ISL54301IRZ [RENESAS]

QUAD 1-CHANNEL, SGL POLE SGL THROW SWITCH, PQCC20, 4 X 4 MM, ROHS COMPLIANT, PLASTIC, QFN-20;
ISL54301IRZ
型号: ISL54301IRZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

QUAD 1-CHANNEL, SGL POLE SGL THROW SWITCH, PQCC20, 4 X 4 MM, ROHS COMPLIANT, PLASTIC, QFN-20

输出元件
文件: 总17页 (文件大小:589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL54301  
®
Data Sheet  
March 18, 2008  
FN6591.0  
12V, 1.5Ω Quad SPST Switch with Serial  
Daisy Chain Interface  
Features  
• 4 independently controlled SPST switches  
• On-resistance @ 12V . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5Ω  
• Single or split supply voltage operation  
The ISL54301 is a quad analog bidirectional switch device  
targeted at industrial applications, including test and  
measurement equipment. It features low resistance and low  
leakage along with a 12V operation and can be digitally  
controlled via a latched serial interface. This serial interface  
features a buffered and retimed clock output pin that can be  
used to connect multiple devices into a daisy chained  
arrangement with minimal data to clock skew up to a serial  
data rate exceeding 40MHz.  
• r  
• r  
flatness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <1Ω  
matching between channels . . . . . . . . . . . . . . . . . <0.2Ω  
ON  
ON  
• Turn-on/turn-off time . . . . . . . . . . . . . . . . . . . . . . . 25ns/80nS  
• Switch bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60MHz  
• Serial data interface up to 40MHz  
• 3V logic interface  
The ISL54301 can operate from a single, or split bipolar  
power supply and has a 3V logic interface. The ISL54301 is  
specified for use over the -40°C to +85°C temperature range  
and is available in a 20 Ld 4x4 QFN Pb-free package.  
• 20 Ld QFN package  
• Pb-free (RoHS compliant)  
Table 1 summarizes the performance of this family.  
Related Literature  
TABLE 1. FEATURES AT A GLANCE  
• TB363 “Guidelines for Handling and Processing Moisture  
Sensitive Surface Mount Devices (SMDs)”  
CONFIGURATION  
QUAD SPST  
2.5Ω  
r
ON  
• TB389 “PCB Land Pattern and Surface Mount Guidelines  
for QFN Packages”  
t
/t  
25ns/80ns  
20 Ld QFN 4x4  
ON OFF  
Package  
• AN557 “Recommended Test Procedures for Analog  
Switches”  
Pinout  
Ordering Information  
ISL54301  
PART NUMBER  
(Note)  
PART  
TEMP.  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(20 LD QFN)  
TOP VIEW  
MARKING RANGE (°C)  
ISL54301IRZ*  
54 301IRZ  
-40 to +85 20 Ld QFN  
L20.4x4C  
*Add “T” suffix for tape and reel. Please refer to TB347 for details on reel  
specifications.  
20 19 18 17 16  
NOTE: These Intersil Pb-free plastic packaged products employ special  
Pb-free material sets; molding compounds/die attach materials and 100%  
matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS  
compliant and compatible with both SnPb and Pb-free soldering  
operations. Intersil Pb-free products are MSL classified at Pb-free peak  
reflow temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
2B  
3A  
3B  
4A  
4B  
NC  
1
2
3
4
5
15  
14  
13  
12  
11  
2A  
1B  
1A  
CS_PULSE  
ISL54301 Block Diagram  
CS_PULSE  
DATA_IN  
6
7
8
9
10  
CLK_IN  
VPLUS  
VDD  
A
VLOGIC  
LEVEL  
SHIFTER  
GND  
B
CLK_OUT  
DATA_OUT  
VSS  
VSS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2008. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL54301  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
2B  
PIN DESCRIPTION  
1
2
Switch 2 signal terminal  
Switch 2 signal terminal  
Switch 1 signal terminal  
Switch 1 signal terminal  
Chip select input  
2A  
3
1B  
4
1A  
5
CS_PULSE  
DATA-IN  
CLK-IN  
GND  
6
Serial data input  
7
Serial cock input  
8
Device ground terminal  
Buffered clock output  
Buffered serial data output  
Not internally connected  
Switch 4 signal terminal  
Switch 4 signal terminal  
Switch 3 signal terminal  
Switch 3 signal terminal  
Positive analog power supply  
Logic supply voltage  
9
CLK-OUT  
DATA-OUT  
NC  
10  
11, 20  
12  
13  
14  
15  
16  
17  
18  
19  
4B  
4A  
3B  
3A  
VPLUS  
VLOGIC  
VDD  
Level shifter supply voltage  
Negative analog power supply  
VSS  
FN6591.0  
March 18, 2008  
2
ISL54301  
Absolute Maximum Ratings  
Thermal Information  
VPLUS to VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 15V  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 5V  
VLOGIC to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 5V  
VSS to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4V to 0.3V  
VPLUS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 15V  
All Other Pins (Note 1). . . . . . . . ((VSS) - 0.3V) to ((VPLUS) + 0.3V)  
Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 35mA  
Peak Current, 1A-4A,1B-4B  
(Pulsed 1ms, 10% Duty Cycle, Max) . . . . . . . . . . . . . . . . . 100mA  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .>3kV  
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >1.5kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
Thermal Resistance (Typical)  
θ
(°C/W)  
38  
θ
(°C/W)  
3.8  
JA  
JC  
20 Ld QFN Package (Notes 2, 3) . . .  
Maximum Junction Temperature (Plastic Package). . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . . . . -65°C to +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Operating Conditions  
Analog Switch Signal Range . . . . . . . VSS + 0.5V to VPLUS - 0.5V  
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTES:  
1. Signals on 1A-4A,1B-4B, exceeding VPLUS or VSS are clamped by internal diodes. DATA_IN, CLOCK_IN, CS_Pulse exceeding VLOGIC or  
VSS are clamped by internal diodes. Limit forward diode current to maximum current ratings.  
2. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
3. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Test Conditions: VPLUS = +9V, VSS = -3V Supply, VLOGIC = 3V, VDD = GND = 0V, V  
= 2.2V, V  
= 0.8V,  
INH  
INL  
Unless Otherwise Specified.  
TEMP  
(°C)  
MIN  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 12) (Note 10) (Note 12) UNITS  
ANALOG SWITCH CHARACTERISTICS  
ON-resistance, r  
I
= 10mA, VXA, VXB within analog signal  
COM  
25  
Full  
25  
2.0  
2.5  
0.2  
0.3  
0.4  
0.6  
15  
Ω
Ω
ON  
(see Figure 4)  
r
Matching Between Channels,  
I
= 10mA, VXA, VXB within analog signal range  
Ω
ON  
Δr  
COM  
(Note 5)  
ON  
Full  
25  
Ω
r
Flatness, r  
FLAT(ON)  
I
= 10mA, VXA, VXB within analog signal range  
COM  
Ω
ON  
(Note 4)  
Full  
25  
Ω
OFF Leakage Current, I  
VXA, VXB within analog signal range  
nA  
nA  
NO(OFF)  
Full  
-200  
2.2  
+200  
0.8  
DIGITAL INPUT CHARACTERISTICS (Note 11)  
Input Voltage High, Digital Interface Data-In, Clock-In, CS_PULSE  
Input Voltage Low, Digital Interface Data-In, Clock-In, CS_PULSE  
Minimum Clock Low Time  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.75  
1.75  
12.5  
12.5  
1
V
V
ns  
ns  
ns  
ns  
µA  
ns  
ns  
Minimum Clock High Time  
Data-In to Clock Setup Time  
Data-In to Clock Hold Time  
t
t
and t  
, (Note 6, Figure 5)  
SETUP1  
SETUP2  
, (Note 6, Figure 5)  
HOLD2  
and t  
3.5  
0.01  
3
HOLD1  
= 0V or VLOGIC  
Input Current, I  
, I  
CS_PULSE Rise, Fall Time  
V
-1  
1
INH INL  
IN  
10% to 90% and 90% to 10%: (Note 6)  
CS_PULSE Minimum Pulse Width Rising to Falling Edge 50% Points: (Note 6)  
10  
DIGITAL OUTPUT CHARACTERISTICS (Note 11)  
High, Digital Interface  
Low, Digital Interface  
Data-Out, Clock-Out @ 1mA: (Notes 7, 8)  
Data-In, Clock-Out @ 1mA: (Notes 7, 8)  
Full  
Full  
3.1  
0.2  
V
V
0.4  
FN6591.0  
March 18, 2008  
3
 
