode with the bit 3 of register Q2.  
This means an analog input voltage when the actual A-D con-  
version output data changes from 1023to 1022.”  
Linearity error  
The A-D conversion completion flag (ADF) may be set when the  
operating mode of the A-D converter is changed from the com-  
parator mode to the A-D conversion mode. Accordingly, set a  
value to register Q2, and execute the SNZAD instruction to clear  
the ADF flag.  
This means a deviation from the line between V0T and VFST of  
a converted value between V0T and VFST.  
Differential non-linearity error  
This means a deviation from the input potential difference re-  
quired to change a converter value between V0T and VFST by 1  
LSB at the relative accuracy.  
Absolute accuracy  
This means a deviation from the ideal characteristics between 0  
to VDD of actual A-D conversion characteristics.  
Output data  
Full-scale transition voltage (VFST)  
1023  
1022  
ba  
a
Differential non-linearity error =  
c
[LSB]  
Linearity error =  
[LSB]  
a
b
a
n+1  
n
Actual A-D conversion  
characteristics  
c
a: 1LSB by relative accuracy  
b: Vn+1Vn  
c: Difference between ideal Vn  
and actual Vn  
Ideal line of A-D conversion  
between V0V1022  
1
0
Vn  
Vn+1  
V0  
V1  
V1022  
VDD  
Analog voltage  
Zero transition voltage (V0T)  
Fig. 30 Definition of A-D conversion accuracy  
Vn: Analog input voltage when the output data changes from nto n+1(n = 0 to 1022)  
VFSTV0T  
1LSB at relative accuracy →  
(V)  
1022  
VDD  
1LSB at absolute accuracy →  
(V)  
1024  
44  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
VOLTAGE COMPARATOR  
Table 17 Voltage comparator characteristics  
Parameter Characteristics  
Voltage comparator function 2 circuits (CMP0, CMP1)  
The 4513/4514 Group has 2 voltage comparator circuits that  
perform comparison of voltage between 2 pins. Table 17 shows  
the characteristics of this voltage comparison.  
Input pin  
CMP0-, CMP0+  
(also used as AIN0, AIN1)  
CMP1-, CMP1+  
(also used as AIN2, AIN3)  
3.0 V to 5.5 V  
Supply voltage  
Input voltage  
0.3 VDD to 0.7 VDD  
Typ. 20 mV, Max.100 mV  
Max. 20 µs  
Comparison check error  
Response time  
CMP0/AIN0  
CMP0  
+
CMP0+/AIN1  
CMP1/AIN2  
CMP1  
+
CMP1+/AIN3  
Q33  
Q32  
Q31  
Q3  
Voltage comparator control register Q3 (4)  
0
TQ3A  
TAQ3  
Register A (4)  
Note: Bits 0 and 1 of register Q3 can be only read.  
Fig. 31 Voltage comparator structure  
45  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Table 18 Voltage comparator control register Q3  
at reset : 00002  
R/W  
Voltage comparator control register Q3 (Note 2)  
at RAM back-up : state retained  
0
1
0
1
0
1
0
1
Voltage comparator (CMP1) invalid  
Voltage comparator (CMP1) valid  
Voltage comparator (CMP0) invalid  
Voltage comparator (CMP0) valid  
CMP1- > CMP1+  
Q33  
Q32  
Q31  
Q30  
Voltage comparator (CMP1) control bit  
Voltage comparator (CMP0) control bit  
CMP1 comparison result store bit  
CMP0 comparison result store bit  
CMP1- < CMP1+  
CMP0- > CMP0+  
CMP0- < CMP0+  
Notes 1: Rrepresents read enabled, and Wrepresents write enabled.  
2: Bits 0 and 1 of register Q3 can be only read.  
(1) Voltage comparator control register Q3  
Register Q3 controls the function of the voltage comparator.  
The function of the voltage comparator CMP0 becomes valid by  
setting bit 2 of register Q3 to 1,and becomes invalid by setting bit  
2 of register Q3 to 0.The comparison result of the voltage com-  
parator CMP0 is stored into bit 0 of register Q3.  
(3) Precautions  
When the voltage comparator is used, note the following;  
Voltage comparator function  
When the voltage comparator function is valid with the voltage  
comparator control register Q3, it is operating even in the RAM  
back-up mode. Accordingly, be careful about such state because  
it causes the increase of the operation current in the RAM back-  
up mode.  
The function of the voltage comparator CMP1 becomes valid by  
setting bit 3 of register Q3 to 1,and becomes invalid by setting bit  
3 of register Q3 to 0.The comparison result of the voltage com-  
parator CMP1 is stored into bit 1 of register Q3.  
In order to reduce the operation current in the RAM back-up  
mode, invalidate (bits 2 and 3 of register Q3 = 0) the voltage  
comparator function by software before the POF instruction is  
executed.  
(2) Operation description of voltage  
comparator  
The voltage comparator function becomes valid by setting each  
control bit of register Q3 to 1and compares the voltage of the in-  
put pin. The comparison result is stored into each comparison  
result store bit of register Q3.  
Also, while the voltage comparator function is valid, current is al-  
ways consumed by voltage comparator. On the system required  
for the low-power dissipation, invalidate the voltage comparator  
by software when it is unused.  
The comparison result is as follows;  
Register Q3  
When CMP0- > CMP0+, Q30 = 0”  
Bits 0 and 1 of register Q3 can be only read. Note that they can-  
not be written.  
When CMP0- < CMP0+, Q30 = 1”  
When CMP1- > CMP1+, Q31 = 0”  
When CMP1- < CMP1+, Q31 = 1”  
Reading the comparison result of voltage comparator  
Read the voltage comparator comparison result from register Q3  
after the voltage comparator response time (max. 20 µs) is  
passed from the voltage comparator function becomes valid.  
46  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
RESET FUNCTION  
System reset is performed by applying Llevel to RESET pin for  
1 machine cycle or more when the following condition is satisfied;  
the value of supply voltage is the minimum value or more of the  
recommended operating conditions.  
Then when Hlevel is applied to RESET pin, software starts from  
address 0 in page 0.  
f(XIN  
)
(Note)  
is counted 16892 to  
RESET  
f(XIN  
)
Software starts  
(address 0 in page 0)  
16895 times.  
Note: It depends on the internal state of the microcomputer  
when reset is performed.  
Fig. 32 Reset release timing  
Reset input  
f(XIN  
)
is counted 16892 to  
1 machine cycle or more  
16895 times.  
0.85VDD  
Software starts  
(address 0 in page 0)  
RESET  
0.3VDD  
(Note)  
Note: Keep the value of supply voltage to the minimum value  
or more of the recommended operating conditions.  
Fig. 33 RESET pin input waveform and reset operation  
47  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(1) Power-on reset  
Reset can be performed automatically at power on (power-on re-  
set) by connecting resistors, a diode, and a capacitor to RESET  
pin. Connect RESET pin and the external circuit at the shortest dis-  
tance.  
V
DD  
VDD  
RESET pin voltage  
Internal reset signal  
RESET pin  
(Note)  
Reset state  
Voltage drop detection circuit  
Watchdog timer output  
Internal reset signal  
WEF  
Reset released  
Power-on  
Note:  
Applied potential to RESET pin must be VDD or less.  
This symbol represents a parasitic diode.  
Fig. 34 Power-on reset circuit example  
(2) Internal state at reset  
Table 19 shows port state at reset, and Figure 35 shows internal  
state at reset (they are the same after system is released from re-  
set). The contents of timers, registers, flags and RAM except  
shown in Figure 35 are undefined, so set the initial value to them.  
Table 19 Port state at reset  
State  
Name  
Function  
D0D5  
D0D5  
High impedance (Note)  
D6/CNTR0, D7/CNTR1  
P00P03  
D6, D7  
P00P03  
P10P13  
P20P22  
P30, P31  
P32, P33  
P40P43  
P50P53  
High impedance (Notes 1, 2)  
High impedance  
P10P13  
P20/SCK, P21/SOUT, P22/SIN  
P30/INT0, P31/INT1  
P32, P33 (Note 4)  
P40/AIN4P43/AIN7 (Note 4)  
P50P53 (Note 4)  
High impedance (Note 1)  
High impedance (Note 1)  
High impedance (Note 3)  
Notes 1: Output latch is set to 1.”  
2: Pull-up transistor is turned OFF.  
3: After system is released from reset, port P5 is in the input mode. (Direction register FR0 = 00002)  
4: The 4513 Group does not have these ports.  
48  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Program counter (PC) ............................................................................00000
Address 0 in page 0 is set to program counter.  
0
0
0
0
0
0
0
0
0
Interrupt enable flag (INTE)..................................................................................................  
Power down flag (P) .............................................................................................................  
External 0 interrupt request flag (EXF0) ..............................................................................  
External 1 interrupt request flag (EXF1) ..............................................................................  
0
(Interrupt disabled)  
0
0
0
Interrupt control register V1................................................................................
0
0
0
0
(Interrupt disabled)  
(Interrupt disabled)  
Interrupt control register V2................................................................................000
Interrupt control register I1 .................................................................................000
Interrupt control register I2 .................................................................................000
Timer 1 interrupt request flag (T1F) .....................................................................................  
Timer 2 interrupt request flag (T2F) .....................................................................................  
Timer 3 interrupt request flag (T3F) .....................................................................................  
Timer 4 interrupt request flag (T4F) .....................................................................................  
Watchdog timer flags (WDF1, WDF2)..................................................................................  
Watchdog timer enable flag (WEF) ......................................................................................  
0
0
0
0
0
0
0
0
0
Timer control register W1 ...................................................................................
0
0
0
0
(Prescaler and timer 1 stopped)  
(Timer 2 stopped)  
Timer control register W2 ...................................................................................000
Timer control register W3 ...................................................................................
0
0
0
0
0
(Timer 3 stopped)  
Timer control register W4 ...................................................................................000
Timer control register W6 ...................................................................................000
Clock control register MR ...................................................................................100
Serial I/O transmission/reception completion flag (SIOF) ...................................................  
0
(Timer 4 stopped)  
0
0
0
(External clock selected and serial  
I/O port not selected)  
Serial I/O mode register J1 ................................................................................
0
0
0
0
Serial I/O register SI ..................................................................
A-D conversion completion flag (ADF) .................................................................................  
A-D control register Q1 .......................................................................................000
A-D control register Q2 .......................................................................................000
0
0
0
Voltage comparator control register Q3 .............................................................
0
0
0
0
✕ ✕ ✕  
Successive comparison register AD ............................
Comparator register...................................................................
Key-on wakeup control register K0 ....................................................................000
Pull-up control register PU0 ...............................................................................000
Direction register FR0 ........................................................................................000
Carry flag (CY) ......................................................................................................................  
0
0
0
(Port P5: input mode)  
0
Register A ...........................................................................................................
0
0
0
0
Register B ...........................................................................................................000
Register D .................................................................................................................
0
0
Register E ..................................................................................
Register X ...........................................................................................................000
