HD6433862W [RENESAS]

MROM, MICROCONTROLLER, PQFP80, TQFP-80;
HD6433862W
型号: HD6433862W
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

MROM, MICROCONTROLLER, PQFP80, TQFP-80

时钟 外围集成电路
文件: 总495页 (文件大小:1842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Hitachi  
Electric and Hitachi XX, to Renesas Technology Corp.  
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand  
names are mentioned in the document, these names have in fact all been changed to Renesas  
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and  
corporate statement, no changes whatsoever have been made to the contents of the document, and  
these changes do not constitute any alteration to the contents of the document itself.  
Renesas Technology Home Page: http://www.renesas.com  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
Cautions  
Keep safety first in your circuit designs!  
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but  
there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire  
or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)  
placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or  
mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation  
product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any  
other rights, belonging to Renesas Technology Corporation or a third party.  
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,  
originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in  
these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents  
information on products at the time of publication of these materials, and are subject to change by Renesas Technology  
Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact  
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these  
inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corporation by various means, including the  
Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and  
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of  
the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other  
loss resulting from the information contained herein.  
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used  
under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an  
authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for  
any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea  
repeater use.  
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these  
materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license  
from the Japanese government and cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is  
prohibited.  
8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.  
H8/3867 Series  
H8/3867 HD6473867, HD6433867  
H8/3866 HD6433866  
H8/3865 HD6433865  
H8/3864 HD6433864  
H8/3863 HD6433863  
H8/3862 HD6433862  
H8/3827 Series  
H8/3827 HD6473827, HD6433827  
H8/3826 HD6433826  
H8/3825 HD6433825  
H8/3824 HD6433824  
H8/3823 HD6433823  
H8/3822 HD6433822  
Hardware Manual  
The revision list can be viewed directly by  
clicking the title page.  
ADE-602-142B  
Rev. 3  
3/15/03  
The revision list summarizes the locations of  
revisions and additions. Details should always  
be checked by referring to the relevant text.  
Hitachi Ltd.  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s  
patent, copyright, trademark, or other intellectual property rights for information contained in  
this document. Hitachi bears no responsibility for problems that may arise with third party’s  
rights, including intellectual property rights, in connection with use of the information  
contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you  
have received the latest product standards or specifications before final design, purchase or  
use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.  
However, contact Hitachi’s sales office before using the product in an application that  
demands especially high quality and reliability or where its failure or malfunction may directly  
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear  
power, combustion control, transportation, traffic, safety equipment or medical equipment for  
life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi  
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,  
installation conditions and other characteristics. Hitachi bears no responsibility for failure or  
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,  
consider normally foreseeable failure rates or failure modes in semiconductor devices and  
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi  
product does not cause bodily injury, fire or other consequential damage due to operation of  
the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document  
without written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi  
semiconductor products.  
List of Items Revised or Added for This Version  
Page  
Item  
Description  
1
Table 1.1 Features / CPU  
Change in (2) High-speed calculation  
specification  
2
3
Table 1.1 Features / Clock pulse  
generators  
Change in specification  
Table 1.1 Features / LCD drive power  
supply  
Addition  
5
Figure 1.1 Block Diagram  
Modification  
8
Table 1.2 Pin Functions / Power source pin Modification of stabilization capacitance  
13  
88  
2.1.1 Features  
Change in High-speed operation  
Addition of recommended value  
Figure 4.2 Typical Connection to Crystal  
Oscillator  
89  
91  
92  
95  
97  
99  
Figure 4.4 Typical Connection to Ceramic Addition of recommended value  
Oscillator  
Figure 4.7 Typical Connection to 32.768- Addition of description  
kHz/38.4 kHz Crystal Oscillator (Subclock)  
Figure 4.9 Pin Connection when not Using Modification  
Subclock  
Table 5.1 Operating Modes  
Modification of subsleep mode/watch mode  
descriptions  
Table 5.2 Internal State in Each Operating Modification of Note 4  
Mode  
5.1.1 System Control Registers  
Addition of Notes to Bits 6 to 4  
1. System control register 1 (SYSCR1)  
100  
102  
104  
2. System control register 2 (SYSCR2)  
5.2 Sleep Mode  
Modification of Bit 4 contents  
Addition of description  
5.3.3 Oscillator Settling Timer after Stanby Addition of description  
Mode is Cleared  
107  
109  
5.5.2 Clearing Subsleep Mode  
Clearing by interrupt  
Addition of description  
5.7.1 Transition to Active (Medium-Speed) Addition of description  
Mode  
147  
226  
248  
251  
Table 8.10 Port 3 Pin States  
Table 9.13 Timer G Operation Modes  
9.7.5 Application Notes  
Modification  
Addition of description in Notes  
Addition and modification of descriptions  
Modification  
Figure 10.1 SCI3 Block Diagram  
Page  
Item  
Description  
256  
10.2.5 Serial Mode Register (SMR) / Bits 1 Addition of description in Notes  
and 0  
265  
266  
Table 10.4 Relation between n and Clock Addition of description in Notes  
Table 10.5 Maximum Bit Rate for Each  
Frequency (Asynchronous Mode)  
Modification of Notes  
267  
268  
Table 10.7 Relation between n and Clock Addition of description in Notes  
10.2.9 Clock Stop Register 1 (CKSTPR1) Addition of description in Notes for Bits 6  
and 5  
303  
357  
10.5 Application Notes  
Addition of 9 and 10.  
14.2 When Using the Internal Power  
Supply Step-Down Circuit  
Modification of description  
360 to 15.2.1 Power Supply Voltage and  
362 Operating Range  
Modification of 1 to 3  
Addition and modification  
Addition and modification  
Addition of Notes  
363 to Table 15.2 DC Characteristics  
368  
369 to Table 15.3 Control Signal Timing  
370  
371  
Table 15.4 Serial Interface (SCI3-1,  
SCI3-2) Timing  
372  
373  
Table 15.5 A/D Converter Characteristics Modification  
Table 15.7 AC Characteristics for External Addition  
Segment Expansion  
376  
377  
Figure 15.6 SCI-3 Synchronous Mode  
Input/Output Timing  
Modification of Notes  
Figure 15.7 Segment Expansion Signal  
Timing  
Addition  
Preface  
The H8/300L Series of single-chip microcomputers has the high-speed H8/300L CPU at its core,  
with many necessary peripheral functions on-chip. The H8/300L CPU instruction set is  
compatible with the H8/300 CPU.  
The H8/3867 Series and H8/3827 Series have a system-on-a-chip architecture that includes such  
peripheral functions as a as an LCD controller/driver, six timers, a 14-bit PWM, a two-channel  
serial communication interface, and an A/D converter. This allows H8/3867 Series devices to be  
used as embedded microcomputers in systems requiring LCD display.  
The H8/3867 Series incorporates an LCD drive power supply and step-up constant power supply  
(5 V), enabling a fixed 5 V voltage to be obtained independently of V  
.
CC  
This manual describes the hardware of the H8/3867 Series and H8/3827 Series. For details on the  
H8/3864 Series instruction set, refer to the H8/300L Series Programming Manual.  
i
Contents  
Section 1 Overview..........................................................................................  
1.1 Overview............................................................................................................................  
1.2 Internal Block Diagram .....................................................................................................  
1.3 Pin Arrangement and Functions ........................................................................................  
1.3.1 Pin Arrangement ..................................................................................................  
1.3.2 Pin Functions........................................................................................................  
1
1
6
7
7
9
Section 2 CPU.................................................................................................. 13  
2.1 Overview............................................................................................................................ 13  
2.1.1 Features ................................................................................................................ 13  
2.1.2 Address Space ...................................................................................................... 14  
2.1.3 Register Configuration ......................................................................................... 14  
2.2 Register Descriptions......................................................................................................... 15  
2.2.1 General Registers.................................................................................................. 15  
2.2.2 Control Registers.................................................................................................. 15  
2.2.3 Initial Register Values.......................................................................................... 16  
2.3 Data Formats...................................................................................................................... 17  
2.3.1 Data Formats in General Registers....................................................................... 18  
2.3.2 Memory Data Formats.......................................................................................... 19  
2.4 Addressing Modes ............................................................................................................. 20  
2.4.1 Addressing Modes................................................................................................ 20  
2.4.2 Effective Address Calculation.............................................................................. 22  
2.5 Instruction Set.................................................................................................................... 26  
2.5.1 Data Transfer Instructions.................................................................................... 28  
2.5.2 Arithmetic Operations.......................................................................................... 30  
2.5.3 Logic Operations.................................................................................................. 31  
2.5.4 Shift Operations.................................................................................................... 31  
2.5.5 Bit Manipulations................................................................................................. 33  
2.5.6 Branching Instructions.......................................................................................... 37  
2.5.7 System Control Instructions ................................................................................. 39  
2.5.8 Block Data Transfer Instruction ........................................................................... 40  
2.6 Basic Operational Timing.................................................................................................. 42  
2.6.1 Access to On-Chip Memory (RAM, ROM)......................................................... 42  
2.6.2 Access to On-Chip Peripheral Modules ............................................................... 43  
2.7 CPU States......................................................................................................................... 45  
2.7.1 Overview .............................................................................................................. 45  
2.7.2 Program Execution State...................................................................................... 46  
2.7.3 Program Halt State................................................................................................ 46  
2.7.4 Exception-Handling State .................................................................................... 46  
ii  
2.8 Memory Map ..................................................................................................................... 47  
2.8.1 Memory Map........................................................................................................ 47  
2.9 Application Notes.............................................................................................................. 53  
2.9.1 Notes on Data Access........................................................................................... 53  
2.9.2 Notes on Bit Manipulation ................................................................................... 55  
2.9.3 Notes on Use of the EEPMOV Instruction .......................................................... 61  
Section 3 Exception Handling.......................................................................... 63  
3.1 Overview............................................................................................................................ 63  
3.2 Reset .................................................................................................................................. 63  
3.2.1 Overview .............................................................................................................. 63  
3.2.2 Reset Sequence..................................................................................................... 63  
3.2.3 Interrupt Immediately after Reset ........................................................................ 65  
3.3 Interrupts............................................................................................................................ 65  
3.3.1 Overview .............................................................................................................. 65  
3.3.2 Interrupt Control Registers................................................................................... 67  
3.3.3 External Interrupts................................................................................................ 76  
3.3.4 Internal Interrupts ................................................................................................. 77  
3.3.5 Interrupt Operations.............................................................................................. 78  
3.3.6 Interrupt Response Time ...................................................................................... 83  
3.4 Application Notes.............................................................................................................. 84  
3.4.1 Notes on Stack Area Use...................................................................................... 84  
3.4.2 Notes on Rewriting Port Mode Registers............................................................. 85  
Section 4 Clock Pulse Generators.................................................................... 87  
4.1 Overview............................................................................................................................ 87  
4.1.1 Block Diagram...................................................................................................... 87  
4.1.2 System Clock and Subclock................................................................................. 87  
4.2 System Clock Generator.................................................................................................... 88  
4.3 Subclock Generator ........................................................................................................... 91  
4.4 Prescalers........................................................................................................................... 93  
4.5 Note on Oscillators............................................................................................................ 94  
Section 5 Power-Down Modes ........................................................................ 95  
5.1 Overview............................................................................................................................ 95  
5.1.1 System Control Registers ..................................................................................... 98  
5.2 Sleep Mode........................................................................................................................ 103  
5.2.1 Transition to Sleep Mode ..................................................................................... 103  
5.2.2 Clearing Sleep Mode............................................................................................ 103  
5.2.3 Clock Frequency in Sleep (Medium-Speed) Mode.............................................. 104  
5.3 Standby Mode.................................................................................................................... 104  
5.3.1 Transition to Standby Mode ................................................................................. 104  
5.3.2 Clearing Standby Mode........................................................................................ 104  
iii  
5.3.3 Oscillator Settling Time after Standby Mode is Cleared...................................... 105  
5.3.4 Standby Mode Transition and Pin States.............................................................. 106  
5.4 Watch Mode ...................................................................................................................... 107  
5.4.1 Transition to Watch Mode.................................................................................... 107  
5.4.2 Clearing Watch Mode .......................................................................................... 107  
5.4.3 Oscillator Settling Time after Watch Mode is Cleared........................................ 107  
5.5 Subsleep Mode .................................................................................................................. 108  
5.5.1 Transition to Subsleep Mode................................................................................ 108  
5.5.2 Clearing Subsleep Mode ...................................................................................... 108  
5.6 Subactive Mode ................................................................................................................. 109  
5.6.1 Transition to Subactive Mode .............................................................................. 109  
5.6.2 Clearing Subactive Mode ..................................................................................... 109  
5.6.3 Operating Frequency in Subactive Mode............................................................. 109  
5.7 Active (Medium-Speed) Mode.......................................................................................... 110  
5.7.1 Transition to Active (Medium-Speed) Mode ....................................................... 110  
5.7.2 Clearing Active (Medium-Speed) Mode.............................................................. 110  
5.7.3 Operating Frequency in Active (Medium-Speed) Mode...................................... 110  
5.8 Direct Transfer................................................................................................................... 111  
5.8.1 Overview of Direct Transfer ................................................................................ 111  
5.8.2 Direct Transition Times........................................................................................ 112  
5.9 Module Standby Mode ...................................................................................................... 115  
5.9.1 Setting Module Standby Mode............................................................................. 115  
5.9.2 Clearing Module Standby Mode .......................................................................... 115  
Section 6 ROM................................................................................................117  
6.1 Overview............................................................................................................................ 117  
6.1.1 Block Diagram...................................................................................................... 117  
6.2 H8/3867 and H8/3827 PROM Mode................................................................................. 118  
6.2.1 Setting to PROM Mode........................................................................................ 118  
6.2.2 Socket Adapter Pin Arrangement and Memory Map........................................... 118  
6.3 H8/3867 and H8/3827 Programming ................................................................................ 121  
6.3.1 Writing and Verifying .......................................................................................... 121  
6.3.2 Programming Precautions .................................................................................... 126  
6.4 Reliability of Programmed Data........................................................................................ 127  
Section 7 RAM................................................................................................129  
7.1 Overview............................................................................................................................ 129  
7.1.1 Block Diagram...................................................................................................... 129  
Section 8 I/O Ports...........................................................................................131  
8.1 Overview............................................................................................................................ 131  
8.2 Port 1.................................................................................................................................. 133  
8.2.1 Overview .............................................................................................................. 133  
iv  
8.2.2 Register Configuration and Description............................................................... 133  
8.2.3 Pin Functions........................................................................................................ 138  
8.2.4 Pin States.............................................................................................................. 140  
8.2.5 MOS Input Pull-Up .............................................................................................. 140  
8.3 Port 3.................................................................................................................................. 141  
8.3.1 Overview .............................................................................................................. 141  
8.3.2 Register Configuration and Description............................................................... 141  
8.3.3 Pin Functions........................................................................................................ 145  
8.3.4 Pin States.............................................................................................................. 147  
8.3.5 MOS Input Pull-Up .............................................................................................. 147  
8.4 Port 4.................................................................................................................................. 148  
8.4.1 Overview .............................................................................................................. 148  
8.4.2 Register Configuration and Description............................................................... 148  
8.4.3 Pin Functions........................................................................................................ 149  
8.4.4 Pin States.............................................................................................................. 150  
8.5 Port 5.................................................................................................................................. 151  
8.5.1 Overview.............................................................................................................. 151  
8.5.2 Register Configuration and Description............................................................... 151  
8.5.3 Pin Functions........................................................................................................ 154  
8.5.4 Pin States.............................................................................................................. 154  
8.5.5 MOS Input Pull-Up .............................................................................................. 155  
8.6 Port 6.................................................................................................................................. 156  
8.6.1 Overview .............................................................................................................. 156  
8.6.2 Register Configuration and Description............................................................... 156  
8.6.3 Pin Functions........................................................................................................ 158  
8.6.4 Pin States.............................................................................................................. 158  
8.6.5 MOS Input Pull-Up .............................................................................................. 159  
8.7 Port 7.................................................................................................................................. 160  
8.7.1 Overview .............................................................................................................. 160  
8.7.2 Register Configuration and Description............................................................... 160  
8.7.3 Pin Functions........................................................................................................ 162  
8.7.4 Pin States.............................................................................................................. 162  
8.8 Port 8.................................................................................................................................. 163  
8.8.1 Overview .............................................................................................................. 163  
8.8.2 Register Configuration and Description............................................................... 163  
8.8.3 Pin Functions........................................................................................................ 165  
8.8.4 Pin States.............................................................................................................. 166  
8.9 Port A................................................................................................................................. 167  
8.9.1 Overview .............................................................................................................. 167  
8.9.2 Register Configuration and Description............................................................... 167  
8.9.3 Pin Functions........................................................................................................ 169  
8.9.4 Pin States.............................................................................................................. 170  
8.10 Port B................................................................................................................................. 171  
v
8.10.1 Overview .............................................................................................................. 171  
8.10.2 Register Configuration and Description............................................................... 171  
8.11 Input/Output Data Inversion Function............................................................................... 172  
8.11.1 Overview .............................................................................................................. 172  
8.11.2 Register Configuration and Descriptions ............................................................. 172  
8.11.3 Note on Modification of Serial Port Control Register.......................................... 174  
Section 9 Timers..............................................................................................175  
9.1 Overview............................................................................................................................ 175  
9.2 Timer A.............................................................................................................................. 177  
9.2.1 Overview .............................................................................................................. 177  
9.2.2 Register Descriptions............................................................................................ 179  
9.2.3 Timer Operation ................................................................................................... 183  
9.2.4 Timer A Operation States..................................................................................... 184  
9.3 Timer C.............................................................................................................................. 185  
9.3.1 Overview .............................................................................................................. 185  
9.3.2 Register Descriptions............................................................................................ 187  
9.3.3 Timer Operation ................................................................................................... 191  
9.3.4 Timer C Operation States ..................................................................................... 193  
9.4 Timer F.............................................................................................................................. 194  
9.4.1 Overview .............................................................................................................. 194  
9.4.2 Register Descriptions............................................................................................ 197  
9.4.3 CPU Interface ....................................................................................................... 205  
9.4.4 Operation.............................................................................................................. 208  
9.4.5 Application Notes................................................................................................. 211  
9.5 Timer G.............................................................................................................................. 213  
9.5.1 Overview .............................................................................................................. 213  
9.5.2 Register Descriptions............................................................................................ 216  
9.5.3 Noise Canceler...................................................................................................... 221  
9.5.4 Operation.............................................................................................................. 223  
9.5.5 Application Notes................................................................................................. 227  
9.5.6 Timer G Application Example ............................................................................. 232  
9.6 Watchdog Timer................................................................................................................ 233  
9.6.1 Overview .............................................................................................................. 233  
9.6.2 Register Descriptions............................................................................................ 234  
9.6.3 Timer Operation ................................................................................................... 238  
9.6.4 Watchdog Timer Operation States ....................................................................... 239  
9.7 Asynchronous Event Counter (AEC) ................................................................................ 240  
9.7.1 Overview .............................................................................................................. 240  
9.7.2 Register Descriptions............................................................................................ 242  
9.7.3 Operation.............................................................................................................. 247  
9.7.4 Asynchronous Event Counter Operation Modes.................................................. 248  
9.7.5 Application Notes................................................................................................. 249  
vi  
Section 10 Serial Communication Interface ......................................................251  
10.1 Overview............................................................................................................................ 251  
10.1.1 Features ................................................................................................................ 251  
10.1.2 Block diagram ...................................................................................................... 253  
10.1.3 Pin configuration.................................................................................................. 254  
10.1.4 Register configuration.......................................................................................... 254  
10.2 Register Descriptions......................................................................................................... 255  
10.2.1 Receive shift register (RSR)................................................................................. 255  
10.2.2 Receive data register (RDR) ................................................................................ 255  
10.2.3 Transmit shift register (TSR)................................................................................ 256  
10.2.4 Transmit data register (TDR) ............................................................................... 256  
10.2.5 Serial mode register (SMR).................................................................................. 257  
10.2.6 Serial control register 3 (SCR3) ........................................................................... 260  
10.2.7 Serial status register (SSR)................................................................................... 264  
10.2.8 Bit rate register (BRR).......................................................................................... 268  
10.2.9 Clock stop register 1 (CKSTPR1)........................................................................ 272  
10.2.10 Serial Port Control Register (SPCR).................................................................... 273  
10.3 Operation ........................................................................................................................... 275  
10.3.1 Overview .............................................................................................................. 275  
10.3.2 Operation in Asynchronous Mode........................................................................ 279  
10.3.3 Operation in Synchronous Mode.......................................................................... 289  
10.3.4 Multiprocessor Communication Function............................................................ 296  
10.4 Interrupts............................................................................................................................ 303  
10.5 Application Notes.............................................................................................................. 304  
Section 11 14-Bit PWM.....................................................................................309  
11.1 Overview............................................................................................................................ 309  
11.1.1 Features ................................................................................................................ 309  
11.1.2 Block Diagram...................................................................................................... 309  
11.1.3 Pin Configuration ................................................................................................. 310  
11.1.4 Register Configuration ......................................................................................... 310  
11.2 Register Descriptions......................................................................................................... 311  
11.2.1 PWM Control Register (PWCR).......................................................................... 311  
11.2.2 PWM Data Registers U and L (PWDRU, PWDRL)............................................ 312  
11.2.3 Clock Stop Register 2 (CKSTPR2)...................................................................... 312  
11.3 Operation ........................................................................................................................... 314  
11.3.1 Operation.............................................................................................................. 314  
11.3.2 PWM Operation Modes........................................................................................ 315  
Section 12 A/D Converter..................................................................................317  
12.1 Overview............................................................................................................................ 317  
12.1.1 Features ................................................................................................................ 317  
12.1.2 Block Diagram...................................................................................................... 318  
vii  
12.1.3 Pin Configuration ................................................................................................. 319  
12.1.4 Register Configuration ......................................................................................... 319  
12.2 Register Descriptions......................................................................................................... 320  
12.2.1 A/D Result Registers (ADRRH, ADRRL)........................................................... 320  
12.2.2 A/D Mode Register (AMR).................................................................................. 320  
12.2.3 A/D Start Register (ADSR).................................................................................. 322  
12.2.4 Clock Stop Register 1 (CKSTPR1)...................................................................... 323  
12.3 Operation ........................................................................................................................... 324  
12.3.1 A/D Conversion Operation................................................................................... 324  
12.3.2 Start of A/D Conversion by External Trigger Input............................................. 324  
12.3.3 A/D Converter Operation Modes ......................................................................... 325  
12.4 Interrupts............................................................................................................................ 325  
12.5 Typical Use........................................................................................................................ 325  
12.6 Application Notes.............................................................................................................. 328  
Section 13 LCD Controller/Driver ....................................................................329  
13.1 Overview............................................................................................................................ 329  
13.1.1 Features ................................................................................................................ 329  
13.1.2 Block Diagram...................................................................................................... 330  
13.1.3 Pin Configuration ................................................................................................. 331  
13.1.4 Register Configuration ......................................................................................... 331  
13.2 Register Descriptions......................................................................................................... 332  
13.2.1 LCD Port Control Register (LPCR) ..................................................................... 332  
13.2.2 LCD Control Register (LCR) ............................................................................... 334  
13.2.3 LCD Control Register 2 (LCR2).......................................................................... 336  
13.2.4 Clock Stop Register 2 (CKSTPR2)...................................................................... 338  
13.3 Operation ........................................................................................................................... 339  
13.3.1 Settings up to LCD Display.................................................................................. 339  
13.3.2 Relationship between LCD RAM and Display.................................................... 342  
13.3.3 Luminance Adjustment Function (V0 Pin) .......................................................... 349  
13.3.4 Step-Up Constant-Voltage (5 V) Power Supply .................................................. 350  
13.3.5 Low-Power-Consumption LCD Drive System .................................................... 350  
13.3.6 Operation in Power-Down Modes........................................................................ 354  
13.3.7 Boosting the LCD Drive Power Supply............................................................... 355  
13.3.8 Connection to HD66100....................................................................................... 356  
Section 14 Power Supply Circuit.......................................................................359  
14.1 Overview............................................................................................................................ 359  
14.2 When Using the Internal Power Supply Step-Down Circuit............................................. 359  
14.3 When Not Using the Internal Power Supply Step-Down Circuit...................................... 360  
Section 15 Electrical Characteristics.................................................................361  
15.1 H8/3867 Series and H8/3827 Series Absolute Maximum Ratings.................................... 361  
viii  
15.2 H8/3867 Series and H8/3827 Series Electrical Characteristics......................................... 362  
15.2.1 Power Supply Voltage and Operating Range....................................................... 362  
15.2.2 DC Characteristics................................................................................................ 365  
15.2.3 AC Characteristics................................................................................................ 371  
15.2.4 A/D Converter Characteristics ............................................................................. 374  
15.2.5 LCD Characteristics ............................................................................................. 376  
15.3 Operation Timing .............................................................................................................. 378  
15.4 Output Load Circuit........................................................................................................... 382  
15.5 Resonator Equivalent Circuit ............................................................................................ 382  
Appendix A CPU Instruction Set.......................................................................383  
A.1 Instructions ........................................................................................................................ 383  
A.2 Operation Code Map.......................................................................................................... 391  
A.3 Number of Execution States.............................................................................................. 393  
Appendix B Internal I/O Registers.....................................................................399  
B.1 Addresses........................................................................................................................... 399  
B.2 Functions............................................................................................................................ 403  
Appendix C I/O Port Block Diagrams...............................................................454  
C.1 Block Diagrams of Port 1.................................................................................................. 454  
C.2 Block Diagrams of Port 3.................................................................................................. 457  
C.3 Block Diagrams of Port 4.................................................................................................. 464  
C.4 Block Diagram of Port 5.................................................................................................... 468  
C.5 Block Diagram of Port 6.................................................................................................... 469  
C.6 Block Diagram of Port 7.................................................................................................... 470  
C.7 Block Diagrams of Port 8.................................................................................................. 471  
C.8 Block Diagram of Port A................................................................................................... 472  
C.9 Block Diagram of Port B................................................................................................... 473  
Appendix D Port States in the Different Processing States...............................474  
Appendix E List of Product Codes ....................................................................475  
Appendix F Package Dimensions......................................................................477  
ix  
Section 1 Overview  
1.1  
Overview  
The H8/300L Series is a series of single-chip microcomputers (MCU: microcomputer unit), built  
around the high-speed H8/300L CPU and equipped with peripheral system functions on-chip.  
Within the H8/300L Series, the H8/3867 Series and H8/3827 Series comprise single-chip  
microcomputers equipped with a controller/driver. Other on-chip peripheral functions include six  
timers, a 14-bit pulse width modulator (PWM), two serial communication interface channels, and  
an A/D converter. Together, these functions make the H8/3864 Series ideally suited for embedded  
applications in systems requiring low power consumption and LCD display. Models in the  
H8/3867 and H8/3827 Series are the H8/3862 and H8/3822, with on-chip 16-kbyte ROM and 1-  
kbyte RAM, the H8/3863 and H8/3823, with 24-kbyte ROM and 1-kbyte RAM, the H8/3864 and  
H8/3824, with 32-kbyte ROM and 2-kbyte RAM, the H8/3865 and H8/3825, with 40-kbyte ROM  
and 2-kbyte RAM, the H8/3866 and H8/3826, with 48-kbyte ROM and 2-kbyte RAM, and the  
H8/3867 and H8/3827, with 60-kbyte ROM and 2-kbyte RAM.  
The H8/3867 and H8/3827 are also available in a ZTAT™* version with on-chip PROM which  
can be programmed as required by the user.  
Table 1.1 summarizes the features of the H8/3867 Series and H8/3827 Series.  
Note: * ZTAT (Zero Turn Around Time) is a trademark of Hitachi, Ltd.  
1
Table 1.1 Features  
Item  
Description  
CPU  
High-speed H8/300L CPU  
General-register architecture  
General registers: Sixteen 8-bit registers (can be used as eight 16-bit  
registers)  
Operating speed  
Max. operating speed: 3 MHz  
Add/subtract: 0.67 µs (operating at 3 MHz)  
Multiply/divide: 4.67 µs (operating at 3 MHz)  
Can run on 32.768 kHz or 38.4 kHz subclock  
Instruction set compatible with H8/300 CPU  
Instruction length of 2 bytes or 4 bytes  
Basic arithmetic operations between registers  
MOV instruction for data transfer between memory and registers  
Typical instructions  
Multiply (8 bits × 8 bits)  
Divide (16 bits ÷ 8 bits)  
Bit accumulator  
Register-indirect designation of bit position  
Interrupts  
36 interrupt sources  
13 external interrupt sources (IRQ4 to IRQ0, WKP7 to WKP0)  
23 internal interrupt sources  
Clock pulse generators Two on-chip clock pulse generators  
System clock pulse generator: 0.4 to 6 MHz  
Subclock pulse generator: 32.768 kHz, 38.4 kHz  
Power-down modes  
Seven power-down modes  
Sleep (high-speed) mode  
Sleep (medium-speed) mode  
Standby mode  
Watch mode  
Subsleep mode  
Subactive mode  
Active (medium-speed) mode  
2
Table 1.1 Features (cont)  
Item  
Description  
Large on-chip memory  
Memory  
H8/3862, H8/3822: 16-kbyte ROM, 1-kbyte RAM  
H8/3863, H8/3823: 24-kbyte ROM, 1-kbyte RAM  
H8/3864, H8/3824: 32-kbyte ROM, 2-kbyte RAM  
H8/3865, H8/3825: 40-kbyte ROM, 2-kbyte RAM  
H8/3866, H8/3826: 48-kbyte ROM, 2-kbyte RAM  
H8/3867, H8/3827: 60-kbyte ROM, 2-kbyte RAM  
I/O ports  
Timers  
64 pins  
55 I/O pins  
9 input pins  
Six on-chip timers  
Timer A: 8-bit timer  
Count-up timer with selection of eight internal clock signals divided  
from the system clock (ø)* and four clock signals divided from the  
watch clock (øw)*  
Asynchronous event counter: 16-bit timer  
Count-up timer able to count asynchronous external events  
independently of the MCU's internal clocks  
Timer C: 8-bit timer  
Count-up/down timer with selection of seven internal clock signals  
or event input from external pin  
Auto-reloading  
Timer F: 16-bit timer  
Can be used as two independent 8-bit timers  
Count-up timer with selection of four internal clock signals or event  
input from external pin  
Provision for toggle output by means of compare-match function  
Timer G: 8-bit timer  
Count-up timer with selection of four internal clock signals  
Incorporates input capture function (built-in noise canceler)  
Watchdog timer  
Reset signal generated by overflow of 8-bit counter  
Note: * See section 4, Clock Pulse Generator, for the definition of ø and øw.  
3
Table 1.1 Features (cont)  
Item  
Description  
Two serial communication interface channels on chip  
Serial communication  
interface  
SCI3-1: 8-bit synchronous/asynchronous serial interface  
Incorporates multiprocessor communication function  
SCI3-2: 8-bit synchronous/asynchronous serial interface  
Incorporates multiprocessor communication function  
14-bit PWM  
Pulse-division PWM output for reduced ripple  
Can be used as a 14-bit D/A converter by connecting to an external  
low-pass filter.  
A/D converter  
Successive approximations using a resistance ladder  
8-channel analog input pins  
Conversion time: 31/ø or 62/ø per channel  
LCD controller/driver  
LCD controller/driver equipped with a maximum of 32 segment pins and  
four common pins  
Choice of four duty cycles (static, 1/2, 1/3, or 1/4)  
Segment pins can be switched to general-purpose port function in 8-  
bit units  
LCD drive power supply Step-up constant-voltage power supply allows LCD display  
(H8/3867 Series only)  
4
Table 1.1 Features (cont)  
Item  
Specification  
Product Code  
Product lineup  
Mask ROM  
Version  
ZTAT Version Package  
80-pin QFP (FP-80A)  
ROM/RAM Size  
HD6433862H,  
HD6433822H  
ROM 16 kbytes  
RAM 1 kbyte  
HD6433862F,  
HD6433822F  
80-pin QFP (FP-80B)  
80-pin TQFP (TFP-80C)  
80-pin QFP (FP-80A)  
80-pin QFP (FP-80B)  
80-pin TQFP (TFP-80C)  
80-pin QFP (FP-80A)  
80-pin QFP (FP-80B)  
80-pin TQFP (TFP-80C)  
80-pin QFP (FP-80A)  
80-pin QFP (FP-80B)  
80-pin TQFP (TFP-80C)  
80-pin QFP (FP-80A)  
80-pin QFP (FP-80B)  
80-pin TQFP (TFP-80C)  
80-pin QFP (FP-80A)  
80-pin QFP (FP-80B)  
HD6433862W,  
HD6433822W  
HD6433863H,  
HD6433823H  
ROM 24 kbytes  
RAM 1 kbyte  
HD6433863F,  
HD6433823F  
HD6433863W,  
HD6433823W  
HD6433864H,  
HD6433824H  
ROM 32 kbytes  
RAM 2 kbytes  
HD6433864F,  
HD6433824F  
HD6433864W,  
HD6433824W  
HD6433865H,  
HD6433825H  
ROM 40 kbytes  
RAM 2 kbytes  
HD6433865F,  
HD6433825F  
HD6433865W,  
HD6433825W  
HD6433866H,  
HD6433826H  
ROM 48 kbytes  
RAM 2 kbytes  
HD6433866F,  
HD6433826F  
HD6433866W,  
HD6433826W  
HD6433867H,  
HD6433827H  
HD6473867H,  
HD6473827H  
ROM 60 kbytes  
RAM 2 kbytes  
HD6433867F,  
HD6433827F  
HD6473867F,  
HD6473827F  
HD6433867W, HD6473867W, 80-pin TQFP (TFP-80C)  
HD6433827W HD6473827W  
5
1.2  
Internal Block Diagram  
Figure 1.1 shows a block diagram of the H8/3867 Series and H8/3827 Series.  
P1  
P1  
P1  
0/TMOW  
V
V
V
V
0
1
2
3
1/TMOFL  
H8/300L  
CPU  
2
/TMOFH  
P1  
/IRQ /ADTRG  
P1 /IRQ /TMIC  
P1 /IRQ  
/IRQ  
3/TMIG  
P1  
4
4
5
1
PA  
PA  
PA  
PA  
3
2
1
0
/COM  
/COM  
/COM  
/COM  
4
3
2
1
6
2
P17  
3/TMIF  
ROM  
(60k/48k/40k/32k  
24k/16k)  
RAM  
(2k/1k)  
P3  
0/PWM  
P31/UD  
P8  
P8  
P8  
P8  
P8  
P8  
P8  
P8  
7
/SEG32/CL  
1
2
P3  
P3  
P3  
P3  
2/RESO  
6
5
4
3
2
1
0
/SEG31/CL  
Serial  
communication  
interface 3-1  
3/SCK31  
Timer - A  
Timer - C  
Timer - F  
Timer - G  
/SEG30/DO  
/SEG29/M  
/SEG28  
4/RXD31  
5/TXD31  
P3  
6/AEVH  
/SEG27  
P3  
7/AEVL  
/SEG26  
Serial  
communication  
interface 3-2  
/SEG25  
P4  
0/SCK32  
P4  
P4  
1/RXD32  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
7
6
5
4
3
2
1
0
/SEG24  
/SEG23  
/SEG22  
/SEG21  
/SEG20  
/SEG19  
/SEG18  
/SEG17  
2/TXD32  
P4  
3/IRQ  
0
14-bit  
PWM  
P5  
P5  
P5  
P5  
P5  
P5  
P5  
P5  
0
1
2
3
4
5
6
7
/WKP  
/WKP  
/WKP  
/WKP  
/WKP  
/WKP  
/WKP  
/WKP  
0/SEG  
1/SEG  
2/SEG  
3/SEG  
4/SEG  
5/SEG  
6/SEG  
7/SEG  
1
2
3
4
5
6
7
8
Asynchronous  
counter  
WDT  
P6  
P6  
P6  
P6  
P6  
P6  
P6  
P6  
7
6
5
4
3
2
1
0
/SEG16  
/SEG15  
/SEG14  
/SEG13  
/SEG12  
/SEG11  
/SEG10  
A/D  
(10bit)  
LCD  
Controller  
/SEG  
9
Port B  
Figure 1.1 Block Diagram  
6
1.3  
Pin Arrangement and Functions  
1.3.1  
Pin Arrangement  
The H8/3867 Series and H8/3827 Series pin arrangement is shown in figures 1.2 and 1.3.  
60  
58  
54 53  
49  
47  
46  
45  
42 41  
43  
59  
52 51 50  
57  
48  
56 55  
44  
P8  
P8  
P8  
P8  
0
1
2
3
/SEG25  
/SEG26  
/SEG27  
/SEG28  
61  
40  
P5  
P5  
P5  
P5  
3
2
1
0
/WKP  
/WKP  
/WKP  
/WKP  
3
2
1
0
/SEG4  
/SEG3  
/SEG2  
/SEG1  
62  
63  
64  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P84/SEG29/M  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
PA  
PA  
PA  
PA  
0
1
2
3
/COM1  
/COM2  
/COM3  
/COM4  
P8 /SEG30/DO  
5
P86  
/SEG31CL  
2
1
P87  
/SEG32CL  
P40/SCK32  
/RXD32  
/TXD32  
P4 /IRQ  
VCC  
P4  
1
V0  
V1  
V2  
V3  
P4  
2
3
0
AVCC  
PB  
PB  
PB  
PB  
PB  
PB  
PB  
0
1
2
3
4
5
6
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
V
SS  
CVCC  
P37  
P36  
P35  
P34  
P33  
/AEVL  
/AEVH  
/TXD31  
/RXD31  
/SCK31  
1
2
3
4
5
6
7
8
9
10  
12 13 14 15  
17 18 19 20  
16  
11  
Figure 1.2 Pin Arrangement (FP-80A, TFP-80C: Top View)  
7
61  
57  
56  
64 63 62  
59 58  
55 54 53 52  
50  
48  
60  
51  
49  
47  
46 45 44 43 42 41  
P8  
2
/SEG27  
/SEG28  
P5  
1
/WKP  
/WKP  
1
/SEG2  
/SEG1  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P83  
P50  
0
P84/SEG29/M  
PA  
PA  
PA  
PA  
0
1
2
3
/COM1  
/COM2  
/COM3  
/COM4  
P8 /SEG30/DO  
5
P8  
6
/SEG31/CL  
2
1
P8  
7
/SEG32/CL  
P4  
P4  
P4  
0/SCK32  
V
CC  
1/RXD32  
V0  
V1  
V2  
V3  
2/TXD32  
P4  
3/IRQ  
0
AVCC  
PB  
PB  
PB  
PB  
PB  
0
1
2
3
4
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
VSS  
CVCC  
P37  
P36  
P35  
/AEVL  
/AEVH  
/TXD31  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
Figure 1.3 Pin Arrangement (FP-80B: Top View)  
8
1.3.2  
Pin Functions  
Table 1.2 outlines the pin functions of the H8/3864 Series.  
Table 1.2 Pin Functions  
Pin No.  
FP-80A  
Type  
Symbol  
TFP-80C FP-80B  
I/O  
Name and Functions  
Power  
VCC  
32  
26  
34  
28  
Input  
Power supply: All VCC pins should be  
connected to the system power supply.  
See section 14, Power Supply Circuit.  
source pins CVCC  
VSS  
5
27  
7
29  
Input  
Input  
Ground: All VSS pins should be  
connected to the system power supply  
(0 V).  
AVCC  
73  
75  
Analog power supply: This is the  
power supply pin for the A/D converter.  
When the A/D converter is not used,  
connect this pin to the system power  
supply.  
AVSS  
2
4
Input  
Analog ground: This is the A/D  
converter ground pin. It should be  
connected to the system power supply  
(0V).  
V0  
31  
33  
Output LCD power supply: These are the  
V1  
V2  
V3  
30  
29  
28  
32  
31  
30  
Input  
power supply pins for the LCD  
controller/driver. They incorporate a  
power supply split-resistance, and are  
normally used with V0 and V1 shorted.  
Clock pins OSC1  
OSC2  
7
6
9
8
Input  
These pins connect to a crystal or  
Output ceramic oscillator, or can be used to  
input an external clock. See section 4,  
Clock Pulse Generators, for a typical  
connection diagram.  
X1  
X2  
3
4
5
6
Input  
These pins connect to a 32.768-kHz or  
Output 38.4-kHz crystal oscillator.  
See section 4, Clock Pulse  
Generators, for a typical connection  
diagram.  
System  
control  
RES  
9
11  
22  
Input  
Reset: When this pin is driven low, the  
chip is reset  
RESO  
20  
Output Reset output: Outputs the CPU internal  
reset signal.  
9
Table 1.2 Pin Functions (cont)  
Pin No.  
FP-80A  
Type  
Symbol  
TFP-80C FP-80B  
I/O  
Name and Functions  
System  
control  
TEST  
8
10  
Output Test pin: This pin is reserved and  
cannot be used. It should be connected  
to VSS  
.
Interrupt  
pins  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
72  
15  
16  
17  
14  
74  
17  
18  
19  
16  
Input  
IRQ interrupt request 0 to 4: These  
are input pins for edge-sensitive  
external interrupts, with a selection of  
rising or falling edge  
WKP7 to  
WKP0  
44 to 37  
46 to 39 Input  
Wakeup interrupt request 0 to 7:  
These are input pins for rising or falling-  
edge-sensitive external interrupts.  
Timer pins TMOW  
10  
12  
Output Clock output: This is an output pin for  
waveforms generated by the timer A  
output circuit.  
AEVL  
AEVH  
25  
24  
27  
26  
Input  
Asynchronous event counter event  
input: This is an event input pin for  
input to the asynchronous event  
counter.  