 
ISL54301  
Electrical Specifications Test Conditions: VPLUS = +9V, VSS = -3V Supply, VLOGIC = 3V, VDD = GND = 0V, V  
Unless Otherwise Specified. (Continued)  
= 2.2V, V  
= 0.8V,  
INH  
INL  
TEMP  
(°C)  
MIN  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 12) (Note 10) (Note 12) UNITS  
Clock-In to Clock-Out propagation (Notes 6, 7, 8)  
Delay  
20  
ns  
SWITCH DYNAMIC CHARACTERISTICS  
Turn-ON Time, t  
VXA, VXB = 3V, R = 300Ω, C = 35pF, V = 0V to 3V,  
IN  
(see Figure 1)  
25  
Full  
25  
50  
55  
ns  
ns  
ON  
L
L
Turn-OFF Time, t  
VXA, VXB = 3V, R = 300Ω, C = 35pF, V = 0V to 3V,  
IN  
90  
ns  
OFF  
L
L
(see Figure 1)  
Full  
25  
95  
ns  
OFF-Capacitance, C  
f = 1MHz, VXA or VXB = 0V  
f = 1MHz, VXA or VXB = 0V  
50  
pF  
pF  
dB  
dB  
MHz  
pC  
OFF  
ON-Capacitance, C  
25  
100  
-45  
-65  
60  
COM(ON)  
OFF-Isolation  
R
= 50Ω, C = 15pF, f = 1MHz,  
25  
L
L
VXA or VXB = 1V  
(see Figure 3)  
P-P  
Crosstalk (Note 5)  
25  
Switch Contact 3dB Bandwidth  
Charge Injection, Q  
R
C
= 50Ω, C = 5pF  
L
L
L
= 1.0nF, V = 0V, R = 0Ω, (see Figure 2)  
25  
125  
G
G
POWER SUPPLY CHARACTERISTICS  
VPLUS Supply, I (Quiescent)  
25  
Full  
25  
15  
17  
18  
22  
16  
22  
1
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
µA  
µA  
mA  
mA  
µA  
µA  
mA  
mA  
45  
50  
10  
10  
VPLUS Supply, I (40MHz)  
VSS Supply, I (Quiescent)  
VSS Supply, I (40MHz)  
VDD Supply, I (Quiescent)  
VDD Supply, I (40MHz)  
Full  
25  
Full  
25  
Full  
25  
1
1
Full  
25  
4
0.4  
0.4  
0
Full  
25  
VLOGIC Internal Logic Supply, I  
(Quiescent)  
Full  
25  
1
VLOGIC Internal Logic Supply, I  
(40MHz)  
(Note 9)  
3.5  
3.5  
Full  
FN6591.0  
March 18, 2008  
4
ISL54301  
Electrical Specifications Test Conditions: VPLUS = +7V, VSS = 0V Supply, VLOGIC = 3V, VDD = 3V, GND = 0V, V  
= 2.2V,  
INH  
V
= 0.8V, Unless Otherwise Specified  
INL  
TEMP  
(°C)  
MIN  
TYP  
MAX  
PARAMETER  
ANALOG SWITCH CHARACTERISTICS  
TEST CONDITIONS  
(Note 12) (Note 10) (Note 12) UNITS  
ON-resistance, r  
I
= 10mA, VXA, VXB within Analog Signal Range  
25  
Full  
25  
2.7  
3.5  
0.1  
0.15  
0.5  
0.6  
3
Ω
Ω
ON  
COM  
(see Figure 4)  
r
Matching Between Channels,  
I
= 10mA, VXA, VXB within Analog Signal Range  
Ω
ON  
Δr  
COM  
(Note 5)  
ON  
Full  
25  
Ω
r
Flatness, r  
FLAT(ON)  
I
= 10mA, VXA, VXB within Analog Signal Range  
COM  
Ω
ON  
(Note 4)  
Full  
25  
Ω
Off Leakage Current, I  
VXA = 1V, 4.5V, VXB = 4.5V, 1V  
nA  
nA  
NO(OFF)  
Full  
-200  
2.2  
30  
200  
0.8  
DIGITAL INPUT CHARACTERISTICS (Note 11)  
Input Voltage High, Digital Interface Data-In, Clock-In, CS_PULSE  
Input Voltage Low, Digital Interface Data-In, Clock-In, CS_PULSE  
Minimum Clock Low Time  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.75  
1.75  
12.5  
12.5  
1
V
V
ns  
ns  
ns  
ns  
µA  
ns  
ns  
Minimum Clock High Time  
Data-In to Clock Setup Time  
Data-In to Clock Hold Time  
t
t
and t  
, (Note 6, Figure 5)  
SETUP1  
SETUP2  
, (Note 6, Figure 5)  
HOLD2  
and t  
3.5  
0.01  
3
HOLD1  
= 0V or VLOGIC  
Input Current, I  
, I  
V
-1  
1
INH INL  
IN  
10% to 90% and 90% to 10%: (Note 6)  
CS_PULSE Rise, Fall Time  
CS_PULSE Minimum Pulse Width Rising to Falling Edge 50% Points: (Note 6)  
10  
DIGITAL OUTPUT CHARACTERISTICS (Note 11)  
High, Digital Interface  
Low, Digital Interface  
Data-Out, Clock-Out at 1mA: (Notes 7, 8)  
Data-In, Clock-Out at 1mA: (Notes 7, 8)  
Full  
Full  
3.1  
0.2  
20  
V
V
0.4  
Clock-In to Clock-Out Propagation (Notes 6, 7, 8)  
Delay  
ns  
SWITCH DYNAMIC CHARACTERISTICS  
Turn-ON Time, t  
VXA or VXB = 3V, R = 300Ω, C = 35pF,  
(see Figure 1)  
25  
Full  
25  
25  
30  
ns  
ns  
ON  
L
L
Turn-OFF Time, t  
VXA or VXB= 3V, R = 300Ω, C = 35pF,  
80  
ns  
OFF  
L
L
(see Figure 1)  
Full  
25  
85  
ns  
OFF-Capacitance, C  
f = 1MHz, VXA or VXB = V  
f = 1MHz, VXA or VXB = V  
= 0V  
50  
pF  
OFF  
COM  
COM  
ON-Capacitance, C  
OFF-Isolation  
= 0V  
25  
100  
-45  
-65  
60  
pF  
COM(ON)  
R