Register Y ...........................................................................................................
0
0
0
0
Register Z ........................................................................................................................
Stack pointer (SP) ....................................................................................................11
1
represents undefined.  
Fig. 35 Internal state at reset  
49  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
VOLTAGE DROP DETECTION CIRCUIT  
The built-in voltage drop detection circuit is designed to detect a  
drop in voltage and to reset the microcomputer if the supply voltage  
drops below a set value.  
RESET pin  
Internal reset signal  
Voltage drop detection circuit  
Watchdog timer output  
WEF  
Note: The output structure of RESET pin is N-channel open-drain.  
Fig. 36 Voltage drop detection reset circuit  
V
DD  
V
RST (detection voltage)  
Voltage drop detection  
circuit output  
The microcomputer starts  
operation after f(XIN) is counted  
16892 to 16895 times.  
RESET pin  
Notes 1: Pull-up RESET pin externally.  
2: Refer to the voltage drop detection circuit in the electrical characteristics  
for the rating value of VRST (detection voltage).  
Fig. 37 Voltage drop detection circuit operation waveform  
50  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
RAM BACK-UP MODE  
Table 20 Functions and states retained at RAM back-up  
The 4513/4514 Group has the RAM back-up mode.  
When the EPOF and POF instructions are executed continuously,  
system enters the RAM back-up state. The POF instruction is  
equal to the NOP instruction when the EPOF instruction is not ex-  
ecuted before the POF instruction.  
Function  
Program counter (PC), registers A, B,  
carry flag (CY), stack pointer (SP) (Note 2)  
Contents of RAM  
RAM back-up  
O
Port level  
O
As oscillation stops retaining RAM, the function of reset circuit and  
states at RAM back-up mode, current dissipation can be reduced  
without losing the contents of RAM. Table 20 shows the function  
and states retained at RAM back-up. Figure 38 shows the state  
transition.  
Timer control register W1  
O
Timer control registers W2 to W4, W6  
Clock control register MR  
Interrupt control registers V1, V2  
Interrupt control registers I1, I2  
Timer 1 function  
O
(1) Identification of the start condition  
(Note 3)  
Timer 2 function  
Warm start (return from the RAM back-up state) or cold start (re-  
turn from the normal reset state) can be identified by examining the  
state of the power down flag (P) with the SNZP instruction.  
Timer 3 function  
(Note 3)  
(Note 3)  
Timer 4 function  
A-D conversion function  
O
(2) Warm start condition  
A-D control registers Q1, Q2  
Voltage comparator function  
Voltage comparator control register Q3  
Serial I/O function  
When the external wakeup signal is input after the system enters  
the RAM back-up state by executing the EPOF and POF instruc-  
tions continuously, the CPU starts executing the program from  
address 0 in page 0. In this case, the P flag is “1.”  
O (Note 5)  
O
Serial I/O mode register J1  
Pull-up control register PU0  
Key-on wakeup control register K0  
Direction register FR0  
O
O
O
(3) Cold start condition  
The CPU starts executing the program from address 0 in page 0  
O
when;  
External 0 interrupt request flag (EXF0)  
External 1 interrupt request flag (EXF1)  
Timer 1 interrupt request flag (T1F)  
Timer 2 interrupt request flag (T2F)  
Timer 3 interrupt request flag (T3F)  
Timer 4 interrupt request flag (T4F)  
Watchdog timer flags (WDF1, WDF2)  
Watchdog timer enable flag (WEF)  
16-bit timer (WDT)  
• reset pulse is input to RESET pin, or  
• reset by watchdog timer is performed, or  
• voltage drop detection circuit detects the voltage drop.  
In this case, the P flag is “0.”  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 4)  
(Note 4)  
(Note 4)  
A-D conversion completion flag (ADF)  
Serial I/O transmission/reception completion flag  
(SIOF)  
Interrupt enable flag (INTE)  
Notes 1:“O” represents that the function can be retained, and “” repre-  
sents that the function is initialized.  
Registers and flags other than the above are undefined at RAM  
back-up, and set an initial value after returning.  
2: The stack pointer (SP) points the level of the stack register and is  
initialized to “7” at RAM back-up.  
3: The state of the timer is undefined.  
4: Initialize the watchdog timer with the WRST instruction, and then  
execute the POF instruction.  
5: The state is retained when the voltage comparator function is se-  
lected with the voltage comparator control register Q3.  
51  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(4) Return signal  
An external wakeup signal is used to return from the RAM back-up  
mode because the oscillation is stopped. Table 21 shows the return  
condition for each return source.  
(5) Ports P0 and P1 control registers  
• Key-on wakeup control register K0  
Register K0 controls the ports P0 and P1 key-on wakeup func-  
tion. Set the contents of this register through register A with the  
TK0A instruction. In addition, the TAK0 instruction can be used to  
transfer the contents of register K0 to register A.  
• Pull-up control register PU0  
Register PU0 controls the ON/OFF of the ports P0 and P1 pull-up  
transistor. Set the contents of this register through register A with  
the TPU0A instruction. In addition, the TAPU0 instruction can be  
used to transfer the contents of register PU0 to register A.  
Table 21 Return source and return condition  
Remarks  
Return source  
Ports P0, P1  
Return condition  
Set the port using the key-on wakeup function selected with register K0 to  
“H” level before going into the RAM back-up state because the port P0  
shares the falling edge detection circuit with port P1.  
Return by an external falling  
edge input (“H”“L”).  
Select the return level (“L” level or “H” level) with the bit 2 of register I1 ac-  
cording to the external state before going into the RAM back-up state.  
Return by an external “H” level or  
“L” level input.  
The EXF0 flag is not set.  
Port P30/INT0  
Port P31/INT1  
Select the return level (“L” level or “H” level) with the bit 2 of register I2 ac-  
cording to the external state before going into the RAM back-up state.  
Return by an external “H” level or  
“L” level input.  
The EXF1 flag is not set.  
52  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
A
B
POF instruction  
is executed  
(Stabilizing time a )  
f(XIN) stop  
Reset  
f(XIN) oscillation  
Return input  
(RAM back-up  
mode)  
(Stabilizing time a )  
Stabilizing time a : Time required to stabilize the f(XIN) oscillation is automatically generated by hardware.  
Fig. 38 State transition  
Power down flag P  
POF instruction  
S
Q
Software start  
Reset input or  
voltage drop detection  
circuit output  
Yes  
P = 1”  
?
R
No  
Set source • • • • • • • POF instruction is executed  
Clear source• • • • • Reset input  
Warm start  
Cold start  
Fig. 39 Set source and clear source of the P flag  
Fig. 40 Start condition identified example using the SNZP in-  
struction  
53  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Table 22 Key-on wakeup control register, pull-up control register, and interrupt control register  
Key-on wakeup control register K0  
at reset : 00002  
at RAM back-up : state retained  
R/W  
R/W  
R/W  
Pins P12 and P13 key-on wakeup  
control bit  
0
1
0
1
0
1
0
1
Key-on wakeup not used  
K03  
K02  
K01  
K00  
Key-on wakeup used  
Key-on wakeup not used  
Key-on wakeup used  
Key-on wakeup not used  
Key-on wakeup used  
Key-on wakeup not used  
Key-on wakeup used  
Pins P10 and P11 key-on wakeup  
control bit  
Pins P02 and P03 key-on wakeup  
control bit  
Pins P00 and P01 key-on wakeup  
control bit  
Pull-up control register PU0  
at reset : 00002  
at RAM back-up : state retained  
Pins P12 and P13 pull-up transistor  
control bit  
0
1
0
1
0
1
0
1
Pull-up transistor OFF  
Pull-up transistor ON  
Pull-up transistor OFF  
Pull-up transistor ON  
Pull-up transistor OFF  
Pull-up transistor ON  
Pull-up transistor OFF  
Pull-up transistor ON  
PU03  
PU02  
PU01  
PU00  
Pins P10 and P11 pull-up transistor  
control bit  
Pins P02 and P03 pull-up transistor  
control bit  
Pins P00 and P01 pull-up transistor  
control bit  
Interrupt control register I1  
Not used  
at RAM back-up : state retained  
at reset : 00002  
0
1
I13  
I12  
This bit has no function, but read/write is enabled.  
Falling waveform (Llevel of INT0 pin is recognized with the SNZI0  
0
1
Interrupt valid waveform for INT0 pin/  
return level selection bit (Note 2)  
instruction)/Llevel  
Rising waveform (Hlevel of INT0 pin is recognized with the SNZI0  
instruction)/Hlevel  
One-sided edge detected  
Both edges detected  
Disabled  
0
1
0
1
I11  
I10  
INT0 pin edge detection circuit control bit  
INT0 pin  
timer 1 control enable bit  
Enabled  
Interrupt control register I2  
Not used  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
1
I23  
I22  
This bit has no function, but read/write is enabled.  
Falling waveform (Llevel of INT1 pin is recognized with the SNZI1  
0
1
instruction)/Llevel  
Interrupt valid waveform for INT1 pin/  
return level selection bit (Note 3)  
Rising waveform (Hlevel of INT1 pin is recognized with the SNZI1  
instruction)/Hlevel  
One-sided edge detected  
Both edges detected  
Disabled  
0
1
0
1
I21  
I20  
INT1 pin edge detection circuit control bit  
INT1 pin  
Enabled  
timer 3 control enable bit  
Notes 1: Rrepresents read enabled, and Wrepresents write enabled.  
2: When the contents of I12 is changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction.  
3: When the contents of I22 is changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction.  
54  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Control circuit to switch the middle-speed mode and high-speed  
mode  
CLOCK CONTROL  
The clock control circuit consists of the following circuits.  
Control circuit to return from the RAM back-up state  
System clock generating circuit  
Control circuit to stop the clock oscillation  
System clock  
MR3  
Division circuit  
(divided by 2)  
Internal clock  
generation circuit  
(divided by 3)  
1
Instruction clock  
Counter  
X
IN  
Oscillation  
circuit  
0
X
OUT  
Wait time (Note)  
control circuit  
Software  
start signal  
RESET  
Key-on wake up control register  
POF instruction  
R
S
K00,K01,K02,K03  
Q
Ports P0  
Ports P0  
Ports P1  
Ports P1  
0, P0  
2, P0  
0, P1  
2, P1  
1
3
1
3
Multi-  
plexer  
Falling detected  
I1  
2
Llevel  
0
P3  
0
/INT  
/INT  
0
1
Hlevel  
I2  
2
Llevel  
0
P31  
1
1
Hlevel  
Note: The wait time control circuit is used to generate the time required to stabilize the f(XIN) oscillation.  
Fig. 41 Clock control circuit structure  
Table 23 Clock control register MR  
Clock control register MR  
System clock selection bit  
Not used  
at reset : 10002  
f(XIN) (high-speed mode)  
at RAM back-up : 10002  
R/W  
0
1
0
1
0
1
0
1
MR3  
MR2  
MR1  
MR0  
f(XIN)/2 (middle-speed mode)  
This bit has no function, but read/write is enabled.  
Not used  
This bit has no function, but read/write is enabled.  
This bit has no function, but read/write is enabled.  
Not used  
Note : Rrepresents read enabled, and Wrepresents write enabled.  
55  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Clock signal f(XIN) is obtained by externally connecting a ceramic  
resonator.  
4513/4514  
Note: Externally connect  
a
Connect this external circuit to pins XIN and XOUT at the shortest  
distance. A feedback resistor is built in between pins XIN and XOUT.  
When an external clock signal is input, connect the clock source to  
XIN and leave XOUT open. When using an external clock, the maxi-  
mum value of external clock oscillating frequency is shown in Table  
24.  
damping resistor Rd de-  
pending on the oscillation  
frequency.  
(A feedback resistor is  
built-in.)  
Use the resonator manu-  
facturers recommended  
value because constants  
such as capacitance de-  
pend on the resonator.  
X
IN  
XOUT  
Rd  
CIN  
COUT  
Fig. 42 Ceramic resonator external circuit  
4513/4514  
VDD  
VSS  
XIN  
XOUT  
External oscillation circuit  
Fig. 43 External clock input circuit  
Table 24 Maximum value of external clock oscillation frequency  
Supply voltage  
Oscillation frequency (duty ratio)  
Middle-speed mode  
High-speed mode  
VDD = 2.0 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 2.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
3.0 MHz (40 % to 60 %)  
3.0 MHz (40 % to 60 %)  
1.0 MHz (40 % to 60 %)  
0.8 MHz (40 % to 60 %)  
3.0 MHz (40 % to 60 %)  
3.0 MHz (40 % to 60 %)  
1.0 MHz (40 % to 60 %)  
Mask ROM version  
Middle-speed mode  
High-speed mode  
One Time PROM version  
ROM ORDERING METHOD  