TMIC  
UD  
15  
19  
17  
21  
Input  
Input  
Timer C event input: This is an event  
input pin for input to the timer C counter.  
Timer C up/down select: This pin  
selects up- or down-counting for the  
timer C counter. The counter operates  
as an up-counter when this pin is high,  
and as a down-counter when low.  
TMIF  
17  
11  
19  
13  
Input  
Timer F event input: This is an event  
input pin for input to the timer F counter.  
TMOFL  
Output Timer FL output: This is an output pin  
for waveforms generated by the timer  
FL output compare function.  
TMOFH  
TMIG  
12  
13  
14  
15  
Output Timer FH output: This is an output pin  
for waveforms generated by the timer  
FH output compare function.  
Input  
Timer G capture input: This is an input  
pin for timer G input capture.  
10  
Table 1.2 Pin Functions (cont)  
Pin No.  
FP-80A  
Type  
Symbol  
TFP-80C FP-80B  
I/O  
Name and Functions  
14-bit  
PWM pin  
PWM  
18  
20  
Output 14-bit PWM output: This is an output  
pin for waveforms generated by the 14-  
bit PWM  
I/O ports  
PB7 to PB0 1, 80 to 74 3 to 1,  
80 to 76  
Input  
Port B: This is an 8-bit input port.  
P43  
72  
74  
Input  
Port 4 (bit 3): This is a 1-bit input port.  
P42 to P40 71 to 69  
73 to 71 I/O  
Port 4 (bits 2 to 0): This is a 3-bit I/O  
port. Input or output can be designated  
for each bit by means of port control  
register 4 (PCR4).  
PA3 to PA0 33 to 36  
P17 to P10 17 to 10  
P37 to P30 25 to 18  
P57 to P50 44 to 37  
P67 to P60 52 to 45  
P77 to P70 60 to 53  
P87 to P80 68 to 61  
35 to 38 I/O  
19 to 12 I/O  
27 to 20 I/O  
46 to 39 I/O  
54 to 47 I/O  
62 to 55 I/O  
70 to 63 I/O  
Port A: This is a 4-bit I/O port. Input or  
output can be designated for each bit by  
means of port control register A (PCRA).  
Port 1: This is an 8-bit I/O port. Input or  
output can be designated for each bit by  
means of port control register 1 (PCR1).  
Port 3: This is an 8-bit I/O port. Input or  
output can be designated for each bit by  
means of port control register 3 (PCR3).  
Port 5: This is an 8-bit I/O port. Input or  
output can be designated for each bit by  
means of port control register 5 (PCR5).  
Port 6: This is an 8-bit I/O port. Input or  
output can be designated for each bit by  
means of port control register 6 (PCR6).  
Port 7: This is an 8-bit I/O port. Input or  
output can be designated for each bit by  
means of port control register 7 (PCR7).  
Port 8: This is an 8-bit I/O port. Input or  
output can be designated for each bit by  
means of port control register 8 (PCR8).  
11  
Table 1.2 Pin Functions (cont)  
Pin No.  
FP-80A  
Type  
Symbol  
TFP-80C FP-80B  
I/O  
Name and Functions  
Serial  
communi-  
RXD31  
22  
23  
21  
70  
71  
69  
24  
25  
23  
72  
73  
71  
Input  
SCI3-1 receive data input:  
This is the SCI31 data input pin.  
cation  
interface  
TXD31  
SCK31  
RXD32  
TXD32  
SCK32  
Output SCI3-1 transmit data output:  
This is the SCI31 data output pin.  
(SCI)  
I/O  
SCI3-1 clock I/O:  
This is the SCI31 clock I/O pin.  
Input  
SCI3-2 receive data input:  
This is the SCI32 data input pin.  
Output SCI3-2 transmit data output:  
This is the SCI32 data output pin.  
I/O  
SCI3-2 clock I/O:  
This is the SCI32 clock I/O pin.  
A/D  
converter  
AN7 to An0 1  
80 to 74  
3 to 1  
80 to 76  
Input  
Analog input channels 7 to 0:  
These are analog data input channels to  
the A/D converter  
ADTRG  
14  
16  
Input  
A/D converter trigger input:  
This is the external trigger input pin to  
the A/D converter  
LCD  
controller/  
COM4 to  
COM1  
33 to 36  
68 to 37  
68  
35 to 38 Output LCD common output: These are the  
LCD common output pins.  
driver  
SEG32 to  
SEG1  
70 to 39 Output LCD segment output: These are the  
LCD segment output pins.  
CL1  
CL2  
DO  
M
70  
69  
68  
67  
Output LCD latch clock: This is the output pin  
for the segment external expansion  
display data latch clock.  
67  
66  
65  
Output LCD shift clock: This is the output pin  
for the segment external expansion  
display data shift clock.  
Output LCD serial data output: This is the  
output pin for segment external  
expansion serial display data.  
Output LCD alternation signal: This is the  
output pin for the segment external  
expansion LCD alternation signal.  
12  
Section 2 CPU  
2.1  
Overview  
The H8/300L CPU has sixteen 8-bit general registers, which can also be paired as eight 16-bit  
registers. Its concise instruction set is designed for high-speed operation.  
2.1.1  
Features  
Features of the H8/300L CPU are listed below.  
General-register architecture  
Sixteen 8-bit general registers, also usable as eight 16-bit general registers  
Instruction set with 55 basic instructions, including:  
Multiply and divide instructions  
Powerful bit-manipulation instructions  
Eight addressing modes  
Register direct  
Register indirect  
Register indirect with displacement  
Register indirect with post-increment or pre-decrement  
Absolute address  
Immediate  
Program-counter relative  
Memory indirect  
64-kbyte address space  
High-speed operation  
All frequently used instructions are executed in two to four states  
High-speed arithmetic and logic operations  
8- or 16-bit register-register add or subtract: 0.67 µs*  
8 × 8-bit multiply:  
4.67 µs*  
4.67 µs*  
16 ÷ 8-bit divide:  
Note: * These values are at ø = 3 MHz.  
Low-power operation modes  
SLEEP instruction for transfer to low-power operation  
13  
2.1.2  
Address Space  
The H8/300L CPU supports an address space of up to 64 kbytes for storing program code and  
data.  
See 2.8, Memory Map, for details of the memory map.  
2.1.3  
Register Configuration  
Figure 2.1 shows the register structure of the H8/300L CPU. There are two groups of registers: the  
general registers and control registers.  
General registers (Rn)  
7
0 7  
0
R0H  
R1H  
R2H  
R3H  
R4H  
R5H  
R6H  
R7H  
R0L  
R1L  
R2L  
R3L  
R4L  
R5L  
R6L  
R7L  
SP: Stack pointer  
(SP)  
Control registers (CR)  
15  
0
PC  
7 6 5 4 3 2 1 0  
CCR I U H U N Z V C  
PC: Program counter  
CCR: Condition code register  
Carry flag  
Overflow flag  
Zero flag  
Negative flag  
Half-carry flag  
Interrupt mask bit  
User bit  
User bit  
Figure 2.1 CPU Registers  
14  
2.2  
Register Descriptions  
2.2.1  
General Registers  
All the general registers can be used as both data registers and address registers.  
When used as data registers, they can be accessed as 16-bit registers (R0 to R7), or the high bytes  
(R0H to R7H) and low bytes (R0L to R7L) can be accessed separately as 8-bit registers.  
When used as address registers, the general registers are accessed as 16-bit registers (R0 to R7).  
R7 also functions as the stack pointer (SP), used implicitly by hardware in exception processing  
and subroutine calls. When it functions as the stack pointer, as indicated in figure 2.2, SP (R7)  
points to the top of the stack.  
Lower address side [H'0000]  
Unused area  
SP (R7)  
Stack area  
Upper address side [H'FFFF]  
Figure 2.2 Stack Pointer  
2.2.2  
Control Registers  
The CPU control registers include a 16-bit program counter (PC) and an 8-bit condition code  
register (CCR).  
Program Counter (PC): This 16-bit register indicates the address of the next instruction the CPU  
will execute. All instructions are fetched 16 bits (1 word) at a time, so the least significant bit of  
the PC is ignored (always regarded as 0).  
Condition Code Register (CCR): This 8-bit register contains internal status information,  
including the interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and  
carry (C) flags. These bits can be read and written by software (using the LDC, STC, ANDC,  
ORC, and XORC instructions). The N, Z, V, and C flags are used as branching conditions for  
conditional branching (Bcc) instructions.  
15  
Bit 7—Interrupt Mask Bit (I): When this bit is set to 1, interrupts are masked. This bit is set to 1  
automatically at the start of exception handling. The interrupt mask bit may be read and written  
by software. For further details, see section 3.3, Interrupts.  
Bit 6—User Bit (U): Can be used freely by the user.  
Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B  
instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and is cleared to 0  
otherwise.  
The H flag is used implicitly by the DAA and DAS instructions.  
When the ADD.W, SUB.W, or CMP.W instruction is executed, the H flag is set to 1 if there is a  
carry or borrow at bit 11, and is cleared to 0 otherwise.  
Bit 4—User Bit (U): Can be used freely by the user.  
Bit 3—Negative Flag (N): Indicates the most significant bit (sign bit) of the result of an  
instruction.  
Bit 2—Zero Flag (Z): Set to 1 to indicate a zero result, and cleared to 0 to indicate a non-zero  
result.  
Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other  
times.  
Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:  
Add instructions, to indicate a carry  
Subtract instructions, to indicate a borrow  
Shift and rotate instructions, to store the value shifted out of the end bit  
The carry flag is also used as a bit accumulator by bit manipulation instructions.  
Some instructions leave some or all of the flag bits unchanged.  
Refer to the H8/300L Series Programming Manual for the action of each instruction on the flag  
bits.  
2.2.3  
Initial Register Values  
When the CPU is reset, the program counter (PC) is initialized to the value stored at address  
H'0000 in the vector table, and the I bit in the CCR is set to 1. The other CCR bits and the general  
registers are not initialized. In particular, the stack pointer (R7) is not initialized. The stack pointer  
should be initialized by software, by the first instruction executed after a reset.  
16  
2.3  
Data Formats  
The H8/300L CPU can process 1-bit data, 4-bit (BCD) data, 8-bit (byte) data, and 16-bit (word)  
data.  
Bit manipulation instructions operate on 1-bit data specified as bit n in a byte operand  
(n = 0, 1, 2, ..., 7).  
All arithmetic and logic instructions except ADDS and SUBS can operate on byte data.  
The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and  
DIVXU (16 bits ÷ 8 bits) instructions operate on word data.  
The DAA and DAS instructions perform decimal arithmetic adjustments on byte data in  
packed BCD form. Each nibble of the byte is treated as a decimal digit.  
17  
2.3.1  
Data Formats in General Registers  
Data of all the sizes above can be stored in general registers as shown in figure 2.3.  
Data Type Register No.  
Data Format  
7
0
1-bit data  
RnH  
RnL  
7
6
5
4
3
2
1
0
don’t care  
7
0
1-bit data  
don’t care  
7
6
5
4
3
2
1
0
7
0
Byte data  
RnH MSB  
LSB  
don’t care  
7
0
Byte data  
RnL  
don’t care  
MSB  
LSB  
15  
0
Word data  
4-bit BCD data  
Rn  
MSB  
LSB  
7
4
3
0
Upper digit  
Lower digit  
RnH  
RnL  
don’t care  
7
4
3
0
Upper digit  
Lower digit  
4-bit BCD data  
Notation:  
don’t care  
RnH: Upper byte of general register  
RnL: Lower byte of general register  
MSB: Most significant bit  
LSB: Least significant bit  
Figure 2.3 Register Data Formats  
18  
2.3.2  
Memory Data Formats  
Figure 2.4 indicates the data formats in memory. The H8/300L CPU can access word data stored  
in memory (MOV.W instruction), but the word data must always begin at an even address. If word  
data starting at an odd address is accessed, the least significant bit of the address is regarded as 0,  
and the word data starting at the preceding address is accessed. The same applies to instruction  
codes.  
Data Type  
Address  
Data Format  
7
0
1-bit data  
Byte data  
Address n  
Address n  
7
6
5
4
3
2
1
0
MSB  
MSB  
LSB  
Upper 8 bits  
Lower 8 bits  
Even address  
Odd address  
Word data  
Byte data (CCR) on stack  
Word data on stack  
LSB  
MSB  
MSB  
CCR  
LSB  
LSB  
Even address  
Odd address  
CCR*  
MSB  
Even address  
Odd address  
LSB  
CCR: Condition code register  
Note: * Ignored on return  
Figure 2.4 Memory Data Formats  
When the stack is accessed using R7 as an address register, word access should always be  
performed. When the CCR is pushed on the stack, two identical copies of the CCR are pushed to  
make a complete word. When they are restored, the lower byte is ignored.  
19  
2.4  
Addressing Modes  
2.4.1  
Addressing Modes  
The H8/300L CPU supports the eight addressing modes listed in table 2.1. Each instruction uses a  
subset of these addressing modes.  
Table 2.1 Addressing Modes  
No.  
1
Address Modes  
Symbol  
Rn  
Register direct  
2
Register indirect  
@Rn  
3
Register indirect with displacement  
@(d:16, Rn)  
4
Register indirect with post-increment  
Register indirect with pre-decrement  
@Rn+  
@Rn  
5
6
7
8
Absolute address  
Immediate  
@aa:8 or @aa:16  
#xx:8 or #xx:16  
@(d:8, PC)  
Program-counter relative  
Memory indirect  
@@aa:8  
1. Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit general  
register containing the operand.  
Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and  
DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.  
2. Register Indirect—@Rn: The register field of the instruction specifies a 16-bit general  
register containing the address of the operand in memory.  
3. Register Indirect with Displacement—@(d:16, Rn): The instruction has a second word  
(bytes 3 and 4) containing a displacement which is added to the contents of the specified  
general register to obtain the operand address in memory.  
This mode is used only in MOV instructions. For the MOV.W instruction, the resulting address  
must be even.  
20  
4. Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @–Rn:  
Register indirect with post-increment@Rn+  
The @Rn+ mode is used with MOV instructions that load registers from memory.  
The register field of the instruction specifies a 16-bit general register containing the address  
of the operand. After the operand is accessed, the register is incremented by 1 for MOV.B  
or 2 for MOV.W. For MOV.W, the original contents of the 16-bit general register must be  
even.  
Register indirect with pre-decrement@Rn  
The @Rn mode is used with MOV instructions that store register contents to memory.  
The register field of the instruction specifies a 16-bit general register which is decremented  
by 1 or 2 to obtain the address of the operand in memory. The register retains the  
decremented value. The size of the decrement is 1 for MOV.B or 2 for MOV.W. For  
MOV.W, the original contents of the register must be even.  
5. Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of the  
operand in memory.  
The absolute address may be 8 bits long (@aa:8) or 16 bits long (@aa:16). The MOV.B and bit  
manipulation instructions can use 8-bit absolute addresses. The MOV.B, MOV.W, JMP, and  
JSR instructions can use 16-bit absolute addresses.  
For an 8-bit absolute address, the upper 8 bits are assumed to be 1 (H'FF). The address range is  
H'FF00 to H'FFFF (65280 to 65535).  
6. Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand (#xx:8) in its second  
byte, or a 16-bit operand (#xx:16) in its third and fourth bytes. Only MOV.W instructions can  
contain 16-bit immediate values.  
The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data. Some  
bit manipulation instructions contain 3-bit immediate data in the second or fourth byte of the  
instruction, specifying a bit number.  
7. Program-Counter Relative—@(d:8, PC): This mode is used in the Bcc and BSR  
instructions. An 8-bit displacement in byte 2 of the instruction code is sign-extended to 16 bits  
and added to the program counter contents to generate a branch destination address. The  
possible branching range is 126 to +128 bytes (63 to +64 words) from the current address.  
The displacement should be an even number.  
8. Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The  
second byte of the instruction code specifies an 8-bit absolute address. The word located at this  
address contains the branch destination address.  
The upper 8 bits of the absolute address are assumed to be 0 (H'00), so the address range is  
from H'0000 to H'00FF (0 to 255). Note that with the H8/300L Series, the lower end of the  
address area is also used as a vector area. See 3.3, Interrupts, for details on the vector area.  
If an odd address is specified as a branch destination or as the operand address of a MOV.W  
instruction, the least significant bit is regarded as 0, causing word access to be performed at the  
address preceding the specified address. See 2.3.2, Memory Data Formats, for further information.  
21  
2.4.2  
Effective Address Calculation  
Table 2.2 shows how effective addresses are calculated in each of the addressing modes.  
Arithmetic and logic instructions use register direct addressing (1). The ADD.B, ADDX, SUBX,  
CMP.B, AND, OR, and XOR instructions can also use immediate addressing (6).  
Data transfer instructions can use all addressing modes except program-counter relative (7) and  
memory indirect (8).  
Bit manipulation instructions can use register direct (1), register indirect (2), or 8-bit absolute  
addressing (5) to specify the operand. Register indirect (1) (BSET, BCLR, BNOT, and BTST  
instructions) or 3-bit immediate addressing (6) can be used independently to specify a bit position  
in the operand.  
22  
23  
24  
25  
2.5  
Instruction Set  
The H8/300L Series can use a total of 55 instructions, which are grouped by function in table 2.3.  
Table 2.3 Instruction Set  
Function  
Instructions  
Number  
Data transfer  
MOV, PUSH*1, POP*1  
1
Arithmetic operations  
ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA,  
DAS, MULXU, DIVXU, CMP, NEG  
14  
Logic operations  
Shift  
AND, OR, XOR, NOT  
4
SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR  
8
Bit manipulation  
BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR,  
BXOR, BIXOR, BLD, BILD, BST, BIST  
14  
Branch  
Bcc*2, JMP, BSR, JSR, RTS  
RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP  
EEPMOV  
5
System control  
Block data transfer  
8
1
Total: 55  
Notes: 1. PUSH Rn is equivalent to MOV.W Rn, @SP.  
POP Rn is equivalent to MOV.W @SP+, Rn. The same applies to the machine  
language.  
2. Bcc is a conditional branch instruction in which cc represents a condition code.  
The following sections give a concise summary of the instructions in each category, and indicate  
the bit patterns of their object code. The notation used is defined next.  
26  
Notation  
Rd  
General register (destination)  
General register (source)  
General register  
Rs  
Rn  
(EAd), <EAd>  
Destination operand  
Source operand  
(EAs), <EAs>  
CCR  
N
Condition code register  
N (negative) flag of CCR  
Z (zero) flag of CCR  
V (overflow) flag of CCR  
C (carry) flag of CCR  
Program counter  
Stack pointer  
Z
V
C
PC  
SP  
#IMM  
disp  
+
Immediate data  
Displacement  
Addition  
Subtraction  
×
Multiplication  
÷
Division  
AND logical  
OR logical  
Exclusive OR logical  
Move  
~
Logical negation (logical complement)  
3-bit length  
:3  
:8  
8-bit length  
:16  
16-bit length  
( ), < >  
Contents of operand indicated by effective address  
27  
2.5.1  
Data Transfer Instructions  
Table 2.4 describes the data transfer instructions. Figure 2.5 shows their object code formats.  
Table 2.4 Data Transfer Instructions  
Instruction  
Size*  
Function  
MOV  
B/W  
(EAs) Rd, Rs (EAd)  
Moves data between two general registers or between a general  
register and memory, or moves immediate data to a general  
register.  
The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:16, @Rn, and @Rn+  
addressing modes are available for word data. The @aa:8  
addressing mode is available for byte data only.  
The @R7 and @R7+ modes require word operands. Do not  
specify byte size for these two modes.  
POP  
W
W
@SP+ Rn  
Pops a 16-bit general register from the stack. Equivalent to  
MOV.W @SP+, Rn.  
PUSH  
Rn @SP  
Pushes a 16-bit general register onto the stack. Equivalent to  
MOV.W Rn, @SP.  
Notes: * Size: Operand size  
B:  
Byte  
W:  
Word  
Certain precautions are required in data access. See 2.9.1, Notes on Data Access, for details.  
28  
15  
15  
15  
8
8
8
7
7
7
0
0
0
MOV  
op  
rm  
rn  
rn  
rn  
RmRn  
op  
rm  
@Rm←→Rn  
op  
op  
rm  
rm  
@(d:16, Rm)←→Rn  
disp  
15  
15  
15  
8
8
8
7
7
7
0
0
0
@Rm+Rn, or  
Rn @Rm  
rn  
rn  
op  
rn  
abs  
@aa:8←→Rn  
@aa:16←→Rn  
op  
abs  
15  
15  
8
7
0
0
op  
rn  
IMM  
#xx:8Rn  
8
7
op  
rn  
#xx:16Rn  
IMM  
15  
8
7
0
PUSH, POP  
@SP+Rn, or  
Rn@SP  
op  
1
1
1
rn  
Notation:  
op: Operation field  
rm, rn: Register field  
disp: Displacement  
abs:  
Absolute address  
IMM: Immediate data  
Figure 2.5 Data Transfer Instruction Codes  
29  
2.5.2  
Arithmetic Operations  
Table 2.5 describes the arithmetic instructions.  
Table 2.5 Arithmetic Instructions  
Instruction  
Size*  
Function  
ADD SUB  
B/W  
Rd ± Rs Rd, Rd + #IMM Rd  
Performs addition or subtraction on data in two general registers,  
or addition on immediate data and data in a general register.  
Immediate data cannot be subtracted from data in a general  
register. Word data can be added or subtracted only when both  
words are in general registers.  
ADDX SUBX  
B
Rd ± Rs ± C Rd, Rd ± #IMM ± C Rd  
Performs addition or subtraction with carry or borrow on byte data  
in two general registers, or addition or subtraction on immediate  
data and data in a general register.  
INC DEC  
B
Rd ± 1 Rd  
Increments or decrements a general register by 1.  
Rd ± 1 Rd, Rd ± 2 Rd  
ADDS SUBS  
DAA DAS  
W
B
Adds or subtracts 1 or 2 to or from a general register  
Rd decimal adjust Rd  
Decimal-adjusts (adjusts to 4-bit BCD) an addition or subtraction  
result in a general register by referring to the CCR  
MULXU  
DIVXU  
CMP  
B
Rd × Rs Rd  
Performs 8-bit × 8-bit unsigned multiplication on data in two  
general registers, providing a 16-bit result  
B
Rd ÷ Rs Rd  
Performs 16-bit ÷ 8-bit unsigned division on data in two general  
registers, providing an 8-bit quotient and 8-bit remainder  
B/W  
Rd Rs, Rd #IMM  
Compares data in a general register with data in another general  
register or with immediate data, and indicates the result in the  
CCR. Word data can be compared only between two general  
registers.  
NEG  
B
0 Rd Rd  
Obtains the twos complement (arithmetic complement) of data in a  
general register  
Notes: * Size: Operand size  
B:  
Byte  
W:  
Word  
30  
2.5.3  
Logic Operations  
Table 2.6 describes the four instructions that perform logic operations.  
Table 2.6 Logic Operation Instructions  
Instruction  
Size*  
Function  
AND  
B
Rd Rs Rd, Rd #IMM Rd  
Performs a logical AND operation on a general register and  
another general register or immediate data  
OR  
B
B
B
Rd Rs Rd, Rd #IMM Rd  
Performs a logical OR operation on a general register and another  
general register or immediate data  
XOR  
NOT  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical exclusive OR operation on a general register  
and another general register or immediate data  
~ Rd Rd  
Obtains the ones complement (logical complement) of general  
register contents  
Notes: * Size: Operand size  
B: Byte  
2.5.4  
Shift Operations  
Table 2.7 describes the eight shift instructions.  
Table 2.7 Shift Instructions  
Instruction  
Size*  
Function  
SHAL  
SHAR  
B
Rd shift Rd  
Performs an arithmetic shift operation on general register contents  
Rd shift Rd  
SHLL  
SHLR  
B
B
B
Performs a logical shift operation on general register contents  
Rd rotate Rd  
ROTL  
ROTR  
Rotates general register contents  
Rd rotate through carry Rd  
ROTXL  
ROTXR  
Rotates general register contents through the C (carry) bit  
Notes: * Size: Operand size  
B: Byte  
31  
Figure 2.6 shows the instruction code format of arithmetic, logic, and shift instructions.  
15  
15  
15  
15  
15  
15  
15  
8
8
8
8
8
8
8
7
7
7
7
7
7
7
0
0
0
0
0
0
0
ADD, SUB, CMP,  
ADDX, SUBX (Rm)  
op  
op  
op  
rm  
rm  
rm  
rn  
rn  
rn  
ADDS, SUBS, INC, DEC,  
DAA, DAS, NEG, NOT  
op  
MULXU, DIVXU  
ADD, ADDX, SUBX,  
CMP (#XX:8)  
op  
op  
rn  
IMM  
IMM  
rn  
rn  
AND, OR, XOR (Rm)  
AND, OR, XOR (#xx:8)  
rn  
SHAL, SHAR, SHLL, SHLR,  
ROTL, ROTR, ROTXL, ROTXR  
op  
Notation:  
op: Operation field  
rm, rn: Register field  
IMM: Immediate data  
Figure 2.6 Arithmetic, Logic, and Shift Instruction Codes  
32  
2.5.5  
Bit Manipulations  
Table 2.8 describes the bit-manipulation instructions. Figure 2.7 shows their object code formats.  
Table 2.8 Bit-Manipulation Instructions  
Instruction  
Size*  
Function  
BSET  
B
1 (<bit-No.> of <EAd>)  
Sets a specified bit in a general register or memory to 1. The bit  
number is specified by 3-bit immediate data or the lower three bits  
of a general register.  
BCLR  
BNOT  
BTST  
B
B
B
0 (<bit-No.> of <EAd>)  
Clears a specified bit in a general register or memory to 0. The bit  
number is specified by 3-bit immediate data or the lower three bits  
of a general register.  
~ (<bit-No.> of <EAd>) (<bit-No.> of <EAd>)  
Inverts a specified bit in a general register or memory. The bit  
number is specified by 3-bit immediate data or the lower three bits  
of a general register.  
~ (<bit-No.> of <EAd>) Z  
Tests a specified bit in a general register or memory and sets or  
clears the Z flag accordingly. The bit number is specified by 3-bit  
immediate data or the lower three bits of a general register.  
BAND  
B
B
C
(<bit-No.> of <EAd>) C  
ANDs the C flag with a specified bit in a general register or  
memory, and stores the result in the C flag.  
BIAND  
C
[~ (<bit-No.> of <EAd>)] C  
ANDs the C flag with the inverse of a specified bit in a general  
register or memory, and stores the result in the C flag.  
The bit number is specified by 3-bit immediate data.  
BOR  
B
B
C
(<bit-No.> of <EAd>) C  
ORs the C flag with a specified bit in a general register or memory,  
and stores the result in the C flag.  
BIOR  
C
[~ (<bit-No.> of <EAd>)] C  
ORs the C flag with the inverse of a specified bit in a general  
register or memory, and stores the result in the C flag.  
The bit number is specified by 3-bit immediate data.  
Notes: * Size: Operand size  
B: Byte  
33  
Table 2.8 Bit-Manipulation Instructions (cont)  
Instruction  
Size*  
Function  
BXOR  
B
C
(<bit-No.> of <EAd>) C  
XORs the C flag with a specified bit in a general register or  
memory, and stores the result in the C flag.  
BIXOR  
B
C
[~(<bit-No.> of <EAd>)] C  
XORs the C flag with the inverse of a specified bit in a general  
register or memory, and stores the result in the C flag.  
The bit number is specified by 3-bit immediate data.  
(<bit-No.> of <EAd>) C  
BLD  
B
B
Copies a specified bit in a general register or memory to the C flag.  
~ (<bit-No.> of <EAd>) C  
BILD  
Copies the inverse of a specified bit in a general register or  
memory to the C flag.  
The bit number is specified by 3-bit immediate data.  
C (<bit-No.> of <EAd>)  
BST  
B
B
Copies the C flag to a specified bit in a general register or memory.  
~ C (<bit-No.> of <EAd>)  
BIST  
Copies the inverse of the C flag to a specified bit in a general  
register or memory.  
The bit number is specified by 3-bit immediate data.  
Notes: * Size: Operand size  
B: Byte  
Certain precautions are required in bit manipulation. See 2.9.2, Notes on Bit Manipulation, for  
details.  
34  
BSET, BCLR, BNOT, BTST  
15  
15  
15  
8
8
8
7
7
7
0
0
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
op  
IMM  
rn  
rn  
Operand: register direct (Rn)  
Bit No.: register direct (Rm)  
op  
rm  
0
op  
op  
rn  
IMM  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
0
15  
15  
15  
8
8
8
7
7
7
0
op  
op  
rn  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: register direct (Rm)  
rm  
0
0
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
op  
IMM  
0
0
0
0
0
0
0
op  
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: register direct (Rm)  
rm  
0
0
BAND, BOR, BXOR, BLD, BST  
15  
15  
8
8
7
7
0
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
op  
IMM  
rn  
0
op  
op  
rn  
IMM  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
0
15  
8
7
0
op  
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
IMM  
0
0
0
0
Notation:  
op:  
rm, rn: Register field  
abs: Absolute address  
IMM: Immediate data  
Operation field  
Figure 2.7 Bit Manipulation Instruction Codes  
35  
BIAND, BIOR, BIXOR, BILD, BIST  
15  
15  
8
8
7
7
0
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
op  
IMM  
rn  
0
op  
op  
rn  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
IMM  
0
15  
8
7
0
op  
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
IMM  
0
0
0
0
Notation:  
op:  
rm, rn: Register field  
abs: Absolute address  
IMM: Immediate data  
Operation field  
Figure 2.7 Bit Manipulation Instruction Codes (cont)  
36  
2.5.6  
Branching Instructions  
Table 2.9 describes the branching instructions. Figure 2.8 shows their object code formats.  
Table 2.9 Branching Instructions  
Instruction  
Size  
Function  
Bcc  
Branches to the designated address if condition cc is true. The  
branching conditions are given below.  
Mnemonic  
BRA (BT)  
BRN (BF)  
BHI  
Description  
Always (true)  
Never (false)  
High  
Condition  
Always  
Never  
C
C
Z = 0  
Z = 1  
BLS  
Low or same  
Carry clear (high or same)  
Carry set (low)  
Not equal  
BCC (BHS)  
BCS (BLO)  
BNE  
C = 0  
C = 1  
Z = 0  
Z = 1  
V = 0  
V = 1  
N = 0  
N = 1  
BEQ  
Equal  
BVC  
Overflow clear  
Overflow set  
Plus  
BVS  
BPL  
BMI  
Minus  
BGE  
Greater or equal  
Less than  
N
N
Z
Z
V = 0  
BLT  
V = 1  
BGT  
Greater than  
Less or equal  
(N V) = 0  
(N V) = 1  
BLE  
JMP  
BSR  
JSR  
RTS  
Branches unconditionally to a specified address  
Branches to a subroutine at a specified address  
Branches to a subroutine at a specified address  
Returns from a subroutine  
37  
15  
15  
15  
8
8
8
7
7
7
0
op  
cc  
disp  
Bcc  
0
op  
rm  
0
0
0
0
JMP (@Rm)  
0
op  
abs  
JMP (@aa:16)  
15  
15  
15  
15  
8
7
7
7
7
0
0
op  
abs  
JMP (@@aa:8)  
BSR  
8
8
8
op  
disp  
0
op  
rm  
0
0
0
0
JSR (@Rm)  
0
op  
abs  
JSR (@aa:16)  
15  
15  
8
7
0
0
op  
abs  
JSR (@@aa:8)  
RTS  
8
7
op  
Notation:  
op: Operation field  
cc: Condition field  
rm: Register field  
disp: Displacement  
abs: Absolute address  
Figure 2.8 Branching Instruction Codes  
38  
2.5.7  
System Control Instructions  
Table 2.10 describes the system control instructions. Figure 2.9 shows their object code formats.  
Table 2.10 System Control Instructions  
Instruction  
RTE  
Size*  
Function  
Returns from an exception-handling routine  
SLEEP  
Causes a transition from active mode to a power-down mode. See  
section 5, Power-Down Modes, for details.  
LDC  
B
Rs CCR, #IMM CCR  
Moves immediate data or general register contents to the condition  
code register  
STC  
B
B
B
B
CCR Rd  
Copies the condition code register to a specified general register  
CCR #IMM CCR  
ANDC  
ORC  
Logically ANDs the condition code register with immediate data  
CCR #IMM CCR  
Logically ORs the condition code register with immediate data  
CCR #IMM CCR  
XORC  
Logically exclusive-ORs the condition code register with immediate  
data  
NOP  
PC + 2 PC  
Only increments the program counter  
Notes: * Size: Operand size  
B: Byte  
39  
15  
15  
15  
8
8
8
7
7
7
0
0
0
op  
RTE, SLEEP, NOP  
LDC, STC (Rn)  
op  
rn  
ANDC, ORC,  
XORC, LDC (#xx:8)  
op  
IMM  
Notation:  
op: Operation field  
rn: Register field  
IMM: Immediate data  
Figure 2.9 System Control Instruction Codes  
Block Data Transfer Instruction  
2.5.8  
Table 2.11 describes the block data transfer instruction. Figure 2.10 shows its object code format.  
Table 2.11 Block Data Transfer Instruction  
Instruction  
Size  
Function  
If R4L 0 then  
repeat  
EEPMOV  
@R5+ @R6+  
R4L 1 R4L  
R4L = 0  
until  
else next;  
Block transfer instruction. Transfers the number of data bytes  
specified by R4L from locations starting at the address indicated by  
R5 to locations starting at the address indicated by R6. After the  
transfer, the next instruction is executed.  
Certain precautions are required in using the EEPMOV instruction. See 2.9.3, Notes on Use of the  
EEPMOV Instruction, for details.  
40  
15  
8
7
0
op  
op  
Notation:  
op: Operation field  
Figure 2.10 Block Data Transfer Instruction Code  
41  
2.6  
Basic Operational Timing  
CPU operation is synchronized by a system clock (ø) or a subclock (ø  
). For details on these  
SUB  
clock signals see section 4, Clock Pulse Generators. The period from a rising edge of ø or ø  
to  
SUB  
the next rising edge is called one state. A bus cycle consists of two states or three states. The  
cycle differs depending on whether access is to on-chip memory or to on-chip peripheral modules.  
2.6.1  
Access to On-Chip Memory (RAM, ROM)  
Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing  
access in byte or word size. Figure 2.11 shows the on-chip memory access cycle.  
Bus cycle  
T1 state  
T2 state  
ø or øSUB  
Internal address bus  
Address  
Internal read signal  
Internal data bus  
(read access)  
Read data  
Internal write signal  
Internal data bus  
(write access)  
Write data  
Figure 2.11 On-Chip Memory Access Cycle  
42  
2.6.2  
Access to On-Chip Peripheral Modules  
On-chip peripheral modules are accessed in two states or three states. The data bus width is 8 bits,  
so access is by byte size only. This means that for accessing word data, two instructions must be  
used. Figures 2.12 and 2.13 show the on-chip peripheral module access cycle.  
Two-state access to on-chip peripheral modules  
Bus cycle  
T1 state  
T2 state  
ø or øSUB  
Internal address bus  
Address  
Internal read signal  
Internal data bus  
(read access)  
Read data  
Internal write signal  
Internal data bus  
(write access)  
Write data  
Figure 2.12 On-Chip Peripheral Module Access Cycle (2-State Access)  
43  
Three-state access to on-chip peripheral modules  
Bus cycle  
T2 state  
T1 state  
T3 state  
ø or øSUB  
Internal  
address bus  
Address  
Internal  
read signal  
Internal  
data bus  
Read data  
(read access)  
Internal  
write signal  
Internal  
data bus  
Write data  
(write access)  
Figure 2.13 On-Chip Peripheral Module Access Cycle (3-State Access)  
44  
2.7  
CPU States  
2.7.1  
Overview  
There are four CPU states: the reset state, program execution state, program halt state, and  
exception-handling state. The program execution state includes active (high-speed or medium-  
speed) mode and subactive mode. In the program halt state there are a sleep (high-speed or  
medium-speed) mode, standby mode, watch mode, and sub-sleep mode. These states are shown in  
figure 2.14. Figure 2.15 shows the state transitions.  
CPU state  
Reset state  
The CPU is initialized  
Program  
execution state  
Active  
(high speed) mode  
The CPU executes successive program  
instructions at high speed,  
synchronized by the system clock  
Active  
(medium speed) mode  
The CPU executes successive  
program instructions at  
reduced speed, synchronized  
by the system clock  
Subactive mode  
The CPU executes  
successive program  
instructions at reduced  
speed, synchronized  
by the subclock  
Low-power  
modes  
Sleep (high-speed)  
mode  
Program halt state  
A state in which some  
or all of the chip  
functions are stopped  
to conserve power  
Sleep (medium-speed)  
mode  
Standby mode  
Watch mode  
Subsleep mode  
Exception-  
handling state  
A transient state in which the CPU changes  
the processing flow due to a reset or an interrupt  
Note: See section 5, Power-Down Modes, for details on the modes and their transitions.  
Figure 2.14 CPU Operation States  
45  
Reset cleared  
Reset occurs  
Reset state  
Exception-handling state  
Reset  
occurs  
Interrupt  
source  
occurs  
Reset  
occurs  
Interrupt  
source  
occurs  
Exception-  
handling  
complete  
Program halt state  
Program execution state  
SLEEP instruction executed  
Figure 2.15 State Transitions  
Program Execution State  
2.7.2  
In the program execution state the CPU executes program instructions in sequence.  
There are three modes in this state, two active modes (high speed and medium speed) and one  
subactive mode. Operation is synchronized with the system clock in active mode (high speed and  
medium speed), and with the subclock in subactive mode. See section 5, Power-Down Modes for  
details on these modes.  
2.7.3  
Program Halt State  
In the program halt state there are five modes: two sleep modes (high speed and medium speed),  
standby mode, watch mode, and subsleep mode. See section 5, Power-Down Modes for details on  
these modes.  
2.7.4  
Exception-Handling State  
The exception-handling state is a transient state occurring when exception handling is started by a  
reset or interrupt and the CPU changes its normal processing flow. In exception handling caused  
by an interrupt, SP (R7) is referenced and the PC and CCR values are saved on the stack.  
For details on interrupt handling, see section 3.3, Interrupts.  
46  
2.8  
Memory Map  
2.8.1  
Memory Map  
The memory map of the H8/3862 and H8/3822 is shown in figure 2.16 (1), that of the H8/3863  
and H8/3823 in figure 2.16 (2), that of the H8/3864 and H8/3824 in figure 2.16 (3), that of the  
H8/3865 and H8/3825 in figure 2.16 (4), that of the H8/3866 and H8/3826 in figure 2.16 (5), and  
that of the H8/3867 and H8/3827 in figure 2.16 (6).  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
16 kbytes  
On-chip ROM  
(16384 bytes)  
H'3FFF  
Not used  
H'F740  
H'F75F  
LCD RAM  
(32 bytes)  
Not used  
On-chip RAM  
Not used  
H'F780  
H'FB7F  
1024 bytes  
H'FF90  
H'FFFF  
Internal I/O registers  
(112 bytes)  
Figure 2.16 (1) H8/3862 and H8/3822 Memory Map  
47  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
24 kbytes  
On-chip ROM  
(24576 bytes)  
H'5FFF  
Not used  
H'F740  
H'F75F  
LCD RAM  
(32 bytes)  
Not used  
On-chip RAM  
Not used  
H'F780  
H'FB7F  
1024 bytes  
H'FF90  
H'FFFF  
Internal I/O registers  
(112 bytes)  
Figure 2.16 (2) H8/3863 and H8/3823 Memory Map  
48  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
32 kbytes  
On-chip ROM  
(32768 bytes)  
H'7FFF  
Not used  
H'F740  
H'F75F  
LCD RAM  
(32 bytes)  
Not used  
On-chip RAM  
Not used  
H'F780  
H'FF7F  
2048 bytes  
H'FF90  
H'FFFF  
Internal I/O registers  
(112 bytes)  
Figure 2.16 (3) H8/3864 and H8/3824 Memory Map  
49  
H'0000  
Interrupt  
vector area  
H'0029  
H'002A  
40 kbytes  
On-chip ROM  
(40960 bytes)  
H'9FFF  
Not used  
H'F740  
H'F75F  
LCD RAM  
(32 bytes)  
Not used  
H'F780  
H'FF7F  
2048 bytes  
On-chip RAM  
Not used  
H'FF90  
H'FFFF  
Internal I/O registers  
(112 bytes)  
Figure 2.16 (4) H8/3865 and H8/3825 Memory Map  
50  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
48 kbytes  
On-chip ROM  
(49152 bytes)  
H'BFFF  
Not used  
H'F740  
H'F75F  
LCD RAM  
(32 bytes)  
Not used  
H'F780  
H'FF7F  
2048 bytes  
On-chip RAM  
Not used  
H'FF90  
H'FFFF  
Internal I/O registers  
(112 bytes)  
Figure 2.16 (5) H8/3866 and H8/3826 Memory Map  
51  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
60 kbytes  
On-chip ROM  
(60928 bytes)  
H'EDFF  
Not used  
H'F740  
H'F75F  
LCD RAM  
(32 bytes)  
Not used  
H'F780  
H'FF7F  
2048 bytes  
On-chip RAM  
Not used  
H'FF90  
H'FFFF  
Internal I/O registers  
(112 bytes)  
Figure 2.16 (6) H8/3867 and H8/3827 Memory Map  
52  
2.9  
Application Notes  
2.9.1  
Notes on Data Access  
1. Access to Empty Areas:  
The address space of the H8/300L CPU includes empty areas in addition to the RAM,  
registers, and ROM areas available to the user. If these empty areas are mistakenly accessed  
by an application program, the following results will occur.  