= 50Ω, C = 15pF, f = 1MHz,  
25  
dB  
dB  
MHz  
pC  
L
L
VXA or VXB = 1V , (see Figure 3)  
P-P  
Crosstalk (Note 5)  
25  
Switch Contact 3dB Bandwidth  
Charge Injection, Q  
R
C
= 50Ω, C = 5pF  
25  
L
L
L
= 1.0nF, V = 0V, R = 0Ω, (see Figure 2)  
25  
25  
G
G
FN6591.0  
March 18, 2008  
5
ISL54301  
Electrical Specifications Test Conditions: VPLUS = +7V, VSS = 0V Supply, VLOGIC = 3V, VDD = 3V, GND = 0V, V  
= 2.2V,  
INH  
V
= 0.8V, Unless Otherwise Specified (Continued)  
INL  
TEMP  
(°C)  
MIN  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 12) (Note 10) (Note 12) UNITS  
POWER SUPPLY CHARACTERISTICS  
VPLUS Supply, I (Quiescent)  
25  
Full  
25  
13  
15  
18  
20  
14  
19  
0.7  
0.7  
1
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
µA  
µA  
mA  
mA  
µA  
µA  
mA  
mA  
45  
50  
10  
10  
VPLUS Supply, I (40MHz)  
VSS Supply, I (Quiescent)  
VSS Supply, I (40MHz)  
VDD Supply, I (Quiescent)  
VDD Supply, I (40MHz)  
Full  
25  
Full  
25  
Full  
25  
Full  
25  
4
0.4  
0.5  
0
Full  
25  
VLOGIC Internal Logic Supply, I  
(Quiescent)  
(Note 9)  
Full  
25  
1
VLOGIC Internal Logic Supply, I  
(40MHz)  
(Note 9)  
3.2  
3.2  
Full  
NOTES:  
4. Flatness is defined as the delta between the maximum and minimum r  
5. Between any two switches.  
values over the specified voltage range.  
ON  
6. CS_Pulse must remain low when performing serial operations (Toggling Clock-In). Only after all serial transfers are completed should CS_Pulse  
be toggled. Likewise, while CS_Pulse is being toggled, it is important to keep Clock -In and Data-In in a low logic state.  
7. Clock-Out is a manufactured pulse internally produced by the ISL54301. Regardless of Clock-In pulse width, Clock-Out will always be ~10ns in  
width. Capacitive loading on Clock-Out and Data-Out should be kept to a minimum.  
8. Clock-Out and Data-Out relationship is kept constant so multiple units can be cascaded. Propagation delay of Data-Out is controlled so that  
Clock-Out will reach the next device before Data-Out changes. This assures long serial-chain capability and removes the need for a “High  
Current Master Clock”. The delay of Data/Clock In-to-Out also reduces simultaneous switching noise.  
9. Typical value is based on design simulation. VLOGIC dynamic current drain is greatly influenced by frequency and capacitive loading. VLOGIC  
40MHz currents based on Data-out and Clock-loads of ~10pF load.  
10. Limits established by characterization and are not production tested.  
11. Digital Characteristics remain stable with respect to VPLUS and VSS variation. These parameters are controlled by the difference between VSS  
and VDD which the user should maintain at a constant spread of VDD = VSS + 3V.  
12. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.  
FN6591.0  
March 18, 2008  
6
ISL54301  
Test Circuits and Waveforms  
3V  
t < 20ns  
r
t < 20ns  
f
VPLUS  
VDD  
VLOGIC  
C
C
C
CS_PULSE  
C
50%  
INPUT  
0V  
t
ON  
V
1-4A  
OUT  
V
1-4B  
OUT  
V
NB  
SWITCH  
INPUTS  
IN  
25%  
75%  
SERIAL LATCH  
GND  
V
NB  
C
R
L
L
SWITCH  
OUTPUT  
35pF  
300Ω  
DATA AND  
CLK INPUT  
t
OFF  
C
V
OUT  
V
VSS  
NB  
Repeat test for all switches. C includes fixture and stray  
L
capacitance.  
R
L
+ r  
ON  
-----------------------  
L
V
= V  
Switch changes state on rising edge of CS_PULSE. V  
all times.  
= V  
at  
OUT  
OUT  
(NB)  
NA  
R
FIGURE 1A. MEASUREMENT POINTS  
FIGURE 1B. TEST CIRCUIT  
FIGURE 1. SWITCHING TIMES  
VPLUS  
VDD  
VLOGIC  
C
C
C
SWITCH  
OUTPUT  
DV  
OUT  
V
R
OUT  
G
1-4A  
1-4B  
V
OUT  
SHIFT REGISTER  
GND  
3V  
ON  
ON  
V
G
IN  
OFF  
C
L
0V  
CONTROLLER  
SEQUENCE  
C
Q = DV  
x C  
L
SW: ON/OFF/ON  
OUT  
VSS  
Repeat test for all switches. C includes fixture and stray  
L
capacitance.  
Switch changes state on rising edge of CS_PULSE.  
FIGURE 2A. MEASUREMENT POINTS  
FIGURE 2B. TEST CIRCUIT  
FIGURE 2. CHARGE INJECTION  
VPLUS  
VDD  
VLOGIC  
C
VPLUS  
VDD  
VLOGIC  
C
C
C
C
C
r
= V /10mA  
1
ON  
SIGNAL  
GENERATOR  
1-4A  