1.Mask ROM Order Confirmation Form  
2.Mark Specification Form  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies) or one floppy disk.  
For the mask ROM confirmation and the mark specifications, re-  
fer to the Mitsubishi MCU Technical InformationHomepage  
(http://www.infomicom.maec.co.jp/indexe.htm).  
56  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
LIST OF PRECAUTIONS  
P31/INT1 pin  
When the interrupt valid waveform of P31/INT1 pin is changed  
with the bit 2 of register I2 in software, be careful about the fol-  
lowing notes.  
Noise and latch-up prevention  
Connect a capacitor on the following condition to prevent noise  
and latch-up;  
Clear the bit 1 of register V1 to 0before the interrupt valid wave-  
form of P31/INT1 pin is changed with the bit 2 of register I2 (refer  
to Figure 45).  
connect a bypass capacitor (approx. 0.1 µF) between pins VDD  
and VSS at the shortest distance,  
equalize its wiring in width and length, and  
use relatively thick wire.  
Depending on the input state of the P31/INT1 pin, the external 1  
interrupt request flag (EXF1) may be set when the interrupt valid  
waveform is changed. Accordingly, clear bit 2 of register I2 and  
execute the SNZ1 instruction to clear the EXF1 flag after execut-  
ing at least one instruction (refer to Figure 45).  
In the One Time PROM version, CNVSS pin is also used as VPP  
pin. Accordingly, when using this pin, connect this pin to VSS  
through a resistor about 5 kin series at the shortest distance.  
Prescaler  
Stop the prescaler operation to change its frequency dividing ra-  
tio.  
.
.
.
LA  
8
; (02)  
TV1A  
; The SNZ1 instruction is valid ...........✕  
Timer count source  
LA  
8
Stop timer 1, 2, 3, or 4 counting to change its count source.  
TI2A  
NOP  
SNZ1  
NOP  
; Change of the interrupt valid waveform  
........................................................... ✕  
; The SNZ1 instruction is executed  
Reading the count value  
Stop timer 1, 2, 3, or 4 counting and then execute the TAB1,  
TAB2, TAB3, or TAB4 instruction to read its data.  
.
.
.
: this bit is not related to the setting of INT1.  
Writing to reload registers R1 and R3  
When writing data to reload registers R1 or R3 while timer 1 or  
timer 3 is operating, avoid a timing when timer 1 or timer 3  
underflows.  
Fig. 45 External 1 interrupt program example  
One Time PROM version  
The operating power voltage of the One Time PROM version is  
2.5 V to 5.5 V.  
P30/INT0 pin  
When the interrupt valid waveform of the P30/INT0 pin is  
changed with the bit 2 of register I1 in software, be careful about  
the following notes.  
Multifunction  
The input of D6, D7, P20P22, I/O of P30 and P31, input of CMP0-,  
CMP0+, CMP1-, CMP1+, and I/O of P40P43 can be used even  
when CNTR0, CNTR1, SCK, SOUT, SIN, INT0, INT1, AIN0AIN3  
and AIN4AIN7 are selected.  
Clear the bit 0 of register V1 to 0before the interrupt valid wave-  
form of P30/INT0 pin is changed with the bit 2 of register I1 (refer  
to Figure 44).  
Depending on the input state of the P30/INT0 pin, the external 0  
interrupt request flag (EXF0) may be set when the interrupt valid  
waveform is changed. Accordingly, clear bit 2 of register I1, and  
execute the SNZ0 instruction to clear the EXF0 flag after execut-  
ing at least one instruction (refer to Figure 44)  
.
.
.
LA  
4
4
; (✕✕02)  
TV1A  
LA  
; The SNZ0 instruction is valid ...........✕  
;
TI1A  
NOP  
SNZ0  
NOP  
; Interrupt valid waveform is changed  
........................................................... ✕  
; The SNZ0 instruction is executed  
.
.
.
: this bit is not related to the setting of INT0 pin.  
Fig. 44 External 0 interrupt program example  
57  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
A-D converter-1  
When the operating mode of the A-D converter is changed from  
the comparator mode to the A-D conversion mode with the bit 3  
of register Q2 in a program, be careful about the following notes.  
Clear the bit 2 of register V2 to 0to change the operating mode  
of the A-D converter from the comparator mode to the A-D con-  
version mode with the bit 3 of register Q2 (refer to Figure 46).  
The A-D conversion completion flag (ADF) may be set when the  
operating mode of the A-D converter is changed from the com-  
parator mode to the A-D conversion mode. Accordingly, set a  
value to register Q2, and execute the SNZAD instruction to clear  
the ADF flag.  
Sensor  
AIN  
Apply the voltage withiin the specifications  
to an analog input pin.  
Fig. 47 Analog input external circuit example-1  
Do not change the operating mode (both A-D conversion mode  
and comparator mode) of A-D converter with the bit 3 of register  
Q2 during operating the A-D converter.  
.
.
.
About 1k  
LA  
8
0
; (02)  
Sensor  
AIN  
TV2A  
LA  
; The SNZAD instruction is valid........✕  
; (0✕✕2)  
TQ2A  
; Change of the operating mode of the A-D  
converter from the comparator mode to the  
A-D conversion mode  
SNZAD  
NOP  
Fig. 48 Analog input external circuit example-2  
.
.
.
12  
POF instruction  
: this bit is not related to the change of the  
Execute the POF instruction immediately after executing the  
EPOF instruction to enter the RAM back-up.  
operating mode of the A-D conversion.  
Note that system cannot enter the RAM back-up state when ex-  
ecuting only the POF instruction.  
Fig. 46 A-D converter operating mode program example  
11  
Be sure to disable interrupts by executing the DI instruction be-  
fore executing the EPOF instruction.  
A-D converter-2  
Each analog input pin is equipped with a capacitor which is used  
to compare the analog voltage. Accordingly, when the analog  
voltage is input from the circuit with high-impedance and, charge/  
discharge noise is generated and the sufficient A-D accuracy  
may not be obtained. Therefore, reduce the impedance or, con-  
nect a capacitor (0.01 µF to 1 µF) to analog input pins (Figure  
47).  
13  
Analog input pins  
Note the following when using the analog input pins also for I/O  
port P4 functions:  
Even when P40/AIN4P43/AIN7 are set to pins for analog input,  
they continue to function as P40P43 I/O. Accordingly, when any  
of them are used as I/O port P4 and others are used as analog  
input pins, make sure to set the outputs of pins that are set for  
analog input to 1.Also, the port input function of the pin func-  
tions as an analog input is undefined.  
When the overvoltage applied to the A-D conversion circuit may  
occur, connect an external circuit in order to keep the voltage  
within the rated range as shown the Figure 48. In addition, test  
the application products sufficiently.  
TALA instruction  
When the TALA instruction is executed, the low-order 2 bits of  
register AD is transferred to the high-order 2 bits of register A, si-  
multaneously, the low-order 2 bits of register A is 0.”  
14  
Program counter  
Make sure that the PCH does not specify after the last page of  
the built-in ROM.  
15  
Port P3  
In the 4513 Group, when the IAP3 instruction is executed, note  
that the high-order 2 bits of register A is undefined.  
58  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
16  
Voltage comparator function  
When the voltage comparator function is valid with the voltage  
comparator control register Q3, it is operating even in the RAM  
back-up mode. Accordingly, be careful about such state because  
it causes the increase of the operation current in the RAM back-  
up mode.  
In order to reduce the operation current in the RAM back-up  
mode, invalidate (bits 2 and 3 of register Q3 = 0) the voltage  
comparator function by software before the POF instruction is ex-  
ecuted.  
Also, while the voltage comparator function is valid, current is al-  
ways consumed by voltage comparator. On the system required  
for the low-power dissipation, invalidate the voltage comparator  
when it is unused by software.  
17  
Register Q3  
Bits 0 and 1 of register Q3 can be only read. Note that they can-  
not be written.  
18  
Reading the comparison result of voltage comparator  
Read the voltage comparator comparison result from register Q3  
after the voltage comparator response time (max. 20 µs) is  
passed from the voltage comparator function become valid.  
59  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
SYMBOL  
The symbols shown below are used in the following instruction function table and instruction list.  
Contents  
Symbol  
Symbol  
T1F  
Contents  
Timer 1 interrupt request flag  
Timer 2 interrupt request flag  
Timer 3 interrupt request flag  
Timer 4 interrupt request flag  
Watchdog timer flag  
Register A (4 bits)  
Register B (4 bits)  
Register D (3 bits)  
Register E (8 bits)  
A
B
T2F  
DR  
E
T3F  
T4F  
A-D control register Q1 (4 bits)  
A-D control register Q2 (4 bits)  
Voltage comparator control register Q3 (4 bits)  
Successive comparison register AD (10 bits)  
Serial I/O mode register J1 (4 bits)  
Serial I/O register SI (8 bits)  
Interrupt control register V1 (4 bits)  
Interrupt control register V2 (4 bits)  
Interrupt control register I1 (4 bits)  
Interrupt control register I2 (4 bits)  
Timer control register W1 (4 bits)  
Timer control register W2 (4 bits)  
Timer control register W3 (4 bits)  
Timer control register W4 (4 bits)  
Timer control register W6 (4 bits)  
Clock control register MR (4 bits)  
Key-on wakeup control register K0 (4 bits)  
Pull-up control register PU0 (4 bits)  
Direction register FR0 (4 bits)  
Register X (4 bits)  
Q1  
Q2  
Q3  
AD  
J1  
WDF1  
WEF  
INTE  
EXF0  
EXF1  
P
Watchdog timer enable flag  
Interrupt enable flag  
External 0 interrupt request flag  
External 1 interrupt request flag  
Power down flag  
SI  
V1  
V2  
I1  
ADF  
SIOF  
A-D conversion completion flag  
Serial I/O transmission/reception completion flag  
I2  
D
Port D (8 bits)  
Port P0 (4 bits)  
Port P1 (4 bits)  
Port P2 (3 bits)  
Port P3 (4 bits)  
Port P4 (4 bits)  
Port P5 (4 bits)  
W1  
W2  
W3  
W4  
W6  
MR  
K0  
PU0  
FR0  
X
P0  
P1  
P2  
P3  
P4  
P5  
Hexadecimal variable  
Hexadecimal variable  
Hexadecimal variable  
Hexadecimal variable  
Hexadecimal constant  
Hexadecimal constant  
Hexadecimal constant  
Binary notation of hexadecimal variable A  
(same for others)  
x
y
z
Register Y (4 bits)  
Y
p
Z
Register Z (2 bits)  
n
Data pointer (10 bits)  
DP  
i
(It consists of registers X, Y, and Z)  
Program counter (14 bits)  
High-order 7 bits of program counter  
Low-order 7 bits of program counter  
Stack register (14 bits 8)  
Stack pointer (3 bits)  
j
PC  
PCH  
PCL  
SK  
SP  
CY  
R1  
R2  
R3  
R4  
T1  
A3A2A1A0  
Direction of data movement  
Data exchange between a register and memory  
Decision of state shown before “?”  
Carry flag  
?
Timer 1 reload register  
( )  
Contents of registers and memories  
Timer 2 reload register  
Negate, Flag unchanged after executing instruction  
RAM address pointed by the data pointer  
Label indicating address a6 a5 a4 a3 a2 a1 a0  
Label indicating address a6 a5 a4 a3 a2 a1 a0  
in page p5 p4 p3 p2 p1 p0  
Timer 3 reload register  
M(DP)  
a
Timer 4 reload register  
Timer 1  
p, a  
T2  
Timer 2  
Timer 3  
Hex. C + Hex. number x (also same for others)  
T3  
C
+
x
Timer 4  
T4  
Note :The 4513/4514 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accord-  
ingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes “1” if the TABP p, RT, or RTS instruction  
is skipped.  
60  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
LIST OF INSTRUCTION FUNCTION  
Group-  
ing  
Group-  
ing  
Group-  
ing  
Mnemonic  
Function  
Mnemonic  
XAMI j  
Function  
Mnemonic  
SB j  
Function  
(Mj(DP)) 1  
TAB  
(A) (B)  
(A) ← → (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
j = 0 to 3  
TBA  
TAY  
(B) (A)  
(A) (Y)  
(Y) (A)  
(Y) (Y) + 1  
RB j  
(Mj(DP)) 0  
j = 0 to 3  
TMA j  
(M(DP)) (A)  
(X) (X)EXOR(j)  
j = 0 to 15  
SZB j  
(Mj(DP)) = 0 ?  
j = 0 to 3  
TYA  
TEAB  
(E7–E4) (B)  
(E3–E0) (A)  
LA n  
(A) n  
SEAM  
SEA n  
(A) = (M(DP)) ?  
n = 0 to 15  
(B) (E7–E4)  
(A) (E3–E0)  
(A) = n ?  
TABE  
TABP p  
(SP) (SP) + 1  
(SK(SP)) (PC)  
(PCH) p  
n = 0 to 15  
TDA  
TAD  
(DR2–DR0) (A2–A0)  
B a  
(PCL) a6–a0  
(PCL) (DR2–DR0,  
A3–A0)  
(A2–A0) (DR2–DR0)  
(A3) 0  
BL p, a  
(PCH) p  
(B) (ROM(PC))74  
(A) (ROM(PC))30  
(PC) (SK(SP))  
(SP) (SP) – 1  
(PCL) a6–a0  
TAZ  
(A1, A0) (Z1, Z0)  
(A3, A2) 0  
BLA p  
BM a  
(PCH) p  
(PCL) (DR2–DR0,  
A3–A0)  
TAX  
(A) (X)  
AM  
(A) (A) + (M(DP))  
(SP) (SP) + 1  
(SK(SP)) (PC)  
(PCH) 2  
TASP  
(A2–A0) (SP2–SP0)  
(A3) 0  
AMC  
(A) (A) + (M(DP)) +  
(CY)  
(CY) Carry  
(PCL) a6–a0  
(X) x, x = 0 to 15  
(Y) y, y = 0 to 15  
LXY x, y  
A n  
(A) (A) + n  
BML p, a (SP) (SP) + 1  
(SK(SP)) (PC)  
(PCH) p  
n = 0 to 15  
(Z) z, z = 0 to 3  
(Y) (Y) + 1  
LZ z  
INY  
AND  
OR  
(A) (A) AND (M(DP))  