Data transfer from CPU to empty area:  
The transferred data will be lost. This action may also cause the CPU to misoperate.  
Data transfer from empty area to CPU:  
Unpredictable data is transferred.  
2. Access to Internal I/O Registers:  
Internal data transfer to or from on-chip modules other than the ROM and RAM areas makes  
use of an 8-bit data width. If word access is attempted to these areas, the following results will  
occur.  
Word access from CPU to I/O register area:  
Upper byte: Will be written to I/O register.  
Lower byte: Transferred data will be lost.  
Word access from I/O register to CPU:  
Upper byte: Will be written to upper part of CPU register.  
Lower byte: Unpredictable data will be written to lower part of CPU register.  
Byte size instructions should therefore be used when transferring data to or from I/O registers  
other than the on-chip ROM and RAM areas. Figure 2.17 shows the data size and number of  
states in which on-chip peripheral modules can be accessed.  
53  
Access  
States  
Word  
Byte  
H'0000  
Interrupt vector area  
(42 bytes)  
H'0029  
H'002A  
2
32kbytes  
On-chip ROM  
1
*
H'7FFF  
Not used  
H'F740  
H'F75F  
LCD RAM  
(32 bytes)  
2
2
Not used  
H'F780  
On-chip RAM  
Not used  
2048 bytes  
H'FF7F*2  
2
3
2
3
2
×
×
×
×
×
H'FF90  
H'FF98 to H'FF9F  
H'FFA8 to H'FFAF  
Internal I/O registers  
(112 bytes)  
H'FFFF  
Notes:  
The example of the H8/3864 and H8/3824 is shown here.  
1. This address is H'3FFF in the H8/3862 and H8/3822 (16-kbyte on-chip ROM), H'5FFF in  
the H8/3863 and H8/3823 (24-kbyte on-chip ROM), H'9FFF in the H8/3865 and H8/3825  
(40-kbyte on-chip ROM), H'BFFF in the H8/3866 and H8/3826 (48-kbyte on-chip ROM),  
and H'EDFF in the H8/3867 and H8/3827 (60-kbyte on-chip ROM).  
2. This address is H'FB7F in the H8/3862, H8/3822, H8/3863, and H8/3823 (1024 bytes of  
on-chip RAM).  
Figure 2.17 Data Size and Number of States for Access to and from  
On-Chip Peripheral Modules  
54  
2.9.2  
Notes on Bit Manipulation  
The BSET, BCLR, BNOT, BST, and BIST instructions read one byte of data, modify the data,  
then write the data byte again. Special care is required when using these instructions in cases  
where two registers are assigned to the same address, in the case of registers that include write-  
only bits, and when the instruction accesses an I/O port.  
Order of Operation  
Operation  
1
2
3
Read  
Modify  
Write  
Read byte data at the designated address  
Modify a designated bit in the read data  
Write the altered byte data to the designated address  
1. Bit manipulation in two registers assigned to the same address  
Example 1: timer load register and timer counter  
Figure 2.18 shows an example in which two timer registers share the same address. When a bit  
manipulation instruction accesses the timer load register and timer counter of a reloadable timer,  
since these two registers share the same address, the following operations take place.  
Order of Operation  
Operation  
1
2
3
Read  
Modify  
Write  
Timer counter data is read (one byte)  
The CPU modifies (sets or resets) the bit designated in the instruction  
The altered byte data is written to the timer load register  
The timer counter is counting, so the value read is not necessarily the same as the value in the  
timer load register. As a result, bits other than the intended bit in the timer load register may be  
modified to the timer counter value.  
Read  
Count clock  
Timer counter  
Reload  
Write  
Timer load register  
Internal bus  
Figure 2.18 Timer Configuration Example  
55  
Example 2: BSET instruction executed designating port 3  
P3 and P3 are designated as input pins, with a low-level signal input at P3 and a high-level  
7
6
7
signal at P3 . The remaining pins, P3 to P3 , are output pins and output low-level signals. In this  
6
5
0
example, the BSET instruction is used to change pin P3 to high-level output.  
0
[A: Prior to executing BSET]  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level Low level  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
PDR3  
[B: BSET instruction executed]  
BSET #0 @PDR3  
[C: After executing BSET]  
,
The BSET instruction is executed designating port 3.  
P37  
P36  
Input  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Input  
Output  
Output  
Output  
Output  
Output  
Output  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level High level  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
PDR3  
[D: Explanation of how BSET operates]  
When the BSET instruction is executed, first the CPU reads port 3.  
Since P3 and P3 are input pins, the CPU reads the pin states (low-level and high-level input).  
7
6
P3 to P3 are output pins, so the CPU reads the value in PDR3. In this example PDR3 has a  
5
0
value of H'80, but the value read by the CPU is H'40.  
Next, the CPU sets bit 0 of the read data to 1, changing the PDR3 data to H'41. Finally, the CPU  
writes this value (H'41) to PDR3, completing execution of BSET.  
As a result of this operation, bit 0 in PDR3 becomes 1, and P3 outputs a high-level signal.  
0
However, bits 7 and 6 of PDR3 end up with different values.  
To avoid this problem, store a copy of the PDR3 data in a work area in memory. Perform the bit  
manipulation on the data in the work area, then write this data to PDR3.  
56  
[A: Prior to executing BSET]  
MOV. B #80, R0L  
MOV. B R0L, @RAM0  
MOV. B R0L, @PDR3  
The PDR3 value (H'80) is written to a work area in memory  
(RAM0) as well as to PDR3  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level Low level  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
PDR3  
RAM0  
[B: BSET instruction executed]  
BSET #0 @RAM0  
,
The BSET instruction is executed designating the PDR3  
work area (RAM0).  
[C: After executing BSET]  
MOV. B @RAM0, R0L  
MOV. B R0L, @PDR3  
The work area (RAM0) value is written to PDR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level High level  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
PDR3  
RAM0  
57  
2. Bit manipulation in a register containing a write-only bit  
Example 3: BCLR instruction executed designating port 3 control register PCR3  
As in the examples above, P3 and P3 are input pins, with a low-level signal input at P3 and a  
7
6
7
high-level signal at P3 . The remaining pins, P3 to P3 , are output pins that output low-level  
6
5
0
signals. In this example, the BCLR instruction is used to change pin P3 to an input port. It is  
0
assumed that a high-level signal will be input to this input pin.  
[A: Prior to executing BCLR]  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level Low level  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
PDR3  
[B: BCLR instruction executed]  
BCLR #0 @PCR3  
[C: After executing BCLR]  
,
The BCLR instruction is executed designating PCR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level High level  
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
PDR3  
[D: Explanation of how BCLR operates]  
When the BCLR instruction is executed, first the CPU reads PCR3. Since PCR3 is a write-only  
register, the CPU reads a value of H'FF, even though the PCR3 value is actually H'3F.  
Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE. Finally, this value  
(H'FE) is written to PCR3 and BCLR instruction execution ends.  
As a result of this operation, bit 0 in PCR3 becomes 0, making P3 an input port. However, bits 7  
0
and 6 in PCR3 change to 1, so that P3 and P3 change from input pins to output pins.  
7
6
To avoid this problem, store a copy of the PCR3 data in a work area in memory. Perform the bit  
manipulation on the data in the work area, then write this data to PCR3.  
58  
[A: Prior to executing BCLR]  
MOV. B #3F, R0L  
MOV. B R0L, @RAM0  
MOV. B R0L, @PCR3  
The PCR3 value (H'3F) is written to a work area in memory  
(RAM0) as well as to PCR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level Low level  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
PDR3  
RAM0  
[B: BCLR instruction executed]  
BCLR #0 @RAM0  
,
The BCLR instruction is executed designating the PCR3  
work area (RAM0).  
[C: After executing BCLR]  
MOV. B @RAM0, R0L  
MOV. B R0L, @PCR3  
The work area (RAM0) value is written to PCR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Pin state  
PCR3  
Low level High level Low level Low level Low level Low level Low level High level  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
PDR3  
RAM0  
59  
Table 2.12 lists the pairs of registers that share identical addresses. Table 2.13 lists the registers  
that contain write-only bits.  
Table 2.12 Registers with Shared Addresses  
Register Name  
Abbreviation  
TCC/TLC  
PDR1  
Address  
H'FFB5  
H'FFD4  
H'FFD6  
H'FFD7  
H'FFD8  
H'FFD9  
H'FFDA  
H'FFDB  
H'FFDD  
Timer counter and timer load register C  
Port data register 1*  
Port data register 3*  
Port data register 4*  
Port data register 5*  
Port data register 6*  
Port data register 7*  
Port data register 8*  
Port data register A*  
PDR3  
PDR4  
PDR5  
PDR6  
PDR7  
PDR8  
PDRA  
Note: * Port data registers have the same addresses as input pins.  
Table 2.13 Registers with Write-Only Bits  
Register Name  
Abbreviation  
PCR1  
Address  
H'FFE4  
H'FFE6  
H'FFE7  
H'FFE8  
H'FFE9  
H'FFEA  
H'FFEB  
H'FFED  
H'FFB6  
H'FFD0  
H'FFD1  
H'FFD2  
Port control register 1  
Port control register 3  
Port control register 4  
Port control register 5  
Port control register 6  
Port control register 7  
Port control register 8  
Port control register A  
Timer control register F  
PWM control register  
PWM data register U  
PWM data register L  
PCR3  
PCR4  
PCR5  
PCR6  
PCR7  
PCR8  
PCRA  
TCRF  
PWCR  
PWDRU  
PWDRL  
60  
2.9.3  
Notes on Use of the EEPMOV Instruction  
The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes  
specified by R4L from the address specified by R5 to the address specified by R6.  
R5  
R6  
R5 + R4L  
R6 + R4L  
When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not  
exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution of  
the instruction.  
R5  
R6  
R5 + R4L  
H'FFFF  
Not allowed  
R6 + R4L  
61  
62  
Section 3 Exception Handling  
3.1  
Overview  
Exception handling is performed in the H8/3864 Series when a reset or interrupt occurs. Table 3.1  
shows the priorities of these two types of exception handling.  
Table 3.1 Exception Handling Types and Priorities  
Priority Exception Source  
Time of Start of Exception Handling  
High  
Low  
Reset  
Exception handling starts as soon as the reset state is cleared  
Interrupt  
When an interrupt is requested, exception handling starts after  
execution of the present instruction or the exception handling in  
progress is completed  
3.2  
Reset  
3.2.1  
Overview  
A reset is the highest-priority exception. The internal state of the CPU and the registers of the on-  
chip peripheral modules are initialized.  
3.2.2  
Reset Sequence  
As soon as the RES pin goes low, all processing is stopped and the chip enters the reset state.  
To make sure the chip is reset properly, observe the following precautions.  
At power on: Hold the RES pin low until the clock pulse generator output stabilizes.  
Resetting during operation: Hold the RES pin low for at least 10 system clock cycles.  
Reset exception handling takes place as follows.  
The CPU internal state and the registers of on-chip peripheral modules are initialized, with the  
I bit of the condition code register (CCR) set to 1.  
The PC is loaded from the reset exception handling vector address (H'0000 to H'0001), after  
which the program starts executing from the address indicated in PC.  
63  
When system power is turned on or off, the RES pin should be held low.  
Figure 3.1 shows the reset sequence starting from RES input.  
Reset cleared  
Program initial  
instruction prefetch  
Vector fetch  
Internal  
processing  
RES  
ø
Internal  
address bus  
(1)  
(2)  
Internal read  
signal  
Internal write  
signal  
Internal data  
bus (16-bit)  
(2)  
(3)  
(1) Reset exception handling vector address (H'0000)  
(2) Program start address  
(3) First instruction of program  
Figure 3.1 Reset Sequence  
64  
3.2.3  
Interrupt Immediately after Reset  
After a reset, if an interrupt were to be accepted before the stack pointer (SP: R7) was initialized,  
PC and CCR would not be pushed onto the stack correctly, resulting in program runaway. To  
prevent this, immediately after reset exception handling all interrupts are masked. For this reason,  
the initial program instruction is always executed immediately after a reset. This instruction  
should initialize the stack pointer (e.g. MOV.W #xx: 16, SP).  
3.3  
Interrupts  
3.3.1  
Overview  
The interrupt sources include 13 external interrupts (IRQ to IRQ , WKP to WKP ) and 23  
4
0
7
0
internal interrupts from on-chip peripheral modules. Table 3.2 shows the interrupt sources, their  
priorities, and their vector addresses. When more than one interrupt is requested, the interrupt with  
the highest priority is processed.  
The interrupts have the following features:  
Internal and external interrupts can be masked by the I bit in CCR. When the I bit is set to 1,  
interrupt request flags can be set but the interrupts are not accepted.  
IRQ to IRQ and WKP to WKP can be set to either rising edge sensing or falling edge  
4
0
7
0
sensing.  
65  
Table 3.2 Interrupt Sources and Their Priorities  
Interrupt Source  
Interrupt  
Reset  
IRQ0  
Vector Number Vector Address Priority  
RES  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
0
4
5
6
7
8
9
H'0000 to H'0001 High  
H'0008 to H'0009  
H'000A to H'000B  
H'000C to H'000D  
H'000E to H'000F  
H'0010 to H'0011  
H'0012 to H'0013  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
WKP0  
WKP1  
WKP2  
WKP3  
WKP4  
WKP5  
WKP6  
WKP7  
WKP0  
WKP1  
WKP2  
WKP3  
WKP4  
WKP5  
WKP6  
WKP7  
Timer A  
Timer A overflow  
11  
12  
H'0016 to H'0017  
H'0018 to H'0019  
Asynchronous  
counter  
Asynchronous counter  
overflow  
Timer C  
Timer FL  
Timer FH  
Timer G  
SCI3-1  
Timer C overflow or  
underflow  
13  
14  
15  
16  
17  
H'001A to H'001B  
H'001C to H'001D  
H'001E to H'001F  
H'0020 to H'0021  
H'0022 to H'0023  
Timer FL compare match  
Timer FL overflow  
Timer FH compare match  
Timer FH overflow  
Timer G input capture  
Timer G overflow  
SCI3-1 transmit end  
SCI3-1 transmit data empty  
SCI3-1 receive data full  
SCI3-1 overrrun error  
SCI3-1 framing error  
SCI3-1 parity error  
SCI3-2  
SCI3-2 transmit end  
SCI3-2 transmit data empty  
SCI3-2 receive data full  
SCI3-2 overrun error  
SCI3-2 framing error  
SCI3-2 parity error  
18  
H'0024 to H'0025  
A/D  
A/D conversion end  
19  
20  
H'0026 to H'0027  
(SLEEP instruction Direct transfer  
executed)  
H'0028 to H'0029 Low  
Note: Vector addresses H'0002 to H'0007 and H'0014 to H'0015 are reserved and cannot be  
used.  
66  
3.3.2  
Interrupt Control Registers  
Table 3.3 lists the registers that control interrupts.  
Table 3.3 Interrupt Control Registers  
Name  
Abbreviation  
R/W  
R/W  
R/W  
R/W  
R/W*  
R/W*  
R/W*  
R/W  
Initial Value  
H'E0  
Address  
H'FFF2  
H'FFF3  
H'FFF4  
H'FFF6  
H'FFF7  
H'FFF9  
H'FF90  
IRQ edge select register  
Interrupt enable register 1  
Interrupt enable register 2  
Interrupt request register 1  
Interrupt request register 2  
Wakeup interrupt request register  
Wakeup edge select register  
IEGR  
IENR1  
IENR2  
IRR1  
H'00  
H'00  
H'20  
IRR2  
H'00  
IWPR  
WEGR  
H'00  
H'00  
Note: * Write is enabled only for writing of 0 to clear a flag.  
1. IRQ edge select register (IEGR)  
Bit  
7
1
6
1
5
1
4
IEG4  
0
3
IEG3  
0
2
IEG2  
0
1
IEG1  
0
0
IEG0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
IEGR is an 8-bit read/write register used to designate whether pins IRQ to IRQ are set to rising  
4
0
edge sensing or falling edge sensing.  
Bits 7 to 5: Reserved bits  
Bits 7 to 5 are reserved: they are always read as 1 and cannot be modified.  
Bit 4: IRQ edge select (IEG4)  
4
Bit 4 selects the input sensing of the IRQ pin and ADTRG pin.  
4
Bit 4  
IEG4  
Description  
0
1
Falling edge of IRQ4 and ADTRG pin input is detected  
Rising edge of IRQ4 and ADTRG pin input is detected  
(initial value)  
67  
Bit 3: IRQ edge select (IEG3)  
3
Bit 3 selects the input sensing of the IRQ pin and TMIF pin.  
3
Bit 3  
IEG3  
Description  
0
1
Falling edge of IRQ3 and TMIF pin input is detected  
Rising edge of IRQ3 and TMIF pin input is detected  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
Bit 2: IRQ edge select (IEG2)  
2
Bit 2 selects the input sensing of pin IRQ .  
2
Bit 2  
IEG2  
Description  
0
1
Falling edge of IRQ2 pin input is detected  
Rising edge of IRQ2 pin input is detected  
Bit 1: IRQ edge select (IEG1)  
1
Bit 3 selects the input sensing of the IRQ pin and TMIC pin.  
1
Bit 1  
IEG1  
Description  
0
1
Falling edge of IRQ1 and TMIC pin input is detected  
Rising edge of IRQ1 and TMIC pin input is detected  
Bit 0: IRQ edge select (IEG0)  
0
Bit 0 selects the input sensing of pin IRQ .  
0
Bit 0  
IEG0  
Description  
0
1
Falling edge of IRQ0 pin input is detected  
Rising edge of IRQ0 pin input is detected  
68  
2. Interrupt enable register 1 (IENR1)  
Bit  
7
IENTA  
0
6
5
IENWP  
0
4
IEN4  
0
3
IEN3  
0
2
IEN2  
0
1
IEN1  
0
0
IEN0  
0
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IENR1 is an 8-bit read/write register that enables or disables interrupt requests.  
Bit 7: Timer A interrupt enable (IENTA)  
Bit 7 enables or disables timer A overflow interrupt requests.  
Bit 7  
IENTA  
Description  
0
1
Disables timer A interrupt requests  
Enables timer A interrupt requests  
(initial value)  
Bit 6: Reserved bit  
Bit 6 is a readable/writable reserved bit. It is initialized to 0 by a reset.  
Bit 5: Wakeup interrupt enable (IENWP)  
Bit 5 enables or disables WKP to WKP interrupt requests.  
7
0
Bit 5  
IENWP  
Description  
0
1
Disables WKP7 to WKP0 interrupt requests  
Enables WKP7 to WKP0 interrupt requests  
(initial value)  
Bits 4 to 0: IRQ to IRQ interrupt enable (IEN4 to IEN0)  
4
0
Bits 4 to 0 enable or disable IRQ to IRQ interrupt requests.  
4
0
Bit n  
IENn  
Description  
0
1
Disables interrupt requests from pin IRQn  
Enables interrupt requests from pin IRQn  
(initial value)  
(n = 4 to 0)  
69  
3. Interrupt enable register 2 (IENR2)  
Bit  
7
IENDT  
0
6
IENAD  
0
5
4
3
2
1
0
IENTG IENTFH IENTFL IENTC IENEC  
Initial value  
Read/Write  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IENR2 is an 8-bit read/write register that enables or disables interrupt requests.  
Bit 7: Direct transfer interrupt enable (IENDT)  
Bit 7 enables or disables direct transfer interrupt requests.  
Bit 7  
IENDT  
Description  
0
1
Disables direct transfer interrupt requests  
Enables direct transfer interrupt requests  
(initial value)  
Bit 6: A/D converter interrupt enable (IENAD)  
Bit 6 enables or disables A/D converter interrupt requests.  
Bit 6  
IENAD  
Description  
0
1
Disables A/D converter interrupt requests  
Enables A/D converter interrupt requests  
(initial value)  
Bit 5: Reserved bit  
Bit 5 is a readable/writable reserved bit. It is initialized to 0 by a reset.  
Bit 4: Timer G interrupt enable (IENTG)  
Bit 4 enables or disables timer G input capture or overflow interrupt requests.  
Bit 4  
IENTG  
Description  
0
1
Disables timer G interrupt requests  
Enables timer G interrupt requests  
(initial value)  
70  
Bit 3: Timer FH interrupt enable (IENTFH)  
Bit 3 enables or disables timer FH compare match and overflow interrupt requests.  
Bit 3  
IENTFH  
Description  
0
1
Disables timer FH interrupt requests  
Enables timer FH interrupt requests  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
Bit 2: Timer FL interrupt enable (IENTFL)  
Bit 2 enables or disables timer FL compare match and overflow interrupt requests.  
Bit 2  
IENTFL  
Description  
0
1
Disables timer FL interrupt requests  
Enables timer FL interrupt requests  
Bit 1: Timer C interrupt enable (IENTC)  
Bit 1 enables or disables timer C overflow and underflow interrupt requests.  
Bit 1  
IENTC  
Description  
0
1
Disables timer C interrupt requests  
Enables timer C interrupt requests  
Bit 0: Asynchronous event counter interrupt enable (IENEC)  
Bit 0 enables or disables asynchronous event counter interrupt requests.  
Bit 0  
IENEC  
Description  
0
1
Disables asynchronous event counter interrupt requests  
Enables asynchronous event counter interrupt requests  
For details of SCI3-1 and SCI3-2 interrupt control, see 6. Serial control register 3 (SCR3) in  
section 10.4.2.  
71  
4. Interrupt request register 1 (IRR1)  
Bit  
7
IRRTA  
0
6
5
1
4
IRRI4  
0
3
IRRI3  
0
2
IRRI2  
0
1
IRRI1  
0
0
IRRI0  
0
Initial value  
Read/Write  
0
*
*
*
*
*
*
*
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Only a write of 0 for flag clearing is possible  
IRR1 is an 8-bit read/write register, in which a corresponding flag is set to 1 when a timer A or  
IRQ to IRQ interrupt is requested. The flags are not cleared automatically when an interrupt is  
4
0
accepted. It is necessary to write 0 to clear each flag.  
Bit 7: Timer A interrupt request flag (IRRTA)  
Bit 7  
IRRTA  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTA = 1, it is cleared by writing 0  
1
Setting conditions:  
When the timer A counter value overflows from H'FF to H'00  
Bit 6: Reserved bit  
Bit 6 is a readable/writable reserved bit. It is initialized to 0 by a reset.  
Bit 5: Reserved bit  
Bit 5 is reserved; it is always read as 1 and cannot be modified.  
Bits 4 to 0: IRQ to IRQ interrupt request flags (IRRI4 to IRRI0)  
4
0
Bit n  
IRRIn  
Description  
0
Clearing conditions:  
(initial value)  
When IRRIn = 1, it is cleared by writing 0  
1
Setting conditions:  
When pin IRQn is designated for interrupt input and the designated signal edge is  
input  
(n = 4 to 0)  
72  
5. Interrupt request register 2 (IRR2)  
Bit  
7
6
5
4
3
2
1
0
IRRDT IRRAD  
IRRTG IRRTFH IRRTFL IRRTC IRREC  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
*
*
*
*
*
*
*
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Only a write of 0 for flag clearing is possible  
IRR2 is an 8-bit read/write register, in which a corresponding flag is set to 1 when a direct  
transfer, A/D converter, Timer G, Timer FH, Timer FC, or Timer C interrupt is requested. The  
flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear  
each flag.  
Bit 7: Direct transfer interrupt request flag (IRRDT)  
Bit 7  
IRRDT  
Description  
0
Clearing conditions:  
(initial value)  
When IRRDT = 1, it is cleared by writing 0  
1
Setting conditions:  
When a direct transfer is made by executing a SLEEP instruction while DTON = 1 in  
SYSCR2  
Bit 6: A/D converter interrupt request flag (IRRAD)  
Bit 6  
IRRAD  
Description  
0
Clearing conditions:  
(initial value)  
When IRRAD = 1, it is cleared by writing 0  
1
Setting conditions:  
When A/D conversion is completed and ADSF is cleared to 0 in ADSR  
Bit 5: Reserved bit  
Bit 5 is a readable/writable reserved bit. It is initialized to 0 by a reset.  
73  
Bit 4: Timer G interrupt request flag (IRRTG)  
Bit 4  
IRRTG  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTG = 1, it is cleared by writing 0  
1
Setting conditions:  
When the TMIG pin is designated for TMIG input and the designated signal edge is  
input, or when TCG overflows while OVIE is set to 1 in TMG  
Bit 3: Timer FH interrupt request flag (IRRTFH)  
Bit 3  
IRRTFH  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTFH = 1, it is cleared by writing 0  
1
Setting conditions:  
When TCFH and OCRFH match in 8-bit timer mode, or when TCF (TCFL, TCFH)  
and OCRF (OCRFL, OCRFH) match in 16-bit timer mode  
Bit 2: Timer FL interrupt request flag (IRRTFL)  
Bit 2  
IRRTFL  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTFL= 1, it is cleared by writing 0  
1
Setting conditions:  
When TCFL and OCRFL match in 8-bit timer mode  
Bit 1: Timer C interrupt request flag (IRRTC)  
Bit 1  
IRRTC  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTC= 1, it is cleared by writing 0  
1
Setting conditions:  
When the timer C counter value overflows (from H'FF to H'00) or underflows  
(from H'00 to H'FF)  
74  
Bit 0: Asynchronous event counter interrupt request flag (IRREC)  
Bit 0  
IRREC  
Description  
0
Clearing conditions:  
(initial value)  
When IRREC = 1, it is cleared by writing 0  
1
Setting conditions:  
When ECH overflows in 16-bit counter mode, or ECH or ECL overflows in 8-bit  
counter mode  
6. Wakeup Interrupt Request Register (IWPR)  
Bit  
7
6
5
4
3
2
1
0
IWPF7 IWPF6 IWPF5 IWPF4 IWPF3 IWPF2 IWPF1 IWPF0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
*
*
*
*
*
*
*
*
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Only a write of 0 for flag clearing is possible  
IWPR is an 8-bit read/write register containing wakeup interrupt request flags. When one of pins  
WKP to WKP is designated for wakeup input and a rising or falling edge is input at that pin, the  
7
0
corresponding flag in IWPR is set to 1. A flag is not cleared automatically when the  
corresponding interrupt is accepted. Flags must be cleared by writing 0.  
Bits 7 to 0: Wakeup interrupt request flags (IWPF7 to IWPF0)  
Bit n  
IWPFn  
Description  
0
Clearing conditions:  
(initial value)  
When IWPFn= 1, it is cleared by writing 0  
1
Setting conditions:  
When pin WKPn is designated for wakeup input and a rising or falling edge is input at  
that pin  
(n = 7 to 0)  
75  
7. Wakeup Edge Select Register (WEGR)  
Bit  
7
6
5
4
3
2
1
0
WKEGS7 WKEGS6WKEGS5WKEGS4WKEGS3WKEGS2 WKEGS1WKEGS0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
WEGR is an 8-bit read/write register that specifies rising or falling edge sensing for pins WKPn.  
WEGR is initialized to H'00 by a reset.  
Bit n: WKPn edge select (WKEGSn)  
Bit n selects WKPn pin input sensing.  
Bit n  
WKEGSn  
Description  
0
1
WKPn pin falling edge detected  
WKPn pin rising edge detected  
(initial value)  
(n = 7 to 0)  
3.3.3  
External Interrupts  
There are 13 external interrupts: IRQ to IRQ and WKP to WKP .  
4
0
7
0
1. Interrupts WKP to WKP  
7
0
Interrupts WKP to WKP are requested by either rising or falling edge input to pins WKP to  
7
0
7
WKP . When these pins are designated as pins WKP to WKP in port mode register 5 and a  
0
7
0
rising or falling edge is input, the corresponding bit in IWPR is set to 1, requesting an interrupt.  
Recognition of wakeup interrupt requests can be disabled by clearing the IENWP bit to 0 in  
IENR1. These interrupts can all be masked by setting the I bit to 1 in CCR.  
When WKP to WKP interrupt exception handling is initiated, the I bit is set to 1 in CCR. Vector  
7
0
number 9 is assigned to interrupts WKP to WKP . All eight interrupt sources have the same  
7
0
vector number, so the interrupt-handling routine must discriminate the interrupt source.  
76  
2. Interrupts IRQ to IRQ  
4
0
Interrupts IRQ to IRQ are requested by input signals to pins IRQ to IRQ . These interrupts are  
4
0
4
0
detected by either rising edge sensing or falling edge sensing, depending on the settings of bits  
IEG4 to IEG0 in IEGR.  
When these pins are designated as pins IRQ to IRQ in port mode register 3 and 1 and the  
4
0
designated edge is input, the corresponding bit in IRR1 is set to 1, requesting an interrupt.  
Recognition of these interrupt requests can be disabled individually by clearing bits IEN4 to IEN0  
to 0 in IENR1. These interrupts can all be masked by setting the I bit to 1 in CCR.  
When IRQ to IRQ interrupt exception handling is initiated, the I bit is set to 1 in CCR. Vector  
4
0
numbers 8 to 4 are assigned to interrupts IRQ to IRQ . The order of priority is from IRQ (high)  
4
0
0
to IRQ (low). Table 3.2 gives details.  
4
3.3.4  
Internal Interrupts  
There are 23 internal interrupts that can be requested by the on-chip peripheral modules. When a  
peripheral module requests an interrupt, the corresponding bit in IRR1 or IRR2 is set to 1.  
Recognition of individual interrupt requests can be disabled by clearing the corresponding bit in  
IENR1 or IENR2. All these interrupts can be masked by setting the I bit to 1 in CCR. When  
internal interrupt handling is initiated, the I bit is set to 1 in CCR. Vector numbers from 20 to 11  
are assigned to these interrupts. Table 3.2 shows the order of priority of interrupts from on-chip  
peripheral modules.  
77  
3.3.5  
Interrupt Operations  
Interrupts are controlled by an interrupt controller. Figure 3.2 shows a block diagram of the  
interrupt controller. Figure 3.3 shows the flow up to interrupt acceptance.  
Interrupt controller  
External or  
internal  
interrupts  
Interrupt  
request  
External  
interrupts or  
internal  
interrupt  
enable  
signals  
I
CCR (CPU)  
Figure 3.2 Block Diagram of Interrupt Controller  
Interrupt operation is described as follows.  
When an interrupt condition is met while the interrupt enable register bit is set to 1, an  
interrupt request signal is sent to the interrupt controller.  
When the interrupt controller receives an interrupt request, it sets the interrupt request flag.  
From among the interrupts with interrupt request flags set to 1, the interrupt controller selects  
the interrupt request with the highest priority and holds the others pending. (Refer to table 3.2  
for a list of interrupt priorities.)  
The interrupt controller checks the I bit of CCR. If the I bit is 0, the selected interrupt request  
is accepted; if the I bit is 1, the interrupt request is held pending.  
78  
If the interrupt is accepted, after processing of the current instruction is completed, both PC  
and CCR are pushed onto the stack. The state of the stack at this time is shown in figure 3.4.  
The PC value pushed onto the stack is the address of the first instruction to be executed upon  
return from interrupt handling.  
The I bit of CCR is set to 1, masking further interrupts.  
The vector address corresponding to the accepted interrupt is generated, and the interrupt  
handling routine located at the address indicated by the contents of the vector address is  
executed.  
Notes:  
1. When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits  
in an interrupt request register, always do so while interrupts are masked (I = 1).  
2. If the above clear operations are performed while I = 0, and as a result a conflict arises between  
the clear instruction and an interrupt request, exception processing for the interrupt will be  
executed after the clear instruction has been executed.  
79  
Program execution state  
No  
IRRI0 = 1  
Yes  
No  
IEN0 = 1  
Yes  
No  
No  
IRRI1 = 1  
Yes  
IEN1 = 1  
Yes  
No  
No  
IRRI2 = 1  
Yes  
IEN2 = 1  
Yes  
No  
No  
IRRDT = 1  
Yes  
IENDT = 1  
Yes  
No  
I = 0  
Yes  
PC contents saved  
CCR contents saved  
I 1  
Branch to interrupt  
handling routine  
Notation:  
PC: Program counter  
CCR: Condition code register  
I: I bit of CCR  
Figure 3.3 Flow up to Interrupt Acceptance  
80  
SP 4  
SP 3  
SP 2  
SP 1  
SP (R7)  
SP (R7)  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
CCR  
*
CCR  
PCH  
PCL  
Even address  
Stack area  
Prior to start of interrupt  
exception handling  
After completion of interrupt  
exception handling  
PC and CCR  
saved to stack  
Notation:  
PCH: Upper 8 bits of program counter (PC)  
PCL: Lower 8 bits of program counter (PC)  
CCR: Condition code register  
SP:  
Stack pointer  
1. PC shows the address of the first instruction to be executed upon  
return from the interrupt handling routine.  
Notes:  
2. Register contents must always be saved and restored by word access,  
starting from an even-numbered address.  
*
Ignored on return.  
Figure 3.4 Stack State after Completion of Interrupt Exception Handling  
Figure 3.5 shows a typical interrupt sequence.  
81  
Figure 3.5 Interrupt Sequence  
82  
3.3.6  
Interrupt Response Time  
Table 3.4 shows the number of wait states after an interrupt request flag is set until the first  
instruction of the interrupt handler is executed.  
Table 3.4 Interrupt Wait States  
Item  
States  
Total  
Waiting time for completion of executing instruction*  
Saving of PC and CCR to stack  
Vector fetch  
1 to 13  
15 to 27  
4
2
4
4
Instruction fetch  
Internal processing  
Note: * Not including EEPMOV instruction.  
83  
3.4  
Application Notes  
3.4.1  
Notes on Stack Area Use  
When word data is accessed in the H8/3864 Series, the least significant bit of the address is  
regarded as 0. Access to the stack always takes place in word size, so the stack pointer (SP: R7)  
should never indicate an odd address. Use PUSH Rn (MOV.W Rn, @–SP) or POP Rn (MOV.W  
@SP+, Rn) to save or restore register values.  
Setting an odd address in SP may cause a program to crash. An example is shown in figure 3.6.  
PCH  
PCL  
SP  
R1L  
PCL  
H'FEFC  
H'FEFD  
SP  
SP  
H'FEFF  
MOV. B R1L, @R7  
Stack accessed beyond SP Contents of PCH are lost  
BSR instruction  
SP set to H'FEFF  
Notation:  
PCH: Upper byte of program counter  
PCL: Lower byte of program counter  
R1L: General register R1L  
SP: Stack pointer  
Figure 3.6 Operation when Odd Address is Set in SP  
When CCR contents are saved to the stack during interrupt exception handling or restored when  
RTE is executed, this also takes place in word size. Both the upper and lower bytes of word data  
are saved to the stack; on return, the even address contents are restored to CCR while the odd  
address contents are ignored.  
84  
3.4.2  
Notes on Rewriting Port Mode Registers  
When a port mode register is rewritten to switch the functions of external interrupt pins, the  
following points should be observed.  
When an external interrupt pin function is switched by rewriting the port mode register that  
controls pins IRQ to IRQ , WKP to WKP , the interrupt request flag may be set to 1 at the time  
4
0
7
0
the pin function is switched, even if no valid interrupt is input at the pin. Be sure to clear the  
interrupt request flag to 0 after switching pin functions. Table 3.5 shows the conditions under  
which interrupt request flags are set to 1 in this way.  
Table 3.5 Conditions under which Interrupt Request Flag is Set to 1  
Interrupt Request  
Flags Set to 1  
Conditions  
IRR1  
IRRI4  
When PMR1 bit IRQ4 is changed from 0 to 1 while pin IRQ4 is low and IEGR  
bit IEG4 = 0.  
When PMR1 bit IRQ4 is changed from 1 to 0 while pin IRQ4 is low and IEGR  
bit IEG4 = 1.  
IRRI3  
IRRI2  
IRRI1  
IRRI0  
When PMR1 bit IRQ3 is changed from 0 to 1 while pin IRQ3 is low and IEGR  
bit IEG3 = 0.  
When PMR1 bit IRQ3 is changed from 1 to 0 while pin IRQ3 is low and IEGR  
bit IEG3 = 1.  
When PMR1 bit IRQ2 is changed from 0 to 1 while pin IRQ2 is low and IEGR  
bit IEG2 = 0.  
When PMR1 bit IRQ2 is changed from 1 to 0 while pin IRQ2 is low and IEGR  
bit IEG2 = 1.  
When PMR1 bit IRQ1 is changed from 0 to 1 while pin IRQ1 is low and IEGR  
bit IEG1 = 0.  
When PMR1 bit IRQ1 is changed from 1 to 0 while pin IRQ1 is low and IEGR  
bit IEG1 = 1.  
When PMR3 bit IRQ0 is changed from 0 to 1 while pin IRQ0 is low and IEGR  
bit IEG0 = 0.  
When PMR3 bit IRQ0 is changed from 1 to 0 while pin IRQ0 is low and IEGR  
bit IEG0 = 1.  
IWPR  
IWPF7  
IWPF6  
IWPF5  
IWPF4  
IWPF3  
IWPF2  
IWPF1  
IWPF0  
When PMR5 bit WKP7 is changed from 0 to 1 while pin WKP7 is low.  
When PMR5 bit WKP6 is changed from 0 to 1 while pin WKP6 is low.  
When PMR5 bit WKP5 is changed from 0 to 1 while pin WKP5 is low.  
When PMR5 bit WKP4 is changed from 0 to 1 while pin WKP4 is low.  
When PMR5 bit WKP3 is changed from 0 to 1 while pin WKP3 is low.  
When PMR5 bit WKP2 is changed from 0 to 1 while pin WKP2 is low.  
When PMR5 bit WKP1 is changed from 0 to 1 while pin WKP1 is low.  
When PMR5 bit WKP0 is changed from 0 to 1 while pin WKP0 is low.  
85  
Figure 3.7 shows the procedure for setting a bit in a port mode register and clearing the interrupt  
request flag.  
When switching a pin function, mask the interrupt before setting the bit in the port mode register.  
After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the  
interrupt request flag from 1 to 0. If the instruction to clear the flag is executed immediately after  
the port mode register access without executing an intervening instruction, the flag will not be  
cleared.  
An alternative method is to avoid the setting of interrupt request flags when pin functions are  
switched by keeping the pins at the high level so that the conditions in table 3.5 do not occur.  
Interrupts masked. (Another possibility  
is to disable the relevant interrupt in  
interrupt enable register 1.)  
CCR I bit  
1
Set port mode register bit  
After setting the port mode register bit,  
first execute at least one instruction  
(e.g., NOP), then clear the interrupt  
request flag to 0  
Execute NOP instruction  
Clear interrupt request flag to 0  
Interrupt mask cleared  
CCR I bit  
0
Figure 3.7 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure  
86  
Section 4 Clock Pulse Generators  
4.1  
Overview  
Clock oscillator circuitry (CPG: clock pulse generator) is provided on-chip, including both a  
system clock pulse generator and a subclock pulse generator. The system clock pulse generator  
consists of a system clock oscillator and system clock dividers. The subclock pulse generator  
consists of a subclock oscillator circuit and a subclock divider.  
4.1.1  
Block Diagram  
Figure 4.1 shows a block diagram of the clock pulse generators.  
øOSC/2  
øOSC  
OSC1  
OSC2  
System clock  
oscillator  
System clock  
divider (1/2)  
øOSC/128  
øOSC/64  
øOSC/32  
øOSC/16  
ø
(fOSC  
)
System  
clock  
ø/2  
to  
Prescaler S  
(13 bits)  
divider  
ø/8192  
System clock pulse generator  
øW  
øW/2  
Subclock  
divider  
(1/2, 1/4, 1/8)  
X1  
X2  
øW  
(fW  
øW/4  
øW/8  
Subclock  
oscillator  
øSUB  
)
øW /2  
øW /4  
øW /8  
to  
Prescaler W  
(5 bits)  
Subclock pulse generator  
øW /128  
Figure 4.1 Block Diagram of Clock Pulse Generators  
System Clock and Subclock  
4.1.2  
The basic clock signals that drive the CPU and on-chip peripheral modules are ø and ø  
. Four  
SUB  
of the clock signals have names: ø is the system clock, ø  
is the subclock, ø  
is the oscillator  
OSC  
SUB  
clock, and ø is the watch clock.  
W
The clock signals available for use by peripheral modules are ø/2, ø/4, ø/8, ø/16, ø/32, ø/64, ø/128,  
ø/256, ø/512, ø/1024, ø/2048, ø/4096, ø/8192, ø , ø /2, ø /4, ø /8, ø /16, ø /32, ø /64, and  
W
W
W
W
W
W
W
ø /128. The clock requirements differ from one module to another.  
W
87  
4.2  
System Clock Generator  
Clock pulses can be supplied to the system clock divider either by connecting a crystal or ceramic  
oscillator, or by providing external clock input.  
1. Connecting a crystal oscillator  
Figure 4.2 shows a typical method of connecting a crystal oscillator.  
Rf = 1 MΩ ±20%  
C1  
OSC1  
OSC2  
C1, C2  
Recommendation  
value  
Crystal  
Frequency oscillator  
Rf  
Products Name  
NR-18 (NDK45)  
NR-18 (NDK03)  
1.0 MHz  
4.0 MHz  
NDK  
NDK  
27 pF ±10%  
12 pF ±20%  
C2  
Figure 4.2 Typical Connection to Crystal Oscillator  
Figure 4.3 shows the equivalent circuit of a crystal oscillator. An oscillator having the  
characteristics given in table 4.1 should be used.  