1-4B  
1-4A  
1-4B  
V
XA  
SERIAL  
CLOCK/DATA  
SERIAL  
CLOCK/DATA  
10mA  
V
1
ANALYZER  
GND  
GND  
R
L
C
C
VSS  
VSS  
Repeat test for all switches.  
Repeat test for all switches.  
FIGURE 4. r  
FIGURE 3. OFF-ISOLATION TEST CIRCUIT  
TEST CIRCUIT  
ON  
FN6591.0  
March 18, 2008  
7
ISL54301  
Test Circuits and Waveforms (Continued)  
DATA-IN AND CLOCK-IN SHOULD REMAIN LOW, BEFORE DURING AND AFTER CS_PULSE  
CS_PULSE  
INPUT  
t
PULSE  
DATA = 1  
100%  
100%  
DATA-IN  
DATA = 0  
t
HOLD2  
t
SETUP2  
t
SETUP1  
SW3  
SW2  
50%  
CLK-IN  
t
SW1  
HOLD1  
FIGURE 5. SETUP AND HOLD TIMES  
ISL54301 Serial Communications and Cascade  
ISL54301 Detailed Description  
The ISL54301 operates based on synchronous serial data.  
Data and Clock inputs are 3V level compatible. Setup and  
Hold times relative to the rising the edge of the clock input  
must be maintained for proper operation. All serial data is  
clocked through internal shift registers.  
The ISL54301 Quad analog switches offer switching  
capability from a split-supply (3V and +9V or single 0V and  
5V to 12V). Please review “Power Supply Considerations”  
on page 8 before powering up the device.  
The user can employ a single or multi-device serial control  
data chain. Cascading serial control make it well suited for  
large scale switching systems applications.  
DATA-IN/DATA-OUT  
Data on the Data-Out Pin will follow the Data-In pattern, but  
will be delayed for 4 clock cycles. The Data-Out function  
works in tandem with the Clock-Out pin and provides a  
means of programming several devices connected in series.  
Power Supply Considerations  
The ISL54301 construction consists of CMOS analog  
switches and has four supply pins: VPLUS, VSS, VLOGIC,  
VDD and GND. VPLUS and VSS determine the switch  
voltage range of the four SPST CMOS switches and set their  
analog voltage limits. There are no connections between the  
switch contact signal path and GND.  
CLOCK IN/CLOCK OUT  
The Clock Output is derived from the Clock Input and  
delayed to compensate for internal latch propagation delay.  
Use of the Clock Output enables the user to cascade scores  
of devices without concern for clock phase skew or large  
clock distribution loading.  
VLOGIC and GND power the digital input/output logic level  
shifters. The level shifters convert the external logic levels to  
VDD and VSS signals to drive the internal digital circuitry.  
Clock out is an internally generated pulse which occurs  
~20ns after the rising edge of Clock-In. The Clock-Out pin is  
a pulse that is sensitive to capacitive loading. Figure 36  
shows the influence of various loads. The user should keep  
PCB trace lengths of Data-Out and Clock-Out to a minimum.  
VDD and VSS power the internal logic of the device. VDD  
must always be held at a fixed 3V above VSS to avoid  
device damage.  
Whether operating split or single device, Gnd will  
always be @ 0V, VLOGIC will always be @ 3V.  
ISL54301 Operation and Control  
The ISL54301 utilizes two levels of serial to parallel latch  
circuitry. During serial information transmission, only the  
primary register is affected. Once serial communications is  
completed, a secondary 4-bit latch/register can receive the  
new data. The information contained in the secondary latch  
controls the switch state of the ISL54301 switches. The pin  
controlling the transfer of information from the primary to the  
secondary registers is the CS_Pulse pin.  
VDD should always remain 3V above VSS. VSS to  
VPLUS should not exceed a maximum spread of more  
than 12V. For example:  
SPLIT POSITIVE AND NEGATIVE SWITCH RANGE  
OPERATION:  
• VSS = -3V, VDD = +0V, VPLUS = +9V, VLOGIC = 3V  
• VSS = -1V, VDD = +2V, VPLUS = +11V, VLOGIC = 3V  
In general, for test vector verification and diagnostics,  
primary registers can be looped-back with the  
Data Out/ Clock Out Pins.  
POSITIVE SWITCH RANGE OPERATION:  
• VSS = 0V, VDD = +3V, VPLUS = +12V, VLOGIC = 3V  
FN6591.0  
March 18, 2008  
8
 