(A) (A) OR (M(DP))  
(CY) 1  
(PCL) a6–a0  
BMLA p  
(SP) (SP) + 1  
(SK(SP)) (PC)  
(PCH) p  
DEY  
TAM j  
(Y) (Y) – 1  
SC  
(A) (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
(PCL) (DR2–DR0,  
A3–A0)  
RC  
(CY) 0  
SZC  
CMA  
RAR  
(CY) = 0 ?  
RTI  
RT  
(PC) (SK(SP))  
(SP) (SP) – 1  
(A) ← → (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
XAM j  
(A) (A)  
(PC) (SK(SP))  
(SP) (SP) – 1  
CY A3A2A1A0  
(A) ← → (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
XAMD j  
RTS  
(PC) (SK(SP))  
(SP) (SP) – 1  
(Y) (Y) – 1  
61  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
LIST OF INSTRUCTION FUNCTION (continued)  
Group-  
ing  
Group-  
ing  
Group-  
ing  
Mnemonic  
Function  
Mnemonic  
Function  
(A) (W4)  
Mnemonic  
SNZT1  
Function  
(T1F) = 1 ?  
DI  
(INTE) 0  
TAW4  
After skipping  
EI  
(INTE) 1  
TW4A  
TAW6  
TW6A  
TAB1  
(W4) (A)  
(A) (W6)  
(W6) (A)  
(T1F) 0  
SNZ0  
(EXF0) = 1 ?  
After skipping  
(EXF0) 0  
SNZT2  
SNZT3  
SNZT4  
(T2F) = 1 ?  
After skipping  
(T2F) 0  
SNZ1  
(EXF1) = 1 ?  
After skipping  
(EXF1) 0  
(B) (T17–T14)  
(A) (T13–T10)  
(T3F) = 1 ?  
After skipping  
(T3F) 0  
T1AB  
(R17–R14) (B)  
(T17–T14) (B)  
(R13–R10) (A)  
(T13–T10) (A)  
SNZI0  
SNZI1  
I12 = 1 : (INT0) = “H” ?  
I12 = 0 : (INT0) = “L” ?  
(T4F) = 1 ?  
After skipping  
(T4F) 0  
I22 = 1 : (INT1) = “H” ?  
I22 = 0 : (INT1) = “L” ?  
TAB2  
T2AB  
(B) (T27–T24)  
(A) (T23–T20)  
IAP0  
OP0A  
IAP1  
OP1A  
IAP2  
(A) (P0)  
(P0) (A)  
(A) (P1)  
(P1) (A)  
TAV1  
TV1A  
TAV2  
TV2A  
TAI1  
(A) (V1)  
(V1) (A)  
(A) (V2)  
(V2) (A)  
(A) (I1)  
(I1) (A)  
(A) (I2)  
(I2) (A)  
(A) (W1)  
(W1) (A)  
(A) (W2)  
(W2) (A)  
(A) (W3)  
(W3) (A)  
(R27–R24) (B)  
(T27–T24) (B)  
(R23–R20) (A)  
(T23–T20) (A)  
TAB3  
T3AB  
(B) (T37–T34)  
(A) (T33–T30)  
(A2–A0) (P22–P20)  
(A3) 0  
(R37–R34) (B)  
(T37–T34) (B)  
(R33–R30) (A)  
(T33–T30) (A)  
IAP3  
(A) (P3)  
(P3) (A)  
(A) (P4)  
(P4) (A)  
(A) (P5)  
(P5) (A)  
(D) 1  
TI1A  
OP3A  
IAP4*  
OP4A*  
IAP5*  
OP5A*  
CLD  
TAI2  
TI2A  
TAB4  
T4AB  
(B) (T47–T44)  
(A) (T43–T40)  
TAW1  
TW1A  
TAW2  
TW2A  
TAW3  
TW3A  
(R47–R44) (B)  
(T47–T44) (B)  
(R43–R40) (A)  
(T43–T40) (A)  
TR1AB  
TR3AB  
(R17–R14) (B)  
(R13–R10) (A)  
RD  
(D(Y)) 0  
(Y) = 0 to 7  
(R37–R34) (B)  
(R33–R30) (A)  
SD  
(D(Y)) 1  
(Y) = 0 to 7  
SZD  
(D(Y)) = 0 ?  
(Y) = 0 to 7  
*: The 4513 Group does not have these instructions.  
62  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
LIST OF INSTRUCTION FUNCTION (continued)  
Group-  
ing  
Group-  
ing  
Mnemonic  
Function  
Mnemonic  
Function  
TK0A  
(K0) (A)  
TABAD  
(A) (AD5–AD2)  
(B) (AD9–AD6)  
However, in the com-  
parator mode,  
TAK0  
(A) (K0)  
(A) (AD3–AD0)  
(B) (AD7–AD4)  
TPU0A  
TAPU0  
TFR0A*  
TABSI  
(PU0) (A)  
(A) (PU0)  
(FR0) (A)  
(A) (AD1, AD0, 0, 0)  
TALA  
(AD3–AD0) (A)  
(AD7–AD4) (B)  
TADAB  
(A) (SI3–SI0)  
(B) (SI7–SI4)  
TAQ1  
TQ1A  
ADST  
(A) (Q1)  
(Q1) (A)  
TSIAB  
(SI3–SI0) (A)  
(SI7–SI4) (B)  
(ADF) 0  
TAJ1  
TJ1A  
SST  
(A) (J1)  
(J1) (A)  
A-D conversion starting  
(ADF) = 1 ?  
After skipping  
(ADF) 0  
SNZAD  
(SIOF) 0  
Serial I/O starting  
(A) (Q2)  
TAQ2  
TQ2A  
NOP  
SNZSI  
(SIOF) = 1 ?  
After skipping  
(SIOF) 0  
(Q2) (A)  
(PC) (PC) + 1  
RAM back-up  
POF instruction valid  
(P) = 1 ?  
POF  
EPOF  
SNZP  
WRST  
TAMR  
TMRA  
TAQ3  
TQ3A  
(WDF1) 0, (WEF) 1  
(A) (MR)  
(MR) (A)  
(A) (Q3)  
(Q33, Q32) (A3, A2)  
(Q31) (CMP1 com-  
parison result)  
(Q30) (CMP0 com-  
parison result)  
*: The 4513 Group does not have these instructions.  
63  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
INSTRUCTION CODE TABLE (for 4513 Group)  
010000 011000  
001100  
0C  
D9–D4 000000000001000010000011000100000101000110 000111001000001001001010001011  
001101001110 001111  
010111 011111  
0F 10–17 18–1F  
Hex.  
00  
NOP BLA  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0D  
0E  
D3–D0  
0000  
notation  
SZB  
0
A
0
LA TABP TABP TABP  
0
TABP  
48*  
0
BMLA  
TASP  
TAD  
TAX  
TAZ  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
32**  
16***  
0
SZB  
1
TABP  
33**  
A
1
LA TABP TABP  
17***  
TABP  
49*  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
CLD  
1
1
SZB  
2
TABP  
A
2
LA TABP TABP  
2
TABP  
18*** 34**  
50*  
POF  
2
SZB  
3
TABP  
35**  
A
3
LA TABP TABP  
19***  
TABP  
51*  
BML  
BML*** BL BL*** BM  
SNZP INY  
3
3
TABP  
A
4
LA TABP TABP  
4
TABP  
52*  
SZD  
SEAn  
SEAM  
DI  
EI  
RD  
SD  
RT TAV1  
RTS TAV2  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
4
20*** 36**  
A
5
LA TABP TABP TABP  
5
TABP  
53*  
37**  
21***  
5
TABP  
38**  
A
6
LA TABP TABP  
22***  
TABP  
54*  
RC  
RTI  
6
6
A
7
LA TABP TABP TABP  
7
TABP  
55*  
SC DEY  
39**  
23***  
7
LZ  
0
TABP  
40**  
A
8
LA TABP TABP  
24***  
TABP  
56*  
BML  
BML*** BL BL*** BM  
AND  
OR  
SNZ0  
SNZ1  
SNZI0  
SNZI1  
8
8
LZ  
1
TABP  
A
9
LA TABP TABP  
9
TABP  
57*  
TDA  
TABE  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
9
25*** 41**  
LZ  
2
A
10  
LA TABP TABP TABP  
TABP  
58*  
AM TEAB  
AMC  
TYA CMA  
RAR  
TBA TAB  
TAY  
42**  
10 26***  
10  
LA TABP TABP  
11  
LA TABP TABP TABP  
12  
LA TABP TABP  
13 13 29***  
LZ  
3
TABP  
A
11  
TABP  
11 27*** 43**  
59*  
EPOF  
RB  
0
SB  
0
A
12  
TABP  
60*  
44**  
12 28***  
RB  
1
SB  
1
TABP  
45**  
A
13  
TABP  
61*  
BML  
BML*** BL BL*** BM  
RB  
2
SB  
2
A
14  
LA TABP TABP TABP  
14  
TABP  
14 30*** 46**  
62*  
TV2A  
TV1A  
BML BML*** BL BL*** BM  
BML BML*** BL BL*** BM  
RB  
3
SB  
3
TABP  
47**  
15 31***  
A
15  
LA TABP TABP  
15  
TABP  
63*  
SZC  
The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order  
4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representa-  
tion of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is  
shown. Do not use code marked “–.”  
The codes for the second word of a two-word instruction are described below.  
The second word  
10 paaa aaaa  
10 paaa aaaa  
10 pp00 pppp  
10 pp00 pppp  
00 0111 nnnn  
00 0010 1011  
• *, **, and *** cannot be used in the M34513M2-XXXSP/FP.  
• * and ** cannot be used in the M34513M4-XXXSP/FP.  
• * and ** cannot be used in the M34513E4FP.  
BL  
BML  
BLA  
BMLA  
SEA  
SZD  
• * cannot be used in the M34513M6-XXXFP.  
64  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
INSTRUCTION CODE TABLE (continued) (for 4513 Group)  
110000  
101100  
2C  
D9–D4 100000100001100010100011100100 100101100110 100111101000101001101010101011  
101101101110 101111  
111111  
Hex.  
20  
21  
22  
23  
24  
25  
TAW6 IAP0 TAB1 SNZT1  
IAP1 TAB2 SNZT2  
26  
27  
28  
29  
2A  
2B  
2D  
2E  
2F 30–3F  
D3–D0  
0000  
notation  
TMA  
0
TAM XAM XAMI XAMD  
0
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
0
TW3A OP0A T1AB  
TW4A OP1A T2AB  
WRST  
0
0
0
TMA TAM XAM XAMI XAMD  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
1
1
1
1
TMA  
2
TAM XAM XAMI XAMD  
2
TJ1A  
T3AB TAJ1 TAMR IAP2 TAB3 SNZT3  
TW6A OP3A T4AB TAI1 IAP3 TAB4 SNZT4  
2
2
2
TMA  
3
TAM XAM XAMI XAMD  
3
3
3
3
TMA  
4
TAM XAM XAMI XAMD  
4
TQ1A  
TQ2A  
TAQ1 TAI2  
TAQ2  
TAQ3 TAK0  
4
4
4
TMA  
5
TAM XAM XAMI XAMD  
5
5
5
5
TMA  
6
TAM XAM XAMI XAMD  
6
TQ3A TMRA  
6
6
6
TMA  
7
TAM XAM XAMI XAMD  
7
TI1A  
TAPU0  
SNZAD  
7
7
7
TMA TAM XAM XAMI XAMD  
TI2A  
TSIAB  
TABSI SNZSI  
8
8
8
8
8
TMA  
9
TAM XAM XAMI XAMD  
9
TADAB TALA  
TABAD  
9
9
9
TMA  
10  
TAM XAM XAMI XAMD  
10 10 10 10  
TAM XAM XAMI XAMD  
11 11 11 11  
TAM XAM XAMI XAMD  
12 12 12 12  
TAM XAM XAMI XAMD  
13 13 13 13  
TAM XAM XAMI XAMD  
14 14 14 14  
TMA  
11  
TK0A  
TR3AB TAW1  
TMA  
12  
TAW2  
TAW3  
TAW4  
TMA  
13  
TPU0A  
TMA  
14  
TW1A  
TW2A  
SST  
ADST  
TMA TAM XAM XAMI XAMD  
15  
TR1AB  
15  
15  
15  
15  
The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-  
order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal  
representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of  
each instruction is shown. Do not use code marked “–.”  
The codes for the second word of a two-word instruction are described below.  
The second word  
BL  
10 paaa aaaa  
10 paaa aaaa  
10 pp00 pppp  
10 pp00 pppp  
00 0111 nnnn  
00 0010 1011  
BML  
BLA  
BMLA  
SEA  
SZD  
65  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
INSTRUCTION CODE TABLE (for 4514 Group)  
010000 011000  
001100  
0C  
D9–D4 000000000001000010000011000100000101000110 000111001000001001001010001011  
Hex.  
001101001110 001111  
010111 011111  
00  
01  
02  
03  
04  
05  
TASP  
TAD  
TAX  
TAZ  
06  
07  
08  
09  
0A  
0B  
0D  
0E  
0F 10–17 18–1F  
D3–D0  
notation  
A
0
LA TABP TABP TABP TABP  
SZB  
0
0000  
0
NOP BLA  
BMLA  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BML BML BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BL  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
BM  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0
0
16  
LA TABP TABP TABP TABP  
17 33 49*  
LA TABP TABP TABP TABP  
18 34 50*  
LA TABP TABP TABP TABP  
19 35 51*  
LA TABP TABP TABP TABP  
20 36 52*  
LA TABP TABP TABP TABP  
21 37 53*  
LA TABP TABP TABP TABP  
22 38 54*  
LA TABP TABP TABP TABP  
23 39 55*  
LA TABP TABP TABP TABP  
24 40 56*  
LA TABP TABP TABP TABP  
25 41 57*  
LA TABP TABP TABP TABP  
10 10 26 42 58*  
LA TABP TABP TABP TABP  
11 11 27 43 59*  
LA TABP TABP TABP TABP  
12 12 28 44 60*  
LA TABP TABP TABP TABP  
13 13 29 45 61*  
LA TABP TABP TABP TABP  
14 14 30 46 62*  
LA TABP TABP TABP TABP  
15 15 31 47 63*  
32  
48*  
A
1
SZB  
1
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
CLD  
1
1
A
2
SZB  
2
POF  
2
2
A
3
SZB  
3
SNZP INY  
3
3
A
4
SZD  
SEAn  
SEAM  
DI  
EI  
RD  
SD  
RT TAV1  
RTS TAV2  
4
4
A
5
5
5
A
6
RC  
RTI  
6
6
A
7
SC DEY  
7
7
LZ  
0
A
8
AND  
OR  
SNZ0  
SNZ1  
SNZI0  
SNZI1  
8
8
LZ  
1
A
9
TDA  
TABE  
9
9
LZ  
2
A
10  
AM TEAB  
AMC  
TYA CMA  
RAR  
TBA TAB  
TAY  
LZ  
3
A
11  
EPOF  
RB  
0
SB  
0
A
12  
RB  
1
A
13  
SB  
1
RB  
2
A
14  
SB  
2
TV2A  
TV1A  
RB  
3
A
15  
SB  
3
SZC  
The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order  
4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representa-  
tion of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is  
shown. Do not use code marked “–.”  
The codes for the second word of a two-word instruction are described below.  
The second word  
• * cannot be used in the M34514M6-XXXFP.  
BL  
10 paaa aaaa  
10 paaa aaaa  
10 pp00 pppp  
10 pp00 pppp  
00 0111 nnnn  
00 0010 1011  
BML  
BLA  
BMLA  
SEA  
SZD  
66  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
INSTRUCTION CODE TABLE (continued) (for 4514 Group)  
110000  
101100  
2C  
D9–D4 100000100001100010100011100100100101100110 100111101000101001101010101011  
Hex.  
101101101110 101111  
111111  
20  
21  
22  
23  
24  
25  
TAW6 IAP0 TAB1 SNZT1  
IAP1 TAB2 SNZT2  
26  
27  
28  
29  
2A  
2B  
2D  
2E  
2F 30–3F  
D3–D0  
notation  
TMA  
0
TAM XAM XAMI XAMD  
0
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
LXY  
0
TW3A OP0A T1AB  
TW4A OP1A T2AB  
WRST  
0000  
0
0
0
TMA  
1
TAM XAM XAMI XAMD  
1
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
1
1
TMA TAM XAM XAMI XAMD  
TJ1A  
T3AB TAJ1 TAMR IAP2 TAB3 SNZT3  
2
2
2
2
2
TMA  
3
TAM XAM XAMI XAMD  
3
TW6A OP3A T4AB TAI1 IAP3 TAB4 SNZT4  
3
3
3
TMA  
4
TAM XAM XAMI XAMD  
4
TQ1A  
TQ2A  
OP4A  
TAQ1 TAI2 IAP4  
4
4
4
TMA  
5
TAM XAM XAMI XAMD  
5
OP5A  
TAQ2  
IAP5  
5
5
5
TMA  
6
TAM XAM XAMI XAMD  
6
TQ3A TMRA  
TAQ3 TAK0  
6
6
6
TMA TAM XAM XAMI XAMD  
TI1A  
TAPU0  
SNZAD  
7
7
7
7
7
TMA  
8
TAM XAM XAMI XAMD  
8
TI2A TFR0ATSIAB  
TABSI SNZSI  
8
8
8
TMA  
9
TAM XAM XAMI XAMD  
9
TADAB TALA  
TABAD  
9
9
9
TMA  
10  
TAM XAM XAMI XAMD  
10 10 10 10  
TAM XAM XAMI XAMD  
11 11 11 11  
TAM XAM XAMI XAMD  
12 12 12 12  
TAM XAM XAMI XAMD  
13 13 13 13  
TMA  
11  
TK0A  
TR3AB TAW1  
TMA  
12  
TAW2  
TAW3  
TAW4  
TMA  
13  
TPU0A  
TMA TAM XAM XAMI XAMD  
TW1A  
TW2A  
SST  
ADST  
14  
14  
TAM XAM XAMI XAMD  
15 15 15 15  
14  
14  
14  
TMA  
15  
TR1AB  
The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-  
order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal  
representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of  
each instruction is shown. Do not use code marked “–.”  
The codes for the second word of a two-word instruction are described below.  
The second word  
BL  
10 paaa aaaa  
10 paaa aaaa  
10 pp00 pppp  
10 pp00 pppp  
00 0111 nnnn  
00 0010 1011  
BML  
BLA  
BMLA  
SEA  
SZD  
67  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MACHINE INSTRUCTIONS  
Instruction code  
Parameter  
Function  
Mnemonic  
Hexadecimal  
notation  
Type of  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
instructions  
TAB  
TBA  
TAY  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0
0
1
0
0
0
0
0
0
0
1
0
1
0
1
E
E
F
C
A
1
1
1
1
1
1
1
1
1
1
(A) (B)  
(B) (A)  
(A) (Y)  