CS  
LS  
RS  
OSC1  
OSC2  
C0  
Figure 4.3 Equivalent Circuit of Crystal Oscillator  
Table 4.1 Crystal Oscillator Parameters  
Frequency (MHz)  
RS max ( )  
C0 (pF)  
1
4.193  
100  
40  
3.5 pF max  
16 pF  
88  
2. Connecting a ceramic oscillator  
Figure 4.4 shows a typical method of connecting a ceramic oscillator.  
Rf = 1 MΩ ±20%  
C1  
OSC1  
OSC2  
C1, C2  
Recommendation  
value  
Ceramic  
Frequency oscillator  
Rf  
Products Name  
CSB 1000J  
1.0 MHz  
4.0 MHz  
Murata  
Murata  
150 pF ±10%  
30 pF ±10%  
C2  
CSA 4.00MG  
Figure 4.4 Typical Connection to Ceramic Oscillator  
3. Notes on board design  
When generating clock pulses by connecting a crystal or ceramic oscillator, pay careful attention  
to the following points.  
Avoid running signal lines close to the oscillator circuit, since the oscillator may be adversely  
affected by induction currents. (See figure 4.5.)  
The board should be designed so that the oscillator and load capacitors are located as close as  
possible to pins OSC and OSC .  
1
2
To be avoided  
Signal A Signal B  
C1  
OSC1  
OSC2  
C2  
Figure 4.5 Board Design of Oscillator Circuit  
89  
4. External clock input method  
Connect an external clock signal to pin OSC , and leave pin OSC open. Figure 4.6 shows a  
1
2
typical connection.  
OSC1  
OSC2  
External clock input  
Open  
Figure 4.6 External Clock Input (Example)  
Frequency  
Oscillator Clock (øOSC)  
Duty cycle  
45% to 55%  
Note: The circuit parameters above are recommended by the crystal or ceramic oscillator  
manufacturer.  
The circuit parameters are affected by the crystal or ceramic oscillator and floating  
capacitance when designing the board. When using the oscillator, consult with the crystal  
or ceramic oscillator manufacturer to determine the circuit parameters.  
90  
4.3  
Subclock Generator  
1. Connecting a 32.768-kHz/38.4 kHz crystal oscillator  
Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz/38.4 kHz crystal  
oscillator, as shown in figure 4.7. Follow the same precautions as noted under 3. notes on board  
design for the system clock in 4.2.  
C1  
C1 = C2 = 15 pF (typ.)  
X1  
Frequency Crystal oscillator  
32.768 kHz NDK  
Products Name  
MX73P  
X2  
C2  
38.4 kHz  
Seiko Instrument Inc. VTC-200  
Figure 4.7 Typical Connection to 32.768-kHz/38.4 kHz Crystal Oscillator (Subclock)  
Figure 4.8 shows the equivalent circuit of the 32.768-kHz/38.4 kHz crystal oscillator.  
CS  
LS  
RS  
X1  
X2  
C0  
C0 = 1.5 pF typ  
RS = 14 ktyp  
fW = 32.768 kHz/38.4kHz  
Figure 4.8 Equivalent Circuit of 32.768-kHz/38.4 kHz Crystal Oscillator  
91  
2. Pin connection when not using subclock  
When the subclock is not used, connect pin X to GND and leave pin X open, as shown in  
1
2
figure 4.9.  
X1  
X2  
GND  
Open  
Figure 4.9 Pin Connection when not Using Subclock  
3. External clock input  
Connect the external clock to the X1 pin and leave the X2 pin open, as shown in figure 4.10.  
VCC  
X1  
External clock input  
X2  
Open  
Figure 4.10 Pin Connection when Inputting External Clock  
Frequency  
Subclock (øw)  
Duty  
45% to 55%  
92  
4.4  
Prescalers  
The H8/3864 Series is equipped with two on-chip prescalers having different input clocks  
(prescaler S and prescaler W). Prescaler S is a 13-bit counter using the system clock (ø) as its  
input clock. Its prescaled outputs provide internal clock signals for on-chip peripheral modules.  
Prescaler W is a 5-bit counter using a 32.768-kHz or 38.4 kHz signal divided by 4 (ø /4) as its  
W
input clock. Its prescaled outputs are used by timer A as a time base for timekeeping.  
1. Prescaler S (PSS)  
Prescaler S is a 13-bit counter using the system clock (ø) as its input clock. It is incremented once  
per clock period.  
Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state.  
In standby mode, watch mode, subactive mode, and subsleep mode, the system clock pulse  
generator stops. Prescaler S also stops and is initialized to H'0000.  
The CPU cannot read or write prescaler S.  
The output from prescaler S is shared by timer A, timer C, timer F, timer G, SCI3-1, SC3-2, the  
A/D converter, the LCD controller, the watchdog timer, and the 14-bit PWM. The divider ratio  
can be set separately for each on-chip peripheral function.  
In active (medium-speed) mode the clock input to prescaler S is øosc/16, øosc/32, øosc/64, or  
øosc/128.  
2. Prescaler W (PSW)  
Prescaler W is a 5-bit counter using a 32.768 kHz/38.4 kHz signal divided by 4 (ø /4) as its input  
W
clock.  
Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state.  
Even in standby mode, watch mode, subactive mode, or subsleep mode, prescaler W continues  
functioning so long as clock signals are supplied to pins X1 and X2.  
Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register A (TMA).  
Output from prescaler W can be used to drive timer A, in which case timer A functions as a time  
base for timekeeping.  
93  
4.5  
Note on Oscillators  
Oscillator characteristics are closely related to board design and should be carefully evaluated by  
the user in mask ROM and ZTAT™ versions, referring to the examples shown in this section.  
Oscillator circuit constants will differ depending on the oscillator element, stray capacitance in its  
interconnecting circuit, and other factors. Suitable constants should be determined in consultation  
with the oscillator element manufacturer. Design the circuit so that the oscillator element never  
receives voltages exceeding its maximum rating.  
94  
Section 5 Power-Down Modes  
5.1  
Overview  
The H8/3864 Series has nine modes of operation after a reset. These include eight power-down  
modes, in which power dissipation is significantly reduced. Table 5.1 gives a summary of the eight  
operating modes.  
Table 5.1 Operating Modes  
Operating Mode  
Description  
Active (high-speed) mode  
The CPU and all on-chip peripheral functions are operable on  
the system clock in high-speed operation  
Active (medium-speed) mode  
The CPU and all on-chip peripheral functions are operable on  
the system clock in low-speed operation  
Subactive mode  
The CPU is operable on the subclock in low-speed operation  
Sleep (high-speed) mode  
The CPU halts. On-chip peripheral functions are operable on  
the system clock  
Sleep (medium-speed) mode  
Subsleep mode  
The CPU halts. On-chip peripheral functions operate at a  
frequency of 1/64, 1/32, 1/16, or 1/8 of the system clock  
frequency  
The CPU halts. The time-base function of timer A, timer C,  
timer G, timer F,WDT, SCI3-1, SCI3-2, AEC and LCD  
controller/driver are operable on the subclock  
Watch mode  
The CPU halts. The time-base function of timer A, timer F,  
timer G, AEC and LCD controller/driver are operable on the  
subclock  
Standby mode  
The CPU and all on-chip peripheral functions halt  
Module standby mode  
Individual on-chip peripheral functions specified by software  
enter standby mode and halt  
Of these nine operating modes, all but the active (high-speed) mode are power-down modes. In  
this section the two active modes (high-speed and medium speed) will be referred to collectively  
as active mode.  
95  
Figure 5.1 shows the transitions among these operation modes. Table 5.2 indicates the internal  
states in each mode.  
Program  
execution state  
Program  
halt state  
Reset state  
SLEEP  
instruction*a  
Active  
(high-speed)  
mode  
Sleep  
(high-speed)  
mode  
Program  
halt state  
*3  
*4  
Standby  
mode  
*4  
SLEEP  
instruction*b  
Active  
(medium-speed)  
mode  
Sleep  
(medium-speed)  
mode  
*3  
*1  
*1  
SLEEP  
SLEEP  
instruction*e  
instruction*c  
Watch  
mode  
Subactive  
mode  
Subsleep  
mode  
*1  
*2  
Power-down modes  
Mode Transition Conditions (1)  
LSON MSON SSBY TMA3 DTON  
Mode Transition Conditions (2)  
Interrupt Sources  
1
Timer A, Timer F, Timer G interrupt, IRQ0 interrupt,  
a
b
c
d
e
f
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
WKP7 to WKP0 interrupts  
1
2
Timer A, Timer C, Timer F, Timer G, SCI3-1,  
SCI3-2 interrupt, IRQ4 to IRQ0 interrupts,  
WKP7 to WKP0 interrupts, AEC  
0
0
1
All interrupts  
3
4
1
IRQ1 or IRQ0 interrupt, WKP7 to WKP0 interrupts  
g
h
i
1
1
0
1
J
1
* : Don’t care  
Notes: 1. A transition between different modes cannot be made to occur simply because an interrupt  
request is generated. Make sure that interrupt handling is performed after the interrupt is  
accepted.  
2. Details on the mode transition conditions are given in the explanations of each mode,  
in sections 5-2 through 5-8.  
Figure 5.1 Mode Transition Diagram  
96  
Table 5.2 Internal State in Each Operating Mode  
Active Mode  
High- Medium- High-  
Speed Speed Speed  
Sleep Mode  
Medium- Watch  
Speed Mode  
Subactive Subsleep  
Standby  
Mode  
Function  
Mode  
Mode  
System clock oscillator  
Subclock oscillator  
Functions Functions Functions Functions Halted  
Functions Functions Functions Functions Functions  
Halted  
Halted  
Halted  
Functions  
Functions  
Functions  
Halted  
Functions  
Halted  
CPU  
operations RAM  
Registers  
Instructions  
Functions Functions Halted  
Halted  
Halted  
Retained Retained Retained  
Retained  
Retained  
I/O ports  
IRQ0  
Retained*1  
Functions  
External  
Functions Functions Functions Functions Functions  
Retained*6  
Functions  
Functions  
Functions  
Functions  
interrupts IRQ1  
IRQ2  
Retained*6  
IRQ3  
IRQ4  
WKP0  
Functions Functions Functions Functions Functions  
Functions  
WKP1  
WKP2  
WKP3  
WKP4  
WKP5  
WKP6  
WKP7  
Peripheral Timer A  
Functions Functions Functions Functions Functions*5 Functions*5 Functions*5 Retained  
Asynchronous Functions  
Functions*8 Functions Functions*8  
functions  
counter  
Timer C  
Retained  
Functions/ Functions/ Retained  
Retained*2 Retained*2  
WDT  
Functions/ Retained  
Retained*7  
Timer G,  
Timer F  
Functions/ Functions/ Functions/  
Retained*9 Retained*9 Retained*9  
SCI3-1  
Reset  
Functions/ Functions/ Reset  
Retained*3  
SCI3-2  
PWM  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
A/D converter  
LCD  
Functions/ Functions/ Functions/ Retained  
Retained*4 Retained*4 Retained*4  
Notes:  
1. Register contents are retained, but output is high-impedance state.  
2. Functions if an external clock or the øW/4 internal clock is selected; otherwise halted and retained.  
3. Functions if øW/2 is selected as the internal clock; otherwise halted and retained.  
4. Functions if øW, øW/2 or øW/4 is selected as the operating clock; otherwise halted and retained.  
5. Functions if the timekeeping time-base function is selected.  
6. External interrupt requests are ignored. Interrupt request register contents are not altered.  
7. Functions if øW/32 is selected as the internal clock; otherwise halted and retained.  
8. Incrementing is possible, but interrupt generation is not.  
9. Functions if an external clock or the øW/4 internal clock is selected; otherwise halted and retained.  
97  
5.1.1  
System Control Registers  
The operation mode is selected using the system control registers described in table 5.3.  
Table 5.3 System Control Registers  
Name  
Abbreviation  
SYSCR1  
R/W  
R/W  
R/W  
Initial Value  
H'07  
Address  
H'FFF0  
H'FFF1  
System control register 1  
System control register 2  
SYSCR2  
H'F0  
1. System control register 1 (SYSCR1)  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
LSON  
0
2
1
1
0
MA1  
1
MA0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SYSCR1 is an 8-bit read/write register for control of the power-down modes.  
Upon reset, SYSCR1 is initialized to H'07.  
Bit 7: Software standby (SSBY)  
This bit designates transition to standby mode or watch mode.  
Bit 7  
SSBY  
Description  
0
When a SLEEP instruction is executed in active mode,  
a transition is made to sleep mode  
(initial value)  
When a SLEEP instruction is executed in subactive mode, a transition is made to  
subsleep mode  
1
When a SLEEP instruction is executed in active mode, a transition is made to  
standby mode or watch mode  
When a SLEEP instruction is executed in subactive mode, a transition is made to  
watch mode  
98  
Bits 6 to 4: Standby timer select 2 to 0 (STS2 to STS0)  
These bits designate the time the CPU and peripheral modules wait for stable clock operation after  
exiting from standby mode or watch mode to active mode due to an interrupt. The designation  
should be made according to the operating frequency so that the waiting time is at least equal to  
the oscillation settling time.  
Bit 6  
Bit 5  
Bit 4  
STS2  
STS1  
STS0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Wait time = 8,192 states  
Wait time = 16,384 states  
Wait time = 32,768 states  
Wait time = 65,536 states  
Wait time = 131,072 states  
Wait time = 2 states  
(initial value)  
(External clock mode)  
Wait time = 8 states  
Wait time = 16 states  
Note: In the case that external clock is input, set up the Standby timer selectselection to  
External clock mode before Mode Transition. Also, do not set up to external clock mode, in  
the case that it does not use external clock.  
Bit 3: Low speed on flag (LSON)  
This bit chooses the system clock (ø) or subclock (ø  
) as the CPU operating clock when watch  
SUB  
mode is cleared. The resulting operation mode depends on the combination of other control bits  
and interrupt input.  
Bit 3  
LSON  
Description  
0
1
The CPU operates on the system clock (ø)  
The CPU operates on the subclock (øSUB)  
(initial value)  
Bits 2: Reserved bits  
Bit 2 is reserved: it is always read as 1 and cannot be modified.  
99  
Bits 1 and 0: Active (medium-speed) mode clock select (MA1, MA0)  
Bits 1 and 0 choose ø /128, ø /64, ø /32, or ø /16 as the operating clock in active (medium-  
osc  
osc  
osc  
osc  
speed) mode and sleep (medium-speed) mode. MA1 and MA0 should be written in active (high-  
speed) mode or subactive mode.  
Bit 1  
MA1  
Bit 0  
MA0  
Description  
øosc/16  
0
0
1
1
0
1
0
1
øosc/32  
øosc/64  
øosc/128  
(initial value)  
2. System control register 2 (SYSCR2)  
Bit  
7
1
6
1
5
1
4
3
2
MSON  
0
1
0
NESEL DTON  
SA1  
0
SA0  
0
Initial value  
Read/Write  
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
SYSCR2 is an 8-bit read/write register for power-down mode control.  
Bits 7 to 5: Reserved bits  
These bits are reserved; they are always read as 1, and cannot be modified.  
Bit 4: Noise elimination sampling frequency select (NESEL)  
This bit selects the frequency at which the watch clock signal (ø ) generated by the subclock  
W
pulse generator is sampled, in relation to the oscillator clock (ø  
) generated by the system clock  
OSC  
pulse generator. When ø  
= 2 to 6 MHz, clear NESEL to 0.  
OSC  
Bit 4  
NESEL  
Description  
0
1
Sampling rate is øOSC/16  
Sampling rate is øOSC/4  
(initial value)  
100  
Bit 3: Direct transfer on flag (DTON)  
This bit designates whether or not to make direct transitions among active (high-speed), active  
(medium-speed) and subactive mode when a SLEEP instruction is executed. The mode to which  
the transition is made after the SLEEP instruction is executed depends on a combination of this  
and other control bits.  
Bit 3  
DTON  
Description  
0
When a SLEEP instruction is executed in active mode,  
a transition is made to standby mode, watch mode, or sleep mode  
(initial value)  
When a SLEEP instruction is executed in subactive mode, a transition is made to  
watch mode or subsleep mode  
1
When a SLEEP instruction is executed in active (high-speed) mode, a direct  
transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, and  
LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1  
When a SLEEP instruction is executed in active (medium-speed) mode, a direct  
transition is made to active (high-speed) mode if SSBY = 0, MSON = 0, and  
LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1  
When a SLEEP instruction is executed in subactive mode, a direct transition is  
made to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON  
= 0, or to active (medium-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and  
MSON = 1  
Bit 2: Medium speed on flag (MSON)  
After standby, watch, or sleep mode is cleared, this bit selects active (high-speed) or active  
(medium-speed) mode.  
Bit 2  
MSON  
Description  
0
1
Operation in active (high-speed) mode  
Operation in active (medium-speed) mode  
(initial value)  
101  
Bits 1 and 0: Subactive mode clock select (SA1 and SA0)  
These bits select the CPU clock rate (ø /2, ø /4, or ø /8) in subactive mode. SA1 and SA0  
W
W
W
cannot be modified in subactive mode.  
Bit 1  
SA1  
Bit 0  
SA0  
Description  
øW/8  
0
0
1
0
1
*
(initial value)  
øW/4  
øW/2  
* : Dont care  
102  
5.2  
Sleep Mode  
5.2.1  
Transition to Sleep Mode  
1. Transition to sleep (high-speed) mode  
The system goes from active mode to sleep (high-speed) mode when a SLEEP instruction is  
executed while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON and DTON bits  
in SYSCR2 are cleared to 0. In sleep mode CPU operation is halted but the on-chip peripheral  
functions. CPU register contents are retained.  
2. Transition to sleep (medium-speed) mode  
The system goes from active mode to sleep (medium-speed) mode when a SLEEP instruction is  
executed while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2  
is set to 1, and the DTON bit in SYSCR2 is cleared to 0. In sleep (medium-speed) mode, as in  
sleep (high-speed) mode, CPU operation is halted but the on-chip peripheral functions are  
operational. The clock frequency in sleep (medium-speed) mode is determined by the MA1 and  
MA0 bits in SYSCR1. CPU register contents are retained.  
Furthermore, it sometimes acts with half state early timing at the time of transition to sleep  
(medium-speed) mode.  
5.2.2  
Clearing Sleep Mode  
Sleep mode is cleared by any interrupt (timer A, timer C, timer F, timer G, asynchronous counter,  
IRQ to IRQ , WKP to WKP , SCI3-1, SCI3-2, A/D converter, or), or by input at the RES pin.  
4
0
7
0
• Clearing by interrupt  
When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts. A  
transition is made from sleep (high-speed) mode to active (high-speed) mode, or from sleep  
(medium-speed) mode to active (medium-speed) mode. Sleep mode is not cleared if the I bit of the  
condition code register (CCR) is set to 1 or the particular interrupt is disabled in the interrupt  
enable register.  
Interrupt signal and system clock are mutually asynchronous. Synchronization error time in a  
maximum is 2/ø (s).  
• Clearing by RES input  
When the RES pin goes low, the CPU goes into the reset state and sleep mode is cleared.  
103  
5.2.3  
Clock Frequency in Sleep (Medium-Speed) Mode  
Operation in sleep (medium-speed) mode is clocked at the frequency designated by the MA1 and  
MA0 bits in SYSCR1.  
5.3  
Standby Mode  
5.3.1  
Transition to Standby Mode  
The system goes from active mode to standby mode when a SLEEP instruction is executed while  
the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, and bit TMA3 in  
TMA is cleared to 0. In standby mode the clock pulse generator stops, so the CPU and on-chip  
peripheral modules stop functioning, but as long as the rated voltage is supplied, the contents of  
CPU registers, on-chip RAM, and some on-chip peripheral module registers are retained. On-chip  
RAM contents will be further retained down to a minimum RAM data retention voltage. The I/O  
ports go to the high-impedance state.  
5.3.2  
Clearing Standby Mode  
Standby mode is cleared by an interrupt (IRQ or IRQ ), WKP to WKP or by input at the RES  
1
0
7
0
pin.  
• Clearing by interrupt  
When an interrupt is requested, the system clock pulse generator starts. After the time set in bits  
STS2 to STS0 in SYSCR1 has elapsed, a stable system clock signal is supplied to the entire chip,  
standby mode is cleared, and interrupt exception handling starts. Operation resumes in active  
(high-speed) mode if MSON = 0 in SYSCR2, or active (medium-speed) mode if MSON = 1.  
Standby mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in  
the interrupt enable register.  
• Clearing by RES input  
When the RES pin goes low, the system clock pulse generator starts. After the pulse generator  
output has stabilized, if the RES pin is driven high, the CPU starts reset exception handling. Since  
system clock signals are supplied to the entire chip as soon as the system clock pulse generator  
starts functioning, the RES pin should be kept at the low level until the pulse generator output  
stabilizes.  
104  
5.3.3  
Oscillator Settling Time after Standby Mode is Cleared  
Bits STS2 to STS0 in SYSCR1 should be set as follows.  
• When a crystal oscillator is used  
The table below gives settings for various operating frequencies. Set bits STS2 to STS0 for a  
waiting time at least as long as the oscillation settling time.  
Table 5.4 Clock Frequency and Settling Time (times are in ms)  
STS2  
STS1  
STS0  
Waiting Time  
8,192 states  
2 MHz  
4.1  
1 MHz  
8.2  
0.5 MHz  
16.4  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
16,384 states  
32,768 states  
65,536 states  
131,072 states  
8.2  
16.4  
32.8  
16.4  
32.8  
65.5  
0.001  
32.8  
65.5  
65.5  
131.1  
262.1  
0.004  
131.1  
0.002  
2 states  
(Use prohibited)  
1
1
1
1
0
1
8 states  
0.004  
0.008  
0.008  
0.016  
0.016  
0.032  
16 states  
• When an external clock is used  
STS2 = 1, STS1 = 0, and STS0 = 1 should be set. Other values possible use, but CPU sometimes  
will start operation before waiting time completion.  
105  
5.3.4  
Standby Mode Transition and Pin States  
When a SLEEP instruction is executed in active (high-speed) mode or active (medium-speed)  
mode while bit SSBY is set to 1 and bit LSON is cleared to 0 in SYSCR1, and bit TMA3 is  
cleared to 0 in TMA, a transition is made to standby mode. At the same time, pins go to the high-  
impedance state (except pins for which the pull-up MOS is designated as on). Figure 5.2 shows  
the timing in this case.  
ø
Internal data bus  
SLEEP instruction fetch Fetch of next instruction  
SLEEP instruction execution  
Port output  
Internal processing  
High-impedance  
Pins  
Active (high-speed) mode or active (medium-speed) mode  
Standby mode  
Figure 5.2 Standby Mode Transition and Pin States  
106  
5.4  
Watch Mode  
5.4.1  
Transition to Watch Mode  
The system goes from active or subactive mode to watch mode when a SLEEP instruction is  
executed while the SSBY bit in SYSCR1 is set to 1 and bit TMA3 in TMA is set to 1.  
In watch mode, operation of on-chip peripheral modules is halted except for timer A, timer F,  
timer G, AEC and the LCD controller/driver (for which operation or halting can be set) is halted.  
As long as a minimum required voltage is applied, the contents of CPU registers, the on-chip  
RAM and some registers of the on-chip peripheral modules, are retained. I/O ports keep the same  
states as before the transition.  
5.4.2  
Clearing Watch Mode  
Watch mode is cleared by an interrupt (timer A, timer F, timer G, IRQ , or WKP to WKP ) or by  
0
7
0
input at the RES pin.  
• Clearing by interrupt  
When watch mode is cleared by interrupt, the mode to which a transition is made depends on the  
settings of LSON in SYSCR1 and MSON in SYSCR2. If both LSON and MSON are cleared to 0,  
transition is to active (high-speed) mode; if LSON = 0 and MSON = 1, transition is to active  
(medium-speed) mode; if LSON = 1, transition is to subactive mode. When the transition is to  
active mode, after the time set in SYSCR1 bits STS2 to STS0 has elapsed, a stable clock signal is  
supplied to the entire chip, watch mode is cleared, and interrupt exception handling starts. Watch  
mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the  
interrupt enable register.  
• Clearing by RES input  
Clearing by RES pin is the same as for standby mode; see 2. Clearing by RES pin in 5.3.2,  
Clearing Standby Mode.  
5.4.3  
Oscillator Settling Time after Watch Mode is Cleared  
The waiting time is the same as for standby mode; see 5.3.3, Oscillator Settling Time after  
Standby Mode is Cleared.  
107  
5.5  
Subsleep Mode  
5.5.1  
Transition to Subsleep Mode  
The system goes from subactive mode to subsleep mode when a SLEEP instruction is executed  
while the SSBY bit in SYSCR1 is cleared to 0, LSON bit in SYSCR1 is set to 1, and TMA3 bit in  
TMA is set to 1. In subsleep mode, operation of on-chip peripheral modules other than the A/D  
converter WDT and PWM is halted. As long as a minimum required voltage is applied, the  
contents of CPU registers, the on-chip RAM and some registers of the on-chip peripheral modules  
are retained. I/O ports keep the same states as before the transition.  
5.5.2  
Clearing Subsleep Mode  
Subsleep mode is cleared by an interrupt (timer A, timer C, timer F, timer G, asynchronous  
counter, SCI3-2, SCI3-1, IRQ to IRQ , WKP to WKP ) or by a low input at the RES pin.  
4
0
7
0
• Clearing by interrupt  
When an interrupt is requested, subsleep mode is cleared and interrupt exception handling starts.  
Subsleep mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in  
the interrupt enable register.  
Interrupt signal and system clock are mutually asynchronous. Synchronization error time in a  
maximum is 2/ø (s).  
• Clearing by RES input  
Clearing by RES pin is the same as for standby mode; see 2. Clearing by RES pin in 5.3.2,  
Clearing Standby Mode.  
108  
5.6  
Subactive Mode  
5.6.1  
Transition to Subactive Mode  
Subactive mode is entered from watch mode if a timer A, timer F, timer G, IRQ , or WKP to  
0
7
WKP interrupt is requested while the LSON bit in SYSCR1 is set to 1. From subsleep mode,  
0
subactive mode is entered if a timer A, timer C, timer F, timer G, asynchronous counter, SCI3-1,  
SCI3-2, IRQ to IRQ , or WKP to WKP interrupt is requested. A transition to subactive mode  
4
0
7
0
does not take place if the I bit of CCR is set to 1 or the particular interrupt is disabled in the  
interrupt enable register.  
5.6.2  
Clearing Subactive Mode  
Subactive mode is cleared by a SLEEP instruction or by a low input at the RES pin.  
• Clearing by SLEEP instruction  
If a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in  
TMA is set to 1, subactive mode is cleared and watch mode is entered. If a SLEEP instruction is  
executed while SSBY = 0 and LSON = 1 in SYSCR1 and TMA3 = 1 in TMA, subsleep mode is  
entered. Direct transfer to active mode is also possible; see 5.8, Direct Transfer, below.  
• Clearing by RES pin  
Clearing by RES pin is the same as for standby mode; see 2. Clearing by RES pin in 5.3.2,  
Clearing Standby Mode.  
5.6.3  
Operating Frequency in Subactive Mode  
The operating frequency in subactive mode is set in bits SA1 and SA0 in SYSCR2. The choices  
are ø /2, ø /4, and ø /8.  
W
W
W
109  
5.7  
Active (Medium-Speed) Mode  
5.7.1  
Transition to Active (Medium-Speed) Mode  
If the RES pin is driven low, active (medium-speed) mode is entered. If the LSON bit in SYSCR2  
is set to 1 while the LSON bit in SYSCR1 is cleared to 0, a transition to active (medium-speed)  
mode results from IRQ , IRQ or WKP to WKP interrupts in standby mode, timer A, timer F,  
0
1
7
0
timer G, IRQ or WKP to WKP interrupts in watch mode, or any interrupt in sleep mode. A  
0
7
0
transition to active (medium-speed) mode does not take place if the I bit of CCR is set to 1 or the  
particular interrupt is disabled in the interrupt enable register.  
Furthermore, it sometimes acts with half state early timing at the time of transition to active  
(medium-speed) mode.  
5.7.2  
Clearing Active (Medium-Speed) Mode  
Active (medium-speed) mode is cleared by a SLEEP instruction.  
• Clearing by SLEEP instruction  
A transition to standby mode takes place if the SLEEP instruction is executed while the SSBY bit  
in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, and the TMA3 bit in TMA is  
cleared to 0. The system goes to watch mode if the SSBY bit in SYSCR1 is set to 1 and bit TMA3  
in TMA is set to 1 when a SLEEP instruction is executed.  
When both SSBY and LSON are cleared to 0 in SYSCR1 and a SLEEP instruction is executed,  
sleep mode is entered. Direct transfer to active (high-speed) mode or to subactive mode is also  
possible. See 5.8, Direct Transfer, below for details.  
• Clearing by RES pin  
When the RES pin is driven low, a transition is made to the reset state and active (medium-speed)  
mode is cleared.  
5.7.3  
Operating Frequency in Active (Medium-Speed) Mode  
Operation in active (medium-speed) mode is clocked at the frequency designated by the MA1 and  
MA0 bits in SYSCR1.  
110  
5.8  
Direct Transfer  
5.8.1  
Overview of Direct Transfer  
The CPU can execute programs in three modes: active (high-speed) mode, active (medium-speed)  
mode, and subactive mode. A direct transfer is a transition among these three modes without the  
stopping of program execution. A direct transfer can be made by executing a SLEEP instruction  
while the DTON bit in SYSCR2 is set to 1. After the mode transition, direct transfer interrupt  
exception handling starts.  
If the direct transfer interrupt is disabled in interrupt enable register 2, a transition is made instead  
to sleep mode or watch mode. Note that if a direct transition is attempted while the I bit in CCR is  
set to 1, sleep mode or watch mode will be entered, and it will be impossible to clear the resulting  
mode by means of an interrupt.  
• Direct transfer from active (high-speed) mode to active (medium-speed) mode  
When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON  
bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is set to 1, and the DTON bit in  
SYSCR2 is set to 1, a transition is made to active (medium-speed) mode via sleep mode.  
• Direct transfer from active (medium-speed) mode to active (high-speed) mode  
When a SLEEP instruction is executed in active (medium-speed) mode while the SSBY and  
LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is cleared to 0, and the DTON  
bit in SYSCR2 is set to 1, a transition is made to active (high-speed) mode via sleep mode.  
• Direct transfer from active (high-speed) mode to subactive mode  
When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON  
bits in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and the TMA3 bit in TMA is set  
to 1, a transition is made to subactive mode via watch mode.  
• Direct transfer from subactive mode to active (high-speed) mode  
When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to  
1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is cleared to 0, the DTON  
bit in SYSCR2 is set to 1, and the TMA3 bit in TMA is set to 1, a transition is made directly to  
active (high-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to STS0  
has elapsed.  
111  
• Direct transfer from active (medium-speed) mode to subactive mode  
When a SLEEP instruction is executed in active (medium-speed) while the SSBY and LSON bits  
in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and the TMA3 bit in TMA is set to  
1, a transition is made to subactive mode via watch mode.  
• Direct transfer from subactive mode to active (medium-speed) mode  
When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to  
1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is set to 1, the DTON bit in  
SYSCR2 is set to 1, and the TMA3 bit in TMA is set to 1, a transition is made directly to active  
(medium-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to STS0  
has elapsed.  
5.8.2  
Direct Transition Times  
1. Time for direct transition from active (high-speed) mode to active (medium-speed) mode  
A direct transition from active (high-speed) mode to active (medium-speed) mode is performed by  
executing a SLEEP instruction in active (high-speed) mode while bits SSBY and LSON are both  
cleared to 0 in SYSCR1, and bits MSON and DTON are both set to 1 in SYSCR2. The time from  
execution of the SLEEP instruction to the end of interrupt exception handling (the direct transition  
time) is given by equation (1) below.  
Direct transition time = { (Number of SLEEP instruction execution states) + (number of internal  
processing states) } × (tcyc before transition) + (number of interrupt  
exception handling execution states) × (tcyc after transition)  
.................................. (1)  
Example: Direct transition time = (2 + 1) × 2tosc + 14 × 16tosc = 230tosc (when ø/8 is selected  
as the CPU operating clock)  
Notation:  
tosc: OSC clock cycle time  
tcyc: System clock (ø) cycle time  
112  
2. Time for direct transition from active (medium-speed) mode to active (high-speed) mode  
A direct transition from active (medium-speed) mode to active (high-speed) mode is performed by  
executing a SLEEP instruction in active (medium-speed) mode while bits SSBY and LSON are  
both cleared to 0 in SYSCR1, and bit MSON is cleared to 0 and bit DTON is set to 1 in SYSCR2.  
The time from execution of the SLEEP instruction to the end of interrupt exception handling (the  
direct transition time) is given by equation (2) below.  
Direct transition time = { (Number of SLEEP instruction execution states) + (number of internal  
processing states) } × (tcyc before transition) + (number of interrupt  
exception handling execution states) × (tcyc after transition)  
.................................. (2)  
Example: Direct transition time = (2 + 1) × 16tosc + 14 × 2tosc = 76tosc (when ø/8 is selected as  
the CPU operating clock)  
Notation:  
tosc: OSC clock cycle time  
tcyc: System clock (ø) cycle time  
3. Time for direct transition from subactive mode to active (high-speed) mode  
A direct transition from subactive mode to active (high-speed) mode is performed by executing a  
SLEEP instruction in subactive mode while bit SSBY is set to 1 and bit LSON is cleared to 0 in  
SYSCR1, bit MSON is cleared to 0 and bit DTON is set to 1 in SYSCR2, and bit TMA3 is set to 1  
in TMA. The time from execution of the SLEEP instruction to the end of interrupt exception  
handling (the direct transition time) is given by equation (3) below.  
Direct transition time = { (Number of SLEEP instruction execution states) + (number of internal  
processing states) } × (tsubcyc before transition) + { (wait time set in  
STS2 to STS0) + (number of interrupt exception handling execution  
states) } × (tcyc after transition)  
........................ (3)  
Example: Direct transition time = (2 + 1) × 8tw + (8192 + 14) × 2tosc = 24tw + 16412tosc (when  
øw/8 is selected as the CPU operating clock, and wait time = 8192 states)  
Notation:  
tosc:  
tw:  
tcyc:  
OSC clock cycle time  
Watch clock cycle time  
System clock (ø) cycle time  
tsubcyc: Subclock (øSUB) cycle time  
113  
4. Time for direct transition from subactive mode to active (medium-speed) mode  
A direct transition from subactive mode to active (medium-speed) mode is performed by  
executing a SLEEP instruction in subactive mode while bit SSBY is set to 1 and bit LSON is  
cleared to 0 in SYSCR1, bits MSON and DTON are both set to 1 in SYSCR2, and bit TMA3 is set  
to 1 in TMA. The time from execution of the SLEEP instruction to the end of interrupt exception  
handling (the direct transition time) is given by equation (4) below.  
Direct transition time = { (Number of SLEEP instruction execution states) + (number of internal  
processing states) } × (tsubcyc before transition) + { (wait time set in  
STS2 to STS0) + (number of interrupt exception handling execution  
states) } × (tcyc after transition)  
........................ (4)  
Example: Direct transition time = (2 + 1) × 8tw + (8192 + 14) × 16tosc = 24tw + 131296tosc  
(when øw/8 or ø8 is selected as the CPU operating clock, and wait time = 8192 states)  
Notation:  
tosc:  
tw:  
tcyc:  
OSC clock cycle time  
Watch clock cycle time  
System clock (ø) cycle time  
tsubcyc: Subclock (øSUB) cycle time  
114  
5.9  
Module Standby Mode  
5.9.1  
Setting Module Standby Mode  
Module standby mode is set for individual peripheral functions. All the on-chip peripheral  
modules can be placed in module standby mode. When a module enters module standby mode,  
the system clock supply to the module is stopped and operation of the module halts. This state is  
identical to standby mode.  
Module standby mode is set for a particular module by setting the corresponding bit to 0 in clock  
stop register 1 (CKSTPR1) or clock stop register 2 (CKSTPR2). (See table 5.5.)  
5.9.2  
Clearing Module Standby Mode  
Module standby mode is cleared for a particular module by setting the corresponding bit to 1 in  
clock stop register 1 (CKSTPR1) or clock stop register 2 (CKSTPR2). (See table 5.5.)  
Following a reset, clock stop register 1 (CKSTPR1) and clock stop register 2 (CKSTPR2) are both  
initialized to H'FF.  
Table 5.5  
Register Name Bit Name  
CKSTPR1  
Operation  
TACKSTP  
TCCKSTP  
TFCKSTP  
TGCKSTP  
ADCKSTP  
S32CKSTP  
S31CKSTP  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Timer A module standby mode is cleared  
Timer A is set to module standby mode  
Timer C module standby mode is cleared  
Timer C is set to module standby mode  
Timer F module standby mode is cleared  
Timer F is set to module standby mode  
Timer G module standby mode is cleared  
Timer G is set to module standby mode  
A/D converter module standby mode is cleared  
A/D converter is set to module standby mode  
SCI3-2 module standby mode is cleared  
SCI3-2 is set to module standby mode  
SCI3-1 module standby mode is cleared  
SCI3-1 is set to module standby mode  
115  
Table 5.5 (cont)  
Register Name Bit Name  
Operation  
CKSTPR2  
LDCKSTP  
PWCKSTP  
WDCKSTP  
AECKSTP  
1
0
1
0
1
0
1
LCD module standby mode is cleared  
LCD is set to module standby mode  
PWM module standby mode is cleared  
PWM is set to module standby mode  
Watchdog timer module standby mode is cleared  
Watchdog timer is set to module standby mode  
Asynchronous event counter module standby mode  
is cleared  
0
Asynchronous event counter is set to module standby  
mode  
Note: For details of module operation, see the sections on the individual modules.  
116  
Section 6 ROM  
6.1  
Overview  
The H8/3862 and H8/3822 have 16 kbytes of on-chip mask ROM, the H8/3863 and H8/3823 have  
24 kbytes, the H8/3864 and H8/3824 have 32 kbytes, the H8/3865 and H8/3825 have 40 kbytes,  
the H8/3866 and H8/3826 have 48 kbytes, and the H8/3867 and H8/3827 have 60 kbytes. The  
ROM is connected to the CPU by a 16-bit data bus, allowing high-speed two-state access for both  
byte data and word data. The H8/3867 and H8/3827 have a ZTAT™ version with 60-kbyte  
PROM.  
6.1.1  
Block Diagram  
Figure 6.1 shows a block diagram of the on-chip ROM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'0000  
H'0002  
H'0000  
H'0002  
H'0001  
H'0003  
On-chip ROM  
H'7FFE  
H'7FFE  
H'7FFF  
Even-numbered  
address  
Odd-numbered  
address  
Figure 6.1 ROM Block Diagram (H8/3864 and H8/3824)  
117  
6.2  
H8/3867 and H8/3827 PROM Mode  
6.2.1  
Setting to PROM Mode  
If the on-chip ROM is PROM, setting the chip to PROM mode stops operation as a  
microcontroller and allows the PROM to be programmed in the same way as the standard  
HN27C101 EPROM. However, page programming is not supported. Table 6.1 shows how to set  
the chip to PROM mode.  
Table 6.1 Setting to PROM Mode  
Pin Name  
TEST  
Setting  
High level  
Low level  
PB4/AN4  
PB5/AN5  
PB6/AN6  
High level  
6.2.2  
Socket Adapter Pin Arrangement and Memory Map  
A standard PROM programmer can be used to program the PROM. A socket adapter is required  
for conversion to 32 pins, as listed in table 6.2.  
Figure 6.2 shows the pin-to-pin wiring of the socket adapter. Figure 6.3 shows a memory map.  
Table 6.2 Socket Adapter  
Package  
Socket Adapters (Manufacturer)  
80-pin (FP-80B)  
ME3867ESFS1H (MINATO)  
H7386BQ080D3201 (DATA-I/O)  
80-pin (FP-80A)  
80-pin (TFP-80C)  
ME3867ESHS1H (MINATO)  
H7386AQ080D3201 (DATA-I/O)  
ME3867ESNS1H (MINATO)  
H7386CT080D3201 (DATA-I/O)  
118  
H8/3867 and H8/3827  
EPROM socket  
FP-80A  
,
TFP-80C  
FP-80B  
11  
47  
48  
49  
50  
51  
52  
53  
54  
70  
69  
68  
67  
66  
65  
64  
63  
55  
74  
57  
58  
59  
60  
61  
16  
17  
62  
56  
15  
34, 28  
75  
10  
5
Pin  
Pin  
HN27C101 (32-pin)  
9
RES  
V
PP  
1
13  
14  
15  
17  
18  
19  
20  
21  
12  
11  
10  
9
45  
46  
47  
48  
49  
50  
51  
52  
68  
67  
66  
65  
64  
63  
62  
61  
53  
72  
55  
56  
57  
58  
59  
14  
15  
60  
54  
13  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
P87  
P86  
P85  
P84  
P83  
P82  
P81  
P80  
P70  
P43  
P72  
P73  
P74  
P75  
P76  
P14  
P15  
P77  
P71  
P13  
EO  
EO  
EO  
EO  
EO  
EO  
EO  
EO  
0
1
2
3
4
5
6
7
EA  
EA  
EA  
EA  
EA  
EA  
EA  
EA  
EA  
EA  
0
1
2
3
4
5
6
7
8
9
8
7
6
5
27  
26  
23  
25  
4
EA10  
EA11  
EA12  
EA13  
EA14  
EA15  
EA16  
CE  
28  
29  
3
2
22  
24  
31  
32  
OE  
PGM  
32, 26  
73  
8
V
CC, CVCC  
AVCC  
VCC  
TEST  
3
X1  
80  
11  
12  
16  
5, 27  
2
2
PB6  
13  
14  
18  
7, 29  
4
P1  
P1  
P1  
1
2
6
V
SS  
V
SS  
16  
AVSS  
78  
79  
80  
1
PB  
PB  
4
5
Note: Pins not indicated in the figure should be left open.  