ISL54301  
The switch from present to next operation occurs on the  
ISL54301 CS_Pulse Pin Discussion  
rising edge on the CS_Pulse pin. This rising edge transfers  
data to the internal 4-bit switch control register. This transfer  
updates open and closing of the four switches.  
The ISL54301’s operational state does not change while  
serial transmissions in the Primary Serial Latch Register are  
occurring.The user must insure that the CS_Pulse pin  
remains low and does not change state during this time.  
ISL54301 Power On Reset (POR)  
Once the user has loaded the Primary Register with the  
intended data, the CS_Pulse pin is then utilized. Just as the  
CS_Pulse pin must remain low during serial transfers, the  
CLK-IN and DATA-IN pins must remain low before, during  
and after the CS_PULSE operation.  
Switch conditions are controlled during POR, Power On  
Reset. During and after a POR condition, the switches are  
opened until closed by the controller..  
SERIAL DATA  
SW2-B  
SW2-A  
SW3-A  
S3 CONTROL  
S2 CONTROL  
SW3-B  
SECONDARY  
CS_PULSE  
LATCHES  
SECONDARY  
CS_PULSE  
LATCHES  
SW1-B  
SW1-A  
SW4-A  
S4 CONTROL  
S1 CONTROL  
SW4-B  
CLOCK GEN.  
LEVEL  
SHIFTER  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
SHIFTER SHIFTER  
SHIFTER SHIFTER  
FIGURE 6. ISL54301 FUNCTIONAL DIAGRAM  
TABLE 2. ISL54301 4-BIT SWITCH CONTROL SERIAL STREAM  
Bit 4 MSB (First)  
Bit 3  
Bit 2  
Bit 1 LSB (Last)  
Switch 4 Control  
Switch 3 Control  
Switch 2 Control  
Switch 1 Control  
Refer to Figure 37 on page 16 for Scope Capture of Serial Communications  
SPECIFIC POWER SEQUENCE:  
Supply Sequencing and Overvoltage Protection  
With any CMOS device, proper power supply sequencing is  
required to protect the device from excessive input currents  
which might permanently damage the IC. All Switch contact  
I/O pins contain ESD protection diodes from the pin to  
VPLUS and to VSS(see Figure 7). To prevent forward  
biasing these diodes, VPLUS, GND and VSS must be  
applied before any input signals, and switch signal voltages  
must remain between VPLUS and VSS. Digital control  
signals should be limited to VLOGIC and VSS.  
1. GND  
2. VSS Typical ..................... -3V to 0V with respect to GND  
3. VPLUS Typical.............. +5V to +9V with respect to GND  
4. VDD......................................+3.0 to with respect to VSS  
5. VLOGIC....................................+3V with respect to GND  
If these conditions cannot be guaranteed, then one of the  
following two protection methods should be employed.  
FN6591.0  
March 18, 2008  
9
ISL54301  
Logic inputs can easily be protected by adding a 1kΩ  
resistor in series with the input. The resistor limits the input  
current below the threshold that produces permanent  
damage, and the sub-microamp input current produces an  
insignificant voltage drop during normal operation.  
Logic-Level Thresholds  
VLOGIC and GND power the internal logic level shifter  
stages, so VPLUS and VSS have no affect on logic  
thresholds. Thus Clock, Data, CS_Pulse receive thresholds  
and Clock-Out, Data-Out drive levels will remain constant  
despite changes VPLUS and VSS.  
Adding a series resistor to the switch input defeats the purpose  
of using a low r  
switch, so two small signal diodes can be  
ON  
Leakage Considerations  
added in series with the supply pins to provide overvoltage  
protection for all pins (see Figure 7). These additional diodes  
limit the analog signal from 1V below VPLUS to 1V above  
VSS.  
Reverse ESD protection diodes are internally connected  
between each analog-signal pin and both VPLUS and VSS.  
One of these diodes conducts if any analog signal exceeds  
VPLUS or VSS.  
The leakage current performance is unaffected by this  
approach, but the switch resistance may increase, especially  
at low supply voltages.  
ISL54301 Device Programming  
Programming the device entails accessing the internal  
switch control register. To write data into the register the data  
must be transferred through the Primary Serial Latch.  
ESD Protection  
The device contains ESD protection and voltage clamps.  
Clamps are design to work based on dV/dT. During  
power-up, the user should review the rise and fall times on  
the power connections. Rise time of the power rails should  
not be faster than 1µs.  
Via the CS_Pulse pin the programmer has complete control  
as to “when” data is transferred to the secondary latch. Until  
such time as the CS_Pulse pin is “toggled” the device will  
remain as previously programmed. So data transfers  
through the primary latches will not effect the switches  
operational condition.  
VPLUS  
VDD  
VLOGIC  
The programmer can view multiple devices as one long  
serial stream cascading from device to device and finally  
back to the controller. This with each four bits controlling  
each device. Again, no switch conditions will change until  
CS_Pulse is toggled.  
CLAMP  
VSS  
CLAMP  
VSS  
CLAMP  
GND  
VPLUS  
ONE FOR EACH PIN LISTED: 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B,  
VDD, VLOGIC  
Note: If the user wishes to “loop-back” the serial data  
for self-test purposes, the controller’s serial receive  
shift register needs to operate off the “Clock-Out” pin of  
the last device in the chain. Capacitance must be kept to  
a minimum on the Clock-Out signal.  
VSS  
VLOGIC  
If the user intends to “loop-back” the serial data, a  
buffer should be placed on the final ISL54301 in the  
serial chain before routing it to the system controller.  
ONE FOR EACH PIN LISTED: DATA_OUT, CLK_OUT  
GND  
ISL54301 Programming Discussion  
The amount of clock cycles is crucial to proper operation.  
Data must always be synchronized with the Clock position  
serially. The number of clocks must coincide with the amount  
of devices in the over all chain. Each ISL54301 device must  
receive 4-clock pulses.  
VLOGIC  
ONE FOR EACH PIN LISTED: DATA_IN, CLK_IN, CS_PULSE  
Evaluation Board  
GND  
VSS  
An evaluation board, part number ISL54301EVAL1Z, is  
available to assist in assessing the ISL54301 IC’s  
performance. The board’s design and software allows for  
evaluation of all standard features. Refer to the evaluation  
board application note for details, and contact your sales rep  
for ordering information.  
FIGURE 7. ESD/OVERVOLTAGE PROTECTION  
FN6591.0  
March 18, 2008  
10  
 