(Y) (A)  
TYA  
TEAB  
(E7–E4) (B)  
(E3–E0) (A)  
TABE  
0
0
0
0
1
0
1
0
1
0
0
2
A
1
1
(B) (E7–E4)  
(A) (E3–E0)  
TDA  
TAD  
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
1
1
0
0
2
5
9
1
1
1
1
1
(DR2–DR0) (A2–A0)  
(A2–A0) (DR2–DR0)  
(A3) 0  
TAZ  
0
0
0
1
0
1
0
0
1
1
0
5
3
1
1
(A1, A0) (Z1, Z0)  
(A3, A2) 0  
TAX  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
1
0
0
0
0
0
5
5
2
0
1
1
1
1
(A) (X)  
TASP  
(A2–A0) (SP2–SP0)  
(A3) 0  
LXY x, y  
1
1
x3 x2 x1 x0 y3 y2 y1 y0  
3
x
y
1
1
(X) x, x = 0 to 15  
(Y) y, y = 0 to 15  
LZ z  
INY  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
1
z1 z0  
0
0
0
4
1
1
8
+z  
1
1
1
1
1
1
(Z) z, z = 0 to 3  
(Y) (Y) + 1  
1
1
1
1
3
7
DEY  
(Y) (Y) – 1  
TAM j  
1
1
1
0
0
0
1
1
1
1
1
1
0
0
1
0
1
1
j
j
j
j
j
j
j
j
j
j
j
j
2
2
2
C j  
D j  
1
1
1
1
1
1
(A) (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
XAM j  
XAMD j  
(A) ← → (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
F
j
(A) ← → (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
(Y) (Y) – 1  
XAMI j  
TMA j  
1
1
0
0
1
1
1
0
1
1
0
1
j
j
j
j
j
j
j
j
2
2
E j  
1
1
1
1
(A) ← → (M(DP))  
(X) (X)EXOR(j)  
j = 0 to 15  
(Y) (Y) + 1  
B j  
(M(DP)) (A)  
(X) (X)EXOR(j)  
j = 0 to 15  
68  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Skip condition  
Datailed description  
Transfers the contents of register B to register A.  
Transfers the contents of register A to register B.  
Transfers the contents of register Y to register A.  
Transfers the contents of register A to register Y.  
Transfers the contents of registers A and B to register E.  
Transfers the contents of register E to registers A and B.  
Transfers the contents of register A to register D.  
Transfers the contents of register D to register A.  
Transfers the contents of register Z to register A.  
Transfers the contents of register X to register A.  
Transfers the contents of stack pointer (SP) to register A.  
Continuous  
description  
Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y.  
When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed  
and other LXY instructions coded continuously are skipped.  
Loads the value z in the immediate field to register Z.  
(Y) = 0  
(Y) = 15  
Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in-  
struction is skipped.  
Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15,  
the next instruction is skipped.  
After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between reg-  
ister X and the value j in the immediate field, and stores the result in register X.  
After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per-  
formed between register X and the value j in the immediate field, and stores the result in register X.  
(Y) = 15  
After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per-  
formed between register X and the value j in the immediate field, and stores the result in register X.  
Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15,  
the next instruction is skipped.  
(Y) = 0  
After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per-  
formed between register X and the value j in the immediate field, and stores the result in register X. Adds 1  
to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction  
is skipped.  
After transferring the contents of register A to M(DP), an exclusive OR operation is performed between reg-  
ister X and the value j in the immediate field, and stores the result in register X.  
69  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MACHINE INSTRUCTIONS (continued)  
Instruction code  
Parameter  
Function  
Mnemonic  
Hexadecimal  
notation  
Type of  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
instructions  
LA n  
0
0
0
0
0
1
1
0
1
1
n
n
n
n
0
7
n
1
1
1
3
(A) n  
n = 0 to 15  
TABP p  
p5 p4 p3 p2 p1 p0  
0
8
p
(SP) (SP) + 1  
+p  
(SK(SP)) (PC)  
(PCH) p  
(PCL) (DR2–DR0, A3–A0)  
(B) (ROM(PC))74  
(A) (ROM(PC))30  
(PC) (SK(SP))  
(SP) (SP) – 1 (Note)  
AM  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
n
0
0
n
1
1
n
0
1
n
0
0
0
0
0
6
A
B
n
1
1
1
1
1
1
(A) (A) + (M(DP))  
AMC  
A n  
(A) (A) + (M(DP)) +(CY)  
(CY) Carry  
(A) (A) + n  
n = 0 to 15  
AND  
OR  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
0
0
1
1
8
9
1
1
1
1
(A) (A) AND (M(DP))  
(A) (A) OR (M(DP))  
SC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
2
1
1
7
1
1
1
1
1
1
1
1
1
1
(CY) 1  
RC  
6
(CY) 0  
SZC  
CMA  
RAR  
F
C
D
(CY) = 0 ?  
(A) (A)  
CY A3A2A1A0  
SB j  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
1
1
0
1
1
0
j
j
j
j
j
j
0
0
0
5
4
2
C
+j  
1
1
1
1
1
1
(Mj(DP)) 1  
j = 0 to 3  
RB j  
SZB j  
C
+j  
(Mj(DP)) 0  
j = 0 to 3  
j
(Mj(DP)) = 0 ?  
j = 0 to 3  
SEAM  
SEA n  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
0
0
n
1
1
n
1
0
n
0
1
n
0
0
0
2
2
7
6
5
n
1
2
1
2
(A) = (M(DP)) ?  
(A) = n ?  
n = 0 to 15  
Note :p is 0 to 15 for M34513M2, p is 0 to 31 for M34513M4/E4, p is 0 to 47 for M34513M6 and M34514M6, and p is 0 to 63 for M34513M8/E8 and  
M34514M8/E8.  
70  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Skip condition  
Datailed description  
Continuous  
description  
Loads the value n in the immediate field to register A.  
When the LA instructions are continuously coded and executed, only the first LA instruction is executed and  
other LA instructions coded continuously are skipped.  
Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in ad-  
dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p.  
When this instruction is executed, 1 stage of stack register is used.  
Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY re-  
mains unchanged.  
0/1 Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.  
Overflow = 0  
Adds the value n in the immediate field to register A.  
The contents of carry flag CY remains unchanged.  
Skips the next instruction when there is no overflow as the result of operation.  
Takes the AND operation between the contents of register A and the contents of M(DP), and stores the re-  
sult in register A.  
Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result  
in register A.  
1
0
Sets (1) to carry flag CY.  
Clears (0) to carry flag CY.  
(CY) = 0  
Skips the next instruction when the contents of carry flag CY is “0.”  
Stores the one’s complement for register A’s contents in register A.  
0/1 Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.  
Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).  
Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).  
(Mj(DP)) = 0  
j = 0 to 3  
Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of  
M(DP) is “0.”  
(A) = (M(DP))  
(A) = n  
Skips the next instruction when the contents of register A is equal to the contents of M(DP).  
Skips the next instruction when the contents of register A is equal to the value n in the immediate field.  
71  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MACHINE INSTRUCTIONS (continued)  
Instruction code  
Parameter  
Function  
Mnemonic  
Hexadecimal  
notation  
Type of  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
instructions  
B a  
0
0
1
1
0
0
1
1
a6 a5 a4 a3 a2 a1 a0  
1
0
2
8
+a  
a
1
2
1
2
(PCL) a6–a0  
BL p, a  
1
1
p4 p3 p2 p1 p0  
E p  
+p  
(PCH) p  
(PCL) a6–a0  
(Note)  
p5 a6 a5 a4 a3 a2 a1 a0  
p
a
+a  
BLA p  
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
2
1
p
0
p
2
1
2
2
1
2
(PCH) p  
(PCL) (DR2–DR0, A3–A0)  
(Note)  
p5 p4  
p3 p2 p1 p0  
BM a  
0
1
0
1
a6 a5 a4 a3 a2 a1 a0  
1
a
a
(SP) (SP) + 1  
(SK(SP)) (PC)  
(PCH) 2  
(PCL) a6–a0  
BML p, a  
0
1
0
0
1
0
p4 p3 p2 p1 p0  
0
2
C p  
+p  
(SP) (SP) + 1  
(SK(SP)) (PC)  
(PCH) p  
(PCL) a6–a0  
(Note)  
p5 a6 a5 a4 a3 a2 a1 a0  
p
+a  
a
BMLA p  
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
2
3
p
0
p
2
1
2
1
(SP) (SP) + 1  
(SK(SP)) (PC)  
(PCH) p  
(PCL) (DR2–DR0,A3–A0)  
(Note)  
p5 p4  
p3 p2 p1 p0  
RTI  
0
0
0
1
0
0
0
1
1
0
0
4
6
(PC) (SK(SP))  
(SP) (SP) – 1  
RT  
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
1
0
0
4
4
4
5
1
1
2
2
(PC) (SK(SP))  
(SP) (SP) – 1  
RTS  
(PC) (SK(SP))  
(SP) (SP) – 1  
DI  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
3
4
5
8
1
1
1
1
1
1
(INTE) 0  
(INTE) 1  
EI  
SNZ0  
(EXF0) = 1 ?  
After skipping  
(EXF0) 0  
SNZ1  
0
0
0
0
1
1
1
0
0
1
0
3
9
1
1
(EXF1) = 1 ?  
After skipping  
(EXF1) 0  
Note :p is 0 to 15 for M34513M2, p is 0 to 31 for M34513M4/E4, p is 0 to 47 for M34513M6 and M34514M6, and p is 0 to 63 for M34513M8/E8 and  
M34514M8/E8.  
72  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Skip condition  
Datailed description  
Branch within a page : Branches to address a in the identical page.  
Branch out of a page : Branches to address a in page p.  
Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in  
page p.  
Call the subroutine in page 2 : Calls the subroutine at address a in page 2.  
Call the subroutine : Calls the subroutine at address a in page p.  
Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D  
and A in page p.  
Returns from interrupt service routine to main routine.  
Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de-  
scription of the LA/LXY instruction, register A and register B to the states just before interrupt.  
Returns from subroutine to the routine called the subroutine.  
Skip at uncondition  
Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.  
Clears (0) to the interrupt enable flag INTE, and disables the interrupt.  
Sets (1) to the interrupt enable flag INTE, and enables the interrupt.  
(EXF0) = 1  
Skips the next instruction when the contents of EXF0 flag is “1.”  
After skipping, clears (0) to the EXF0 flag.  
(EXF1) = 1  
Skips the next instruction when the contents of EXF1 flag is “1.”  
After skipping, clears (0) to the EXF1 flag.  
73  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MACHINE INSTRUCTIONS (continued)  
Instruction code  
Parameter  
Function  
Mnemonic  
Hexadecimal  
notation  
Type of  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
instructions  
SNZI0  
SNZI1  
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
3
A
1
1
1
1
I12 = 1 : (INT0) = “H” ?  
I12 = 0 : (INT0) = “L” ?  
I22 = 1 : (INT1) = “H” ?  
I22 = 0 : (INT1) = “L” ?  
0
0
0
0
1
1
0
3
B
TAV1  
TV1A  
TAV2  
TV2A  
TAI1  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
0
1
1
1
0
1
0
1
0
0
0
1
1
1
1
1
1
0
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
1
0
1
0
0
0
0
1
0
1
1
1
0
0
1
1
0
1
0
0
1
0
0
1
0
1
1
0
1
1
0
0
1
0
0
1
1
0
0
1
0
1
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5
3
5
3
5
1
5
1
4
0
4
0
4
1
4
1
5
1
4
F
5
E
3
7
4
8
B
E
C
F
D
0
E
1
0
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(A) (V1)  
(V1) (A)  
(A) (V2)  
(V2) (A)  
(A) (I1)  
TI1A  
(I1) (A)  
TAI2  
(A) (I2)  
TI2A  
(I2) (A)  
TAW1  
TW1A  
TAW2  
TW2A  
TAW3  
TW3A  
TAW4  
TW4A  
TAW6  
TW6A  
(A) (W1)  
(W1) (A)  
(A) (W2)  
(W2) (A)  
(A) (W3)  
(W3) (A)  
(A) (W4)  
(W4) (A)  
(A) (W6)  
(W6) (A)  
74  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Skip condition  
Datailed description  
(INT0) = “H”  
However, I12 = 1  
When bit 2 (I12) of register I1 is “1” : Skips the next instruction when the level of INT0 pin is “H.”  
When bit 2 (I12) of register I1 is “0” : Skips the next instruction when the level of INT0 pin is “L.”  
When bit 2 (I22) of register I2 is “1” : Skips the next instruction when the level of INT1 pin is “H.”  
When bit 2 (I22) of register I2 is “0” : Skips the next instruction when the level of INT1 pin is “L.”  
(INT0) = “L”  
However, I12 = 0  
(INT1) = “H”  
However, I22 = 1  
(INT1) = “L”  
However, I22 = 0  
Transfers the contents of interrupt control register V1 to register A.  
Transfers the contents of register A to interrupt control register V1.  
Transfers the contents of interrupt control register V2 to register A.  
Transfers the contents of register A to interrupt control register V2.  
Transfers the contents of interrupt control register I1 to register A.  
Transfers the contents of register A to interrupt control register I1.  
Transfers the contents of interrupt control register I2 to register A.  
Transfers the contents of register A to interrupt control register I2.  
Transfers the contents of timer control register W1 to register A.  
Transfers the contents of register A to timer control register W1.  
Transfers the contents of timer control register W2 to register A.  
Transfers the contents of register A to timer control register W2.  
Transfers the contents of timer control register W3 to register A.  
Transfers the contents of register A to timer control register W3.  
Transfers the contents of timer control register W4 to register A.  
Transfers the contents of register A to timer control register W4.  
Transfers the contents of timer control register W6 to register A.  
Transfers the contents of register A to timer control register W6.  
75  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MACHINE INSTRUCTIONS (continued)  