Figure 6.2 Socket Adapter Pin Correspondence (with HN27C101)  
119  
Address in  
MCU mode  
Address in  
PROM mode  
H'0000  
H'0000  
On-chip PROM  
H'EDFF  
H'EDFF  
Uninstalled area*  
H'1FFFF  
Note:  
*
The output data is not guaranteed if this address area is read in PROM mode. There-  
fore, when programming with a PROM programmer, be sure to specify addresses from  
H'0000 to H'EDFF. If programming is inadvertently performed from H'EE00 onward, it  
may not be possible to continue PROM programming and verification.  
When programming, H'FF should be set as the data in this address area (H'EE00 to  
H'1FFFF).  
Figure 6.3 H8/3867 and H8/3827 Memory Map in PROM Mode  
120  
6.3  
H8/3867 and H8/3827 Programming  
The write, verify, and other modes are selected as shown in table 6.3 in H8/3867 and H8/3827  
PROM mode.  
Table 6.3 Mode Selection in PROM Mode (H8/3867, H8/3827)  
Pins  
Mode  
CE  
L
OE  
H
L
PGM  
VPP  
VPP  
VPP  
VPP  
VCC  
VCC  
VCC  
VCC  
EO7 to EO0  
Data input  
Data output  
EA16 to EA0  
Address input  
Address input  
Write  
L
Verify  
L
H
L
Programming  
disabled  
L
L
High impedance Address input  
L
H
L
H
L
H
H
H
H
Notation  
L:  
Low level  
H:  
High level  
VPP level  
VCC level  
VPP  
:
VCC  
:
The specifications for writing and reading are identical to those for the standard HN27C101  
EPROM. However, page programming is not supported, and so page programming mode must not  
be set. A PROM programmer that only supports page programming mode cannot be used. When  
selecting a PROM programmer, ensure that it supports high-speed, high-reliability byte-by-byte  
programming. Also, be sure to specify addresses from H'0000 to H'EDFF.  
6.3.1  
Writing and Verifying  
An efficient, high-speed, high-reliability method is available for writing and verifying the PROM  
data. This method achieves high speed without voltage stress on the device and without lowering  
the reliability of written data. The basic flow of this high-speed, high-reliability programming  
method is shown in figure 6.4.  
121  
Start  
Set write/verify mode  
VCC = 6.0 V ± 0.25 V, VPP = 12.5 V ± 0.3 V  
Address = 0  
n = 0  
n + 1 n  
Yes  
n<25  
No  
Write time tPW = 0.2 ms ± 5%  
No Go  
Verify  
Address + 1 address  
Go  
Write time tOPW = 3n ms  
No  
Last address?  
Yes  
Set read mode  
VCC = 5.0 V ± 0.25 V, VPP = VCC  
No Go  
Read all  
addresses?  
Error  
Go  
End  
Figure 6.4 High-Speed, High-Reliability Programming Flow Chart  
122  
Table 6.4 and table 6.5 give the electrical characteristics in programming mode.  
Table 6.4 DC Characteristics  
(Conditions: V = 6.0 V ±0.25 V, V = 12.5 V ±0.3 V, V = 0 V, T = 25°C ±5°C)  
CC  
PP  
SS  
a
Test  
Item  
Symbol Min Typ Max  
Unit Condition  
Input high-  
level voltage OE, CE, PGM  
EO7 to EO0, EA16 to EA0 VIH  
2.4  
–0.3  
2.4  
VCC + 0.3  
V
Input low-  
level voltage OE, CE, PGM  
EO7 to EO0, EA16 to EA0 VIL  
0.8  
V
Output high- EO7 to EO0  
level voltage  
VOH  
VOL  
V
IOH = –200 µA  
Output low-  
level voltage  
EO7 to EO0  
0.45  
2
V
IOL = 0.8 mA  
Input leakage EO7 to EO0, EA16 to EA0 |ILI|  
µA  
Vin = 5.25 V/  
0.5 V  
current  
OE, CE, PGM  
VCC current  
VPP current  
ICC  
IPP  
40  
40  
mA  
mA  
123  
Table 6.5 AC Characteristics  
(Conditions: V = 6.0 V ±0.25 V, V = 12.5 V ±0.3 V, T = 25°C ±5°C)  
CC  
PP  
a
Item  
Symbol Min  
Typ  
Max  
Unit  
µs  
Test Condition  
Figure 6.5*1  
Address setup time  
OE setup time  
tAS  
2
tOES  
tDS  
tAH  
tDH  
2
µs  
Data setup time  
2
µs  
Address hold time  
Data hold time  
0
µs  
2
µs  
*2  
Data output disable time  
VPP setup time  
tDF  
2
130  
ns  
tVPS  
tPW  
µs  
Programming pulse width  
0.19  
0.19  
0.20  
0.21  
5.25  
ms  
ms  
*3  
PGM pulse width for overwrite  
programming  
tOPW  
CE setup time  
tCES  
tVCS  
tOE  
2
2
0
µs  
µs  
ns  
VCC setup time  
Data output delay time  
200  
Notes: 1. Input pulse level: 0.45 V to 2.2 V  
Input rise time/fall time 20 ns  
Timing reference levels Input: 0.8 V, 2.0 V  
Output: 0.8 V, 2.0 V  
2. tDF is defined at the point at which the output is floating and the output level cannot be  
read.  
3. tOPW is defined by the value given in figure 6.4, High-Speed, High-Reliability  
Programming Flow Chart.  
124  
Figure 6.5 shows a PROM write/verify timing diagram.  
Write  
Verify  
Address  
t
AS  
tAH  
Data  
Input data  
Output data  
t
DS  
t
DH  
tDF  
V
V
PP  
CC  
V
PP  
CC  
t
VPS  
+1  
V
CC  
V
t
t
VCS  
CES  
V
CC  
CE  
PGM  
t
PW  
t
OES  
tOE  
OE  
t
OPW*  
Note:  
*
t
opw is defined by the value shown in figure 6.4, High-Speed, High-Reliability Programming Flowchart.  
Figure 6.5 PROM Write/Verify Timing  
125  
6.3.2  
Programming Precautions  
Use the specified programming voltage and timing.  
The programming voltage in PROM mode (V ) is 12.5 V. Use of a higher voltage can  
PP  
permanently damage the chip. Be especially careful with respect to PROM programmer  
overshoot.  
Setting the PROM programmer to Hitachi specifications for the HN27C101 will result in  
correct V of 12.5 V.  
PP  
Make sure the index marks on the PROM programmer socket, socket adapter, and chip are  
properly aligned. If they are not, the chip may be destroyed by excessive current flow. Before  
programming, be sure that the chip is properly mounted in the PROM programmer.  
Avoid touching the socket adapter or chip while programming, since this may cause contact  
faults and write errors.  
Take care when setting the programming mode, as page programming is not supported.  
When programming with a PROM programmer, be sure to specify addresses from H'0000 to  
H'EDFF. If programming is inadvertently performed from H'EE00 onward, it may not be  
possible to continue PROM programming and verification. When programming, H'FF should  
be set as the data in address area H'EE00 to H'1FFFF.  
126  
6.4  
Reliability of Programmed Data  
A highly effective way to improve data retention characteristics is to bake the programmed chips  
at 150°C, then screen them for data errors. This procedure quickly eliminates chips with PROM  
memory cells prone to early failure.  
Figure 6.6 Shows the recommended screening procedure.  
Program chip and verify  
programmed data  
Bake chip for 24 to 48 hours at  
125°C to 150°C with power off  
Read and check program  
Install  
Figure 6.6 Recommended Screening Procedure  
If a series of programming errors occurs while the same PROM programmer is in use, stop  
programming and check the PROM programmer and socket adapter for defects. Please inform  
Hitachi of any abnormal conditions noted during or after programming or in screening of program  
data after high-temperature baking.  
127  
128  
Section 7 RAM  
7.1  
Overview  
The H8/3862, H8/3863, H8/3822, and H8/3823 have 1 kbyte of high-speed static RAM on-chip,  
and the H8/3864, H8/3865, H8/3866, H8/3867, H8/3824, H8/3825, H8/3826, and H8/3827 have 2  
kbytes. The RAM is connected to the CPU by a 16-bit data bus, allowing high-speed 2-state  
access for both byte data and word data.  
7.1.1  
Block Diagram  
Figure 7.1 shows a block diagram of the on-chip RAM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'F780  
H'F782  
H'F780  
H'F782  
H'F781  
H'F783  
On-chip RAM  
H'FF7E  
H'FF7E  
H'FF7F  
Even-numbered  
address  
Odd-numbered  
address  
Figure 7.1 RAM Block Diagram (H8/3864 and H8/3824)  
129  
130  
Section 8 I/O Ports  
8.1  
Overview  
The H8/3864 Series is provided with six 8-bit I/O ports, one 4-bit I/O port, one 3-bit I/O port, one  
8-bit input-only port, and one 1-bit input-only port. Table 8.1 indicates the functions of each port.  
Each port has of a port control register (PCR) that controls input and output, and a port data  
register (PDR) for storing output data. Input or output can be assigned to individual bits.  
See 2.9.2, Notes on Bit Manipulation, for information on executing bit-manipulation instructions  
to write data in PCR or PDR.  
Ports 5, 6, 7, 8, and A are also used as liquid crystal display segment and common pins, selectable  
in 8-bit units.  
Block diagrams of each port are given in Appendix C, I/O Port Block Diagrams.  
Table 8.1 Port Functions  
Function  
Switching  
Port  
Description  
Pins  
Other Functions  
Registers  
Port 1  
P17 to P15/  
IRQ3 to IRQ1/  
TMIF, TMIC  
External interrupts 3 to 1  
Timer event interrupts  
TMIF, TMIC  
PMR1  
TCRF,  
TMC  
8-bit I/O port  
MOS input pull-up  
option  
P14/IRQ4/ADTRG External interrupt 4 and A/D PMR1, AMR  
converter external trigger  
P13/TMIG  
Timer G input capture input  
PMR1  
PMR1  
P12, P11/  
TMOFH, TMOFL  
Timer F output compare  
output  
P10/TMOW  
Timer A clock output  
PMR1  
Port 3  
P37/AEVL  
P36/AEVH  
P35/TXD31  
P34/RXD31  
SCI3-1 data output (TXD31), PMR3  
8-bit I/O port  
data input (RXD31), clock  
input/output (SCK31), and  
asynchronous counter event  
inputs AEVL, AEVH  
SCR31  
SMR31  
MOS input pull-up  
option  
Large-current port P33/SCK31  
P32/RESO  
P31/UD  
P30/PWM  
Reset output, timer C count- PMR3  
up/down select input, and 14-  
bit PWM output  
131  
Table 8.1 Port Functions (cont)  
Function  
Switching  
Registers  
Port  
Description  
Pins  
Other Functions  
Port 4  
P43/IRQ0  
External interrupt 0  
PMR3  
1-bit input port  
P42/TXD32  
P41/RXD32  
P40/SCK32  
SCI3-2 data output (TXD32), SCR32  
data input (RXD32), clock  
input/output (SCK32  
3-bit I/O port  
SMR32  
)
Port 5  
Port 6  
P57 to P50/  
WKP7 to WKP0/  
SEG8 to SEG1  
Wakeup input (WKP7 to  
WKP0), segment output  
(SEG8 to SEG1)  
PMR5  
LPCR  
8-bit I/O port  
MOS input pull-up  
option  
P67 to P60/  
SEG16 to SEG9  
Segment output (SEG16 to  
SEG9)  
LPCR  
8-bit I/O port  
MOS input pull-up  
option  
Port 7  
Port 8  
P77 to P70/  
SEG24 to SEG17  
Segment output (SEG24 to  
SEG17)  
LPCR  
LPCR  
8-bit I/O port  
8-bit I/O port  
P87/SEG32/CL1  
P86/SEG31/CL2  
P85/SEG30/DO  
P84/SEG29/M  
P83 to P80/  
Segment output  
(SEG32 to SEG25  
)
Segment external expansion  
latch clock (CL1),  
shift clock (CL2),  
SEG28 to SEG25  
display data (DO),  
alternation signal (M)  
Port A 4-bit I/O port  
Port B 8-bit input port  
PA3 to PA0/  
COM4 to COM1  
Common output (COM4 to  
COM1)  
LPCR  
AMR  
PB7 to PB0/  
AN7 to AN0  
A/D converter analog input  
132  
8.2  
Port 1  
8.2.1  
Overview  
Port 1 is a 8-bit I/O port. Figure 8.1 shows its pin configuration.  
P17/IRQ3/TMIF  
P16/IRQ2  
P15/IRQ1/TMIC  
P14/IRQ4 /ADTRG  
Port 1  
P13/TMIG  
P12/TMOFH  
P11/TMOFL  
P10/TMOW  
Figure 8.1 Port 1 Pin Configuration  
Register Configuration and Description  
8.2.2  
Table 8.2 shows the port 1 register configuration.  
Table 8.2 Port 1 Registers  
Name  
Abbrev.  
PDR1  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD4  
H'FFE4  
H'FFE0  
H'FFC8  
Port data register 1  
Port control register 1  
Port pull-up control register 1  
Port mode register 1  
PCR1  
H'00  
PUCR1  
PMR1  
R/W  
R/W  
H'00  
H'00  
133  
1. Port data register 1 (PDR1)  
Bit  
7
6
5
P15  
0
4
3
2
1
P11  
0
0
P10  
0
P17  
0
P16  
0
P14  
0
P1 3  
0
P12  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR1 is an 8-bit register that stores data for port 1 pins P1 to P1 . If port 1 is read while PCR1  
7
0
bits are set to 1, the values stored in PDR1 are read, regardless of the actual pin states. If port 1 is  
read while PCR1 bits are cleared to 0, the pin states are read.  
Upon reset, PDR1 is initialized to H'00.  
2. Port control register 1 (PCR1)  
Bit  
7
6
5
4
3
2
1
0
PCR17 PCR16 PCR15 PCR14 PCR13 PCR12 PCR11 PCR10  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR1 is an 8-bit register for controlling whether each of the port 1 pins P1 to P1 functions as an  
7
0
input pin or output pin. Setting a PCR1 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR1 and in PDR1 are valid only  
when the corresponding pin is designated in PMR1 as a general I/O pin.  
Upon reset, PCR1 is initialized to H'00.  
PCR1 is a write-only register, which is always read as all 1s.  
134  
3. Port pull-up control register 1 (PUCR1)  
Bit  
7
6
5
4
3
2
1
0
PUCR17 PUCR16 PUCR15 PUCR14 PUCR13 PUCR12 PUCR11 PUCR10  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR1 controls whether the MOS pull-up of each of the port 1 pins P1 to P1 is on or off. When  
7
0
a PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS pull-up for  
the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR1 is initialized to H'00.  
4. Port mode register 1 (PMR1)  
Bit  
7
IRQ3  
0
6
IRQ2  
0
5
IRQ1  
0
4
IRQ4  
0
3
2
1
0
TMIG TMOFH TMOFL TMOW  
Initial value  
Read/Write  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR1 is an 8-bit read/write register, controlling the selection of pin functions for port 1 pins.  
Upon reset, PMR1 is initialized to H'00.  
Bit 7: P1 /IRQ /TMIF pin function switch (IRQ3)  
7
3
This bit selects whether pin P1 /IRQ /TMIF is used as P1 or as IRQ /TMIF.  
7
3
7
3
Bit 7  
IRQ3  
Description  
0
1
Functions as P17 I/O pin  
(initial value)  
Functions as IRQ3/TMIF input pin  
Note: Rising or falling edge sensing can be designated for IRQ3, TMIF. For details on TMIF  
settings, see 3. Timer Control Register F (TCRF) in 9.4.2.  
135  
Bit 6: P1 /IRQ pin function switch (IRQ2)  
6
2
This bit selects whether pin P1 /IRQ is used as P1 or as IRQ .  
6
2
6
2
Bit 6  
IRQ2  
Description  
0
1
Functions as P16 I/O pin  
(initial value)  
Functions as IRQ2 input pin  
Note: Rising or falling edge sensing can be designated for IRQ2.  
Bit 5: P1 /IRQ /TMIC pin function switch (IRQ1)  
5
1
This bit selects whether pin P1 /IRQ /TMIC is used as P1 or as IRQ /TMIC.  
5
1
5
1
Bit 5  
IRQ1  
Description  
0
1
Functions as P15 I/O pin  
(initial value)  
Functions as IRQ1/TMIC input pin  
Note: Rising or falling edge sensing can be designated for IRQ1/TMIC.  
For details of TMIC pin setting, see 1. Timer mode register C (TMC) in 9.3.2.  
Bit 4: P1 /IRQ /ADTRG pin function switch (IRQ4)  
4
4
This bit selects whether pin P1 /IRQ /ADTRG is used as P1 or as IRQ /ADTRG.  
4
4
4
4
Bit 4  
IRQ4  
Description  
0
1
Functions as P14 I/O pin  
(initial value)  
Functions as IRQ4/ADTRG input pin  
Note: For details of ADTRG pin setting, see 12.3.2, Start of A/D Conversion by External Trigger.  
Bit 3: P1 /TMIG pin function switch (TMIG)  
3
This bit selects whether pin P1 /TMIG is used as P1 or as TMIG.  
3
3
Bit 3  
TMIG  
Description  
0
1
Functions as P13 I/O pin  
(initial value)  
Functions as TMIG input pin  
136  
Bit 2: P1 /TMOFH pin function switch (TMOFH)  
2
This bit selects whether pin P1 /TMOFH is used as P1 or as TMOFH.  
2
2
Bit 2  
TMOFH  
Description  
0
1
Functions as P12 I/O pin  
(initial value)  
(initial value)  
(initial value)  
Functions as TMOFH output pin  
Bit 1: P1 /TMOFL pin function switch (TMOFL)  
1
This bit selects whether pin P1 /TMOFL is used as P1 or as TMOFL.  
1
1
Bit 1  
TMOFL  
Description  
0
1
Functions as P11 I/O pin  
Functions as TMOFL output pin  
Bit 0: P1 /TMOW pin function switch (TMOW)  
0
This bit selects whether pin P1 /TMOW is used as P1 or as TMOW.  
0
0
Bit 0  
TMOW  
Description  
0
1
Functions as P10 I/O pin  
Functions as TMOW output pin  
137  
8.2.3  
Pin Functions  
Table 8.3 shows the port 1 pin functions.  
Table 8.3 Port 1 Pin Functions  
Pin  
Pin Functions and Selection Method  
P17/IRQ3/TMIF The pin function depends on bit IRQ3 in PMR1, bits CKSL2 to CKSL0 in TCRF,  
and bit PCR17 in PCR1.  
IRQ3  
PCR17  
0
0
1
1
*
CKSL2 to CKSL0  
Pin function  
*
Not 0**  
0**  
P17 input pin P17 output pin IRQ3 input pin IRQ3/TMIF  
input pin  
Note: When this pin is used as the TMIF input pin, clear bit IEN3 to 0 in IENR1 to  
disable the IRQ3 interrupt.  
P16/IRQ2  
The pin function depends on bits IRQ2 in PMR1 and bit PCR16 in PCR1.  
IRQ2  
PCR16  
0
1
0
1
*
Pin function  
P16 input pin P16 output pin  
IRQ2 input pin  
P15/IRQ1  
TMIC  
The pin function depends on bit IRQ1 in PMR1, bits TMC2 to TMC0 in TMC, and  
bit PCR15 in PCR1.  
IRQ1  
PCR15  
0
1
0
1
*
TMC2 to TMC0  
Pin function  
*
Not 111  
111  
P15 input pin P15 output pin IRQ1 input pin IRQ1/TMIC  
input pin  
Note: When this pin is used as the TMIC input pin, clear bit IEN1 to 0 in IENR1  
to disable the IRQ1 interrupt.  
P14/IRQ4  
ADTRG  
The pin function depends on bit IRQ4 in PMR1, bit TRGE in AMR, and bit PCR14  
in PCR1.  
IRQ4  
PCR14  
0
1
0
1
*
TRGE  
*
0
1
Pin function  
P14 input pin P14 output pin IRQ4 input pin IRQ4/ADTRG  
input pin  
Note: When this pin is used as the ADTRG input pin, clear bit IEN4 to 0 in  
IENR1 to disable the IRQ4 interrupt.  
138  
Table 8.3 Port 1 Pin Functions (cont)  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit TMIG in PMR1 and bit PCR13 in PCR1.  
P13/TMIG  
TMIG  
PCR13  
0
1
0
1
*
Pin function  
P13 input pin P13 output pin  
TMIG input pin  
P12/TMOFH  
P11/TMOFL  
P10/TMOW  
The pin function depends on bit TMOFH in PMR1 and bit PCR12 in PCR1.  
TMOFH  
PCR12  
0
1
0
1
*
Pin function  
P12 input pin P12 output pin  
TMOFH output pin  
The pin function depends on bit TMOFL in PMR1 and bit PCR11 in PCR1.  
TMOFL  
PCR11  
0
1
0
1
*
Pin function  
P11 input pin P11 output pin  
TMOFL output pin  
The pin function depends on bit TMOW in PMR1 and bit PCR10 in PCR1.  
TMOW  
PCR10  
0
1
0
1
*
Pin function  
P10 input pin P10 output pin  
TMOW output pin  
*: Don’t care  
139  
8.2.4  
Pin States  
Table 8.4 shows the port 1 pin states in each operating mode.  
Table 8.4 Port 1 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch  
Subactive Active  
P17/IRQ3/TMIF  
P16/IRQ2  
P15/IRQ1/TMIC  
P14/IRQ4/ADTRG  
P13/TMIG  
High-  
Retains Retains  
Retains Functional Functional  
impedance previous previous impedance* previous  
state state state  
P12/TMOFH  
P11/TMOFL  
P10/TMOW  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
8.2.5  
MOS Input Pull-Up  
Port 1 has a built-in MOS input pull-up function that can be controlled by software. When a  
PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS input pull-up  
for that pin. The MOS input pull-up function is in the off state after a reset.  
PCR1n  
0
0
1
PUCR1n  
0
1
*
MOS input pull-up  
Off  
On  
Off  
(n = 7 to 0)  
*: Don’t care  
140  
8.3  
Port 3  
8.3.1  
Overview  
Port 3 is a 8-bit I/O port, configured as shown in figure 8.2.  
P37/AEVL  
P36/AEVH  
P35/TXD31  
P34/RXD31  
P33/SCK31  
P32/RESO  
P31/UD  
Port 3  
P30/PWM  
Figure 8.2 Port 3 Pin Configuration  
Register Configuration and Description  
8.3.2  
Table 8.5 shows the port 3 register configuration.  
Table 8.5 Port 3 Registers  
Name  
Abbrev.  
PDR3  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD6  
H'FFE6  
H'FFE1  
H'FFCA  
Port data register 3  
Port control register 3  
Port pull-up control register 3  
Port mode register 3  
PCR3  
H'00  
PUCR3  
PMR3  
R/W  
R/W  
H'00  
H'04  
141  
1. Port data register 3 (PDR3)  
Bit  
7
P37  
0
6
P36  
0
5
P35  
0
4
P34  
0
3
P33  
0
2
P32  
0
1
P31  
0
0
P30  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR3 is an 8-bit register that stores data for port 3 pins P3 to P3 . If port 3 is read while PCR3  
7
0
bits are set to 1, the values stored in PDR3 are read, regardless of the actual pin states. If port 3 is  
read while PCR3 bits are cleared to 0, the pin states are read.  
Upon reset, PDR3 is initialized to H'00.  
2. Port control register 3 (PCR3)  
Bit  
7
6
5
4
3
2
1
0
PCR37 PCR36 PCR35 PCR34 PCR33 PCR32 PCR31 PCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR3 is an 8-bit register for controlling whether each of the port 3 pins P3 to P3 functions as an  
7
0
input pin or output pin. Setting a PCR3 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR3 and in PDR3 are valid only  
when the corresponding pin is designated in PMR3 as a general I/O pin.  
Upon reset, PCR3 is initialized to H'00.  
PCR3 is a write-only register, which is always read as all 1s.  
3. Port pull-up control register 3 (PUCR3)  
Bit  
7
6
5
4
3
2
1
0
PUCR37 PUCR36 PUCR35 PUCR34 PUCR33 PUCR32 PUCR31 PUCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR3 controls whether the MOS pull-up of each of the port 3 pins P3 to P3 is on or off. When  
7
0
a PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for  
the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR3 is initialized to H'00.  
142  
4. Port mode register 3 (PMR3)  
Bit  
7
AEVL  
0
6
5
4
3
IRQ0  
0
2
RESO  
1
1
UD  
0
0
PWM  
0
AEVH WDCKS  
NCS  
0
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR3 is an 8-bit read/write register, controlling the selection of pin functions for port 3 pins.  
Upon reset, PMR3 is initialized to H'04.  
Bit 7: P3 /AEVL pin function switch (AEVL)  
7
This bit selects whether pin P3 /AEVL is used as P3 or as AEVL.  
7
7
Bit 7  
AEVL  
Description  
0
1
Functions as P37 I/O pin  
(initial value)  
Functions as AEVL input pin  
Bit 6: P3 /AEVH pin function switch (AEVH)  
6
This bit selects whether pin P3 /AEVH is used as P3 or as AEVH.  
6
6
Bit 6  
AEVH  
Description  
0
1
Functions as P36 I/O pin  
(initial value)  
Functions as AEVH input pin  
Bit 5: Watchdog timer source clock select (WDCKS)  
This bit selects the watchdog timer source clock.  
Bit 5  
WDCKS  
Description  
0
1
ø/8192 selected  
øw/32 selected  
(initial value)  
143  
Bit 4: TMIG noise canceler select (NCS)  
This bit controls the noise canceler for the input capture input signal (TMIG).  
Bit 4  
NCS  
Description  
0
1
Noise cancellation function not used  
Noise cancellation function used  
(initial value)  
Bit 3: P4 /IRQ pin function switch (IRQ0)  
3
0
This bit selects whether pin P4 /IRQ is used as P4 or as IRQ .  
3
0
3
0
Bit 3  
IRQ0  
Description  
0
1
Functions as P43 input pin  
(initial value)  
Functions as IRQ0 input pin  
Bit 2: P3 /RESO pin function switch (RESO)  
2
This bit selects whether pin P3 /RESO is used as P3 or as RESO.  
2
2
Bit 2  
RESO  
Description  
0
1
Functions as P32 I/O pin  
Functions as RESO output pin  
(initial value)  
Bit 1: P3 /UD pin function switch (SI1)  
1
This bit selects whether pin P3 /UD is used as P3 or as UD.  
1
1
Bit 1  
UD  
Description  
0
1
Functions as P31 I/O pin  
Functions as UD input pin  
(initial value)  
144  
Bit 0: P3 /PWM pin function switch (PWM)  
0
This bit selects whether pin P3 /PWM is used as P3 or as PWM.  
0
0
Bit 0  
PWM  
Description  
0
1
Functions as P30 I/O pin  
(initial value)  
Functions as PWM output pin  
8.3.3  
Pin Functions  
Table 8.9 shows the port 3 pin functions.  
Table 8.9 Port 3 Pin Functions  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit SO1 in PMR3 and bit PCR32 in PCR3.  
P37/AEVL  
AEVL  
PCR37  
0
1
0
1
*
Pin function  
P37 input pin  
P37 output pin  
AEVL input pin  
P36/AEVH  
The pin function depends on bit AEVH in PMR3 and bit PCR36 in PCR3.  
AEVH  
PCR36  
0
1
0
1
*
Pin function  
P36 input pin  
P36 output pin  
AEVH input pin  
P35/TXD31  
The pin function depends on bit TE in SCR3-1, bit SPC31 in SPCR, and bit  
PCR35 in PCR3.  
SPC31  
TE  
0
0
1
1
PCR35  
0
1
*
Pin function  
P35 input pin  
P35 output pin  
TXD31 output pin  
*: Dont care  
145  
Table 8.9 Port 3 Pin Functions (cont)  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit RE in SCR3-1 and bit PCR34 in PCR3.  
P34/RXD31  
RE  
0
1
PCR34  
0
1
*
Pin function  
P34 input pin  
P34 output pin  
RXD31 input pin  
P33/SCK31  
The pin function depends on bits CKE1, CKE0, and SMR31 in SCR3-1 and bit  
PCR33 in PCR3.  
CKE1  
CKE0  
0
1
*
*
*
0
1
COM31  
PCR33  
0
1
*
0
1
*
Pin function  
P33 input pin P33 output pin SCK31 output SCK31 input  
pin pin  
P32/RESO  
The pin function depends on bit RESO in PMR3 and bit PCR32 in PCR3.  
RESO  
PCR32  
0
1
0
1
*
Pin function  
P32 input pin  
P32 output pin  
RESO output pin  
P31/UD  
The pin function depends on bit UD in PMR3 and bit PCR31 in PCR3.  
UD  
0
1
PCR31  
0
1
*
Pin function  
P31 input pin  
P31 output pin  
UD input pin  
P30/PWM  
The pin function depends on bit PWM in PMR3 and bit PCR30 in PCR3.  
PWM  
PCR30  
0
1
0
1
*
Pin function  
P30 input pin  
P30 output pin  
PWM output pin  
*: Dont care  
146  
8.3.4  
Pin States  
Table 8.10 shows the port 3 pin states in each operating mode.  
Table 8.10 Port 3 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch Subactive Active  
P37/AEVL  
P36/AEVH  
P35/TXD31  
P34/RXD31  
P33/SCK31  
High-  
impedance  
Retains Retains  
previous previous impedance* previous  
state state state  
Retains Functional Functional  
P32/RESO  
RESO output  
P31/UD  
High-  
P30/PWM  
impedance  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
8.3.5  
MOS Input Pull-Up  
Port 3 has a built-in MOS input pull-up function that can be controlled by software. When a  
PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for  
that pin. The MOS pull-up function is in the off state after a reset.  
PCR3n  
0
0
1
PUCR3n  
0
1
*
MOS input pull-up  
Off  
On  
Off  
(n = 7 to 0)  
*: Dont care  
147  
8.4  
Port 4  
8.4.1  
Overview  
Port 4 is a 3-bit I/O port and 1-bit input port, configured as shown in figure 8.3.  
P43 /IRQ0  
P42 /TXD32  
Port 4  
P41 /RXD32  
P40 /SCK32  
Figure 8.3 Port 4 Pin Configuration  
8.4.2  
Register Configuration and Description  
Table 8.8 shows the port 4 register configuration.  
Table 8.8 Port 4 Registers  
Name  
Abbrev.  
PDR4  
R/W  
R/W  
W
Initial Value  
H'F8  
Address  
H'FFD7  
H'FFE7  
Port data register 4  
Port control register 4  
PCR4  
H'F8  
1. Port data register 4 (PDR4)  
Bit  
7
1
6
1
5
1
4
1
3
P43  
1
2
1
0
P42  
0
P41  
0
P4 0  
0
Initial value  
Read/Write  
R
R/W  
R/W  
R/W  
PDR4 is an 8-bit register that stores data for port 4 pins P4 to P4 . If port 4 is read while PCR4  
2
0
bits are set to 1, the values stored in PDR4 are read, regardless of the actual pin states. If port 4 is  
read while PCR4 bits are cleared to 0, the pin states are read.  
Upon reset, PDR4 is initialized to H'F8.  
148  
2. Port control register 4 (PCR4)  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
PCR42 PCR41 PCR40  
Initial value  
Read/Write  
0
0
0
W
W
W
PCR4 is an 8-bit register for controlling whether each of port 4 pins P4 to P4 functions as an  
2
0
input pin or output pin. Setting a PCR4 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. PCR4 and PDR4 settings are valid when the  
corresponding pins are designated for general-purpose input/output by SCR3-2.  
Upon reset, PCR4 is initialized to H'F8.  
PCR4 is a write-only register, which always reads all 1s.  
8.4.3  
Pin Functions  
Table 8.9 shows the port 4 pin functions.  
Table 8.9 Port 4 Pin Functions  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit IRQ0 in PMR3.  
P43/IRQ0  
IRQ0  
0
1
Pin function  
P43 input pin  
IRQ0 input pin  
P42/TXD32  
The pin function depends on bit TE in SCR3-2, bit SPC32 in SPCR, and bit  
PCR42 in PCR4.  
SPC32  
TE  
0
0
1
1
PCR42  
0
1
*
Pin function  
P42 input pin  
P42 output pin  
TXD32 output pin  
P41/RXD32  
The pin function depends on bit RE in SCR3-2 and bit PCR41 in PCR4.  
RE32  
PCR41  
0
1
0
1
*
Pin function  
P41 input pin  
P41 output pin  
RXD32 input pin  
*: Dont care  
149  
Table 8.9 Port 4 Pin Functions (cont)  
Pin  
Pin Functions and Selection Method  
P40/SCK32  
The pin function depends on bit CKE1 and CKE0 in SCR3-2, bit COM32 in  
SMR32, and bit PCR40 in PCR4.  
CKE1  
CKE0  
0
1
*
*
*
0
1
COM32  
PCR40  
0
1
*
0
1
*
Pin function  
P40 input pin P40 output pin SCK32 output SCK32 input  
pin pin  
8.4.4  
Pin States  
Table 8.10 shows the port 4 pin states in each operating mode.  
Table 8.10 Port 4 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch  
Subactive Active  
P43/IRQ0  
High-  
Retains Retains  
Retains Functional Functional  
P42/TXD32  
P41/RXD32  
P40/SCK32  
impedance previous previous impedance previous  
state state state  
150  
8.5  
Port 5  
8.5.1  
Overview  
Port 5 is an 8-bit I/O port, configured as shown in figure 8.4.  
P57/WKP7/SEG8  
P56/WKP6/SEG7  
P55/WKP5/SEG6  
P54/WKP4/SEG5  
P53/WKP3/SEG4  
P52/WKP2/SEG3  
P51/WKP1/SEG2  
P50/WKP0/SEG1  
Port 5  
Figure 8.4 Port 5 Pin Configuration  
Register Configuration and Description  
8.5.2  
Table 8.11 shows the port 5 register configuration.  
Table 8.11 Port 5 Registers  
Name  
Abbrev.  
PDR5  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD8  
H'FFE8  
H'FFE2  
H'FFCC  
Port data register 5  
Port control register 5  
Port pull-up control register 5  
Port mode register 5  
PCR5  
H'00  
PUCR5  
PMR5  
R/W  
R/W  
H'00  
H'00  
151  
1. Port data register 5 (PDR5)  
Bit  
7
P57  
0
6
P56  
0
5
P55  
0
4
P54  
0
3
P53  
0
2
P52  
0
1
P51  
0
0
P50  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR5 is an 8-bit register that stores data for port 5 pins P5 to P5 . If port 5 is read while PCR5  
7
0
bits are set to 1, the values stored in PDR5 are read, regardless of the actual pin states. If port 5 is  
read while PCR5 bits are cleared to 0, the pin states are read.  
Upon reset, PDR5 is initialized to H'00.  
2. Port control register 5 (PCR5)  
Bit  
7
6
5
4
3
2
1
0
PCR57 PCR56 PCR55 PCR54 PCR53 PCR52  
PCR51 PCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR5 is an 8-bit register for controlling whether each of the port 5 pins P5 to P5 functions as an  
7
0
input pin or output pin. Setting a PCR5 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. PCR5 and PDR5 settings are valid when the  
corresponding pins are designated for general-purpose input/output by PMR5 and bits SGS3 to  
SGS0 in LPCR.  
Upon reset, PCR5 is initialized to H'00.  
PCR5 is a write-only register, which is always read as all 1s.  
3. Port pull-up control register 5 (PUCR5)  
Bit  
7
6
5
4
3
2
1
0
PUCR57 PUCR56 PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR5 controls whether the MOS pull-up of each of port 5 pins P5 to P5 is on or off. When a  
7
0
PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for  
the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR5 is initialized to H'00.  
152  
4. Port mode register 5 (PMR5)  
Bit  
7
WKP7  
0
6
WKP6  
0
5
WKP5  
0
4
WKP4  
0
3
WKP3  
0
2
WKP2  
0
1
WKP1  
0
0
WKP0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR5 is an 8-bit read/write register, controlling the selection of pin functions for port 5 pins.  
Upon reset, PMR5 is initialized to H'00.  
Bit n: P5 /WKP /SEG pin function switch (WKPn)  
n+1  
n
n
When pin P5n/WKPn/SEGn+1 is not used as SEG , these bits select whether the pin is used as  
n+1  
P5n or WKP .  
n
Bit n  
WKPn  
Description  
0
1
Functions as P5n I/O pin  
Functions as WKPn input pin  
(initial value)  
(n = 7 to 0)  
Note: For use as SEGn+1, see 13.2.1, LCD Port Control Register (LPCR).  
153  
8.5.3  
Pin Functions  
Table 8.12 shows the port 5 pin functions.  
Table 8.12 Port 5 Pin Functions  
Pin  
Pin Functions and Selection Method  
P57/WKP7/  
SEG8 to  
The pin function depends on bit WKPn in PMR5, bit PCR5n in PCR5, and bits  
SGS3 to SGS0 in LPCR.  
P50/WKP0/  
(n = 7 to 0)  
SEG1  
SGS3 to SGS0  
WKPn  
0***  
1***  
0
1
*
*
PCR5n  
0
1
*
Pin function  
P5n input pin P5n output pin WKPn input  
SEGn+1  
output pin  
pin  
*: Dont care  
8.5.4  
Pin States  
Table 8.13 shows the port 5 pin states in each operating mode.  
Table 8.13 Port 5 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch Subactive Active  
Retains Functional Functional  
P57/WKP7/  
SEG8 to P50/  
WKP0/SEG1  
High-  
Retains Retains  
impedance previous previous impedance* previous  
state state state  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
154  
8.5.5  
MOS Input Pull-Up  
Port 5 has a built-in MOS input pull-up function that can be controlled by software. When a  
PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for  
that pin. The MOS pull-up function is in the off state after a reset.  
PCR5n  
0
0
1
PUCR5n  
0
1
*
MOS input pull-up  
Off  
On  
Off  
(n = 7 to 0)  
*: Dont care  
155  
8.6  
Port 6  
8.6.1  
Overview  
Port 6 is an 8-bit I/O port. The port 6 pin configuration is shown in figure 8.5.  
P67/SEG16  
P66/SEG15  
P65/SEG14  
P64/SEG13  
Port 6  
P63/SEG12  
P62/SEG11  
P61/SEG10  
P60/SEG9  
Figure 8.5 Port 6 Pin Configuration  
8.6.2  
Register Configuration and Description  
Table 8.14 shows the port 6 register configuration.  
Table 8.14 Port 6 Registers  
Name  
Abbrev.  
PDR6  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD9  
H'FFE9  
H'FFE3  
Port data register 6  
Port control register 6  
Port pull-up control register 6  
PCR6  
H'00  
PUCR6  
R/W  
H'00  
156  
1. Port data register 6 (PDR6)  
Bit  
7
P67  
0
6
P66  
0
5
P65  
0
4
P64  
0
3
P63  
0
2
P62  
0
1
P61  
0
0
P60  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR6 is an 8-bit register that stores data for port 6 pins P6 to P6 .  
7
0
If port 6 is read while PCR6 bits are set to 1, the values stored in PDR6 are read, regardless of the  
actual pin states. If port 6 is read while PCR6 bits are cleared to 0, the pin states are read.  
Upon reset, PDR6 is initialized to H'00.  
2. Port control register 6 (PCR6)  
Bit  
7
6
5
4
3
2
1
0
PCR67 PCR66 PCR65 PCR64 PCR63 PCR62 PCR61 PCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR6 is an 8-bit register for controlling whether each of the port 6 pins P6 to P6 functions as an  
7
0
input pin or output pin.  
Setting a PCR6 bit to 1 makes the corresponding pin (P6 to P6 ) an output pin, while clearing the  
7
0
bit to 0 makes the pin an input pin. PCR6 and PDR6 settings are valid when the corresponding  
pins are designated for general-purpose input/output by bits SGS3 to SGS0 in LPCR.  
Upon reset, PCR6 is initialized to H'00.  
PCR6 is a write-only register, which always reads all 1s.  
157  
3. Port pull-up control register 6 (PUCR6)  
Bit  
7
6
5
4
3
2
1
0
PUCR67 PUCR66 PUCR65 PUCR64 PUCR63 PUCR62 PUCR61 PUCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR6 controls whether the MOS pull-up of each of the port 6 pins P6 to P6 is on or off. When  
7
0
a PCR6 bit is cleared to 0, setting the corresponding PUCR6 bit to 1 turns on the MOS pull-up for  
the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR6 is initialized to H'00.  
8.6.3  
Pin Functions  
Table 8.15 shows the port 6 pin functions.  
Table 8.15 Port 6 Pin Functions  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit PCR6n in PCR6 and bits SGS3 to SGS0 in  
P67/SEG16 to  
P60/SEG9  
LPCR.  
(n = 7 to 0)  
011**, 1***  
*
SEG3 to SEGS0  
PCR6n  
00**, 010*  
0
1
Pin function  
P6n input pin  
P6n output pin  
SEGn+9 output pin  
*: Dont care  
8.6.4  
Pin States  
Table 8.16 shows the port 6 pin states in each operating mode.  
Table 8.16 Port 6 Pin States  
Pin  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch  
Subactive Active  
P67/SEG16 to  
P60/SEG9  
High-  
Retains Retains  
Retains Functional Functional  
impedance previous previous impedance* previous  
state state state  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
158  
8.6.5  
MOS Input Pull-Up  
Port 6 has a built-in MOS pull-up function that can be controlled by software. When a PCR6 bit is  
cleared to 0, setting the corresponding PUCR6 bit to 1 turns on the MOS pull-up for that pin. The  
MOS pull-up function is in the off state after a reset.  