ISL54301  
VPLUS (VSUB+5 TO VSUB+12V)  
VLOGIC (GND + 3V)  
VDD (VSUB +3V)  
VSUB (-3V TO 0V)  
C1  
4.7µF  
C2  
4.7µF  
C3  
4.7µF  
C4  
4.7µF  
SWITCH CONTACT  
CONNECTIONS  
GND  
CS_PULSE IN FROM SYSTEM CONTROLLER  
U1  
DATA-IN FROM SYSTEM CONTROLLER  
CLOCK-IN FROM SYSTEM CONTROLLER  
6
7
8
9
20  
19  
18  
17  
16  
DATA-IN  
NC  
VSS  
CLK-IN  
GND  
CLK-OUT  
DATA-OUT  
VDD  
VLOGIC  
VPLUS  
10  
C5  
0.1µF  
C8  
0.1µF  
C9  
0.1µF  
C10  
0.1µF  
ISL54301  
SWITCH CONTACT  
CONNECTIONS  
U2  
DEVICE DECOUPLING  
6
20  
NC  
DATA-IN  
7
19  
CLK-IN  
VSS  
8
18  
17  
16  
GND  
VDD  
VLOGIC  
VPLUS  
KEEP CLOCK-OUT AND DATA-OUT  
CAPACITANCE TO A MINIMUM  
9
CLK-OUT  
10  
DATA-OUT  
C6  
0.1µF  
C11  
0.1µF  
C12  
0.1µF  
C13  
0.1µF  
ISL54301  
SWITCH CONTACT  
CONNECTIONS  
U3  
6
20  
NC  
DATA-IN  
7
19  
CLK-IN  
VSS  
8
18  
17  
16  
GND  
VDD  
VLOGIC  
VPLUS  
CLOCK-OUT  
DATA-OUT  
9
CLK-OUT  
10  
DATA-OUT  
C7  
0.1µF  
C14  
0.1µF  
C15  
0.1µF  
C16  
0.1µF  
TO ADDITIONAL DEVICES OR SYSTEM CONTROLLER  
CLOCK-OUT WILL BE ~10ns PULSE.  
CLOCK-OUT AND DATA-OUT SHOULD BE  
BUFFERED WHEN LOOPED BACK TO  
SYSTEM CONTROLLER.  
ISL54301  
GND  
SWITCH CONTACT  
CONNECTIONS  
FIGURE 8. ISL54301 SERIAL CASCADE EXAMPLE  
FN6591.0  
March 18, 2008  
11  
ISL54301  
Typical Performance Curves VLOGIC = 3v, T = +25°C, V = 3v, V = 0V, Unless Otherwise Specified.  
A
IH  
IL  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 10mA  
VSS = -3V, VPLUS = 3V, VDD = 0V  
COM  
+85°C  
+85°C  
+25°C  
-40°C  
+25°C  
-40°C  
I
= 10mA  
VSS = 0V, VPLUS = 5V, VDD = 3V  
COM  
4
-3  
-2  
-1  
0
1
2
3
7
9
0
1
2
3
5
V
(V)  
V
(V)  
COM  
COM  
FIGURE 9. ON-RESISTANCE vs SWITCH VOLTAGE  
FIGURE 10. ON-RESISTANCE vs SWITCH VOLTAGE  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I = 10mA  
COM  
VSS = 0V, VPLUS = 7V, VDD = 3V  
VSS = -3V, VPLUS = 7V, VDD = 0V  
I
= 10mA  
COM  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
+85°C  
+85°C  
+25°C  
-40°C  
+25°C  
-40°C  
0
1
2
3
4
5
6
7
-3  
-2  
-1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
COM  
COM  
FIGURE 11. ON-RESISTANCE vs SWITCH VOLTAGE  
FIGURE 12. ON-RESISTANCE vs SWITCH VOLTAGE  
5.0  
5.0  
I
= 10mA  
I
= 10mA  
VSS = -3V, VPLUS = 9V, VDD = 0V  
VSS = 0V, VPLUS = 12V, VDD = 3V  
COM  
COM  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
+85°C  
+85°C  
2.0  
1.5  
1.0  
0.5  
-40°C  
-40°C  
+25°C  
+25°C  
-3  
-2 -1  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
(V)  
8
9
10 11 12  
0.0  
V
V
(V)  
COM  
COM  
FIGURE 14. ON-RESISTANCE vs SWITCH VOLTAGE  
FIGURE 13. ON-RESISTANCE vs SWITCH VOLTAGE  
FN6591.0  
March 18, 2008  
12  
ISL54301  
Typical Performance Curves VLOGIC = 3v, T = +25°C, V = 3v, V = 0V, Unless Otherwise Specified. (Continued)  
A
IH  
IL  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VSS = -3V, VPLUS = 3V, VDD = 0V  
VSS = 0V, VPLUS = 5V, VDD = 3V  
-3  
-2  
-1  
0
1
2
3
7
9
0
1
2
3
4
5
V
(V)  
V
(V)  
COM  
COM  
FIGURE 15. ON-LEAKAGE vs SWITCH VOLTAGE  
FIGURE 16. ON-LEAKAGE vs SWITCH VOLTAGE  
5.0  
5.0  
VSS = 0V, VPLUS = 7V, VDD = 3V  
VSS = -3V, VPLUS = 7V, VDD = 0V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
-3  
-2  
-1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
COM  
COM  
FIGURE 18. ON-LEAKAGE vs SWITCH VOLTAGE  
FIGURE 17. ON-LEAKAGE vs SWITCH VOLTAGE  
5.0  
5.0  
VSS = 0V, VPLUS = 12V, VDD = 3V  
VSS = -3V, VPLUS = 9V, VDD = 0V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
8
9
10 11 12  
-3  
-2 -1  
0
1
2
3
4
5
6
7
8
V
(V)  
V
(V)  
COM  
COM  
FIGURE 20. ON-LEAKAGE vs SWITCH VOLTAGE  
FIGURE 19. ON-LEAKAGE vs SWITCH VOLTAGE  
FN6591.0  
March 18, 2008  
13  
ISL54301  
Typical Performance Curves VLOGIC = 3v, T = +25°C, V = 3v, V = 0V, Unless Otherwise Specified. (Continued)  
A
IH  
IL  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VSS = 0V, VPLUS = 5V, VDD = 3V  
VSS = -3V, VPLUS = 3V, VDD = 0V  
-3  
-2  
-1  
0
1
2
3
0
1
2
3
4
5
V
(V)  
V
(V)  
COM  
COM  
FIGURE 21. OFF-LEAKAGE vs SWITCH VOLTAGE  
FIGURE 22. OFF-LEAKAGE vs SWITCH VOLTAGE  
10  
10  
VSS = 0V, VPLUS = 7V, VDD = 3V  
VSS = -3V, VPLUS = 7V, VDD = 0V  
9
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