Instruction code  
Parameter  
Function  
Mnemonic  
Hexadecimal  
notation  
Type of  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
instructions  
TAB1  
T1AB  
1
1
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
0
0
0
2
2
7
3
0
0
1
1
1
1
(B) (T17–T14)  
(A) (T13–T10)  
(R17–R14) (B)  
(T17–T14) (B)  
(R13–R10) (A)  
(T13–T10) (A)  
TAB2  
T2AB  
1
1
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
0
1
1
2
2
7
3
1
1
1
1
1
1
(B) (T27–T24)  
(A) (T23–T20)  
(R27–R24) (B)  
(T27–T24) (B)  
(R23–R20) (A)  
(T23–T20) (A)  
TAB3  
T3AB  
1
1
0
0
0
0
1
0
1
1
1
1
0
0
0
0
1
1
0
0
2
2
7
3
2
2
1
1
1
1
(B) (T37–T34)  
(A) (T33–T30)  
(R37–R34) (B)  
(T37–T34) (B)  
(R33–R30) (A)  
(T33–T30) (A)  
TAB4  
T4AB  
1
1
0
0
0
0
1
0
1
1
1
1
0
0
0
0
1
1
1
1
2
2
7
3
3
3
1
1
1
1
(B) (T47–T44)  
(A) (T43–T40)  
(R47–R44) (B)  
(T47–T44) (B)  
(R43–R40) (A)  
(T43–T40) (A)  
TR1AB  
TR3AB  
SNZT1  
1
1
1
0
0
0
0
0
1
0
0
0
1
1
0
1
1
0
1
1
0
1
0
0
1
1
0
1
1
0
2
2
2
3
3
8
F
B
0
1
1
1
1
1
1
(R17–R14) (B)  
(R13–R10) (A)  
(R37–R34) (B)  
(R33–R30) (A)  
(T1F) = 1 ?  
After skipping  
(T1F) 0  
SNZT2  
SNZT3  
SNZT4  
1
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
2
2
2
8
8
8
1
2
3
1
1
1
1
1
1
(T2F) = 1 ?  
After skipping  
(T2F) 0  
(T3F) = 1 ?  
After skipping  
(T3F) 0  
(T4F) = 1 ?  
After skipping  
(T4F) 0  
76  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Skip condition  
Datailed description  
Transfers the contents of timer 1 to registers A and B.  
Transfers the contents of registers A and B to timer 1 and timer 1 reload register.  
Transfers the contents of timer 2 to registers A and B.  
Transfers the contents of registers A and B to timer 2 and timer 2 reload register.  
Transfers the contents of timer 3 to registers A and B.  
Transfers the contents of registers A and B to timer 3 and timer 3 reload register.  
Transfers the contents of timer 4 to registers A and B.  
Transfers the contents of registers A and B to timer 4 and timer 4 reload register.  
Transfers the contents of registers A and B to timer 1 reload register.  
Transfers the contents of registers A and B to timer 3 reload register.  
(T1F) = 1  
Skips the next instruction when the contents of T1F flag is “1.”  
After skipping, clears (0) to T1F flag.  
(T2F) =1  
(T3F) = 1  
(T4F) = 1  
Skips the next instruction when the contents of T2F flag is “1.”  
After skipping, clears (0) to T2F flag.  
Skips the next instruction when the contents of T3F flag is “1.”  
After skipping, clears (0) to T3F flag.  
Skips the next instruction when the contents of T4F flag is “1.”  
After skipping, clears (0) to T4F flag.  
77  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MACHINE INSTRUCTIONS (continued)  
Instruction code  
Parameter  
Function  
Mnemonic  
Hexadecimal  
notation  
Type of  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
instructions  
IAP0  
OP0A  
IAP1  
OP1A  
IAP2  
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
2
2
2
2
2
6
2
6
2
6
0
0
1
1
2
1
1
1
1
1
1
1
1
1
1
(A) (P0)  
(P0) (A)  
(A) (P1)  
(P1) (A)  
(A2–A0) (P22–P20)  
(A3) 0  
IAP3  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
1
0
2
2
2
2
2
2
0
0
6
2
6
2
6
2
1
1
3
3
4
4
5
5
1
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(A) (P3)  
(P3) (A)  
(A) (P4)  
(P4) (A)  
(A) (P5)  
(P5) (A)  
(D) 1  
OP3A  
IAP4*  
OP4A*  
IAP5*  
OP5A*  
CLD  
RD  
(D(Y)) 0  
(Y) = 0 to 7  
SD  
0
0
0
0
0
1
0
1
0
1
0
1
5
1
2
1
2
(D(Y)) 1  
(Y) = 0 to 7  
SZD  
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
1
0
1
0
0
2
2
4
(D(Y)) = 0 ?  
(Y) = 0 to 7  
B
TK0A  
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
1
0
1
0
1
0
1
1
0
2
2
2
2
2
1
5
2
5
2
B
6
D
7
8
1
1
1
1
1
1
1
1
1
1
(K0) (A)  
(A) (K0)  
(PU0) (A)  
(A) (PU0)  
(FR0) (A)  
TAK0  
TPU0A  
TAPU0  
TFR0A*  
*: The 4513 Group does not have these instructions.  
78  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Skip condition  
Datailed description  
Transfers the input of port P0 to register A.  
Outputs the contents of register A to port P0.  
Transfers the input of port P1 to register A.  
Outputs the contents of register A to port P1.  
Transfers the input of port P2 to register A.  
Transfers the input of port P3 to register A.  
Outputs the contents of register A to port P3.  
Transfers the input of port P4 to register A.  
Outputs the contents of register A to port P4.  
Transfers the input of port P5 to register A.  
Outputs the contents of register A to port P5.  
Sets (1) to port D.  
Clears (0) to a bit of port D specified by register Y.  
Sets (1) to a bit of port D specified by register Y.  
(D(Y)) = 0  
Skips the next instruction when a bit of port D specified by register Y is “0.”  
(Y) = 0 to 7  
Transfers the contents of register A to key-on wakeup control register K0.  
Transfers the contents of key-on wakeup control register K0 to register A.  
Transfers the contents of register A to pull-up control register PU0.  
Transfers the contents of pull-up control register PU0 to register A.  
Transfers the contents of register A to direction register FR0.  
79  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MACHINE INSTRUCTIONS (continued)  
Instruction code  
Parameter  
Function  
Mnemonic  
Hexadecimal  
notation  
Type of  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
instructions  
TABSI  
TSIAB  
1
1
0
0
0
0
1
0
1
1
1
1
1
1
0
0
0
0
0
0
2
2
7
3
8
8
1
1
1
1
(A) (SI3–SI0)  
(B) (SI7–SI4)  
(SI3–SI0) (A)  
(SI7–SI4) (B)  
TAJ1  
TJ1A  
SST  
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
1
0
0
0
2
2
2
4
0
9
2
2
E
1
1
1
1
1
1
(A) (J1)  
(J1) (A)  
(SIOF) 0  
Serial I/O starting  
SNZSI  
1
1
0
0
1
0
0
1
0
1
0
1
1
1
0
0
0
0
0
1
2
2
8
7
8
9
1
1
1
1
(SIOF) = 1 ?  
After skipping  
(SIOF) 0  
TABAD  
(A) (AD5–AD2)  
(B) (AD9–AD6)  
However, in the comparator mode,  
(A) (AD3–AD0)  
(B) (AD7–AD4)  
TALA  
1
1
0
0
0
0
1
0
0
1
0
1
1
1
0
0
0
0
1
1
2
2
4
3
9
9
1
1
1
1
(A) (AD1, AD0, 0, 0)  
TADAB  
(AD3–AD0) (A)  
(AD7–AD4) (B)  
TAQ1  
TQ1A  
ADST  
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
1
1
1
1
0
0
1
0
0
1
2
2
2
4
0
9
4
4
F
1
1
1
1
1
1
(A) (Q1)  
(Q1) (A)  
(ADF) 0  
A-D conversion starting  
SNZAD  
1
0
1
0
0
0
0
1
1
1
2
8
7
1
1
(ADF) = 1 ?  
After skipping  
(ADF) 0  
TAQ2  
TQ2A  
NOP  
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
2
2
0
0
0
0
2
4
0
0
0
5
0
5
5
0
2
B
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(A) (Q2)  
(Q2) (A)  
(PC) (PC) + 1  
RAM back-up  
POF instruction valid  
(P) = 1 ?  
POF  
EPOF  
SNZP  
WRST  
A 0  
(WDF1) 0  
(WEF) 1  
TAMR  
TMRA  
TAQ3  
TQ3A  
1
1
1
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
2
2
2
2
5
1
4
0
2
6
6
6
1
1
1
1
1
1
1
1
(A) (MR)  
(MR) (A)  
(A) (Q3)  
(Q33, Q32) (A3, A2)  
(Q31) (CMP1 comparison result)  
(Q30) (CMP0 comparison result)  
80  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Skip condition  
Datailed description  
Transfers the contents of serial I/O register SI to registers A and B.  
Transfers the contents of registers A and B to serial I/O register SI.  
Transfers the contents of serial I/O mode register J1 to register A.  
Transfers the contents of register A to serial I/O mode register J1.  
Clears (0) to SIOF flag and starts serial I/O.  
(SIOF) = 1  
Skips the next instruction when the contents of SIOF flag is “1.”  
After skipping, clears (0) to SIOF flag.  
Transfers the high-order 8 bits of the contents of register AD to registers A and B.  
Transfers the low-order 2 bits of the contents of register AD to the high-order 2 bits of the contents of regis-  
ter A. Simultaneously, the low-order 2 bits of the contents of the register A is “0.”  
Transfers the contents of registers A and B to the comparator register at the comparator mode.  
Transfers the contents of the A-D control register Q1 to register A.  
Transfers the contents of register A to the A-D control register Q1.  
Clears the ADF flag, and the A-D conversion at the A-D conversion mode or the comparator operation at the  
comparator mode is started.  
(ADF) = 1  
Skips the next instruction when the contents of ADF flag is “1”.  
After skipping, clears (0) the contents of ADF flag.  
Transfers the contents of the A-D control register Q2 to register A.  
Transfers the contents of register A to the A-D control register Q2.  
No operation  
Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction.  
Makes the immediate POF instruction valid by executing the EPOF instruction.  
Skips the next instruction when P flag is “1”. After skipping, P flag remains unchanged.  
Operates the watchdog timer and initializes the watchdog timer flag WDF1.  
(P) = 1  
Transfers the contents of the clock control register MR to register A.  
Transfers the contents of register A to the clock control register MR.  
Transfers the contents of the voltage comparator control register Q3 to register A.  
Transfers the contents of the high-order 2 bits of register A to the high-order 2 bits of voltage comparator  
control register Q3, and the comparison result of the voltage comparator is transferred to the low-order 2 bits  
of the register Q3.  
81  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
CONTROL REGISTERS  
Interrupt control register V1  
at reset : 00002  
at RAM back-up : 00002  
R/W  
0
1
0
1
0
1
0
1
Interrupt disabled (SNZT2 instruction is valid)  
Interrupt enabled (SNZT2 instruction is invalid)  
Interrupt disabled (SNZT1 instruction is valid)  
Interrupt enabled (SNZT1 instruction is invalid)  
Interrupt disabled (SNZ1 instruction is valid)  
Interrupt enabled (SNZ1 instruction is invalid)  
Interrupt disabled (SNZ0 instruction is valid)  
Interrupt enabled (SNZ0 instruction is invalid)  
V13  
V12  
V11  
V10  
Timer 2 interrupt enable bit  
Timer 1 interrupt enable bit  
External 1 interrupt enable bit  
External 0 interrupt enable bit  
Interrupt control register V2  
Serial I/O interrupt enable bit  
A-D interrupt enable bit  
at RAM back-up : 00002  
at reset : 00002  
R/W  
0
1
0
1
0
1
0
1
Interrupt disabled (SNZSI instruction is valid)  
Interrupt enabled (SNZSI instruction is invalid)  
Interrupt disabled (SNZAD instruction is valid)  
Interrupt enabled (SNZAD instruction is invalid)  
Interrupt disabled (SNZT4 instruction is valid)  
Interrupt enabled (SNZT4 instruction is invalid)  
Interrupt disabled (SNZT3 instruction is valid)  
Interrupt enabled (SNZT3 instruction is invalid)  
V23  
V22  
V21  
V20  
Timer 4 interrupt enable bit  
Timer 3 interrupt enable bit  
Interrupt control register I1  
Not used  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
1
I13  
I12  
This bit has no function, but read/write is enabled.  
Falling waveform (“L” level of INT0 pin is recognized with the SNZI0  
0
1
Interrupt valid waveform for INT0 pin/  
return level selection bit (Note 2)  
instruction)/“L” level  
Rising waveform (“H” level of INT0 pin is recognized with the SNZI0  
instruction)/“H” level  
One-sided edge detected  
Both edges detected  
Disabled  
0
1
0
1
I11  
I10  
INT0 pin edge detection circuit control bit  
INT0 pin  
timer 1 control enable bit  
Enabled  
Interrupt control register I2  
Not used  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
1
I23  
I22  
This bit has no function, but read/write is enabled.  
Falling waveform (“L” level of INT1 pin is recognized with the SNZI1  
0
1
instruction)/“L” level  
Interrupt valid waveform for INT1 pin/  
return level selection bit (Note 3)  
Rising waveform (“H” level of INT1 pin is recognized with the SNZI1  
instruction)/“H” level  
One-sided edge detected  
Both edges detected  
Disabled  
0
1
0
1
I21  
I20  
INT1 pin edge detection circuit control bit  
INT1 pin  
Enabled  
timer 3 control enable bit  
Notes 1: “R” represents read enabled, and “W” represents write enabled.  
2: When the contents of I12 is changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction.  
3: When the contents of I22 is changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction.  
82  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Timer control register W1  
Prescaler control bit  
at reset : 00002  
at RAM back-up : 00002  
R/W  
Stop (state initialized)  
Operating  
0
1
0
1
0
1
0
1
W13  
W12  
W11  
W10  
Instruction clock divided by 4  
Instruction clock divided by 16  
Stop (state retained)  
Prescaler dividing ratio selection bit  
Timer 1 control bit  
Operating  
Count start synchronous circuit not selected  
Count start synchronous circuit selected  
Timer 1 count start synchronous circuit  
control bit  
Timer control register W2  
Timer 2 control bit  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
Stop (state retained)  
Operating  
W23  
W22  
1
0
1
Not used  
This bit has no function, but read/write is enabled.  
W21  
Count source  
Timer 1 underflow signal  
Prescaler output  
W20  
W21  
W20  
0
0
1
1
0
1
0
1