PCR6n  
0
0
1
PUCR6n  
0
1
*
MOS input pull-up  
Off  
On  
Off  
(n = 7 to 0)  
*: Dont care  
159  
8.7  
Port 7  
8.7.1  
Overview  
Port 7 is a 8-bit I/O port, configured as shown in figure 8.6.  
P77/SEG24  
P76/SEG23  
P75/SEG22  
P74/SEG21  
P73/SEG20  
P72/SEG19  
P71/SEG18  
P70/SEG17  
Port 7  
Figure 8.6 Port 7 Pin Configuration  
Register Configuration and Description  
8.7.2  
Table 8.17 shows the port 7 register configuration.  
Table 8.17 Port 7 Registers  
Name  
Abbrev.  
PDR7  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFDA  
H'FFEA  
Port data register 7  
Port control register 7  
PCR7  
H'00  
160  
1. Port data register 7 (PDR7)  
Bit  
7
P77  
0
6
P76  
0
5
P75  
0
4
P74  
0
3
P73  
0
2
P72  
0
1
P71  
0
0
P70  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR7 is an 8-bit register that stores data for port 7 pins P7 to P7 . If port 7 is read while PCR7  
7
0
bits are set to 1, the values stored in PDR7 are read, regardless of the actual pin states. If port 7 is  
read while PCR7 bits are cleared to 0, the pin states are read.  
Upon reset, PDR7 is initialized to H'00.  
2. Port control register 7 (PCR7)  
Bit  
7
6
5
4
3
2
1
0
PCR77 PCR76 PCR75 PCR74 PCR73 PCR72  
PCR71 PCR7  
0
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR7 is an 8-bit register for controlling whether each of the port 7 pins P7 to P7 functions as an  
7
0
input pin or output pin. Setting a PCR7 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. PCR7 and PDR7 settings are valid when the  
corresponding pins are designated for general-purpose input/output by bits SGS3 to SGS0 in  
LPCR.  
Upon reset, PCR7 is initialized to H'00.  
PCR7 is a write-only register, which always reads as all 1s.  
161  
8.7.3  
Pin Functions  
Table 8.18 shows the port 7 pin functions.  
Table 8.18 Port 7 Pin Functions  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit PCR7n in PCR7 and bits SGS3 to SGS0 in  
P77/SEG24 to  
P70/SEG17  
LPCR.  
(n = 7 to 0)  
01**, 1***  
*
SEGS3 to SEGS0  
PCR7n  
00**  
0
1
Pin function  
P7n input pin  
P7n output pin  
SEGn+17 output pin  
*: Dont care  
8.7.4  
Pin States  
Table 8.19 shows the port 7 pin states in each operating mode.  
Table 8.19 Port 7 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch  
Subactive Active  
P77/SEG24 to  
P70/SEG17  
High-  
Retains Retains  
Retains Functional Functional  
impedance previous previous impedance previous  
state state state  
162  
8.8  
Port 8  
8.8.1  
Overview  
Port 8 is an 8-bit I/O port configured as shown in figure 8.7.  
P87/SEG32/CL1  
P86/SEG31/CL2  
P85/SEG30/DO  
P84/SEG29/M  
P83/SEG28  
Port 8  
P82/SEG27  
P81/SEG26  
P80/SEG25  
Figure 8.7 Port 8 Pin Configuration  
Register Configuration and Description  
8.8.2  
Table 8.20 shows the port 8 register configuration.  
Table 8.20 Port 8 Registers  
Name  
Abbrev.  
PDR8  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFDB  
H'FFEB  
Port data register 8  
Port control register 8  
PCR8  
H'00  
163  
1. Port data register 8 (PDR8)  
Bit  
7
P87  
0
6
P86  
0
5
P85  
0
4
P84  
0
3
P83  
0
2
P82  
0
1
P81  
0
0
P80  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR8 is an 8-bit register that stores data for port 8 pins P8 to P8 . If port 8 is read while PCR8  
7
0
bits are set to 1, the values stored in PDR8 are read, regardless of the actual pin states. If port 8 is  
read while PCR8 bits are cleared to 0, the pin states are read.  
Upon reset, PDR8 is initialized to H'00.  
2. Port control register 8 (PCR8)  
Bit  
7
6
5
4
3
2
1
0
PCR87 PCR86 PCR85 PCR84 PCR83 PCR82  
PCR81 PCR80  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR8 is an 8-bit register for controlling whether each of the port 8 pins P8 to P8 functions as an  
7
0
input or output pin. Setting a PCR8 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. PCR8 and PDR8 settings are valid when the  
corresponding pins are designated for general-purpose input/output by bits SGS3 to SGS0 in  
LPCR.  
Upon reset, PCR8 is initialized to H'00.  
PCR8 is a write-only register, which is always read as all 1s.  
164  
8.8.3  
Pin Functions  
Table 8.21 shows the port 8 pin functions.  
Table 8.21 Port 8 Pin Functions  
Pin  
Pin Functions and Selection Method  
P87/SEG32  
CL1  
/
/
/
/
The pin function depends on bit PCR87 in PCR8 and bits SGX and SGS3 to SGS0  
in LPCR.  
SEGS3 to SEGS0  
SGX  
000*  
001*, 01**, 1***  
*
1
*
0
0
PCR87  
0
1
*
Pin function  
P87 input pin P87 output pin SEG32 output pin CL1 output pin  
P86/SEG31  
CL2  
The pin function depends on bit PCR86 in PCR8 and bits SGX and SGS3 to SGS0  
in LPCR.  
SEGS3 to SEGS0  
SGX  
000*  
001*, 01**, 1***  
*
1
*
0
0
PCR86  
0
1
*
Pin function  
P86 input pin P86 output pin SEG31 output pin CL2 output pin  
P85/SEG30  
DO  
The pin function depends on bit PCR85 in PCR8 and bits SGX and SGS3 to SGS0  
in LPCR.  
SEGS3 to SEGS0  
SGX  
000*  
001*, 01**, 1***  
*
1
*
0
0
PCR95  
0
1
*
Pin function  
P85 input pin P85 output pin SEG30 output pin D0 output pin  
P84/SEG29  
M
The pin function depends on bit PCR84 in PCR8 and bits SGX and SGS3 to SGS0  
in LPCR.  
SEGS3 to SEGS0  
SGX  
000*  
001*, 01**, 1***  
*
1
*
0
0
PCR94  
0
1
*
Pin function  
P84 input pin P84 output pin SEG29 output pin M output pin  
P83/SEG28 to The pin function depends on bit PCR8n in PCR8 and bits SGS3 to SGS0 in LPCR.  
P80/SEG25  
(n = 3 to 0)  
001*, 01**, 1***  
*
SEGS3 to SEGS0  
PCR8n  
000*  
0
1
Pin function  
P8n input pin  
P8n output pin  
SEGn+25 output pin  
*: Dont care  
165  
8.8.4  
Pin States  
Table 8.22 shows the port 8 pin states in each operating mode.  
Table 8.22 Port 8 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch Subactive Active  
P87/SEG32/CL1  
P86/SEG31/CL2  
P85/SEG30/DO  
P84/SEG29/M  
P83/SEG28 to  
P80/SEG25  
High-  
Retains Retains  
Retains Functional Functional  
impedance previous previous impedance previous  
state state state  
166  
8.9  
Port A  
8.9.1  
Overview  
Port A is a 4-bit I/O port, configured as shown in figure 8.8.  
PA3/COM4  
PA2/COM3  
PA1/COM2  
PA0/COM1  
Port A  
Figure 8.8 Port A Pin Configuration  
Register Configuration and Description  
8.9.2  
Table 8.23 shows the port A register configuration.  
Table 8.23 Port A Registers  
Name  
Abbrev.  
PDRA  
R/W  
R/W  
W
Initial Value  
H'F0  
Address  
H'FFDD  
H'FFED  
Port data register A  
Port control register A  
PCRA  
H'F0  
1. Port data register A (PDRA)  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
PA3  
PA2  
0
PA1  
0
PA 0  
0
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
PDRA is an 8-bit register that stores data for port A pins PA to PA . If port A is read while  
3
0
PCRA bits are set to 1, the values stored in PDRA are read, regardless of the actual pin states. If  
port A is read while PCRA bits are cleared to 0, the pin states are read.  
Upon reset, PDRA is initialized to H'F0.  
167  
2. Port control register A (PCRA)  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
PCRA3 PCRA2 PCRA1 PCRA 0  
Initial value  
Read/Write  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
PCRA controls whether each of port A pins PA to PA functions as an input pin or output pin.  
3
0
Setting a PCRA bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0  
makes the pin an input pin. PCRA and PDRA settings are valid when the corresponding pins are  
designated for general-purpose input/output by LPCR.  
Upon reset, PCRA is initialized to H'F0.  
PCRA is a write-only register, which always reads all 1s.  
168  
8.9.3  
Pin Functions  
Table 8.24 shows the port A pin functions.  
Table 8.24 Port A Pin Functions  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit PCRA3 in PCRA and bits SGS3 to SGS0.  
PA3/COM4  
SEGS3 to SEGS0  
PCRA3  
0000  
0
0000  
1
Not 0000  
*
Pin function  
PA3 input pin  
PA3 output pin  
COM4 output pin  
PA2/COM3  
PA1/COM2  
PA0/COM1  
The pin function depends on bit PCRA2 in PCRA and bits SGS3 to SGS0.  
SEGS3 to SEGS0  
PCRA2  
0000  
0
0000  
1
Not 0000  
*
Pin function  
PA2 input pin  
PA2 output pin  
COM3 output pin  
The pin function depends on bit PCRA1 in PCRA and bits SGS3 to SGS0.  
SEGS3 to SEGS0  
PCRA1  
0000  
0
0000  
1
Not 0000  
*
Pin function  
PA1 input pin  
PA1 output pin  
COM2 output pin  
The pin function depends on bit PCRA0 in PCRA and bits SGS3 to SGS0.  
SEGS3 to SEGS0  
PCRA0  
0000  
Not 0000  
*
0
1
Pin function  
PA0 input pin  
PA0 output pin  
COM1 output pin  
*: Dont care  
169  
8.9.4  
Pin States  
Table 8.25 shows the port A pin states in each operating mode.  
Table 8.25 Port A Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
High-  
Watch Subactive Active  
PA3/COM4  
PA2/COM3  
PA1/COM2  
PA0/COM1  
High-  
Retains Retains  
Retains Functional Functional  
impedance previous previous impedance previous  
state state state  
170  
8.10  
Port B  
8.10.1  
Overview  
Port B is an 8-bit input-only port, configured as shown in figure 8.9.  
PB7/AN7  
PB6/AN6  
PB5/AN5  
PB4/AN4  
Port B  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
Figure 8.9 Port B Pin Configuration  
8.10.2  
Register Configuration and Description  
Table 8.26 shows the port B register configuration.  
Table 8.26 Port B Register  
Name  
Abbrev.  
R/W  
Address  
Port data register B  
PDRB  
R
H'FFDE  
Port Data Register B (PDRB)  
Bit  
7
6
5
4
3
2
1
0
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
Read/Write  
R
R
R
R
R
R
R
R
Reading PDRB always gives the pin states. However, if a port B pin is selected as an analog input  
channel for the A/D converter by AMR bits CH3 to CH0, that pin reads 0 regardless of the input  
voltage.  
171  
8.11  
Input/Output Data Inversion Function  
8.11.1  
Overview  
With input pins WKP to WKP , RXD , and RXD , and output pins TXD and TXD , the  
0
7
31  
32  
31  
32  
data can be handled in inverted form.  
SCINV0  
SCINV2  
RXD31  
RXD32  
P34/RXD31  
P41/RXD32  
SCINV1  
SCINV3  
P35/TXD31  
P42/TXD32  
TXD31  
TXD32  
Figure 8.10 Input/Output Data Inversion Function  
Register Configuration and Descriptions  
8.11.2  
Table 8.27 shows the registers used by the input/output data inversion function.  
Table 8.27 Register Configuration  
Name  
Abbreviation  
R/W  
Address  
Serial port control register  
SPCR  
R/W  
H'FF91  
Serial Port Control Register (SPCR)  
Bit  
7
1
6
1
5
4
3
2
1
0
SPC32 SPC31 SCINV3 SCINV2 SCINV1 SCINV0  
Initial value  
Read/Write  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SPCR is an 8-bit readable/writable register that performs RXD , RXD , TXD , and TXD pin  
31  
32  
31  
32  
input/output data inversion switching. SPCR is initialized to H'C0 by a reset.  
172  
Bit 0: RXD pin input data inversion switch  
31  
Bit 0 specifies whether or not RXD pin input data is to be inverted.  
31  
Bit 0  
SCINV0  
Description  
0
1
RXD31 input data is not inverted  
RXD31 input data is inverted  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
Bit 1: TXD pin output data inversion switch  
31  
Bit 1 specifies whether or not TXD pin output data is to be inverted.  
31  
Bit 1  
SCINV1  
Description  
0
1
TXD31 output data is not inverted  
TXD31 output data is inverted  
Bit 2: RXD pin input data inversion switch  
32  
Bit 2 specifies whether or not RXD pin input data is to be inverted.  
32  
Bit 2  
SCINV2  
Description  
0
1
RXD32 input data is not inverted  
RXD32 input data is inverted  
Bit 3: TXD pin output data inversion switch  
32  
Bit 3 specifies whether or not TXD pin output data is to be inverted.  
32  
Bit 3  
SCINV3  
Description  
0
1
TXD32 output data is not inverted  
TXD32 output data is inverted  
173  
Bit 4: P3 /TXD pin function switch (SPC31)  
5
31  
This bit selects whether pin P3 /TXD is used as P3 or as TXD .  
5
31  
5
31  
Bit 4  
SPC31  
Description  
0
1
Functions as P35 I/O pin  
(initial value)  
Functions as TXD31 output pin*  
Note: * Set the TE bit in SCR3 after setting this bit to 1.  
Bit 5: P4 /TXD pin function switch (SPC32)  
2
32  
This bit selects whether pin P4 /TXD is used as P4 or as TXD .  
2
32  
2
32  
Bit 5  
SPC32  
Description  
0
1
Functions as P42 I/O pin  
(initial value)  
Functions as TXD32 output pin*  
Note: * Set the TE bit in SCR3 after setting this bit to 1.  
Bits 7 and 6: Reserved bits  
Bits 7 and 6 are reserved; they are always read as 1 and cannot be modified.  
8.11.3 Note on Modification of Serial Port Control Register  
When a serial port control register is modified, the data being input or output up to that point is  
inverted immediately after the modification, and an invalid data change is input or output. When  
modifying a serial port control register, do so in a state in which data changes are invalidated.  
174  
Section 9 Timers  
9.1  
Overview  
The H8/3864 Series provides six timers: timers A, C, F, G, and a watchdog timer, and an  
asynchronous event counter. The functions of these timers are outlined in table 9.1.  
Table 9.1 Timer Functions  
Event  
Waveform  
Name  
Functions  
Internal Clock  
Input Pin Output Pin Remarks  
Timer A  
ø/8 to ø/8192  
8-bit interval timer  
(8 choices)  
Interval function  
Time base  
øw/128 (choice of 4  
overflow periods)  
ø/4 to ø/32  
TMOW  
Clock output  
øw, øw/4 to øw/32  
(9 choices)  
Timer C  
ø/4 to ø/8192, øw/4 TMIC  
(7 choices)  
Up-count/down-  
count  
controllable by  
software or  
hardware  
8-bit timer  
Interval function  
Event counting  
function  
Up-count/down-  
count selectable  
Timer F  
16-bit timer  
ø/4 to ø/32, øw/4  
(4 choices)  
TMIF  
TMIG  
TMOFL  
TMOFH  
Event counting  
function Also usable  
as two independent8-  
bit timers Output  
compare output  
function  
Timer G  
ø/2 to ø/64, øw/4  
(4 choices)  
8-bit timer  
Counter  
clearing  
option  
Input capture  
function  
Built-in  
Interval function  
capture input  
signal noise  
canceler  
175  
Table 9.1 Timer Functions (cont)  
Event  
Waveform  
Name  
Functions  
Internal Clock  
Input Pin Output Pin Remarks  
Watchdog  
timer  
ø/8192  
øw/32  
Reset signal  
generated when8-  
bit counter  
overflows  
Asynchro-  
nous  
event  
AEVL  
AEVH  
16-bit counter  
Also usable as two  
independent 8-bit  
counters  
counter  
Counts events  
asynchronous to ø  
and øw  
176  
9.2  
Timer A  
9.2.1  
Overview  
Timer A is an 8-bit timer with interval timing and real-time clock time-base functions. The clock  
time-base function is available when a 32.768-kHz crystal oscillator is connected. A clock signal  
divided from 32.768 kHz, from 38.4 kHz (if a 38.4 kHz crystal oscillator is connected), or from  
the system clock, can be output at the TMOW pin.  
1. Features  
Features of timer A are given below.  
Choice of eight internal clock sources (ø/8192, ø/4096, ø/2048, ø/512, ø/256, ø/128, ø/32, ø/8).  
Choice of four overflow periods (1 s, 0.5 s, 0.25 s, 31.25 ms) when timer A is used as a clock  
time base (using a 32.768 kHz crystal oscillator).  
An interrupt is requested when the counter overflows.  
Any of nine clock signals can be output at the TMOW pin: 32.768 kHz divided by 32, 16, 8, or  
4 (1 kHz, 2 kHz, 4 kHz, 8 kHz) or 38.4 kHz divided by 32, 16, 8, or 4 (1.2 kHz, 2.4 kHz, 4.8  
kHz, 9.6 kHz), and the system clock divided by 32, 16, 8, or 4.  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
177  
2. Block diagram  
Figure 9.1 shows a block diagram of timer A.  
CWORS  
øW  
1/4  
PSW  
TMA  
øW/4  
øW/32  
øW/16  
øW/8  
øW/128  
øW/4  
TCA  
TMOW  
ø/32  
ø/16  
ø/8  
ø/8192, ø/4096, ø/2048,  
ø/512, ø/256, ø/128,  
ø/32, ø/8  
ø/4  
ø
PSS  
IRRTA  
Notation:  
TMA:  
TCA:  
Timer mode register A  
Timer counter A  
IRRTA:  
PSW:  
PSS:  
Timer A overflow interrupt request flag  
Prescaler W  
Prescaler S  
CWOSR: Subclock output select register  
Note: * Can be selected only when the prescaler W output (øW/128) is used as the TCA input clock.  
Figure 9.1 Block Diagram of Timer A  
3. Pin configuration  
Table 9.2 shows the timer A pin configuration.  
Table 9.2 Pin Configuration  
Name  
Abbrev. I/O  
TMOW Output  
Function  
Clock output  
Output of waveform generated by timer A output circuit  
178  
4. Register configuration  
Table 9.3 shows the register configuration of timer A.  
Table 9.3 Timer A Registers  
Name  
Abbrev.  
TMA  
R/W  
R/W  
R
Initial Value  
H'10  
Address  
H'FFB0  
H'FFB1  
H'FFFA  
H'FF92  
Timer mode register A  
Timer counter A  
TCA  
H'00  
Clock stop register 1  
Subclock output select register  
CKSTPR1  
CWOSR  
R/W  
R/W  
H'FF  
H'FE  
9.2.2  
Register Descriptions  
1. Timer mode register A (TMA)  
Bit  
7
TMA7  
0
6
TMA6  
0
5
TMA5  
0
4
3
TMA3  
0
2
TMA2  
0
1
TMA1  
0
0
TMA0  
0
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TMA is an 8-bit read/write register for selecting the prescaler, input clock, and output clock.  
Upon reset, TMA is initialized to H'10.  
179  
Bits 7 to 5: Clock output select (TMA7 to TMA5)  
Bits 7 to 5 choose which of eight clock signals is output at the TMOW pin. The system clock  
divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A 32.768 kHz or 38.4  
kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and subactive  
mode. ø is output in all modes except the reset state.  
w
CWOSR  
TMA  
Bit 6  
Bit 7  
Bit 5  
CWOS  
TMA7  
TMA6  
TMA5  
Clock Output  
ø/32  
0
0
1
*
0
0
1
0
1
0
1
0
1
*
(initial value)  
ø/16  
1
0
1
*
ø/8  
ø/4  
øw/32  
øw/16  
øw/8  
øw/4  
1
øw  
*: Dont care  
Bit 4: Reserved bit  
Bit 4 is reserved; it is always read as 1, and cannot be modified.  
180  
Bits 3 to 0: Internal clock select (TMA3 to TMA0)  
Bits 3 to 0 select the clock input to TCA. The selection is made as follows.  
Description  
Bit 3  
TMA3  
Bit 2  
TMA2  
Bit 1  
TMA1  
Bit 0  
TMA0  
Prescaler and Divider Ratio  
or Overflow Period  
Function  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
PSS, ø/8192  
PSS, ø/4096  
PSS, ø/2048  
PSS, ø/512  
(initial value) Interval timer  
PSS, ø/256  
PSS, ø/128  
PSS, ø/32  
PSS, ø/8  
1
PSW, 1 s  
Clock time  
base  
PSW, 0.5 s  
PSW, 0.25 s  
PSW, 0.03125 s  
PSW and TCA are reset  
(when using  
32.768 kHz)  
181  
2. Timer counter A (TCA)  
Bit  
7
TCA7  
0
6
TCA6  
0
5
TCA5  
0
4
TCA4  
0
3
TCA3  
0
2
TCA2  
0
1
TCA1  
0
0
TCA0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
TCA is an 8-bit read-only up-counter, which is incremented by internal clock input. The clock  
source for input to this counter is selected by bits TMA3 to TMA0 in timer mode register A  
(TMA). TCA values can be read by the CPU in active mode, but cannot be read in subactive  
mode. When TCA overflows, the IRRTA bit in interrupt request register 1 (IRR1) is set to 1.  
TCA is cleared by setting bits TMA3 and TMA2 of TMA to 11.  
Upon reset, TCA is initialized to H'00.  
3. Clock stop register 1 (CKSTPR1)  
7
6
5
4
3
2
1
0
Bit:  
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP  
1
1
1
1
1
1
1
Initial value:  
Read/Write:  
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to timer A is described here. For details of the other bits, see the  
sections on the relevant modules.  
Bit 0: Timer A module standby mode control (TACKSTP)  
Bit 0 controls setting and clearing of module standby mode for timer A.  
TACKSTP  
Description  
0
1
Timer A is set to module standby mode  
Timer A module standby mode is cleared  
(initial value)  
182  
Subclock Output Select Register (CWOSR)  
7
6
1
5
1
4
1
3
1
2
1
1
1
0
CWOS  
0
Bit:  
Initial value:  
Read/Write:  
1
R
R
R
R
R
R
R
R/W  
CWOSR is an 8-bit read/write register that selects the clock to be output from the TMOW pin.  
CWOSR is initialized to H'FE by a reset.  
Bits 7 to 1: Reserved bits  
Bits 7 to 1 are reserved; they are always read as 1 and cannot be modified.  
Bit 0: TMOW pin clock select (CWOS)  
Bit 0 selects the clock to be output from the TMOW pin.  
Bit 0  
CWOS  
Description  
0
1
Clock output from timer A is output (see TMA)  
(initial value)  
øw is output  
9.2.3  
Timer Operation  
1. Interval timer operation  
When bit TMA3 in timer mode register A (TMA) is cleared to 0, timer A functions as an 8-bit  
interval timer.  
Upon reset, TCA is cleared to H'00 and bit TMA3 is cleared to 0, so up-counting and interval  
timing resume immediately. The clock input to timer A is selected by bits TMA2 to TMA0 in  
TMA; any of eight internal clock signals output by prescaler S can be selected.  
After the count value in TCA reaches H'FF, the next clock signal input causes timer A to  
overflow, setting bit IRRTA to 1 in interrupt request register 1 (IRR1). If IENTA = 1 in interrupt  
enable register 1 (IENR1), a CPU interrupt is requested.*  
At overflow, TCA returns to H'00 and starts counting up again. In this mode timer A functions as  
an interval timer that generates an overflow output at intervals of 256 input clock pulses.  
Note: * For details on interrupts, see 3.3, Interrupts.  
183  
2. Real-time clock time base operation  
When bit TMA3 in TMA is set to 1, timer A functions as a real-time clock time base by counting  
clock signals output by prescaler W. The overflow period of timer A is set by bits TMA1 and  
TMA0 in TMA. A choice of four periods is available. In time base operation (TMA3 = 1), setting  
bit TMA2 to 1 clears both TCA and prescaler W to their initial values of H'00.  
3. Clock output  
Setting bit TMOW in port mode register 1 (PMR1) to 1 causes a clock signal to be output at pin  
TMOW. Nine different clock output signals can be selected by means of bits TMA7 to TMA5 in  
TMA and bit CWOS in CWOSR. The system clock divided by 32, 16, 8, or 4 can be output in  
active mode and sleep mode. A 32.768 kHz or 38.4 kHz signal divided by 32, 16, 8, or 4 can be  
output in active mode, sleep mode, watch mode, subactive mode, and subsleep mode. The 32.768  
kHz or 38.4 kHz clock is output in all modes except the reset state.  
9.2.4  
Timer A Operation States  
Table 9.4 summarizes the timer A operation states.  
Table 9.4 Timer A Operation States  
Sub-  
Sub-  
Module  
Operation Mode  
Reset Active  
Sleep  
Watch  
active  
sleep  
Standby Standby  
TCA Interval  
Reset Functions Functions Halted  
Halted  
Halted  
Halted  
Halted  
Halted  
Clock time base Reset Functions Functions Functions Functions Functions Halted  
TMA  
Reset Functions Retained Retained Functions Retained Retained Retained  
Note: When the real-time clock time base function is selected as the internal clock of TCA in  
active mode or sleep mode, the internal clock is not synchronous with the system clock, so  
it is synchronized by a synchronizing circuit. This may result in a maximum error of 1/ø (s) in  
the count cycle.  
184  
9.3  
Timer C  
9.3.1  
Overview  
Timer C is an 8-bit timer that increments each time a clock pulse is input. This timer has two  
operation modes, interval and auto reload.  
1. Features  
Features of timer C are given below.  
Choice of seven internal clock sources (ø/8192, ø/2048, ø/512, ø/64, ø/16, ø/4, øw/4) or an  
external clock (can be used to count external events).  
An interrupt is requested when the counter overflows.  
Up/down-counter switching is possible by hardware or software.  
Subactive mode and subsleep mode operation is possible when øw/4 is selected as the internal  
clock, or when an external clock is selected.  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
185  
2. Block diagram  
Figure 9.2 shows a block diagram of timer C.  
TMC  
UD  
TCC  
TLC  
ø
TMIC  
øW/4  
PSS  
IRRTC  
Notation:  
TMC : Timer mode register C  
TCC : Timer counter C  
TLC  
: Timer load register C  
IRRTC : Timer C overflow interrupt request flag  
PSS : Prescaler S  
Figure 9.2 Block Diagram of Timer C  
186  
3. Pin configuration  
Table 9.5 shows the timer C pin configuration.  
Table 9.5 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
Timer C event input  
Timer C up/down-count selection  
TMIC  
UD  
Input  
Input  
Input pin for event input to TCC  
Timer C up/down select  
4. Register configuration  
Table 9.6 shows the register configuration of timer C.  
Table 9.6 Timer C Registers  
Name  
Abbrev.  
TMC  
R/W  
Initial Value  
H'18  
Address  
H'FFB4  
H'FFB5  
H'FFB5  
H'FFFA  
Timer mode register C  
Timer counter C  
Timer load register C  
Clock stop register 1  
R/W  
R
TCC  
H'00  
TLC  
W
H'00  
CKSTPR1  
R/W  
H'FF  
9.3.2  
Register Descriptions  
1. Timer mode register C (TMC)  
Bit  
7
TMC7  
0
6
TMC6  
0
5
TMC5  
0
4
3
1
2
TMC2  
0
1
TMC1  
0
0
TMC0  
0
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TMC is an 8-bit read/write register for selecting the auto-reload function and input clock, and  
performing up/down-counter control.  
Upon reset, TMC is initialized to H'18.  
187  
Bit 7: Auto-reload function select (TMC7)  
Bit 7 selects whether timer C is used as an interval timer or auto-reload timer.  
Bit 7  
TMC7  
Description  
0
1
Interval timer function selected  
Auto-reload function selected  
(initial value)  
Bits 6 and 5: Counter up/down control (TMC6, TMC5)  
Selects whether TCC up/down control is performed by hardware using UD pin input, or whether  
TCC functions as an up-counter or a down-counter.  
Bit 6  
Bit 5  
TMC6  
TMC5  
Description  
0
0
1
0
1
*
TCC is an up-counter  
TCC is a down-counter  
(initial value)  
Hardware control by UD pin input  
UD pin input high: Down-counter  
UD pin input low: Up-counter  
*: Dont care  
Bits 4 and 3: Reserved bits  
Bits 4 and 3 are reserved; they are always read as 1 and cannot be modified.  
188  
Bits 2 to 0: Clock select (TMC2 to TMC0)  
Bits 2 to 0 select the clock input to TCC. For external event counting, either the rising or falling  
edge can be selected.  
Bit 2  
Bit 1  
Bit 0  
TMC2  
TMC1  
TMC0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/64  
Internal clock: ø/16  
Internal clock: ø/4  
Internal clock: øw/4  
(initial value)  
External event (TMIC): rising or falling edge*  
Note: * The edge of the external event signal is selected by bit IEG1 in the IRQ edge select register  
(IEGR). See 1. IRQ edge select register (IEGR) in 3.3.2 for details. IRQ2 must be set to 1  
in port mode register 1 (PMR1) before setting 111 in bits TMC2 to TMC0.  
2. Timer counter C (TCC)  
Bit  
7
TCC7  
0
6
TCC6  
0
5
TCC5  
0
4
TCC4  
0
3
TCC3  
0
2
TCC2  
0
1
TCC1  
0
0
TCC0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
TCC is an 8-bit read-only up-counter, which is incremented by internal clock or external event  
input. The clock source for input to this counter is selected by bits TMC2 to TMC0 in timer mode  
register C (TMC). TCC values can be read by the CPU at any time.  
When TCC overflows from H'FF to H'00 or to the value set in TLC, or underflows from H'00 to  
H'FF or to the value set in TLC, the IRRTC bit in IRR2 is set to 1.  
TCC is allocated to the same address as TLC.  
Upon reset, TCC is initialized to H'00.  
189  
3. Timer load register C (TLC)  
Bit  
7
TLC7  
0
6
TLC6  
0
5
TLC5  
0
4
TLC4  
0
3
TLC3  
0
2
TLC2  
0
1
TLC1  
0
0
TLC0  
0
Initial value  
Read/Write  
W
W
W
W
W
W
W
W
TLC is an 8-bit write-only register for setting the reload value of timer counter C (TCC).  
When a reload value is set in TLC, the same value is loaded into timer counter C as well, and TCC  
starts counting up from that value. When TCC overflows or underflows during operation in auto-  
reload mode, the TLC value is loaded into TCC. Accordingly, overflow/underflow periods can be  
set within the range of 1 to 256 input clocks.  
The same address is allocated to TLC as to TCC.  
Upon reset, TLC is initialized to H'00.  
4. Clock stop register 1 (CKSTPR1)  
7
6
5
4
3
2
1
0
Bit:  
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP  
1
1
1
1
1
1
1
Initial value:  
Read/Write:  
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to timer C is described here. For details of the other bits, see the  
sections on the relevant modules.  
Bit 1: Timer C module standby mode control (TCCKSTP)  
Bit 1 controls setting and clearing of module standby mode for timer C.  
TCCKSTP  
Description  
0
1
Timer C is set to module standby mode  
Timer C module standby mode is cleared  
(initial value)  
190  
9.3.3  
Timer Operation  
1. Interval timer operation  
When bit TMC7 in timer mode register C (TMC) is cleared to 0, timer C functions as an 8-bit  
interval timer.  
Upon reset, TCC is initialized to H'00 and TMC to H'18, so TCC continues up-counting as an  
interval up-counter without halting immediately after a reset. The timer C operating clock is  
selected from seven internal clock signals output by prescalers S and W, or an external clock input  
at pin TMIC. The selection is made by bits TMC2 to TMC0 in TMC.  
TCC up/down-count control can be performed either by software or hardware. The selection is  
made by bits TMC6 and TMC5 in TMC.  
After the count value in TCC reaches H'FF (H'00), the next clock input causes timer C to overflow  
(underflow), setting bit IRRTC to 1 in IRR2. If IENTC = 1 in interrupt enable register 2 (IENR2),  
a CPU interrupt is requested.  
At overflow (underflow), TCC returns to H'00 (H'FF) and starts counting up (down) again.  
During interval timer operation (TMC7 = 0), when a value is set in timer load register C (TLC),  
the same value is set in TCC.  
Note: For details on interrupts, see 3.3, Interrupts.  
191  
2. Auto-reload timer operation  
Setting bit TMC7 in TMC to 1 causes timer C to function as an 8-bit auto-reload timer. When a  
reload value is set in TLC, the same value is loaded into TCC, becoming the value from which  
TCC starts its count.  
After the count value in TCC reaches H'FF (H'00), the next clock signal input causes timer C to  
overflow/underflow. The TLC value is then loaded into TCC, and the count continues from that  
value. The overflow/underflow period can be set within a range from 1 to 256 input clocks,  
depending on the TLC value.  
The clock sources, up/down control, and interrupts in auto-reload mode are the same as in interval  
mode.  
In auto-reload mode (TMC7 = 1), when a new value is set in TLC, the TLC value is also set in  
TCC.  
3. Event counter operation  
Timer C can operate as an event counter, counting rising or falling edges of an external event  
signal input at pin TMIC. External event counting is selected by setting bits TMC2 to TMC0 in  
timer mode register C to all 1s (111).  
When timer C is used to count external event input, , bit IRQ2 in PMR1 should be set to 1 and bit  
IEN2 in IENR1 cleared to 0 to disable interrupt IRQ requests.  
2
4. TCC up/down control by hardware  
With timer C, TCC up/down control can be performed by UD pin input. When bit TMC6 is set to  
1 in TMC, TCC functions as an up-counter when UD pin input is high, and as a down-counter  
when low.  
When using UD pin input, set bit UD to 1 in PMR3.  
192  
9.3.4  
Timer C Operation States  
Table 9.7 summarizes the timer C operation states.  
Table 9.7 Timer C Operation States  
Sub-  
Sub-  
Module  
Operation Mode  
Reset Active  
Sleep  
Watch  
active  
sleep  
Standby Standby  
TCC Interval  
Reset Functions Functions Halted  
Functions/ Functions/ Halted  
Halted* Halted*  
Halted  
Auto reload  
TMC  
Reset Functions Functions Halted  
Functions/ Functions/ Halted  
Halted* Halted*  
Halted  
Reset Functions Retained Retained Functions Retained Retained Retained  
Note: * When øw/4 is selected as the TCC internal clock in active mode or sleep mode, since the  
system clock and internal clock are mutually asynchronous, synchronization is maintained  
by a synchronization circuit. This results in a maximum count cycle error of 1/ø (s). When  
the counter is operated in subactive mode or subsleep mode, either select øw/4 as the  
internal clock or select an external clock. The counter will not operate on any other internal  
clock. If øw/4 is selected as the internal clock for the counter when øw/8 has been selected  
as subclock øSUB, the lower 2 bits of the counter operate on the same cycle, and the  
operation of the least significant bit is unrelated to the operation of the counter.  
193  
9.4  
Timer F  
9.4.1  
Overview  
Timer F is a 16-bit timer with a built-in output compare function. As well as counting external  
events, timer F also provides for counter resetting, interrupt request generation, toggle output, etc.,  
using compare match signals. Timer F can also be used as two independent 8-bit timers (timer FH  
and timer FL).  
1. Features  
Features of timer F are given below.  
Choice of four internal clock sources (ø/32, ø/16, ø/4, øw/4) or an external clock (can be used  
as an external event counter)  
TMOFH pin toggle output provided using a single compare match signal (toggle output initial  
value can be set)  
Counter resetting by a compare match signal  
Two interrupt sources: one compare match, one overflow  
Can operate as two independent 8-bit timers (timer FH and timer FL) (in 8-bit mode).  
Timer FL  
Timer FH 8-Bit Timer*  
8-Bit Timer/Event Counter  
Internal clock  
Event input  
Choice of 4 (ø/32, ø/16, ø/4, øw/4)  
TMIF pin  
Toggle output  
One compare match signal, output to One compare match signal, output to  
TMOFH pin(initial value settable) TMOFL pin (initial value settable)  
Counter reset  
Counter can be reset by compare match signal  
Interrupt sources One compare match  
One overflow  
Note: * When timer F operates as a 16-bit timer, it operates on the timer FL overflow signal.  
Operation in watch mode, subactive mode, and subsleep mode  
When øw/4 is selected as the internal clock, timer F can operate in watch mode, subactive  
mode, and subsleep mode.  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
194  
2. Block diagram  
Figure 9.3 shows a block diagram of timer F.  
ø
PSS  
IRRTFL  
TCRF  
TCFL  
øw/4  
TMIF  
Toggle  
circuit  
Comparator  
OCRFL  
TMOFL  
TCFH  
Toggle  
circuit  
TMOFH  
Match  
Comparator  
OCRFH  
TCSRF  
IRRTFH  
Notation:  
TCRF:  
TCSRF: Timer control/status register F  
Timer control register F  
TCFH:  
TCFL:  
8-bit timer counter FH  
8-bit timer counter FL  
OCRFH: Output compare register FH  
OCRFL: Output compare register FL  
IRRTFH: Timer FH interrupt request flag  
IRRTFL: Timer FL interrupt request flag  
PSS:  
Prescaler S  
Figure 9.3 Block Diagram of Timer F  
195  
3. Pin configuration  
Table 9.8 shows the timer F pin configuration.  
Table 9.8 Pin Configuration  
Name  
Abbrev.  
TMIF  
I/O  
Function  
Timer F event input  
Timer FH output  
Timer FL output  
Input  
Output  
Output  
Event input pin for input to TCFL  
Timer FH toggle output pin  
Timer FL toggle output pin  
TMOFH  
TMOFL  
4. Register configuration  
Table 9.9 shows the register configuration of timer F.  
Table 9.9 Timer F Registers  
Name  
Abbrev.  
TCRF  
R/W  
W
Initial Value  
H'00  
Address  
H'FFB6  
H'FFB7  
H'FFB8  
H'FFB9  
H'FFBA  
H'FFBB  
H'FFFA  
Timer control register F  
Timer control/status register F  
8-bit timer counter FH  
8-bit timer counter FL  
Output compare register FH  
Output compare register FL  
Clock stop register 1  
TCSRF  
TCFH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
H'00  
H'00  
TCFL  
H'00  
OCRFH  
OCRFL  
CKSTPR1  
H'FF  
H'FF  
H'FF  
196  
9.4.2  
Register Descriptions  
1. 16-bit timer counter (TCF)  
8-bit timer counter (TCFH)  
8-bit timer counter (TCFL)  
TCF  
Bit:  
15 14 13 12 11 10  
9
0
8
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Initial value:  
Read/Write:  
0
0
0
0
0
0
0
0
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
TCFH TCFL  
TCF is a 16-bit read/write up-counter configured by cascaded connection of 8-bit timer counters  
TCFH and TCFL. In addition to the use of TCF as a 16-bit counter with TCFH as the upper 8 bits  
and TCFL as the lower 8 bits, TCFH and TCFL can also be used as independent 8-bit counters.  
TCFH and TCFL can be read and written by the CPU, but when they are used in 16-bit mode, data  
transfer to and from the CPU is performed via a temporary register (TEMP). For details of TEMP,  
see 9.4.3, CPU Interface.  
TCFH and TCFL are each initialized to H'00 upon reset.  
a. 16-bit mode (TCF)  
When CKSH2 is cleared to 0 in TCRF, TCF operates as a 16-bit counter. The TCF input clock  
is selected by bits CKSL2 to CKSL0 in TCRF.  
TCF can be cleared in the event of a compare match by means of CCLRH in TCSRF.  
When TCF overflows from H'FFFF to H'0000, OVFH is set to 1 in TCSRF. If OVIEH in  
TCSRF is 1 at this time, IRRTFH is set to 1 in IRR2, and if IENTFH in IENR2 is 1, an  
interrupt request is sent to the CPU.  
b. 8-bit mode (TCFL/TCFH)  
When CKSH2 is set to 1 in TCRF, TCFH and TCFL operate as two independent 8-bit  
counters. The TCFH (TCFL) input clock is selected by bits CKSH2 to CKSH0 (CKSL2 to  
CKSL0) in TCRF.  
TCFH (TCFL) can be cleared in the event of a compare match by means of CCLRH (CCLRL)  
in TCSRF.  
When TCFH (TCFL) overflows from H'FF to H'00, OVFH (OVFL) is set to 1 in TCSRF. If  
OVIEH (OVIEL) in TCSRF is 1 at this time, IRRTFH (IRRTFL) is set to 1 in IRR2, and if  
IENTFH (IENTFL) in IENR2 is 1, an interrupt request is sent to the CPU.  
197  
2. 16-bit output compare register (OCRF)  
8-bit output compare register (OCRFH)  
8-bit output compare register (OCRFL)  
OCRF  
15 14 13 12 11 10  
9
1
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Bit:  
1
1
1
1
1
1
1
1
Initial value:  
Read/Write:  
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
OCRFH OCRFL  
OCRF is a 16-bit read/write register composed of the two registers OCRFH and OCRFL. In  
addition to the use of OCRF as a 16-bit register with OCRFH as the upper 8 bits and OCRFL as  
the lower 8 bits, OCRFH and OCRFL can also be used as independent 8-bit registers.  