-3  
-2  
-1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
COM  
COM  
FIGURE 23. OFF-LEAKAGE vs SWITCH VOLTAGE  
FIGURE 24. OFF-LEAKAGE vs SWITCH VOLTAGE  
10  
10  
VSS = -3V, VPLUS = 9V, VDD = 0V  
VSS = 0V, VPLUS = 12V, VDD = 3V  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
-3  
-2 -1  
0
1
2
3
4
5
6
7
8
9
V
(V)  
V
(V)  
COM  
COM  
FIGURE 25. OFF-LEAKAGE vs SWITCH VOLTAGE  
FIGURE 26. OFF-LEAKAGE vs SWITCH VOLTAGE  
FN6591.0  
March 18, 2008  
14  
ISL54301  
Typical Performance Curves VLOGIC = 3v, T = +25°C, V = 3v, V = 0V, Unless Otherwise Specified. (Continued)  
A
IH  
IL  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
6.0  
VSS = -3V, VCOM = VPLUS - 1.0V, VDD = 0V  
VSS = 0V, VCOM = VPLUS - 1.0V, VDD = 3V  
= 10mA  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I
= 10mA  
I
COM  
COM  
+25°C  
+25°C  
+85°C  
+85°C  
-40°C  
-40°C  
3.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
VPLUS (V)  
VPLUS (V)  
FIGURE 28. ON-RESISTANCE vs SUPPLY VOLTAGE  
FIGURE 27. ON-RESISTANCE vs SUPPLY VOLTAGE  
2.00  
17.0  
VSS = -3V, VDD = 0V  
VSS = -3V, VDD = 0V  
1.94  
1.88  
1.82  
1.76  
1.70  
1.64  
1.58  
1.52  
1.46  
1.40  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
+25°C  
+85°C  
+85°C  
+25°C  
-40°C  
-40°C  
2.5  
2.7  
2.9  
VPLUS (V)  
3.1  
3.3  
3.5  
3
4
5
6
7
8
9
VPLUS (V)  
FIGURE 29. DIGITAL SWITCHING POINT vs SUPPLY  
VOLTAGE  
FIGURE 30. DEVICE QUIESCENT CURRENT (VPLUS)  
60  
450  
VPLUS = 9V, VSS = -3V, VDD = 0V  
400  
50  
350  
300  
VPLUS = 9V, VSS = -3V, VDD = 0V  
40  
VPLUS = 12V, VSS = 0V,  
VDD = 3V  
250  
200  
150  
100  
50  
30  
VPLUS = 7V, VSS = 0V,  
VDD = 3V  
20  
VPLUS = 9V, VSS = 0V, VDD = 3V  
10  
0
0
-3 -2 -1  
0
1
2
3
4
5
6
7
8
9
-3 -2 -1  
0
1
2
3
4
5
6
7
8
9
10 11 12  
V
(V)  
COM  
V
(V)  
COM  
FIGURE 31. CHARGE INJECTION vs SWITCH VOLTAGE  
FIGURE 32. t  
vs VCOM  
ON  
FN6591.0  
March 18, 2008  
15  
ISL54301  
Typical Performance Curves VLOGIC = 3v, T = +25°C, V = 3v, V = 0V, Unless Otherwise Specified. (Continued)  
A
IH  
IL  
0
-10  
-20  
-30  
0
10  
20  
30  
VPLUS = 9V, VSS = 0V, VDD = 3V  
VPLUS = 9V, VSS = -3V, VDD = 0V  
= 50Ω  
VPLUS = 9V, VSS = 0V, VDD = 3V  
VPLUS = 9V, VSS = -3V, VDD = 0V  
R
R
= 50Ω  
L
L
-40  
40  
-50  
-60  
50  
60  
-70  
70  
-80  
80  
-90  
90  
-100  
-110  
100  
110  
1k  
10k  
100k  
1M  
10M  
100M 500M  
1k  
10k  
100k  
1M  
10M  
100M 500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 33. CROSSTALK  
FIGURE 34. OFF ISOLATION  
VPLUS = 9V  
VPLUS = 5V TO 9V, VSS = 0V, VDD = 3V  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
GAIN  
4.0  
CLK_IN  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
= BOARD CAPACITANCE AND A C  
L
T
V
= 0V, V = 3V  
DD  
SS  
C
= 12pF  
T
C
= 22pF  
= 34pF  
= 45pF  
T
C
T
C
V
= -3V, V  
= 0V  
DD  
T
SS  
R
= 50Ω  
L
CLK_OUT  
10ns/DIV  
V
= 0.2V to 2V  
IN  
P-P  
P-P  
10  
1
100  
600  
FREQUENCY (MHz)  
FIGURE 36. CLK-IN TO CLK-OUT DELAY  
FIGURE 35. FREQUENCY RESPONSE  
VPLUS = 5V TO 9V, VSS = 0V, VDD = 3V  
VPLUS = 5V TO 9V, VSS = 0V, VDD = 3V  
4
0
4
0
CS_PULSE  
CLK_IN  
4
0
CLK_IN  
4
0
DATA_IN TURNING SW1 AND SW3 ON  
4
0
DATA_IN TURNING SW1 ON  
4
0
DATA_IN TURNING SW2 AND SW4 ON  
4
0
DATA_OUT TURNING SW2 AND SW4 ON (PREVIOUS DATA)  
10ms/DIV  
10ms/DIV  
FIGURE 37. SERIAL TIMING OF DATA_IN  
FIGURE 38. SERIAL TIMING OF DATA_OUT  
FN6591.0  
March 18, 2008  
16  
ISL54301  
L20.4x4C  
20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 11/06  
4X  
2.0  
4.00  
0.50  
16X  
A
6
B
16  
20  
PIN #1 INDEX AREA  
6
PIN 1  
INDEX AREA  
1
15  
2 .70 ± 0 . 15  
11  
5
0.15  
(4X)  
6
10  
0.10 M  
C
A B  
4
20X 0.25 +0.05 / -0.07  
20X 0.4 ± 0.10  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
0 . 90 ± 0 . 1  
C
BASE PLANE  
( 3. 8 TYP )  
(
SEATING PLANE  
0.08 C  
2. 70 )  
( 20X 0 . 5 )  
SIDE VIEW  
5
0 . 2 REF  
C
( 20X 0 . 25 )  
( 20X 0 . 6)  
0 . 00 MIN.  
0 . 05 MAX.  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
TYPICAL RECOMMENDED LAND PATTERN  
Dimensions in () for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance: Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6591.0  
March 18, 2008  
17  