Timer 2 count source selection bits  
CNTR0 input  
16 bit timer (WDT) underflow signal  
Timer control register W3  
Timer 3 control bit  
at RAM back-up : state retained  
Stop (state retained)  
Operating  
R/W  
R/W  
R/W  
at reset : 00002  
0
1
0
1
W33  
W32  
Count start synchronous circuit not selected  
Count start synchronous circuit selected  
Count source  
Timer 3 count start synchronous circuit  
control bit  
W31  
W30  
W31  
W30  
0
0
1
1
Timer 2 underflow signal  
Prescaler output  
0
1
0
1
Timer 3 count source selection bits  
Not available  
Not available  
Timer control register W4  
Timer 4 control bit  
at reset : 00002  
at RAM back-up : state retained  
0
Stop (state retained)  
Operating  
W43  
W42  
1
0
1
Not used  
This bit has no function, but read/write is enabled.  
W41  
Count source  
Timer 3 underflow signal  
Prescaler output  
W40  
W41  
W40  
0
0
1
1
0
1
0
1
Timer 4 count source selection bits  
CNTR1 input  
Not available  
Timer control register W6  
CNTR1 output control bit  
at reset : 00002  
at RAM back-up : state retained  
0
Timer 3 underflow signal output divided by 2  
W63  
W62  
W61  
W60  
1
0
1
0
1
0
1
CNTR1 output control by timer 4 underflow signal divided by 2  
D7(I/O)/CNTR1 input  
D7/CNTR1 function selection bit  
CNTR0 output control bit  
CNTR1 (I/O)/D7(input)  
Timer 1 underflow signal output divided by 2  
CNTR0 output control by timer 2 underflow signal divided by 2  
D6(I/O)/CNTR0 input  
D6/CNTR0 output control bit  
CNTR0 (I/O)/D6(input)  
Note: “R” represents read enabled, and “W” represents write enabled.  
83  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Serial I/O mode register J1  
Not used  
at reset : 00002  
R/W  
at RAM back-up : state retained  
0
1
0
1
0
1
0
1
J13  
J12  
J11  
J10  
This bit has no function, but read/write is enabled.  
Instruction clock signal divided by 8  
Instruction clock signal divided by 4  
Input ports P20, P21, P22 selected  
Serial I/O internal clock dividing ratio  
selection bit  
Serial I/O port selection bit  
Serial I/O ports SCK, SOUT, SIN/input ports P20, P21, P22 selected  
External clock  
Serial I/O synchronous clock selection bit  
A-D control register Q1  
Note used  
Internal clock (instruction clock divided by 4 or 8)  
at reset : 00002  
at RAM back-up : state retained  
R/W  
0
Q13  
Q12  
This bit has no function, but read/write is enabled.  
1
Q12  
0
Selected pins  
Q11Q10  
AIN0  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
AIN1  
0
AIN2  
Q11  
Q10  
0
Analog input pin selection bits (Note 2)  
AIN3  
1
AIN4 (Not available for the 4513 Group)  
AIN5 (Not available for the 4513 Group)  
AIN6 (Not available for the 4513 Group)  
AIN7 (Not available for the 4513 Group)  
1
1
1
A-D control register Q2  
at reset : 00002  
at RAM back-up : state retained  
R/W  
R/W  
R/W  
0
1
0
1
0
1
0
1
A-D conversion mode  
Comparator mode  
A-D operation mode selection bit  
Q23  
Q22  
Q21  
Q20  
P43/AIN7 and P42/AIN6 pin function selec-  
tion bit (Not used for the 4513 Group)  
P41/AIN5 pin function selection bit  
(Not used for the 4513 Group)  
P43, P42  
(read/write enabled for the 4513 Group)  
AIN7, AIN6/P43, P42 (read/write enabled for the 4513 Group)  
P41  
(read/write enabled for the 4513 Group)  
(read/write enabled for the 4513 Group)  
(read/write enabled for the 4513 Group)  
(read/write enabled for the 4513 Group)  
AIN5/P41  
P40  
P40/AIN4 pin function selection bit  
(Not used for the 4513 Group)  
AIN4/P40  
Comparator control register Q3 (Note 3)  
Voltage comparator (CMP1) control bit  
Voltage comparator (CMP0) control bit  
CMP1 comparison result store bit  
CMP0 comparison reslut store bit  
Clock control register MR  
System clock selection bit  
Not used  
at reset : 00002  
at RAM back-up : state retained  
0
1
0
1
0
1
0
1
Voltage comparator (CMP1) invalid  
Voltage comparator (CMP1) valid  
Voltage comparator (CMP0) invalid  
Voltage comparator (CMP0) valid  
CMP1- > CMP1+  
Q33  
Q32  
Q31  
Q30  
CMP1- < CMP1+  
CMP0- > CMP0+  
CMP0- < CMP0+  
at reset : 10002  
at RAM back-up : 10002  
0
1
0
1
0
1
0
1
f(XIN) (high-speed mode)  
MR3  
MR2  
MR1  
MR0  
f(XIN)/2 (middle-speed mode)  
This bit has no function, but read/write is enabled.  
Not used  
This bit has no function, but read/write is enabled.  
This bit has no function, but read/write is enabled.  
Not used  
Notes 1: “R” represents read enabled, “W” represents write enabled.  
2: Select AIN4–AIN7 with register Q1 after setting register Q2.  
3: Bits 0 and 1 of register Q3 can be only read.  
84  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
Key-on wakeup control register K0  
at reset : 00002  
at RAM back-up : state retained  
R/W  
R/W  
W
Pins P12 and P13 key-on wakeup  
control bit  
0
1
0
1
0
1
0
1
Key-on wakeup not used  
K03  
K02  
K01  
K00  
Key-on wakeup used  
Key-on wakeup not used  
Key-on wakeup used  
Key-on wakeup not used  
Key-on wakeup used  
Key-on wakeup not used  
Key-on wakeup used  
Pins P10 and P11 key-on wakeup  
control bit  
Pins P02 and P03 key-on wakeup  
control bit  
Pins P00 and P01 key-on wakeup  
control bit  
Pull-up control register PU0  
at reset : 00002  
at RAM back-up : state retained  
Pins P12 and P13 pull-up transistor  
control bit  
0
1
0
1
0
1
0
1
Pull-up transistor OFF  
Pull-up transistor ON  
Pull-up transistor OFF  
Pull-up transistor ON  
Pull-up transistor OFF  
Pull-up transistor ON  
Pull-up transistor OFF  
Pull-up transistor ON  
PU03  
PU02  
PU01  
PU00  
Pins P10 and P11 pull-up transistor  
control bit  
Pins P02 and P03 pull-up transistor  
control bit  
Pins P00 and P01 pull-up transistor  
control bit  
Direction register FR0 (Note 2)  
Port P53 input/output control bit  
Port P52 input/output control bit  
Port P51 input/output control bit  
Port P50 input/output control bit  
at reset : 00002  
at RAM back-up : state retained  
0
1
0
1
0
1
0
1
Port P53 input  
Port P53 output  
Port P52 input  
Port P52 output  
Port P51 input  
Port P51 output  
Port P50 input  
Port P50 output  
FR03  
FR02  
FR01  
FR00  
Notes 1: “R” represents read enabled, and “W” represents write enabled.  
2: The 4513 Group does not have the direction register FR0.  
85  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
BUILT-IN PROM VERSION  
In addition to the mask ROM versions, the 4513/4514 Group has  
programmable ROM version software compatible with mask ROM.  
The built-in PROM of One Time PROM version can be written to  
and not be erased.  
The built-in PROM versions have functions similar to those of the  
mask ROM versions, but they have PROM mode that enables writ-  
ing to built-in PROM.  
Table 25 shows the product of built-in PROM version. Figure 49  
and 50 show the pin configurations of built-in PROM versions.  
Table 25 Product of built-in PROM version  
PROM size  
(10 bits)  
4096 words  
8192 words  
8192 words  
RAM size  
(4 bits)  
256 words  
384 words  
384 words  
Product  
Package  
ROM type  
M34513E4SP/FP  
M34513E8FP  
M34514E8FP  
SP: 32P4B FP: 32P6U-A  
32P6B-A  
One Time PROM version  
[shipped in blank]  
42P2R-A  
1
42  
41  
40  
39  
38  
P1  
P1  
P1  
P0  
P0  
P0  
P0  
2
1
0
3
2
1
0
P1  
D
D
D
D
D
D
3
0
1
2
3
4
5
1
2
32  
D0  
D1  
P13  
P12  
P11  
P10  
P03  
P02  
P01  
P00  
2
3
4
5
6
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
3
D2  
4
D3  
5
D4  
37  
36  
35  
34  
6
D5  
7
8
7
D6/CNTR0  
D7/CNTR1  
P20/SCK  
P21/SOUT  
P22/SIN  
RESET  
CNVSS  
XOUT  
P4  
P4  
P4  
3
2
1
0
/AIN7  
/AIN6  
/AIN5  
/AIN4  
D
6
7
/CNTR0  
/CNTR1  
8
9
D
9
AIN3/CMP1+  
AIN2/CMP1-  
AIN1/CMP0+  
AIN0/CMP0-  
P31/INT1  
P30/INT0  
VDCE  
33  
10  
11  
P50  
P51  
P52  
P53  
10  
11  
12  
13  
14  
15  
16  
32 P4  
31  
30  
A
IN3/CMP1+  
IN2/CMP1-  
IN1/CMP0+  
IN0/CMP0-  
12  
13  
14  
15  
A
29  
28  
27  
26  
25  
A
P20/SCK  
A
XIN  
P2  
P2  
RESET  
1
/SOUT  
P3  
3
2
16  
17  
VSS  
VDD  
2
/SIN  
P3  
P3  
1
/INT1  
/INT0  
Outline 32P4B  
CNVSS 18  
OUT 19  
X
P3  
0
24  
23  
20  
21  
X
IN  
VDCE  
22  
V
DD  
V
SS  
Outline 42P2R-A  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
D3  
P02  
D4  
D5  
P01  
P00  
D6/CNTR0  
D7/CNTR1  
P20/SCK  
P21/SOUT  
P22/SIN  
AIN3/CMP1+  
AIN2/CMP1-  
AIN1/CMP0+  
AIN0/CMP0-  
P31/INT1  
M34513ExFP  
Fig. 50 Pin configuration of built-in PROM version of 4514 Group  
Outline 32P6U-A  
Fig. 49 Pin configuration of built-in PROM version of 4513 Group  
86  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
(1) PROM mode  
Table 26 Programming adapters  
Microcomputer  
The built-in PROM version has a PROM mode in addition to a nor-  
mal operation mode. The PROM mode is used to write to and read  
from the built-in PROM.  
Programming adapter  
PCA7442SP  
M34513E4SP  
M34513E4FP, M34513E8FP  
M34514E8FP  
PCA7442FP  
In the PROM mode, the programming adapter can be used with a  
general-purpose PROM programmer to write to or read from the  
built-in PROM as if it were M5M27C256K. Programming adapters  
are listed in Table 26.Contact addresses at the end of this sheet for  
the appropriate PROM programmer.  
PCA7441  
Address  
000016  
1
1
1
1
D
4
D
3
D2  
D1  
D0  
1
1
Writing and reading of built-in PROM  
Programming voltage is 12.5 V. Write the program in the PROM  
of the built-in PROM version as shown in Figure 51.  
Low-order 5 bits  
1FFF16  
(2) Notes on handling  
A high-voltage is used for writing. Take care that overvoltage is  
not applied. Take care especially at turning on the power.  
For the One Time PROM version shipped in blank, Mitsubishi  
Electric corp. does not perform PROM writing test and screening  
in the assembly process and following processes. In order to im-  
prove reliability after writing, performing writing and test  
according to the flow shown in Figure 52 before using is recom-  
mended (Products shipped in blank: PROM contents is not  
written in factory when shipped).  
400016  
5FFF16  
D3  
D2  
D1  
D0  
D4  
High-order 5 bits  
7FFF16  
Set FF16to the shaded area.  
Fig. 51 PROM memory map  
Writing with PROM programmer  
Screening (Leave at 150 °C for 40 hours) (Note)  
Verify test with PROM programmer  
Function test in target device  
Note:  
Since the screening temperature is higher  
than storage temperature, never expose the  
microcomputer to 150 °C exceeding 100  
hours.  
Fig. 52 Flow of writing and test of the product shipped in blank  
87  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Unit  
Parameter  
Symbol  
Conditions  
Ratings  
V
Supply voltage  
VDD  
–0.3 to 7.0  
Input voltage P0, P1, P2, P3, P4, P5, RESET,  
XIN, VDCE  
V
VI  
–0.3 to VDD+0.3  
V
V
V
V
V
Input voltage D0–D7  
VI  
–0.3 to 13  
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
–0.3 to 13  
–0.3 to VDD+0.3  
300  
Input voltage AIN0–AIN7  
Output voltage P0, P1, P3, P4, P5, RESET  
Output voltage D0–D7  
VI  
VO  
VO  
VO  
Output transistors in cut-off state  
Output voltage XOUT  
Package: 42P2R  
mW  
Power dissipation  
Pd  
Ta = 25 °C  
300  
Package: 32P6U  
Package: 32P4B  
1100  
°C  
°C  
Operating temperature range  
Storage temperature range  
Topr  
Tstg  
–20 to 85  
–40 to 125  
88  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
RECOMMENDED OPERATING CONDITIONS 1  
(Mask ROM version:Ta = 20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted)  
(One Time PROM version:Ta = 20 °C to 85 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Conditions  
Unit  
Min.  
2.5  
2.0  
4.0  
2.5  
2.0  
Max.  
5.5  
5.5  
5.5  
5.5  
5.5  
f(XIN) 4.2 MHz  
f(XIN) 3.0 MHz  
f(XIN) 4.2 MHz  
f(XIN) 2.0 MHz  
f(XIN) 1.5 MHz  
Mask ROM version  
Middle-speed mode  
Mask ROM version  
High-speed mode  
VDD  
Supply voltage  
V
One Time PROM version  
Middle-speed mode  
2.5  
f(XIN) 4.2 MHz  
5.5  
4.0  
2.5  
1.8  
2.0  
f(XIN) 4.2 MHz  
f(XIN) 2.0 MHz  
5.5  
5.5  
One Time PROM version  
High-speed mode  
Mask ROM version  
RAM back-up voltage  
(at RAM back-up mode)  
Supply voltage  
VRAM  
V
One Time PROM version  
0
VSS  
VIH  
VIH  
VIH  
VIH  
VIL  
VIL  
VIL  
V
V
V
V
V
V
V
V
0.8VDD  
0.8VDD  
0.85VDD  
0.85VDD  
0
VDD  
12  
P0, P1, P2, P3, P4, P5, XIN, VDCE  
D0D7  
Hlevel input voltage  
Hlevel input voltage  
Hlevel input voltage  
Hlevel input voltage  
Llevel input voltage  
Llevel input voltage  
Llevel input voltage  
VDD  
RESET  
VDD  
CNTR0, CNTR1, SIN, SCK, INT0, INT1  
P0, P1, P2, P3, P4, P5, D0D7, XIN, VDCE  
RESET  
0.2VDD  
0.3VDD  
0.15VDD  
0
0
CNTR0, CNTR1, SIN, SCK, INT0, INT1  
20  
VDD = 5.0 V  
IOH(peak)  
IOH(avg)  
IOL(peak)  
IOL(peak)  
IOL(peak)  
IOL(peak)  
IOL(avg)  
IOL(avg)  
IOL(avg)  
P5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Hlevel peak output current  
Hlevel average output current  
Llevel peak output current  
Llevel peak output current  
Llevel peak output current  
Llevel peak output current  
Llevel average output current  