OCRFH and OCRFL can be read and written by the CPU, but when they are used in 16-bit mode,  
data transfer to and from the CPU is performed via a temporary register (TEMP). For details of  
TEMP, see 9.4.3, CPU Interface.  
OCRFH and OCRFL are each initialized to H'FF upon reset.  
a. 16-bit mode (OCRF)  
When CKSH2 is cleared to 0 in TCRF, OCRF operates as a 16-bit register. OCRF contents are  
constantly compared with TCF, and when both values match, CMFH is set to 1 in TCSRF. At  
the same time, IRRTFH is set to 1 in IRR2. If IENTFH in IENR2 is 1 at this time, an interrupt  
request is sent to the CPU.  
Toggle output can be provided from the TMOFH pin by means of compare matches, and the  
output level can be set (high or low) by means of TOLH in TCRF.  
b. 8-bit mode (OCRFH/OCRFL)  
When CKSH2 is set to 1 in TCRF, OCRFH and OCRFL operate as two independent 8-bit  
registers. OCRFH contents are compared with TCFH, and OCRFL contents are with TCFL.  
When the OCRFH (OCRFL) and TCFH (TCFL) values match, CMFH (CMFL) is set to 1 in  
TCSRF. At the same time, IRRTFH (IRRTFL) is set to 1 in IRR2. If IENTFH (IENTFL) in  
IENR2 is 1 at this time, an interrupt request is sent to the CPU.  
Toggle output can be provided from the TMOFH pin (TMOFL pin) by means of compare  
matches, and the output level can be set (high or low) by means of TOLH (TOLL) in TCRF.  
198  
3. Timer control register F (TCRF)  
Bit:  
7
6
CKSH2  
0
5
CKSH1  
0
4
CKSH0  
0
3
TOLL  
0
2
CKSL2  
0
1
CKSL1  
0
0
CKSL0  
0
TOLH  
Initial value:  
Read/Write:  
0
W
W
W
W
W
W
W
W
TCRF is an 8-bit write-only register that switches between 16-bit mode and 8-bit mode, selects the  
input clock from among four internal clock sources or external event input, and sets the output  
level of the TMOFH and TMOFL pins.  
TCRF is initialized to H'00 upon reset.  
Bit 7: Toggle output level H (TOLH)  
Bit 7 sets the TMOFH pin output level. The output level is effective immediately after this bit is  
written.  
Bit 7  
TOLH  
Description  
Low level  
0
1
(initial value)  
High level  
Bits 6 to 4: Clock select H (CKSH2 to CKSH0)  
Bits 6 to 4 select the clock input to TCFH from among four internal clock sources or TCFL  
overflow.  
Bit 6  
Bit 5  
Bit 4  
CKSH2  
CKSH1  
CKSH0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16-bit mode, counting on TCFL overflow signal  
(initial value)  
Use prohibited  
Internal clock: counting on ø/32  
Internal clock: counting on ø/16  
Internal clock: counting on ø/4  
Internal clock: counting on øw/4  
*: Dont care  
199  
Bit 3: Toggle output level L (TOLL)  
Bit 3 sets the TMOFL pin output level. The output level is effective immediately after this bit is  
written.  
Bit 3  
TOLL  
Description  
Low level  
0
1
(initial value)  
High level  
Bits 2 to 0: Clock select L (CKSL2 to CKSL0)  
Bits 2 to 0 select the clock input to TCFL from among four internal clock sources or external event  
input.  
Bit 2  
Bit 1  
Bit 0  
CKSL2  
CKSL1  
CKSL0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Counting on external event (TMIF) rising/  
falling edge*  
(initial value)  
Use prohibited  
Internal clock: counting on ø/32  
Internal clock: counting on ø/16  
Internal clock: counting on ø/4  
Internal clock: counting on øw/4  
Note: * External event edge selection is set by IEG3 in the IRQ edge select register (IEGR). For  
details, see 1. IRQ edge select register (IEGR) in section 3.3.2.  
Note that the timer F counter may increment if the setting of IRQ3 in port mode register 1  
(PMR1) is changed from 0 to 1 while the TMIF pin is low in order to change the TMIF pin  
function.  
200  
4. Timer control/status register F (TCSRF)  
Bit:  
7
6
5
OVIEH  
0
4
CCLRH  
0
3
2
1
OVIEL  
0
0
CCLRL  
0
OVFH  
CMFH  
0
OVFL  
0
CMFL  
0
Initial value:  
Read/Write:  
0
R/W*  
R/W*  
R/W  
R/W  
R/W*  
R/W*  
R/W  
R/W  
Note: * Bits 7, 6, 3, and 2 can only be written with 0, for flag clearing.  
TCSRF is an 8-bit read/write register that performs counter clear selection, overflow flag setting,  
and compare match flag setting, and controls enabling of overflow interrupt requests.  
TCSRF is initialized to H'00 upon reset.  
Bit 7: Timer overflow flag H (OVFH)  
Bit 7 is a status flag indicating that TCFH has overflowed from H'FF to H'00. This flag is set by  
hardware and cleared by software. It cannot be set by software.  
Bit 7  
OVFH  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
Setting conditions:  
Set when TCFH overflows from HFF to H00  
Bit 6: Compare match flag H (CMFH)  
Bit 6 is a status flag indicating that TCFH has matched OCRFH. This flag is set by hardware and  
cleared by software. It cannot be set by software.  
Bit 6  
CMFH  
Description  
0
Clearing conditions:  
(initial value)  
After reading CMFH = 1, cleared by writing 0 to CMFH  
1
Setting conditions:  
Set when the TCFH value matches the OCRFH value  
201  
Bit 5: Timer overflow interrupt enable H (OVIEH)  
Bit 5 selects enabling or disabling of interrupt generation when TCFH overflows.  
Bit 5  
OVIEH  
Description  
0
1
TCFH overflow interrupt request is disabled  
TCFH overflow interrupt request is enabled  
(initial value)  
Bit 4: Counter clear H (CCLRH)  
In 8-bit mode, bit 4 selects whether TCF is cleared when TCF and OCRF match.  
In 8-bit mode, bit 4 selects whether TCFH is cleared when TCFH and OCRFH match.  
Bit 4  
CCLRH  
Description  
0
16-bit mode: TCF clearing by compare match is disabled  
8-bit mode: TCFH clearing by compare match is disabled  
(initial value)  
1
16-bit mode: TCF clearing by compare match is enabled  
8-bit mode: TCFH clearing by compare match is enabled  
Bit 3: Timer overflow flag L (OVFL)  
Bit 3 is a status flag indicating that TCFL has overflowed from H'FF to H'00. This flag is set by  
hardware and cleared by software. It cannot be set by software.  
Bit 3  
OVFL  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFL = 1, cleared by writing 0 to OVFL  
1
Setting conditions:  
Set when TCFL overflows from HFF to H00  
202  
Bit 2: Compare match flag L (CMFL)  
Bit 2 is a status flag indicating that TCFL has matched OCRFL. This flag is set by hardware and  
cleared by software. It cannot be set by software.  
Bit 2  
CMFL  
Description  
0
Clearing conditions:  
(initial value)  
After reading CMFL = 1, cleared by writing 0 to CMFL  
1
Setting conditions:  
Set when the TCFL value matches the OCRFL value  
Bit 1: Timer overflow interrupt enable L (OVIEL)  
Bit 1 selects enabling or disabling of interrupt generation when TCFL overflows.  
Bit 1  
OVIEL  
Description  
0
1
TCFL overflow interrupt request is disabled  
TCFL overflow interrupt request is enabled  
(initial value)  
Bit 0: Counter clear L (CCLRL)  
Bit 0 selects whether TCFL is cleared when TCFL and OCRFL match.  
Bit 0  
CCLRL  
Description  
0
1
TCFL clearing by compare match is disabled  
TCFL clearing by compare match is enabled  
(initial value)  
203  
5. Clock stop register 1 (CKSTPR1)  
7
6
5
4
3
2
1
0
Bit:  
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP  
1
1
1
1
1
1
1
Initial value:  
Read/Write:  
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to timer F is described here. For details of the other bits, see the  
sections on the relevant modules.  
Bit 2: Timer F module standby mode control (TFCKSTP)  
Bit 2 controls setting and clearing of module standby mode for timer F.  
TFCKSTP  
Description  
0
1
Timer F is set to module standby mode  
Timer F module standby mode is cleared  
(initial value)  
204  
9.4.3  
CPU Interface  
TCF and OCRF are 16-bit read/write registers, but the CPU is connected to the on-chip peripheral  
modules by an 8-bit data bus. When the CPU accesses these registers, it therefore uses an 8-bit  
temporary register (TEMP).  
In 16-bit mode, TCF read/write access and OCRF write access must be performed 16 bits at a time  
(using two consecutive byte-size MOV instructions), and the upper byte must be accessed before  
the lower byte. Data will not be transferred correctly if only the upper byte or only the lower byte  
is accessed.  
In 8-bit mode, there are no restrictions on the order of access.  
1. Write access  
Write access to the upper byte results in transfer of the upper-byte write data to TEMP. Next,  
write access to the lower byte results in transfer of the data in TEMP to the upper register byte,  
and direct transfer of the lower-byte write data to the lower register byte.  
205  
Figure 9.4 shows an example in which H'AA55 is written to TCF.  
Write to upper byte  
Module data bus  
Bus  
interface  
CPU  
(H'AA)  
TEMP  
(H'AA)  
TCFH  
TCFL  
(
)
(
)
Write to lower byte  
Module data bus  
Bus  
interface  
CPU  
(H'55)  
TEMP  
(H'AA)  
TCFH  
(H'AA)  
TCFL  
(H'55)  
Figure 9.4 Write Access to TCR (CPU Æ TCF)  
206  
2. Read access  
In access to TCF, when the upper byte is read the upper-byte data is transferred directly to the  
CPU and the lower-byte data is transferred to TEMP. Next, when the lower byte is read, the  
lower-byte data in TEMP is transferred to the CPU.  
In access to OCRF, when the upper byte is read the upper-byte data is transferred directly to the  
CPU. When the lower byte is read, the lower-byte data is transferred directly to the CPU.  
Figure 9.5 shows an example in which TCF is read when it contains H'AAFF.  
Read upper byte  
Module data bus  
Bus  
interface  
CPU  
(H'AA)  
TEMP  
(H'FF)  
TCFH  
(H'AA)  
TCFL  
(H'FF)  
Read lower byte  
Module data bus  
Bus  
interface  
CPU  
(H'FF)  
TEMP  
(H'FF)  
TCFH  
(AB)*  
TCFL  
(00)*  
Note: * H'AB00 if counter has been updated once.  
Figure 9.5 Read Access to TCF (TCF Æ CPU)  
207  
9.4.4  
Operation  
Timer F is a 16-bit counter that increments on each input clock pulse. The timer F value is  
constantly compared with the value set in output compare register F, and the counter can be  
cleared, an interrupt requested, or port output toggled, when the two values match. Timer F can  
also function as two independent 8-bit timers.  
1. Timer F operation  
Timer F has two operating modes, 16-bit timer mode and 8-bit timer mode. The operation in each  
of these modes is described below.  
a. Operation in 16-bit timer mode  
When CKSH2 is cleared to 0 in timer control register F (TCRF), timer F operates as a 16-bit  
timer.  
Following a reset, timer counter F (TCF) is initialized to H'0000, output compare register F  
(OCRF) to H'FFFF, and timer control register F (TCRF) and timer control/status register F  
(TCSRF) to H'00. The counter starts incrementing on external event (TMIF) input. The  
external event edge selection is set by IEG3 in the IRQ edge select register (IEGR).  
The timer F operating clock can be selected from four internal clocks output by prescaler S or  
an external clock by means of bits CKSL2 to CKSL0 in TCRF.  
OCRF contents are constantly compared with TCF, and when both values match, CMFH is set  
to 1 in TCSRF. If IENTFH in IENR2 is 1 at this time, an interrupt request is sent to the CPU,  
and at the same time, TMOFH pin output is toggled. If CCLRH in TCSRF is 1, TCF is  
cleared. TMOFH pin output can also be set by TOLH in TCRF.  
When TCF overflows from H'FFFF to H'0000, OVFH is set to 1 in TCSRF. If OVIEH in  
TCSRF and IENTFH in IENR2 are both 1, an interrupt request is sent to the CPU.  
b. Operation in 8-bit timer mode  
When CKSH2 is set to 1 in TCRF, TCF operates as two independent 8-bit timers, TCFH and  
TCFL. The TCFH/TCFL input clock is selected by CKSH2 to CKSH0/CKSL2 to CKSL0 in  
TCRF.  
When the OCRFH/OCRFL and TCFH/TCFL values match, CMFH/CMFL is set to 1 in  
TCSRF. If IENTFH/IENTFL in IENR2 is 1, an interrupt request is sent to the CPU, and at the  
same time, TMOFH pin/TMOFL pin output is toggled. If CCLRH/CCLRL in TCSRF is 1,  
TCFH/TCFL is cleared. TMOFH pin/TMOFL pin output can also be set by TOLH/TOLL in  
TCRF.  
When TCFH/TCFL overflows from H'FF to H'00, OVFH/OVFL is set to 1 in TCSRF. If  
OVIEH/OVIEL in TCSRF and IENTFH/IENTFL in IENR2 are both 1, an interrupt request is  
sent to the CPU.  
208  
2. TCF increment timing  
TCF is incremented by clock input (internal clock or external event input).  
a. Internal clock operation  
Bits CKSH2 to CKSH0 or CKSL2 to CKSL0 in TCRF select one of four internal clock sources  
(ø/32, ø/16, ø/4, or øw/4) created by dividing the system clock (ø or øw).  
b. External event operation  
External event input is selected by clearing CKSL2 to 0 in TCRF. TCF can increment on  
either the rising or falling edge of external event input. External event edge selection is set by  
IEG3 in the interrupt controllers IEGR register. An external event pulse width of at least 2  
system clocks (ø) is necessary. Shorter pulses will not be counted correctly.  
3. TMOFH/TMOFL output timing  
In TMOFH/TMOFL output, the value set in TOLH/TOLL in TCRF is output. The output is  
toggled by the occurrence of a compare match. Figure 9.6 shows the output timing.  
ø
TMIF  
(when IEG3 = 1)  
Count input  
clock  
N
N+1  
N
N
N+1  
TCF  
OCRF  
N
Compare match  
signal  
TMOFH TMOFL  
Figure 9.6 TMOFH/TMOFL Output Timing  
209  
4. TCF clear timing  
TCF can be cleared by a compare match with OCRF.  
5. Timer overflow flag (OVF) set timing  
OVF is set to 1 when TCF overflows from H'FFFF to H'0000.  
6. Compare match flag set timing  
The compare match flag (CMFH or CMFL) is set to 1 when the TCF and OCRF values match.  
The compare match signal is generated in the last state during which the values match (when TCF  
is updated from the matching value to a new value). When TCF matches OCRF, the compare  
match signal is not generated until the next counter clock.  
7. Timer F operation modes  
Timer F operation modes are shown in table 9.10.  
Table 9.10 Timer F Operation Modes  
Sub-  
Sub-  
Module  
Operation Mode  
Reset Active  
Sleep  
Watch  
active  
sleep  
Standby Standby  
TCF  
Reset Functions Functions Functions/ Functions/ Functions/ Halted  
Halted  
Halted*  
Halted*  
Halted*  
OCRF  
TCRF  
Reset Functions Held  
Reset Functions Held  
Reset Functions Held  
Held  
Functions Held  
Functions Held  
Functions Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
TCSRF  
Held  
Note: * When øw/4 is selected as the TCF internal clock in active mode or sleep mode, since the  
system clock and internal clock are mutually asynchronous, synchronization is maintained  
by a synchronization circuit. This results in a maximum count cycle error of 1/ø (s). When  
the counter is operated in subactive mode, watch mode, or subsleep mode, øw/4 must be  
selected as the internal clock. The counter will not operate if any other internal clock is  
selected.  
210  
9.4.5  
Application Notes  
The following types of contention and operation can occur when timer F is used.  
1. 16-bit timer mode  
In toggle output, TMOFH pin output is toggled when all 16 bits match and a compare match  
signal is generated. If a TCRF write by a MOV instruction and generation of the compare match  
signal occur simultaneously, TOLH data is output to the TMOFH pin as a result of the TCRF  
write. TMOFL pin output is unstable in 16-bit mode, and should not be used; the TMOFL pin  
should be used as a port pin.  
If an OCRFL write and compare match signal generation occur simultaneously, the compare  
match signal is invalid. However, if the written data and the counter value match, a compare  
match signal will be generated at that point. As the compare match signal is output in  
synchronization with the TCFL clock, a compare match will not result in compare match signal  
generation if the clock is stopped.  
Compare match flag CMFH is set when all 16 bits match and a compare match signal is generated.  
Compare match flag CMFL is set if the setting conditions for the lower 8 bits are satisfied.  
When TCF overflows, OVFH is set. OVFL is set if the setting conditions are satisfied when the  
lower 8 bits overflow. If a TCFL write and overflow signal output occur simultaneously, the  
overflow signal is not output.  
2. 8-bit timer mode  
a. TCFH, OCRFH  
In toggle output, TMOFH pin output is toggled when a compare match occurs. If a TCRF  
write by a MOV instruction and generation of the compare match signal occur simultaneously,  
TOLH data is output to the TMOFH pin as a result of the TCRF write.  
If an OCRFH write and compare match signal generation occur simultaneously, the compare  
match signal is invalid. However, if the written data and the counter value match, a compare  
match signal will be generated at that point. The compare match signal is output in  
synchronization with the TCFH clock.  
If a TCFH write and overflow signal output occur simultaneously, the overflow signal is not  
output.  
b. TCFL, OCRFL  
In toggle output, TMOFL pin output is toggled when a compare match occurs. If a TCRF  
write by a MOV instruction and generation of the compare match signal occur simultaneously,  
TOLL data is output to the TMOFL pin as a result of the TCRF write.  
211  
If an OCRFL write and compare match signal generation occur simultaneously, the compare  
match signal is invalid. However, if the written data and the counter value match, a compare  
match signal will be generated at that point. As the compare match signal is output in  
synchronization with the TCFL clock, a compare match will not result in compare match signal  
generation if the clock is stopped.  
If a TCFL write and overflow signal output occur simultaneously, the overflow signal is not  
output.  
212  
9.5  
Timer G  
9.5.1  
Overview  
Timer G is an 8-bit timer with dedicated input capture functions for the rising/falling edges of  
pulses input from the input capture input pin (input capture input signal). High-frequency  
component noise in the input capture input signal can be eliminated by a noise canceler, enabling  
accurate measurement of the input capture input signal duty cycle. If input capture input is not set,  
timer G functions as an 8-bit interval timer.  
1. Features  
Features of timer G are given below.  
Choice of four internal clock sources (ø/64, ø/32, ø/2, øw/2)  
Dedicated input capture functions for rising and falling edges  
Level detection at counter overflow  
It is possible to detect whether overflow occurred when the input capture input signal was high  
or when it was low.  
Selection of whether or not the counter value is to be cleared at the input capture input signal  
rising edge, falling edge, or both edges  
Two interrupt sources: one input capture, one overflow. The input capture input signal rising  
or falling edge can be selected as the interrupt source.  
A built-in noise canceler eliminates high-frequency component noise in the input capture input  
signal.  
Watch mode, subactive mode and subsleep mode operation is possible when øw/2 is selected  
as the internal clock.  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
213  
2. Block diagram  
Figure 9.7 shows a block diagram of timer G.  
ø
PSS  
TMG  
Level  
detector  
øw/4  
ICRGF  
Noise  
canceler  
Edge  
detector  
TMIG  
NCS  
TCG  
ICRGR  
IRRTG  
Notation:  
TMG : Timer mode register G  
TCG : Timer counter G  
ICRGF : Input capture register GF  
ICRGR : Input capture register GR  
IRRTG : Timer G interrupt request flag  
NCS  
PSS  
: Noise canceler select  
: Prescaler S  
Figure 9.7 Block Diagram of Timer G  
214  
3. Pin configuration  
Table 9.11 shows the timer G pin configuration.  
Table 9.11 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
Input capture input  
TMIG  
Input  
Input capture input pin  
4. Register configuration  
Table 9.12 shows the register configuration of timer G.  
Table 9.12 Timer G Registers  
Name  
Abbrev.  
TMG  
R/W  
Initial Value  
H'00  
Address  
Timer control register G  
Timer counter G  
R/W  
H'FFBC  
TCG  
H'00  
Input capture register GF  
Input capture register GR  
Clock stop register 1  
ICRGF  
ICRGR  
CKSTPR1  
R
H'00  
H'FFBD  
H'FFBE  
H'FFFA  
R
H'00  
R/W  
H'FF  
215  
9.5.2  
Register Descriptions  
1. Timer counter (TCG)  
7
6
5
4
3
TCG3  
0
2
TCG2  
0
1
TCG1  
0
0
TCG0  
0
Bit:  
TCG7  
TCG6  
TCG5  
TCG4  
0
0
0
Initial value:  
Read/Write:  
0
TCG is an 8-bit up-counter which is incremented by clock input. The input clock is selected by  
bits CKS1 and CKS0 in TMG.  
TMIG in PMR1 is set to 1 to operate TCG as an input capture timer, or cleared to 0 to operate  
TCG as an interval timer*. In input capture timer operation, the TCG value can be cleared by the  
rising edge, falling edge, or both edges of the input capture input signal, according to the setting  
made in TMG.  
When TCG overflows from H'FF to H'00, if OVIE in TMG is 1, IRRTG is set to 1 in IRR2, and if  
IENTG in IENR2 is 1, an interrupt request is sent to the CPU.  
For details of the interrupt, see 3.3, Interrupts.  
TCG cannot be read or written by the CPU. It is initialized to H'00 upon reset.  
Note: * An input capture signal may be generated when TMIG is modified.  
2. Input capture register GF (ICRGF)  
7
6
5
4
3
2
1
0
Bit:  
ICRGF7  
ICRGF6  
ICRGF5  
ICRGF4  
ICRGF3  
ICRGF2  
ICRGF1  
ICRGF0  
0
0
0
0
0
0
0
Initial value:  
Read/Write:  
0
R
R
R
R
R
R
R
R
ICRGF is an 8-bit read-only register. When a falling edge of the input capture input signal is  
detected, the current TCG value is transferred to ICRGF. If IIEGS in TMG is 1 at this time,  
IRRTG is set to 1 in IRR2, and if IENTG in IENR2 is 1, an interrupt request is sent to the CPU.  
For details of the interrupt, see 3.3, Interrupts.  
To ensure dependable input capture operation, the pulse width of the input capture input signal  
must be at least 2ø or 2ø  
(when the noise canceler is not used).  
SUB  
ICRGF is initialized to H'00 upon reset.  
216  
3. Input capture register GR (ICRGR)  
7
6
5
4
3
2
1
0
Bit:  
ICRGR7  
ICRGR6  
ICRGR5  
ICRGR4  
ICRGR3  
ICRGR2  
ICRGR1  
ICRGR0  
0
0
0
0
0
0
0
Initial value:  
Read/Write:  
0
R
R
R
R
R
R
R
R
ICRGR is an 8-bit read-only register. When a rising edge of the input capture input signal is  
detected, the current TCG value is transferred to ICRGR. If IIEGS in TMG is 1 at this time,  
IRRTG is set to 1 in IRR2, and if IENTG in IENR2 is 1, an interrupt request is sent to the CPU.  
For details of the interrupt, see 3.3, Interrupts.  
To ensure dependable input capture operation, the pulse width of the input capture input signal  
must be at least 2ø or 2ø  
(when the noise canceler is not used).  
SUB  
ICRGR is initialized to H'00 upon reset.  
4.  
Timer mode register G (TMG)  
7
6
5
4
IIEGS  
0
3
CCLR1  
0
2
CCLR0  
0
1
CKS1  
0
0
CKS0  
0
Bit:  
OVFH  
OVFL  
0
OVIE  
0
Initial value:  
Read/Write:  
0
R/W*  
R/W*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Bits 7 and 6 can only be written with 0, for flag clearing.  
TMG is an 8-bit read/write register that performs TCG clock selection from four internal clock  
sources, counter clear selection, and edge selection for the input capture input signal interrupt  
request, controls enabling of overflow interrupt requests, and also contains the overflow flags.  
TMG is initialized to H'00 upon reset.  
217  
Bit 7: Timer overflow flag H (OVFH)  
Bit 7 is a status flag indicating that TCG has overflowed from H'FF to H'00 when the input capture  
input signal is high. This flag is set by hardware and cleared by software. It cannot be set by  
software.  
Bit 7  
OVFH  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
Setting conditions:  
Set when TCG overflows from H'FF to H'00  
Bit 6: Timer overflow flag L (OVFL)  
Bit 6 is a status flag indicating that TCG has overflowed from H'FF to H'00 when the input capture  
input signal is low, or in interval operation. This flag is set by hardware and cleared by software.  
It cannot be set by software.  
Bit 6  
OVFL  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFL = 1, cleared by writing 0 to OVFL  
1
Setting conditions:  
Set when TCG overflows from H'FF to H'00  
Bit 5: Timer overflow interrupt enable (OVIE)  
Bit 5 selects enabling or disabling of interrupt generation when TCG overflows.  
Bit 5  
OVIE  
Description  
0
1
TCG overflow interrupt request is disabled  
TCG overflow interrupt request is enabled  
(initial value)  
218  
Bit 4: Input capture interrupt edge select (IIEGS)  
Bit 4 selects the input capture input signal edge that generates an interrupt request.  
Bit 4  
IIEGS  
Description  
0
1
Interrupt generated on rising edge of input capture input signal  
Interrupt generated on falling edge of input capture input signal  
(initial value)  
Bits 3 and 2: Counter clear 1 and 0 (CCLR1, CCLR0)  
Bits 3 and 2 specify whether or not TCG is cleared by the rising edge, falling edge, or both edges  
of the input capture input signal.  
Bit 3  
Bit 2  
CCLR1  
CCLR0  
Description  
0
0
1
1
0
1
0
1
TCG clearing is disabled  
(initial value)  
TCG cleared by falling edge of input capture input signal  
TCG cleared by rising edge of input capture input signal  
TCG cleared by both edges of input capture input signal  
Bits 1 and 0: Clock select (CKS1, CKS0)  
Bits 1 and 0 select the clock input to TCG from among four internal clock sources.  
Bit  
Bit  
1CKS1  
0CKS0  
Description  
0
0
1
1
0
1
0
1
Internal clock: counting on ø/64  
Internal clock: counting on ø/32  
Internal clock: counting on ø/2  
Internal clock: counting on øw/4  
(initial value)  
219  
5. Clock stop register 1 (CKSTPR1)  
7
6
5
4
3
2
1
0
Bit:  
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP  
1
1
1
1
1
1
1
Initial value:  
Read/Write:  
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to timer G is described here. For details of the other bits, see the  
sections on the relevant modules.  
Bit 3: Timer G module standby mode control (TGCKSTP)  
Bit 3 controls setting and clearing of module standby mode for timer G.  
TGCKSTP Description  
0
1
Timer G is set to module standby mode  
Timer G module standby mode is cleared  
(initial value)  
220  
9.5.3  
Noise Canceler  
The noise canceler consists of a digital low-pass filter that eliminates high-frequency component  
noise from the pulses input from the input capture input pin. The noise canceler is set by NCS* in  
PMR3.  
Figure 9.8 shows a block diagram of the noise canceler.  
Sampling  
clock  
C
C
C
C
C
Input capture  
input signal  
D
Q
D
Q
D
Q
D
Q
D
Q
Noise  
canceler  
output  
Latch  
Latch  
Latch  
Latch  
Latch  
Match  
detector  
t  
Sampling clock  
t: Set by CKS1 and CKS0  
Figure 9.8 Noise Canceler Block Diagram  
The noise canceler consists of five latch circuits connected in series and a match detector circuit.  
When the noise cancellation function is not used (NCS = 0), the system clock is selected as the  
sampling clock When the noise cancellation function is used (NCS = 1), the sampling clock is the  
internal clock selected by CKS1 and CKS0 in TMG, the input capture input is sampled on the  
rising edge of this clock, and the data is judged to be correct when all the latch outputs match. If  
all the outputs do not match, the previous value is retained. After a reset, the noise canceler output  
is initialized when the falling edge of the input capture input signal has been sampled five times.  
Therefore, after making a setting for use of the noise cancellation function, a pulse with at least  
five times the width of the sampling clock is a dependable input capture signal. Even if noise  
cancellation is not used, an input capture input signal pulse width of at least 2ø or 2ø  
is  
SUB  
necessary to ensure that input capture operations are performed properly  
Note: * An input capture signal may be generated when the NCS bit is modified.  
221  
Figure 9.9 shows an example of noise canceler timing.  
In this example, high-level input of less than five times the width of the sampling clock at the  
input capture input pin is eliminated as noise.  
Input capture  
input signal  
Sampling clock  
Noise canceler  
output  
Eliminated as noise  
Figure 9.9 Noise Canceler Timing (Example)  
222  
9.5.4  
Operation  
Timer G is an 8-bit timer with built-in input capture and interval functions.  
1. Timer G functions  
Timer G is an 8-bit up-counter with two functions, an input capture timer function and an interval  
timer function.  
The operation of these two functions is described below.  
a. Input capture timer operation  
When the TMIG bit is set to 1 in port mode register 1 (PMR1), timer G functions as an input  
capture timer*.  
In a reset, timer mode register G (TMG), timer counter G (TCG), input capture register GF  
(ICRGF), and input capture register GR (ICRGR) are all initialized to H00.  
Following a reset, TCG starts incrementing on the ø/64 internal clock.  
The input clock can be selected from four internal clock sources by bits CKS1 and CKS0 in  
TMG.  
When a rising edge/falling edge is detected in the input capture signal input from the TMIG  
pin, the TCG value at that time is transferred to ICRGR/ICRGF. When the edge selected by  
IIEGS in TMG is input, IRRTG is set to 1 in IRR2, and if the IENTG bit in IENR2 is 1 at this  
time, an interrupt request is sent to the CPU. For details of the interrupt, see 3.3., Interrupts.  
TCG can be cleared by a rising edge, falling edge, or both edges of the input capture signal,  
according to the setting of bits CCLR1 and CCLR0 in TMG. If TCG overflows when the input  
capture signal is high, the OVFH bit is set in TMG; if TCG overflows when the input capture  
signal is low, the OVFL bit is set in TMG. If the OVIE bit in TMG is 1 when these bits are  
set, IRRTG is set to 1 in IRR2, and if the IENTG bit in IENR2 is 1, timer G sends an interrupt  
request to the CPU. For details of the interrupt, see 3.3., Interrupts.  
Timer G has a built-in noise canceler that enables high-frequency component noise to be  
eliminated from pulses input from the TMIG pin. For details, see 9.5.3, Noise Canceler.  
Note: * An input capture signal may be generated when TMIG is modified.  
b. Interval timer operation  
When the TMIG bit is cleared to 0 in PMR1, timer G functions as an interval timer. Following  
a reset, TCG starts incrementing on the ø/64 internal clock. The input clock can be selected  
from four internal clock sources by bits CKS1 and CKS0 in TMG. TCG increments on the  
selected clock, and when it overflows from HFF to H00, the OVFL bit is set to 1 in TMG. If  
the OVIE bit in TMG is 1 at this time, IRRTG is set to 1 in IRR2, and if the IENTG bit in  
IENR2 is 1, timer G sends an interrupt request to the CPU. For details of the interrupt, see  
3.3., Interrupts.  
223  
2. Increment timing  
TCG is incremented by internal clock input. Bits CKS1 and CKS0 in TMG select one of four  
internal clock sources (ø/64, ø/32, ø/2, or øw/4) created by dividing the system clock (ø) or watch  
clock (øw).  
3. Input capture input timing  
a. Without noise cancellation function  
For input capture input, dedicated input capture functions are provided for rising and falling  
edges.  
Figure 9.10 shows the timing for rising/falling edge input capture input.  
Input capture  
input signal  
Input capture  
signal F  
Input capture  
signal R  
Figure 9.10 Input Capture Input Timing (without Noise Cancellation Function)  
b. With noise cancellation function  
When noise cancellation is performed on the input capture input, the passage of the input  
capture signal through the noise canceler results in a delay of five sampling clock cycles from  
the input capture input signal edge.  
Figure 9.11 shows the timing in this case.  
224  
Input capture  
input signal  
Sampling clock  
Noise canceler  
output  
Input capture  
signal R  
Figure 9.11 Input Capture Input Timing (with Noise Cancellation Function)  
4. Timing of input capture by input capture input  
Figure 9.12 shows the timing of input capture by input capture input  
Input capture  
signal  
TCG  
N-1  
N
N+1  
Input capture  
register  
H'XX  
N
Figure 9.12 Timing of Input Capture by Input Capture Input  
225  
5. TGC clear timing  
TCG can be cleared by the rising edge, falling edge, or both edges of the input capture input  
signal.  
Figure 9.13 shows the timing for clearing by both edges.  
Input capture  
input signal  
Input capture  
signal F  
Input capture  
signal R  
TCG  
N
H'00  
N
H'00  
Figure 9.13 TCG Clear Timing  
226  
6. Timer G operation modes  
Timer G operation modes are shown in table 9.13.  
Table 9.13 Timer G Operation Modes  
Sub-  
Sub-  
Module  
Operation Mode  
Reset Active  
Sleep  
Watch  
active  
sleep  
Standby Standby  
TCG Input capture  
Reset Functions* Functions* Functions/ Functions/ Functions/ Halted  
halted* halted* halted*  
Halted  
Halted  
Held  
Interval  
ICRGF  
Reset Functions* Functions* Functions/ Functions/ Functions/ Halted  
halted* halted* halted*  
Reset Functions* Functions* Functions/ Functions/ Functions/ Held  
halted* halted* halted*  
ICRGR  
Reset Functions* Functions* Functions Functions/ Functions/ Held  
Held  
halted*  
halted*  
halted*  
TMG  
Reset Functions Held  
Held  
Functions Held  
Held  
Held  
Note: * When øw/4 is selected as the TCG internal clock in active mode or sleep mode, since the  
system clock and internal clock are mutually asynchronous, synchronization is maintained  
by a synchronization circuit. This results in a maximum count cycle error of 1/ø (s). When  
øw/4 is selected as the TCG internal clock in watch mode, TCG and the noise canceler  
operate on the øw/4 internal clock without regard to the øSUB subclock (øw/8, øw/4, øw/2).  
Note that when another internal clock is selected, TCG and the noise canceler do not  
operate, and input of the input capture input signal does not result in input capture.  
To be operated Timer G in subactive mode or subsleep mode, select øw/4 for internal clock  
of TCG and also select øw/2 for sub clock øSUB. When another internal clock is selected  
and when another sub clock (øw/8, øw/4) is selected, TCG and noise canceler do not  
operate.  
9.5.5  
Application Notes  
1. Internal clock switching and TCG operation  
Depending on the timing, TCG may be incremented by a switch between difference internal clock  
sources. Table 9.14 shows the relation between internal clock switchover timing (by write to bits  
CKS1 and CKS0) and TCG operation.  
When TCG is internally clocked, an increment pulse is generated on detection of the falling edge  
of an internal clock signal, which is divided from the system clock (ø) or subclock (øw). For this  
reason, in a case like No. 3 in table 9.14 where the switch is from a high clock signal to a low  
clock signal, the switchover is seen as a falling edge, causing TCG to increment.  
227  
Table 9.14 Internal Clock Switching and TCG Operation  
Clock Levels Before and  
After Modifying Bits CKS1  
No.  
and CKS0  
TCG Operation  
1
Goes from low level to low level  
Clock before  
switching  
Clock after  
switching  
Count  
clock  
TCG  
N
N
N
N+1  
Write to CKS1 and CKS0  
2
Goes from low level to high level  
Clock before  
switching  
Clock before  
switching  
Count  
clock  
TCG  
N+1  
N+2  
Write to CKS1 and CKS0  
3
Goes from high level to low level  
Clock before  
switching  
Clock before  
switching  
*
Count  
clock  
TCG  
N+1  
N+2  
Write to CKS1 and CKS0  
228  
Table 9.14 Internal Clock Switching and TCG Operation (cont)  
Clock Levels Before and  
After Modifying Bits CKS1  
No.  
and CKS0  
TCG Operation  
4
Goes from high level to high level  
Clock before  
switching  
Clock before  
switching  
Count  
clock  
TCG  
N
N+1  
N+2  
Write to CKS1 and CKS0  
Note: * The switchover is seen as a falling edge, and TCG is incremented.  
2. Notes on port mode register modification  
The following points should be noted when a port mode register is modified to switch the input  
capture function or the input capture input noise canceler function.  
Switching input capture input pin function  
Note that when the pin function is switched by modifying TMIG in port mode register 1 (PMR1),  
which performs input capture input pin control, an edge will be regarded as having been input at  
the pin even though no valid edge has actually been input. Input capture input signal input edges,  
and the conditions for their occurrence, are summarized in table 9.15.  
229  
Table 9.15 Input Capture Input Signal Input Edges Due to Input Capture Input Pin  
Switching, and Conditions for Their Occurrence  
Input Capture Input Signal  
Input Edge  
Conditions  
Generation of rising edge  
When TMIG is modified from 0 to 1 while the TMIG pin is high  
When NCS is modified from 0 to 1 while the TMIG pin is high,  
then TMIG is modified from 0 to 1 before the signal is sampled  
five times by the noise canceler  
Generation of falling edge  
When TMIG is modified from 1 to 0 while the TMIG pin is high  
When NCS is modified from 0 to 1 while the TMIG pin is low,  
then TMIG is modified from 0 to 1 before the signal is sampled  
five times by the noise canceler  
When NCS is modified from 0 to 1 while the TMIG pin is high,  
then TMIG is modified from 1 to 0 after the signal is sampled five  
times by the noise canceler  
Note: When the P13 pin is not set as an input capture input pin, the timer G input capture input  
signal is low.  
Switching input capture input noise canceler function  
When performing noise canceler function switching by modifying NCS in port mode register 3  
(PMR3), which controls the input capture input noise canceler, TMIG should first be cleared to 0.  
Note that if NCS is modified without first clearing TMIG, an edge will be regarded as having been  
input at the pin even though no valid edge has actually been input. Input capture input signal input  
edges, and the conditions for their occurrence, are summarized in table 9.16.  
Table 9.16 Input Capture Input Signal Input Edges Due to Noise Canceler Function  
Switching, and Conditions for Their Occurrence  
Input Capture Input Signal  
Input Edge  
Conditions  
Generation of rising edge  
When the TMIG pin level is switched from low to high while  
TMIG is set to 1, then NCS is modified from 0 to 1 before the  
signal is sampled five times by the noise canceler  
Generation of falling edge  
When the TMIG pin level is switched from high to low while  
TMIG is set to 1, then NCS is modified from 1 to 0 before the  
signal is sampled five times by the noise canceler  
230  
When the pin function is switched and an edge is generated in the input capture input signal, if this  
edge matches the edge selected by the input capture interrupt select (IIEGS) bit, the interrupt  
request flag will be set to 1. The interrupt request flag should therefore be cleared to 0 before use.  
Figure 9.14 shows the procedure for port mode register manipulation and interrupt request flag  
clearing. When switching the pin function, set the interrupt-disabled state before manipulating the  
port mode register, then, after the port mode register operation has been performed, wait for the  
time required to confirm the input capture input signal as an input capture signal (at least two  
system clocks when the noise canceler is not used; at least five sampling clocks when the noise  
canceler is used), before clearing the interrupt enable flag to 0. There are two ways of preventing  
interrupt request flag setting when the pin function is switched: by controlling the pin level so that  
the conditions shown in tables 9.15 and 9.16 are not satisfied, or by setting the opposite of the  
generated edge in the IIEGS bit in TMG.  
Disable interrupts. (Interrupts can also be disabled by  
Set I bit to 1 in CCR  
manipulating the interrupt enable bit in interrupt enable  
register 2.)  
Manipulate port mode register  
TMIG confirmation time  
After manipulating he port mode register, wait for the  
TMIG confirmation time (at least two system clocks when  
the noise canceler is not used; at least five sampling  
clocks when the noise canceler is used), then clear the  
interrupt enable flag to 0.  
Clear interrupt request flag to 0  
Clear I bit to 0 in CCR  
Enable interrupts  
Figure 9.14 Port Mode Register Manipulation and Interrupt Enable Flag Clearing  
Procedure  
231  
9.5.6  
Timer G Application Example  
Using timer G, it is possible to measure the high and low widths of the input capture input signal  
as absolute values. For this purpose, CCLR1 and CCLR0 should both be set to 1 in TMG.  
Figure 9.15 shows an example of the operation in this case.  
Input capture  
input signal  
H'FF  
Input capture  
register GF  
Input capture  
register GR  
H'00  
TCG  
Counter cleared  
Figure 9.15 Timer G Application Example  
232  
9.6  
Watchdog Timer  
9.6.1  
Overview  
The watchdog timer has an 8-bit counter that is incremented by an input clock. If a system  
runaway allows the counter value to overflow before being rewritten, the watchdog timer can reset  
the chip internally.  
1. Features  
Features of the watchdog timer are given below.  
Incremented by internal clock source (ø/8192 or øw/32).  
A reset signal is generated when the counter overflows. The overflow period can be set from  
from 1 to 256 times 8192/ø or 32/øw (from approximately 4 ms to 1000 ms when ø = 2.00  
MHz).  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
2. Block diagram  
Figure 9.16 shows a block diagram of the watchdog timer.  