相关型号:

ISL54301IRZ-T

QUAD 1-CHANNEL, SGL POLE SGL THROW SWITCH, PQCC20, 4 X 4 MM, ROHS COMPLIANT, PLASTIC, QFN-20
RENESAS

ISL54302

12V, 1.5OHM Quad SPST Switch with Latched Parallel Interface
INTERSIL

ISL54302IRZ

12V, 1.5OHM Quad SPST Switch with Latched Parallel Interface
INTERSIL

ISL54302IRZ

12V, 1.5? Quad SPST Switch with Latched Parallel Interface; QFN20; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL54302IRZ-T

12V, 1.5? Quad SPST Switch with Latched Parallel Interface; QFN20; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL54400

Low Voltage, Dual SPDT, USB/Audio Switches with Negative Signal Capability
INTERSIL

ISL54400EVAL1Z

Low Voltage, Dual SPDT, USB/Audio Switches with Negative Signal Capability
INTERSIL

ISL54400IRUZ

DUAL 1-CHANNEL, SGL POLE DOUBLE THROW SWITCH, PDSO10, 2.10 X 1.60 MM, ROHS COMPLIANT, PLASTIC, UTQFN-10
RENESAS

ISL54400IRUZ-T

Low Voltage, Dual SPDT, USB/Audio Switches with Negative Signal Capability
INTERSIL

ISL54400IRZ

Low Voltage, Dual SPDT, USB/Audio Switches with Negative Signal Capability
INTERSIL

ISL54400IRZ-T

Low Voltage, Dual SPDT, USB/Audio Switches with Negative Signal Capability
INTERSIL

ISL54401

Low Voltage, Dual SPDT, USB/Audio Switches with Negative Signal Capability
INTERSIL