Llevel average output current  
Llevel average output current  
VDD = 3.0 V  
10  
10  
VDD = 5.0 V  
P5 (Note)  
VDD = 3.0 V  
5  
VDD = 5.0 V  
P3, RESET  
10  
4
VDD = 3.0 V  
VDD = 5.0 V  
40  
30  
24  
12  
24  
12  
5
D6, D7  
VDD = 3.0 V  
VDD = 5.0 V  
D0D5  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
P0, P1, P4, P5, SCK,  
SOUT  
P3, RESET (Note)  
D6, D7 (Note)  
D0D5 (Note)  
2
30  
15  
15  
7
P0, P1, P4, P5, SCK,  
SOUT (Note)  
12  
6
IOL(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
Llevel average output current  
Hlevel total average current  
Llevel total average current  
P5  
30  
P5, D, RESET, SCK, SOUT  
P0, P1, P3, P4  
80  
80  
mA  
Note: The average output current (IOH, IOL) is the average value during 100 ms.  
89  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
RECOMMENDED OPERATING CONDITIONS 2  
(Mask ROM version:Ta = 20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted)  
(One Time PROM version:Ta = 20 °C to 85 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Conditions  
VDD = 2.5 V to 5.5 V  
Unit  
Max.  
4.2  
Min.  
Mask ROM version  
Middle-speed mode  
One Time PROM version  
Middle-speed mode  
VDD = 2.0 V to 5.5 V  
3.0  
VDD = 2.5 V to 5.5 V  
4.2  
Oscillation frequency  
f(XIN)  
(with a ceramic resonator)  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 2.0 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
4.2 MHz  
Mask ROM version  
High-speed mode  
2.0  
1.5  
4.2  
2.0  
One Time PROM version  
High-speed mode  
Mask ROM version  
VDD = 2.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
3.0  
3.0  
Middle-speed mode  
One Time PROM version  
Middle-speed mode  
Oscillation frequency  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 2.0 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 2.0 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 2.0 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 2.0 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
VDD = 2.0 V to 5.5 V  
VDD = 4.0 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
3.0 MHz  
f(XIN)  
Mask ROM version  
High-speed mode  
(with external clock input)  
1.0  
0.8  
3.0  
1.0  
One Time PROM version  
High-speed mode  
1.5  
3.0  
4.0  
1.5  
3.0  
750  
1.5  
2.0  
750  
1.5  
1.5  
3.0  
4.0  
1.5  
3.0  
750  
1.5  
2.0  
750  
1.5  
Mask ROM version  
Middle-speed mode  
µs  
One Time PROM version  
Middle-speed mode  
Serial I/O external clock period  
tw(SCK)  
ns  
(Hand Lpulse width)  
Mask ROM version  
High-speed mode  
µs  
One Time PROM version  
High-speed mode  
ns  
µs  
Mask ROM version  
Middle-speed mode  
µs  
One Time PROM version  
Middle-speed mode  
Timer external input period  
tw(CNTR)  
ns  
(Hand Lpulse width)  
Mask ROM version  
High-speed mode  
µs  
One Time PROM version  
High-speed mode  
ns  
µs  
90  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS  
(Mask ROM version:Ta = 20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted)  
(One Time PROM version:Ta = 20 °C to 85 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
IOH = 10 mA  
Unit  
V
Min.  
3
Max.  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VOH  
Hlevel output voltage P5  
IOH = 5 mA  
IOL = 12 mA  
IOL = 6 mA  
IOL = 5 mA  
IOL = 2 mA  
IOL = 30 mA  
IOL = 10 mA  
IOL = 15 mA  
IOL = 5 mA  
IOL = 15 mA  
IOL = 3 mA  
2
2
0.9  
2
VOL  
VOL  
Llevel output voltage P0, P1, P4, P5  
Llevel output voltage P3, RESET  
V
V
0.9  
2
VDD = 5 V  
VDD = 3 V  
V
0.9  
2
VOL  
VOL  
Llevel output voltage D6, D7  
Llevel output voltage D0D5  
V
0.9  
2
VDD = 5 V  
V
VDD = 3 V  
0.9  
Hlevel input current  
VI = VDD, port P4 selected,  
port P5: input state  
VI = 12 V  
IIH  
IIH  
IIL  
IIL  
µA  
µA  
µA  
µA  
1
1
P0, P1, P2, P3, P4, P5, RESET, VDCE  
Hlevel input current D0D7  
Llevel input current  
VI = 0 V No pull-up of ports P0 and P1,  
port P4 selected, port P5: input state  
VI = 0 V  
1  
1  
P0, P1, P2, P3, P4, P5, RESET, VDCE  
Llevel input current D0D7  
VDD = 5 V  
1.8  
0.5  
0.9  
0.2  
3.0  
0.6  
0.9  
0.3  
0.1  
5.5  
1.5  
2.7  
0.6  
9.0  
1.8  
2.7  
0.9  
1
f(XIN) = 4.0 MHz  
Middle-speed mode  
VDD = 3 V  
f(XIN) = 400 kHz  
f(XIN) = 4.0 MHz  
f(XIN) = 400 kHz  
f(XIN) = 4.0 MHz  
f(XIN) = 400 kHz  
f(XIN) = 2.0 MHz  
f(XIN) = 400 kHz  
Middle-speed mode  
VDD = 5 V  
at active mode  
Supply current  
mA  
High-speed mode  
VDD = 3 V  
IDD  
High-speed mode  
Ta = 25 °C  
at RAM back-up mode  
Pull-up resistor value  
VDD = 5 V  
10  
µA  
VDD = 3 V  
6
VDD = 5 V  
50  
100  
0.3  
0.3  
1.5  
0.6  
20  
40  
125  
250  
VI = 0 V  
kΩ  
V
RPU  
VDD = 3 V  
VDD = 5 V  
Hysteresis INT0, INT1, CNTR0, CNTR1,  
SIN, SCK  
VT+ VT–  
VT+ VT–  
VDD = 3 V  
VDD = 5 V  
Hysteresis RESET  
V
VDD = 3 V  
91  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
A-D CONVERTER RECOMMENDED OPERATING CONDITIONS  
(Comparator mode included, Ta = 20 °C to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Unit  
Symbol  
Parameter  
Supply voltage  
Conditions  
Max.  
5.5  
Min.  
2.7  
0
V
VDD  
VIA  
V
Analog input voltage  
VDD  
MHz  
MHz  
Middle-speed mode, VDD 2.7 V  
High-speed mode, VDD 2.7 V  
0.8  
0.4  
f(XIN)  
Oscillation frequency  
A-D CONVERTER CHARACTERISTICS  
(Ta = 20 °C to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Unit  
bits  
Symbol  
Test conditions  
Parameter  
Resolution  
Max.  
10  
Min.  
Ta = 25 °C, VDD = 2.7 V to 5.5 V  
Ta = 25 °C to 85 ° C, VDD = 3.0 V to 5.5 V  
Ta = 25 °C, VDD = 2.7 V to 5.5 V  
Ta = 25 °C to 85 ° C, VDD = 3.0 V to 5.5 V  
VDD = 5.12 V  
LSB  
Linearity error  
±2  
LSB  
mV  
mV  
mA  
Differential non-linearity error  
Zero transition voltage  
Full-scale transition voltage  
AD operating current  
±0.9  
5
3
20  
15  
0
V0T  
VFST  
IADD  
VDD = 3.072 V  
0
VDD = 5.12 V  
5115  
3069  
0.7  
0.2  
5125  
3075  
2.0  
0.4  
93.0  
46.5  
8
5105  
3060  
VDD = 3.072 V  
f(XIN) = 0.4 MHz to 4.0 MHz  
f(XIN) = 0.4 MHz to 2.0 MHz  
VDD = 5.0 V  
VDD = 3.0 V  
f(XIN) = 4.0 MHz, Middle-speed mode  
f(XIN) = 4.0 MHz, High-speed mode  
Comparator mode  
µs  
A-D conversion time  
Comparator resolution  
Comparator error (Note)  
TCONV  
bits  
mV  
VDD = 5.12 V  
±20  
±15  
12  
VDD = 3.072 V  
f(XIN) = 4.0 MHz, Middle-speed mode  
f(XIN) = 4.0 MHz, High-speed mode  
µs  
Comparator comparison time  
6
Note: As for the error from the ideal value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison volt-  
age Vref which is generated by the built-in DA converter can be obtained by the following formula.  
Logic value of comparison voltage Vref  
VDD  
Vref =  
n  
256  
n = Value of register AD (n = 0 to 255)  
VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS  
(Ta = 20 °C to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
VRST  
Parameter  
Test conditions  
Unit  
V
Min.  
2.7  
Max.  
4.1  
Detection voltage  
Ta = 25 °C  
3.3  
3.5  
50  
3.7  
Operation current of voltage  
drop detection circuit  
VDD = 5.0 V  
IRST  
µA  
100  
92  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
VOLTAGE COMPARATOR RECOMMENDED OPERATING CONDITIONS  
(Ta = 20 °C to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Supply voltage  
Conditions  
Unit  
Min.  
3.0  
Max.  
5.5  
VDD  
V
V
VINCMP  
tCMP  
VDD = 3.0 V to 5.5 V  
VDD = 3.0 V to 5.5 V  
Voltage comparator input voltage  
Voltage comparator response time  
0.3VDD  
0.7VDD  
20  
µs  
VOLTAGE COMPARATOR CHARACTERISTICS  
(Ta = 20 °C to 85 °C, VDD = 3.0 V to 5.5 V, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
100  
50  
CMP0- > CMP0+, CMP0- < CMP0+  
CMP1- > CMP1+, CMP1- < CMP1+  
VDD = 5.0 V  
Comparison decision voltage error  
Voltage comparator operation current  
mV  
20  
15  
ICMP  
µA  
BASIC TIMING DIAGRAM  
Machine cycle  
Mi  
Mi+1  
Parameter  
Clock  
Pin name  
X
IN  
System clock = f(XIN  
)
XIN  
System clock = f(XIN)/2  
Port D output  
Port D input  
D
D
0
0
D  
7
7
D  
P0  
P1  
P3  
P4  
P5  
0
0
0
0
0
P0  
P1  
P3  
P4  
P5  
3
3
3
3
3
Ports P0, P1, P3,  
P4, P5 output  
P0  
P1  
P2  
P3  
P4  
P5  
0
P0  
3
Ports P0, P1, P2, P3,  
P4, P5 input  
0
P1  
3
0
0
0
0
P2  
P3  
P4  
P5  
2
3
3
3
Interrupt input  
INT0,INT1  
93  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
MMP  
32P4B  
Plastic 32pin 400mil SDIP  
EIAJ Package Code  
SDIP32-P-400-1.78  
JEDEC Code  
Weight(g)  
2.2  
Lead Material  
Alloy 42/Cu Alloy  
32  
17  
1
16  
D
Dimension in Millimeters  
Symbol  
Min  
Nom  
Max  
5.08  
A
A
1
0.51  
3.8  
A
2
b
0.35  
0.9  
0.63  
0.22  
27.8  
8.75  
3.0  
0°  
0.45  
1.0  
0.73  
0.27  
28.0  
8.9  
1.778  
10.16  
0.55  
1.3  
1.03  
0.34  
28.2  
9.05  
15°  
b1  
b2  
c
D
E
e
e1  
e
b1  
b
b2  
SEATING PLANE  
L
MMP  
32P6U-A  
Plastic 32pin 77mm body LQFP  
EIAJ Package Code  
LQFP32-P-0707-0.80  
JEDEC Code  
Weight(g)  
Lead Material  
Cu Alloy  
MD  
HD  
D
32  
25  
I
2
1
24  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
Nom  
Max  
1.7  
0.2  
0.45  
0.175  
7.1  
7.1  
9.2  
9.2  
0.7  
0.75  
A
A
A
b
c
D
E
e
H
H
1
2
0.1  
1.4  
0.37  
0.125  
7.0  
7.0  
0.8  
9.0  
9.0  
0.5  
1.0  
0.6  
0.25  
0.5  
7.4  
7.4  
0.32  
0.105  
6.9  
6.9  
8.8  
8.8  
0.3  
0.45  
0°  
8
17  
9
16  
A
D
E
L
L
1
L1  
e
F
Lp  
A3  
x
0.2  
0.1  
10°  
y
L
b
Lp  
b2  
1.0  
x
M
I
2
y
Detail F  
M
M
D
E
94  
MITSUBISHI MICROCOMPUTERS  
4513/4514 Group  
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER  
MMP  
42P2R-A  
Plastic 42pin 450mil SSOP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
0.63  
Lead Material  
Alloy 42/Cu Alloy  
e
b2  
SSOP42-P-450-0.80  
42  
22  
Recommended Mount Pad  
Dimension in Millimeters  
F
Symbol  
Min  
0.05  
0.35  
0.13  
17.3  
8.2  
11.63  
0.3  
0°  
1.27  
Nom  
Max  
2.4  
A
A
A
1
21  
1
2
A
2.0  
0.4  
0.15  
17.5  
8.4  
0.8  
11.93  
0.5  
1.765  
0.75  
D
G
b
0.5  
0.2  
17.7  
8.6  
12.23  
0.7  
c
D
E
e
H
L
A
2
A1  
e
b
E
y
L1  
z
Z
1
0.9  
0.15  
10°  
y
c
z
b2  
0.5  
11.43  
Z
1
Detail G  
Detail F  
e1  
I
2
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to  
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable  
material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customers application; they do not convey any license under any intellectual property  
rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-partys rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by  
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product  
distributor for the latest product information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision  
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric  
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,  
aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved  
destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 2001 MITSUBISHI ELECTRIC CORP.  
Printed in Japan (ROD) II  
New publication, effective July. 2001.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
4513/4514 GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
980807  
010724  
1.1 Page 1: APPLICATION revised, Table “Under development” eliminated.  
Pages 10 to 14: PORT BLOCK DIAGRAMS revised.  
Page 24: Fig. 17 revised.  
Page 28: Table 9 Timer 1 structure and Timer 3 structure revised.  
Page 29: Fig. 19 revised.  
Page 32: (10) Count start synchronous circuit (timer 1 and 3) revised.  
Page 38: Table 13 Slave (reception); line 6; received transmitted  
Page 39: Fig. 26 AIN8 AIN4, AIN9 AIN5, AIN10 AIN6, AIN11 AIN7  
Page 56: ROM ORDERING METHOD revised.  
Mask ROM Order Confirmation Form, Mark Specification Form eliminated.  
As for Mask ROM Order Confirmation Form and Mark Specification Form, refer to  
http://www.infomicom.maec.co.jp/rom/efram/romtopf.htm  
32P6B-A package is changed to 32P6U-A package.  
Pages 94 and 95: All packages renewed.  
(1/1)  

相关型号:

M34513T-PTCA

Converter for Connecting 32-pin 1.778mm-pitch SDIP (for 4500 Series)
RENESAS

M34513T-PTCB

Converter for Connecting 32-pin 1.778mm-pitch SDIP to 40-core narrow-pitch(for 4500 Series)
RENESAS

M34513T-PTCC

Converter for Connecting 40-core narrow-pitch to 32-pin 0.8mm-pitch LQFP(for 4500 Series)
RENESAS

M34514E8

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
MITSUBISHI

M34514E8FP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
MITSUBISHI

M34514E8FP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
RENESAS

M34514M6

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
MITSUBISHI

M34514M6-263FP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
MITSUBISHI

M34514M6-XXXFP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
RENESAS

M34514M6-XXXFP

Microcontroller, 4-Bit, MROM, 4500 CPU, 4.2MHz, CMOS, PDSO42, 0.450 INCH, 0.80 MM PITCH, PLASTIC, SSOP-42
MITSUBISHI

M34514M8

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
MITSUBISHI

M34514M8-756FP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
MITSUBISHI