TCSRW  
TCW  
øw/32  
ø/8192  
ø
PSS  
Notation:  
Reset signal  
TCSRW: Timer control/status register W  
TCW:  
PSS:  
Timer counter W  
Prescaler S  
Figure 9.16 Block Diagram of Watchdog Timer  
233  
3. Register configuration  
Table 9.17 shows the register configuration of the watchdog timer.  
Table 9.17 Watchdog Timer Registers  
Name  
Abbrev.  
TCSRW  
TCW  
R/W  
R/W  
R/W  
R/W  
R/W  
Initial Value  
H'AA  
Address  
H'FFB2  
H'FFB3  
H'FFFB  
H'FFCA  
Timer control/status register W  
Timer counter W  
H'00  
Clock stop register 2  
Port mode register 3  
CKSTP2  
PMR3  
H'FF  
H'00  
9.6.2  
Register Descriptions  
1. Timer control/status register W (TCSRW)  
Bit  
7
B6WI  
1
6
TCWE  
0
5
4
3
2
WDON  
0
1
B0WI  
1
0
WRST  
0
B4WI TCSRWE B2WI  
Initial value  
Read/Write  
1
0
1
*
*
*
*
R/W  
R
R/W  
R
R/W  
R
R/W  
R
Note: * Write is permitted only under certain conditions, which are given in the descriptions of  
the individual bits.  
TCSRW is an 8-bit read/write register that controls write access to TCW and TCSRW itself,  
controls watchdog timer operations, and indicates operating status.  
Bit 7: Bit 6 write inhibit (B6WI)  
Bit 7 controls the writing of data to bit 6 in TCSRW.  
Bit 7  
B6WI  
Description  
0
1
Bit 6 is write-enabled  
Bit 6 is write-protected  
(initial value)  
This bit is always read as 1. Data written to this bit is not stored.  
234  
Bit 6: Timer counter W write enable (TCWE)  
Bit 6 controls the writing of data to TCW.  
Bit 6  
TCWE  
Description  
0
1
Data cannot be written to TCW  
Data can be written to TCW  
(initial value)  
Bit 5: Bit 4 write inhibit (B4WI)  
Bit 5 controls the writing of data to bit 4 in TCSRW.  
Bit 5  
B4WI  
Description  
0
1
Bit 4 is write-enabled  
Bit 4 is write-protected  
(initial value)  
This bit is always read as 1. Data written to this bit is not stored.  
Bit 4: Timer control/status register W write enable (TCSRWE)  
Bit 4 controls the writing of data to TCSRW bits 2 and 0.  
Bit 4  
TCSRWE  
Description  
0
1
Data cannot be written to bits 2 and 0  
Data can be written to bits 2 and 0  
(initial value)  
Bit 3: Bit 2 write inhibit (B2WI)  
Bit 3 controls the writing of data to bit 2 in TCSRW.  
Bit 3  
B2WI  
Description  
0
1
Bit 2 is write-enabled  
Bit 2 is write-protected  
(initial value)  
This bit is always read as 1. Data written to this bit is not stored.  
235  
Bit 2: Watchdog timer on (WDON)  
Bit 2 enables watchdog timer operation.  
Bit 2  
WDON  
Description  
0
Watchdog timer operation is disabled  
(initial value)  
Clearing conditions:  
Reset, or when TCSRWE = 1 and 0 is written in both B2WI and WDON  
1
Watchdog timer operation is enabled  
Setting conditions:  
When TCSRWE = 1 and 0 is written in B2WI and 1 is written in WDON  
Counting starts when this bit is set to 1, and stops when this bit is cleared to 0.  
Bit 1: Bit 0 write inhibit (B0WI)  
Bit 1 controls the writing of data to bit 0 in TCSRW.  
Bit 1  
B0WI  
Description  
0
1
Bit 0 is write-enabled  
Bit 0 is write-protected  
(initial value)  
This bit is always read as 1. Data written to this bit is not stored.  
Bit 0: Watchdog timer reset (WRST)  
Bit 0 indicates that TCW has overflowed, generating an internal reset signal. The internal reset  
signal generated by the overflow resets the entire chip. WRST is cleared to 0 by a reset from the  
RES pin, or when software writes 0.  
Bit 0  
WRST  
Description  
0
Clearing conditions:  
Reset by RES pin  
When TCSRWE = 1, and 0 is written in both B0WI and WRST  
1
Setting conditions:  
When TCW overflows and an internal reset signal is generated  
236  
2. Timer counter W (TCW)  
Bit  
7
TCW7  
0
6
TCW6  
0
5
TCW5  
0
4
TCW4  
0
3
TCW3  
0
2
TCW2  
0
1
TCW1  
0
0
TCW0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TCW is an 8-bit read/write up-counter, which is incremented by internal clock input. The input  
clock is ø/8192 or øw/32. The TCW value can always be written or read by the CPU.  
When TCW overflows from H'FF to H'00, an internal reset signal is generated and WRST is set to  
1 in TCSRW. Upon reset, TCW is initialized to H'00.  
3. Clock stop register 2 (CKSTPR2)  
Bit  
7
6
1
5
1
4
1
3
2
1
0
AECKSTP WDCKSTP PWCKSTP LDCKSTP  
1
1
1
1
Initial value  
Read/Write  
1
R/W  
R/W  
R/W  
R/W  
CKSTPR2 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to the watchdog timer is described here. For details of the other  
bits, see the sections on the relevant modules.  
Bit 2: Watchdog timer module standby mode control (WDCKSTP)  
Bit 2 controls setting and clearing of module standby mode for the watchdog timer.  
WDCKSTP Description  
0
1
Watchdog timer is set to module standby mode  
Watchdog timer module standby mode is cleared  
(initial value)  
Note: WDCKSTP is valid when the WDON bit is cleared to 0 in timer control/status register W  
(TCSRW). If WDCKSTP is set to 0 while WDON is set to 1 (during watchdog timer  
operation), 0 will be set in WDCKSTP but the watchdog timer will continue its watchdog  
function and will not enter module standby mode. When the watchdog function ends and  
WDON is cleared to 0 by software, the WDCKSTP setting will become valid and the  
watchdog timer will enter module standby mode.  
237  
4. Port mode register 3 (PMR3)  
PMR3 is an 8-bit read/write register, mainly controlling the selection of pin functions for port 3  
pins. Only the bit relating to the watchdog timer is described here. For details of the other bits,  
see section 8, I/O Ports.  
Bit 5: Watchdog timer source clock select (WDCKS)  
WDCKS  
Description  
0
1
ø/8192 selected  
øw/32 selected  
(initial value)  
9.6.3  
Timer Operation  
The watchdog timer has an 8-bit counter (TCW) that is incremented by clock input (ø/8192 or  
øw/32). The input clock is selected by bit WDCKS in port mode register 3 (PMR3): ø/8192 is  
selected when WDCKS is cleared to 0, and øw/32 when set to 1. When TCSRWE = 1 in TCSRW,  
if 0 is written in B2WI and 1 is simultaneously written in WDON, TCW starts counting up. When  
the TCW count reaches H'FF, the next clock input causes the watchdog timer to overflow, and an  
internal reset signal is generated one reference clock (ø or ø  
) cycle later. The internal reset  
SUB  
signal is output for 512 clock cycles of the ø  
clock. It is possible to write to TCW, causing  
OSC  
TCW to count up from the written value. The overflow period can be set in the range from 1 to  
256 input clocks, depending on the value written in TCW.  
Figure 9.17 shows an example of watchdog timer operations.  
Example: ø = 2 MHz and the desired overflow period is 30 ms.  
2 × 106  
8192  
× 30 × 103 = 7.3  
The value set in TCW should therefore be 256 8 = 248 (H'F8).  
238  
TCW overflow  
H'FF  
H'F8  
TCW count  
value  
H'00  
Start  
H'F8 written  
in TCW  
Reset  
H'F8 written in TCW  
Internal reset  
signal  
512 øOSC clock cycles  
Figure 9.17 Typical Watchdog Timer Operations (Example)  
Watchdog Timer Operation States  
9.6.4  
Table 9.18 summarizes the watchdog timer operation states.  
Table 9.18 Watchdog Timer Operation States  
Sub-  
active  
Sub-  
Module  
Operation Mode  
Reset Active  
Sleep  
Watch  
sleep  
Standby Standby  
TCW  
Reset Functions Functions Halted  
Functions/ Halted  
Halted  
Halted  
Halted*  
TCSRW  
Reset Functions Functions Retained Functions/ Retained Retained Retained  
Halted*  
Note: * Functions when øw/32 is selected as the input clock.  
239  
9.7  
Asynchronous Event Counter (AEC)  
9.7.1  
Overview  
The asynchronous event counter is incremented by external event clock input.  
1. Features  
Features of the asynchronous event counter are given below.  
Can count asynchronous events  
Can count external events input asynchronously without regard to the operation of base clocks ø  
and ø  
.
SUB  
The counter has a 16-bit configuration, enabling it to count up to 65536 (216) events.  
Can also be used as two independent 8-bit event counter channels.  
Counter resetting and halting of the count-up function controllable by software  
Automatic interrupt generation on detection of event counter overflow  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
240  
2. Block diagram  
Figure 9.18 shows a block diagram of the asynchronous event counter.  
IRREC  
ECCSR  
OVH  
ECH  
CK  
AEVH  
OVL  
ECL  
CK  
AEVL  
Notation:  
ECCSR : Event counter control/status register  
ECH  
ECL  
: Event counter H  
: Event counter L  
AEVH : Asynchronous event input H  
AEVL  
: Asynchronous event input L  
IRREC : Event counter overflow interrupt request flag  
Figure 9.18 Block Diagram of Asynchronous Event Counter  
241  
3. Pin configuration  
Table 9.19 shows the asynchronous event counter pin configuration.  
Table 9.19 Pin Configuration  
Name  
Abbrev. I/O  
Function  
Asynchronous event input H  
Asynchronous event input L  
AEVH  
AEVL  
Input  
Input  
Event input pin for input to event counter H  
Event input pin for input to event counter L  
4. Register configuration  
Table 9.20 shows the register configuration of the asynchronous event counter.  
Table 9.20 Asynchronous Event Counter Registers  
Name  
Abbrev.  
ECCSR  
ECH  
R/W  
R/W  
R
Initial Value  
H'00  
Address  
H'FF95  
H'FF96  
H'FF97  
H'FFFB  
Event counter control/status register  
Event counter H  
H'00  
Event counter L  
ECL  
R
H'00  
Clock stop register 2  
CKSTP2  
R/W  
H'FF  
9.7.2  
Register Descriptions  
1. Event counter control/status register (ECCSR)  
Bit  
7
6
5
4
3
CUEH  
0
2
CUEL  
0
1
0
CRCL  
0
OVH  
OVL  
CH2  
CRCH  
0
0
0
0
Initial Value  
Read/Write  
0
R/W*  
R/W*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Bits 7 and 6 can only be written with 0, for flag clearing.  
ECCSR is an 8-bit read/write register that controls counter overflow detection, counter resetting,  
and halting of the count-up function.  
ECCSR is initialized to H'00 upon reset.  
242  
Bit 7: Counter overflow flag H (OVH)  
Bit 7 is a status flag indicating that ECH has overflowed from H'FF to H'00. This flag is set when  
ECH overflows. It is cleared by software but cannot be set by software. OVH is cleared by  
reading it when set to 1, then writing 0.  
When ECH and ECL are used as a 16-bit event counter with CH2 cleared to 0, OVH functions as a  
status flag indicating that the 16-bit event counter has overflowed from H'FFFF to H'0000.  
Bit 7  
OVH  
Description  
0
ECH has not overflowed  
(initial value)  
Clearing conditions:  
After reading OVH = 1, cleared by writing 0 to OVH  
1
ECH has overflowed  
Setting conditions:  
Set when ECH overflows from HFF to H00  
Bit 6: Counter overflow flag L (OVL)  
Bit 6 is a status flag indicating that ECL has overflowed from H'FF to H'00. This flag is set when  
ECL overflows. It is cleared by software but cannot be set by software. OVL is cleared by  
reading it when set to 1, then writing 0.  
Bit 6  
OVL  
Description  
0
ECL has not overflowed  
(initial value)  
Clearing conditions:  
After reading OVL = 1, cleared by writing 0 to OVL  
1
ECL has overflowed  
Setting conditions:  
Set when ECL overflows from H'FF to H'00 while CH2 is set to 1  
Bit 5: Reserved bit  
Bit 5 is reserved; it can be read and written, and is initialized to 0 upon reset.  
243  
Bit 4: Channel select (CH2)  
Bit 4 selects whether ECH and ECL are used as a single-channel 16-bit event counter or as two  
independent 8-bit event counter channels. When CH2 is cleared to 0, ECH and ECL function as a  
16-bit event counter which is incremented each time an event clock is input to the AEVL pin as  
asynchronous event input. In this case, the overflow signal from ECL is selected as the ECH input  
clock. When CH2 is set to 1, ECH and ECL function as independent 8-bit event counters which  
are incremented each time an event clock is input to the AEVH or AEVL pin, respectively, as  
asynchronous event input.  
Bit 4  
CH2  
Description  
0
ECH and ECL are used together as a single-channel 16-bit event counter  
(initial value)  
1
ECH and ECL are used as two independent 8-bit event counter channels  
Bit 3: Count-up enable H (CUEH)  
Bit 3 enables event clock input to ECH. When 1 is written to this bit, event clock input is enabled  
and increments the counter. When 0 is written to this bit, event clock input is disabled and the  
ECH value is held. The AEVH pin or the ECL overflow signal can be selected as the event clock  
source by bit CH2.  
Bit 3  
CUEH  
Description  
0
ECH event clock input is disabled  
ECH value is held  
(initial value)  
1
ECH event clock input is enabled  
Bit 2: Count-up enable L (CUEL)  
Bit 3 enables event clock input to ECL. When 1 is written to this bit, event clock input is enabled  
and increments the counter. When 0 is written to this bit, event clock input is disabled and the  
ECL value is held.  
Bit 2  
CUEL  
Description  
0
ECL event clock input is disabled  
ECL value is held  
(initial value)  
1
ECL event clock input is enabled  
244  
Bit 1: Counter reset control H (CRCH)  
Bit 1 controls resetting of ECH. When this bit is cleared to 0, ECH is reset. When 1 is written to  
this bit, the counter reset is cleared and the ECH count-up function is enabled.  
Bit 1  
CRCH  
Description  
0
1
ECH is reset  
(initial value)  
ECH reset is cleared and count-up function is enabled  
Bit 0: Counter reset control L (CRCL)  
Bit 0 controls resetting of ECL. When this bit is cleared to 0, ECL is reset. When 1 is written to  
this bit, the counter reset is cleared and the ECL count-up function is enabled.  
Bit 0  
CRCL  
Description  
0
1
ECL is reset  
(initial value)  
ECL reset is cleared and count-up function is enabled  
2. Event counter H (ECH)  
Bit  
7
6
5
4
3
ECH3  
0
2
ECH2  
0
1
ECH1  
0
0
ECH0  
0
ECH7  
ECH6  
ECH5  
ECH4  
0
0
0
Initial Value  
Read/Write  
0
R
R
R
R
R
R
R
R
ECH is an 8-bit read-only up-counter that operates either as an independent 8-bit event counter or  
as the upper 8-bit up-counter of a 16-bit event counter configured in combination with ECL.  
Either the external asynchronous event AEVH pin or the overflow signal from lower 8-bit counter  
ECL can be selected as the input clock source by bit CH2. ECH can be cleared to H'00 by  
software, and is also initialized to H'00 upon reset.  
245  
3. Event counter L (ECL)  
ECL is an 8-bit read-only up-counter that operates either as an independent 8-bit event counter or  
as the lower 8-bit up-counter of a 16-bit event counter configured in combination with ECH. The  
event clock from the external asynchronous event AEVL pin is used as the input clock source.  
ECL can be cleared to H'00 by software, and is also initialized to H'00 upon reset.  
Bit  
7
6
5
4
3
ECL3  
0
2
ECL2  
0
1
ECL1  
0
0
ECL0  
0
ECL7  
ECL6  
ECL5  
ECL4  
0
0
0
Initial Value  
Read/Write  
0
R
R
R
R
R
R
R
R
4. Clock stop register 2 (CKSTPR2)  
Bit  
7
6
1
5
1
4
1
3
2
1
0
AECKSTP WDCKSTP PWCKSTP LDCKSTP  
1
1
1
1
Initial value  
Read/Write  
1
R/W  
R/W  
R/W  
R/W  
CKSTPR2 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to the asynchronous event counter is described here. For details of  
the other bits, see the sections on the relevant modules.  
Bit 3: Asynchronous event counter module standby mode control (AECKSTP)  
Bit 3 controls setting and clearing of module standby mode for the asynchronous event counter.  
AECKSTP Description  
0
1
Asynchronous event counter is set to module standby mode  
Asynchronous event counter module standby mode is cleared  
(initial value)  
246  
9.7.3  
Operation  
1. 16-bit event counter operation  
When bit CH2 is cleared to 0 in ECCSR, ECH and ECL operate as a 16-bit event counter. Figure  
9.19 shows an example of the software processing when ECH and ECL are used as a 16-bit event  
counter.  
Start  
Clear CH2 to 0  
Clear CUEH, CUEL, CRCH, and CRCL to 0  
Clear OVH and OVL to 0  
Set CUEH, CUEL, CRCH, and CRCL to 1  
End  
Figure 9.19 Example of Software Processing when Using ECH and ECL as 16-Bit Event  
Counter  
As CH2 is cleared to 0 by a reset, ECH and ECL operate as a 16-bit event counter after a reset.  
They can also be used as a 16-bit event counter by carrying out the software processing shown in  
the example in figure 9.19. The operating clock source is asynchronous event input from the  
AEVL pin. When the next clock is input after the count value reaches H'FF in both ECH and  
ECL, ECH and ECL overflow from H'FFFF to H'0000, the OVH flag is set to 1 in ECCSR, the  
ECH and ECL count values each return to H'00, and counting up is restarted. When overflow  
occurs, the IRREC bit is set to 1 in IRR2. If the IENEC bit in IENR2 is 1 at this time, an interrupt  
request is sent to the CPU.  
2. 8-bit event counter operation  
When bit CH2 is set to 1 in ECCSR, ECH and ECL operate as independent 8-bit event counters.  
Figure 9.20 shows an example of the software processing when ECH and ECL are used as 8-bit  
event counters.  
247  
Start  
Set CH2 to 1  
Clear CUEH, CUEL, CRCH, and CRCL to 0  
Clear OVH to 0  
Set CUEH, CUEL, CRCH, and CRCL to 1  
End  
Figure 9.20 Example of Software Processing when Using ECH and ECL as 8-Bit Event  
Counters  
ECH and ECL can be used as 8-bit event counters by carrying out the software processing shown  
in the example in figure 9.20. The 8-bit event counter operating clock source is asynchronous  
event input from the AEVH pin for ECH, and asynchronous event input from the AEVL pin for  
ECL. When the next clock is input after the ECH count value reaches H'FF, ECH overflows, the  
OVH flag is set to 1 in ECCSR, the ECH count value returns to H'00, and counting up is restarted.  
Similarly, when the next clock is input after the ECL count value reaches H'FF, ECL overflows,  
the OVL flag is set to 1 in ECCSR, the ECL count value returns to H'00, and counting up is  
restarted. When overflow occurs, the IRREC bit is set to 1 in IRR2. If the IENEC bit in IENR2 is  
1 at this time, an interrupt request is sent to the CPU.  
9.7.4  
Asynchronous Event Counter Operation Modes  
Asynchronous event counter operation modes are shown in table 9.21.  
Table 9.21 Asynchronous Event Counter Operation Modes  
Sub-  
Sub-  
sleep  
Module  
Operation Mode  
ECCSR  
ECH  
Reset Active  
Sleep  
Watch  
active  
Standby Standby  
Reset Functions Functions Held*  
Functions Functions Held*  
Held  
Reset Functions Functions* Functions* Functions Functions Functions* Halted  
Reset Functions Functions* Functions* Functions Functions Functions* Halted  
ECL  
Note: * When an asynchronous external event is input, the counter increments but the counter  
overflow H/L flags are not affected.  
248  
9.7.5  
Application Notes  
1. When reading the values in ECH and ECL, first clear bits CUEH and CUEL to 0 in ECCSR to  
prevent asynchronous event input to the counter. The correct value will not be returned if the  
event counter increments while being read.  
When clear bits CUEH and CUEL to 0 in ECCSR, ECH and ECL sometimes count up.  
2. Use a clock with a frequency of up to 6 MHz (Internal step-down circuit not used: V = 4.5  
CC  
to 5.5 V), up to 4 MHz (Internal step-down circuit not used: V = 3.0 to 5.5 V), up to 3.2  
CC  
MHz (internal step-down circuit not used: V = 2.7 to 5.5 V), up to 2 MHz (V = 2.2 to 5.5  
CC  
CC  
V), up to 1 MHz (others) for input to the AEVH and AEVL pins, and ensure that the high and  
low widths of the clock are at least 83 ns. The duty cycle is immaterial.  
Maximum AEVH/AEVL Pin  
Mode  
Input Clock Frequency  
Internal step-down circuit  
not used:  
16-bit mode  
8-bit mode  
Active (high-speed), sleep (high-speed)  
VCC = 4.5 to 5.5 V/6 MHz  
V
V
V
CC = 3.0 to 5.5 V/4 MHz  
CC = 2.6 to 5.5 V/3.2 MHz  
CC = 2.2 to 5.5 V/2 MHz  
Other than above/1 MHz  
Internal step-down circuit  
used:  
VCC = 2.2 to 5.5 V/2 MHz  
Other than above/1 MHz  
8-bit mode  
8-bit mode  
Active (medium-speed), sleep (medium-speed) (ø/16) 2 · fOSC  
(ø/32) fOSC  
(ø/64) 1/2 · fOSC  
fOSC = 400 kHz to 4 MHz  
(ø/128) 1/4 · fOSC  
(øw/2) 1000 kHz  
(øw/4) 500 kHz  
(øw/8) 250 kHz  
Watch, subactive, subsleep, standby  
øw = 32.768 kHz or 38.4 kHz  
3. When AEC uses with 16-bit mode, set CUEH in ECCSR to 1first, set CRCH in ECCSR to  
1second, or set both CUEH and CRCH to 1at same time before clock entry. While AEC  
is operating on 16-bit mode, do not change CUEH. Otherwise, ECH will be miscounted up.  
249  
250  
Section 10 Serial Communication Interface  
10.1  
Overview  
The H8/3864 Series is provided with two serial communication interfaces, SCI3-1 and SCI3-2.  
These two SCIs have identical functions. In this manual, the generic term SCI3 is used to refer to  
both SCIs.  
Serial communication interface 3 (SCI3) can carry out serial data communication in either  
asynchronous or synchronous mode. It is also provided with a multiprocessor communication  
function that enables serial data to be transferred among processors.  
10.1.1  
Features  
Features of SCI3 are listed below.  
Choice of asynchronous or synchronous mode for serial data communication  
Asynchronous mode  
Serial data communication is performed asynchronously, with synchronization provided  
character by character. In this mode, serial data can be exchanged with standard  
asynchronous communication LSIs such as a Universal Asynchronous  
Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter  
(ACIA). A multiprocessor communication function is also provided, enabling serial data  
communication among processors.  
There is a choice of 16 data transfer formats.  
Data length  
7, 8, 5 bits  
Stop bit length  
Parity  
1 or 2 bits  
Even, odd, or none  
“1” or “0”  
Multiprocessor bit  
Receive error detection  
Break detection  
Parity, overrun, and framing errors  
Break detected by reading the RXD3x pin level directly when a  
framing error occurs  
251  
Synchronous mode  
Serial data communication is synchronized with a clock. In his mode, serial data can be  
exchanged with another LSI that has a synchronous communication function.  
Data length  
Receive error detection  
8 bits  
Overrun errors  
Full-duplex communication  
Separate transmission and reception units are provided, enabling transmission and reception to  
be carried out simultaneously. The transmission and reception units are both double-buffered,  
allowing continuous transmission and reception.  
On-chip baud rate generator, allowing any desired bit rate to be selected  
Choice of an internal or external clock as the transmit/receive clock source  
Six interrupt sources: transmit end, transmit data empty, receive data full, overrun error,  
framing error, and parity error  
252  
10.1.2  
Block diagram  
Figure 10.1 shows a block diagram of SCI3.  
Internal clock (ø/64, ø/16, øw/2, ø)  
External  
SCK3x  
Baud rate generator  
BRC  
clock  
BRR  
Clock  
SMR  
SCR3  
SSR  
Transmit/receive  
control circuit  
TXD  
RXD  
TSR  
RSR  
TDR  
RDR  
SPCR  
Interrupt request  
(TEI, TXI, RXI, ERI)  
Notation:  
RSR:  
RDR:  
TSR:  
TDR:  
SMR:  
Receive shift register  
Receive data register  
Transmit shift register  
Transmit data register  
Serial mode register  
SCR3: Serial control register 3  
SSR:  
BRR:  
BRC:  
Serial status register  
Bit rate register  
Bit rate counter  
SPCR: Serial port control register  
Figure 10.1 SCI3 Block Diagram  
253  
10.1.3  
Pin configuration  
Table 10.1 shows the SCI3 pin configuration.  
Table 10.1 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
SCI3 clock  
SCK3x  
RXD3x  
TXD3x  
I/O  
SCI3 clock input/output  
SCI3 receive data input  
SCI3 transmit data output  
SCI3 receive data input  
SCI3 transmit data output  
Input  
Output  
10.1.4  
Register configuration  
Table 10.2 shows the SCI3 register configuration.  
Table 10.2 Registers  
Name  
Abbrev.  
SMR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Initial Value  
H'00  
Address  
H'FFA8/FF98  
H'FFA9/FF99  
H'FFAA/FF9A  
H'FFAB/FF9B  
H'FFAC/FF9C  
H'FFAD/FF9D  
Serial mode register  
Bit rate register  
BRR  
H'FF  
Serial control register 3  
Transmit data register  
Serial data register  
Receive data register  
Transmit shift register  
Receive shift register  
Bit rate counter  
SCR3  
TDR  
H'00  
H'FF  
SSR  
H'84  
RDR  
H'00  
TSR  
Protected —  
Protected —  
Protected —  
RSR  
BRC  
Clock stop register 1  
Serial port control register  
CKSTPR1  
SPCR  
R/W  
R/W  
H'FF  
H'C0  
H'FFFA  
H'FF91  
254  
10.2  
Register Descriptions  
10.2.1  
Receive shift register (RSR)  
Bit  
7
6
5
4
3
2
1
0
Read/Write  
RSR is a register used to receive serial data. Serial data input to RSR from the RXD pin is set in  
3x  
the order in which it is received, starting from the LSB (bit 0), and converted to parallel data.  
When one byte of data is received, it is transferred to RDR automatically.  
RSR cannot be read or written directly by the CPU.  
10.2.2  
Receive data register (RDR)  
Bit  
7
RDR7  
0
6
RDR6  
0
5
RDR5  
0
4
RDR4  
0
3
RDR3  
0
2
RDR2  
0
1
RDR1  
0
0
RDR0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
RDR is an 8-bit register that stores received serial data.  
When reception of one byte of data is finished, the received data is transferred from RSR to RDR,  
and the receive operation is completed. RSR is then able to receive data. RSR and RDR are  
double-buffered, allowing consecutive receive operations.  
RDR is a read-only register, and cannot be written by the CPU.  
RDR is initialized to H'00 upon reset, and in standby, module standby or watch mode.  
255  
10.2.3  
Transmit shift register (TSR)  
Bit  
7
6
5
4
3
2
1
0
Read/Write  
TSR is a register used to transmit serial data. Transmit data is first transferred from TDR to TSR,  
and serial data transmission is carried out by sending the data to the TXD pin in order, starting  
3x  
from the LSB (bit 0). When one byte of data is transmitted, the next byte of transmit data is  
transferred to TDR, and transmission started, automatically. Data transfer from TDR to TSR is  
not performed if no data has been written to TDR (if bit TDRE is set to 1 in the serial status  
register (SSR)).  
TSR cannot be read or written directly by the CPU.  
10.2.4  
Transmit data register (TDR)  
Bit  
7
TDR7  
1
6
TDR6  
1
5
TDR5  
1
4
TDR4  
1
3
TDR3  
1
2
TDR2  
1
1
TDR1  
1
0
TDR0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TDR is an 8-bit register that stores transmit data. When TSR is found to be empty, the transmit  
data written in TDR is transferred to TSR, and serial data transmission is started. Continuous  
transmission is possible by writing the next transmit data to TDR during TSR serial data  
transmission.  
TDR can be read or written by the CPU at any time.  
TDR is initialized to H'FF upon reset, and in standby, module standby, or watch mode.  
256  
10.2.5  
Serial mode register (SMR)  
Bit  
7
COM  
0
6
5
PE  
0
4
PM  
0
3
STOP  
0
2
MP  
0
1
CKS1  
0
0
CKS0  
0
CHR  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SMR is an 8-bit register used to set the serial data transfer format and to select the clock source for  
the baud rate generator.  
SMR can be read or written by the CPU at any time.  
SMR is initialized to H'00 upon reset, and in standby, module standby, or watch mode.  
Bit 7: Communication mode (COM)  
Bit 7 selects whether SCI3 operates in asynchronous mode or synchronous mode.  
Bit 7  
COM  
Description  
0
1
Asynchronous mode  
Synchronous mode  
(initial value)  
Bit 6: Character length (CHR)  
Bit 6 selects either 7 or 8 bits as the data length to be used in asynchronous mode. In synchronous  
mode the data length is always 8 bits, irrespective of the bit 6 setting.  
Bit 6  
CHR  
Description  
0
1
8-bit data/5-bit data*2  
7-bit data*1/5-bit data*2  
(initial value)  
Notes: 1. When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted.  
2. When 5-bit data is selected, set both PE and MP to 1. The three most significant bits  
(bits 7, 6, and 5) of TDR are not transmitted.  
257  
Bit 5: Parity enable (PE)  
Bit 5 selects whether a parity bit is to be added during transmission and checked during reception  
in asynchronous mode. In synchronous mode parity bit addition and checking is not performed,  
irrespective of the bit 5 setting.  
Bit 5  
PE  
Description  
0
Parity bit addition and checking disabled*2  
Parity bit addition and checking enabled*1/*2  
(initial value)  
1
Notes: 1. When PE is set to 1, even or odd parity, as designated by bit PM, is added to transmit  
data before it is sent, and the received parity bit is checked against the parity  
designated by bit PM.  
2. For the case where 5-bit data is selected, see table 10.11.  
Bit 4: Parity mode (PM)  
Bit 4 selects whether even or odd parity is to be used for parity addition and checking. The PM bit  
setting is only valid in asynchronous mode when bit PE is set to 1, enabling parity bit addition and  
checking. The PM bit setting is invalid in synchronous mode, and in asynchronous mode if parity  
bit addition and checking is disabled.  
Bit 4  
PM  
Description  
Even parity*1  
Odd parity*2  
0
(initial value)  
1
Notes: 1. When even parity is selected, a parity bit is added in transmission so that the total  
number of 1 bits in the transmit data plus the parity bit is an even number; in reception,  
a check is carried out to confirm that the number of 1 bits in the receive data plus the  
parity bit is an even number.  
2. When odd parity is selected, a parity bit is added in transmission so that the total  
number of 1 bits in the transmit data plus the parity bit is an odd number; in reception, a  
check is carried out to confirm that the number of 1 bits in the receive data plus the  
parity bit is an odd number.  
258  
Bit 3: Stop bit length (STOP)  
Bit 3 selects 1 bit or 2 bits as the stop bit length is asynchronous mode. The STOP bit setting is  
only valid in asynchronous mode. When synchronous mode is selected the STOP bit setting is  
invalid since stop bits are not added.  
Bit 3  
STOP  
Description  
1 stop bit*1  
2 stop bits*2  
0
1
(initial value)  
Notes: 1. In transmission, a single 1 bit (stop bit) is added at the end of a transmit character.  
2. In transmission, two 1 bits (stop bits) are added at the end of a transmit character.  
In reception, only the first of the received stop bits is checked, irrespective of the STOP bit setting.  
If the second stop bit is 1 it is treated as a stop bit, but if 0, it is treated as the start bit of the next  
transmit character.  
Bit 2: Multiprocessor mode (MP)  
Bit 2 enables or disables the multiprocessor communication function. When the multiprocessor  
communication function is disabled, the parity settings in the PE and PM bits are invalid. The MP  
bit setting is only valid in asynchronous mode. When synchronous mode is selected the MP bit  
should be set to 0. For details on the multiprocessor communication function, see 10.1.6,  
Multiprocessor Communication Function.  
Bit 2  
MP  
Description  
0
Multiprocessor communication function disabled*  
Multiprocessor communication function enabled*  
(initial value)  
1
Note: * For the case where 5-bit data is selected, see table 10.11.  
259  
Bits 1 and 0: Clock select 1, 0 (CKS1, CKS0)  
Bits 1 and 0 choose ø/64, ø/16, øw/2, or ø as the clock source for the baud rate generator.  
For the relation between the clock source, bit rate register setting, and baud rate, see 8, Bit rate  
register (BRR).  
Bit 1  
Bit 0  
CKS1  
CKS0  
Description  
ø clock  
ø w/2 clock*1/ø w clock*2  
0
0
1
1
0
1
0
1
(initial value)  
ø/16 clock  
ø/64 clock  
Notes: 1. ø w/2 clock in active (medium-speed/high-speed) mode and sleep mode  
2. ø w clock in subactive mode and subsleep mode  
3. In subactive or subsleep mode, SCI3 can be operated when CPU clock is øw/2 only.  
10.2.6  
Serial control register 3 (SCR3)  
Bit  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
MPIE  
0
2
TEIE  
0
1
CKE1  
0
0
CKE0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SCR3 is an 8-bit register for selecting transmit or receive operation, the asynchronous mode clock  
output, interrupt request enabling or disabling, and the transmit/receive clock source.  
SCR3 can be read or written by the CPU at any time.  
SCR3 is initialized to H'00 upon reset, and in standby, module standby or watch mode.  
260  
Bit 7: Transmit interrupt enable (TIE)  
Bit 7 selects enabling or disabling of the transmit data empty interrupt request (TXI) when  
transmit data is transferred from the transmit data register (TDR) to the transmit shift register  
(TSR), and bit TDRE in the serial status register (SSR) is set to 1.  
TXI can be released by clearing bit TDRE or bit TIE to 0.  
Bit 7  
TIE  
Description  
0
Transmit data empty interrupt request (TXI) disabled  
Transmit data empty interrupt request (TXI) enabled  
(initial value)  
1
Bit 6: Receive interrupt enable (RIE)  
Bit 6 selects enabling or disabling of the receive data full interrupt request (RXI) and the receive  
error interrupt request (ERI) when receive data is transferred from the receive shift register (RSR)  
to the receive data register (RDR), and bit RDRF in the serial status register (SSR) is set to 1.  
There are three kinds of receive error: overrun, framing, and parity.  
RXI can be released by clearing bit RDRF or the FER, PER, or OER error flag to 0, or by clearing  
bit RIE to 0.  
Bit 6  
RIE  
Description  
0
Receive data full interrupt request (RXI) and receive error interrupt  
request (ERI) disabled  
(initial value)  
1
Receive data full interrupt request (RXI) and receive error interrupt  
request (ERI) enabled  
Bit 5: Transmit enable (TE)  
Bit 5 selects enabling or disabling of the start of transmit operation.  
Bit 5  
TE  
Description  
0
Transmit operation disabled*1 (TXD pin is I/O port)  
Transmit operation enabled*2 (TXD pin is transmit data pin)  
(initial value)  
1
Notes: 1. Bit TDRE in SSR is fixed at 1.  
2. When transmit data is written to TDR in this state, bit TDR in SSR is cleared to 0 and  
serial data transmission is started. Be sure to carry out serial mode register (SMR)  
settings, and setting of bit SPC31 or SPC32 in SPCR, to decide the transmission format  
before setting bit TE to 1.  
261  
Bit 4: Receive enable (RE)  
Bit 4 selects enabling or disabling of the start of receive operation.  
Bit 4  
RE  
Description  
0
Receive operation disabled*1 (RXD pin is I/O port)  
Receive operation enabled*2 (RXD pin is receive data pin)  
(initial value)  
1
Notes: 1. Note that the RDRF, FER, PER, and OER flags in SSR are not affected when bit RE is  
cleared to 0, and retain their previous state.  
2. In this state, serial data reception is started when a start bit is detected in asynchronous  
mode or serial clock input is detected in synchronous mode. Be sure to carry out serial  
mode register (SMR) settings to decide the reception format before setting bit RE to 1.  
Bit 3: Multiprocessor interrupt enable (MPIE)  
Bit 3 selects enabling or disabling of the multiprocessor interrupt request. The MPIE bit setting is  
only valid when asynchronous mode is selected and reception is carried out with bit MP in SMR  
set to 1. The MPIE bit setting is invalid when bit COM is set to 1 or bit MP is cleared to 0.  
Bit 3  
MPIE  
Description  
0
Multiprocessor interrupt request disabled (normal receive operation)  
Clearing conditions:  
(initial value)  
When data is received in which the multiprocessor bit is set to 1  
1
Multiprocessor interrupt request enabled*  
Note: * Receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF,  
FER, and OER status flags in SSR is not performed. RXI, ERI, and setting of the RDRF,  
FER, and OER flags in SSR, are disabled until data with the multiprocessor bit set to 1 is  
received. When a receive character with the multiprocessor bit set to 1 is received, bit  
MPBR in SSR is set to 1, bit MPIE is automatically cleared to 0, and RXI and ERI requests  
(when bits TIE and RIE in serial control register 3 (SCR3) are set to 1) and setting of the  
RDRF, FER, and OER flags are enabled.  
262  
Bit 2: Transmit end interrupt enable (TEIE)  
Bit 2 selects enabling or disabling of the transmit end interrupt request (TEI) if there is no valid  
transmit data in TDR when MSB data is to be sent.  
Bit 2  
TEIE  
Description  
0
1
Transmit end interrupt request (TEI) disabled  
Transmit end interrupt request (TEI) enabled*  
(initial value)  
Note: * TEI can be released by clearing bit TDRE to 0 and clearing bit TEND to 0 in SSR, or by  
clearing bit TEIE to 0.  
Bits 1 and 0: Clock enable 1 and 0 (CKE1, CKE0)  
Bits 1 and 0 select the clock source and enabling or disabling of clock output from the SCK pin.  
3x  
The combination of CKE1 and CKE0 determines whether the SCK pin functions as an I/O port,  
3x  
a clock output pin, or a clock input pin.  
The CKE0 bit setting is only valid in case of internal clock operation (CKE1 = 0) in asynchronous  
mode. In synchronous mode, or when external clock operation is used (CKE1 = 1), bit CKE0  
should be cleared to 0.  
After setting bits CKE1 and CKE0, set the operating mode in the serial mode register (SMR).  
For details on clock source selection, see table 10.4 in 10.1.3, Operation.  
Bit 1  
CKE1  
0
Bit 0  
CKE0  
0
Description  
Clock Source  
Internal clock  
Internal clock  
Internal clock  
Reserved  
Communication Mode  
Asynchronous  
Synchronous  
SCK3x Pin Function  
I/O port*1  
Serial clock output*1  
Clock output*2  
0
1
1
1
0
1
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
External clock  
External clock  
Reserved  
Clock input*3  
Serial clock input  
Asynchronous  
Synchronous  
Reserved  
Notes: 1. Initial value  
2. A clock with the same frequency as the bit rate is output.  
3. Input a clock with a frequency 16 times the bit rate.  
263  
10.2.7  
Serial status register (SSR)  
Bit  
7
6
RDRF  
0
5
OER  
0
4
FER  
0
3
PER  
0
2
TEND  
1
1
MPBR  
0
0
MPBT  
0
TDRE  
1
Initial value  
Read/Write  
*
*
*
*
*
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R
R
R/W  
Note: * Only a write of 0 for flag clearing is possible.  
SSR is an 8-bit register containing status flags that indicate the operational status of SCI3, and  
multiprocessor bits.  
SSR can be read or written by the CPU at any time, but only a write of 1 is possible to bits TDRE,  
RDRF, OER, PER, and FER. In order to clear these bits by writing 0, 1 must first be read.  
Bits TEND and MPBR are read-only bits, and cannot be modified.  
SSR is initialized to H'84 upon reset, and in standby, module standby, or watch mode.  
Bit 7: Transmit data register empty (TDRE)  
Bit 7 indicates that transmit data has been transferred from TDR to TSR.  
Bit 7  
TDRE  
Description  
0
Transmit data written in TDR has not been transferred to TSR  
Clearing conditions:  
After reading TDRE = 1, cleared by writing 0 to TDRE  
When data is written to TDR by an instruction  
1
Transmit data has not been written to TDR, or transmit data written in  
TDR has been transferred to TSR  
Setting conditions:  
When bit TE in SCR3 is cleared to 0  
When data is transferred from TDR to TSR  
(initial value)  
264  
Bit 6: Receive data register full (RDRF)  
Bit 6 indicates that received data is stored in RDR.  
Bit 6  
RDRF  
Description  
0
There is no receive data in RDR  
(initial value)  
Clearing conditions:  
After reading RDRF = 1, cleared by writing 0 to RDRF  
When RDR data is read by an instruction  
1
There is receive data in RDR  
Setting conditions:  
When reception ends normally and receive data is transferred from RSR to RDR  
Note: If an error is detected in the receive data, or if the RE bit in SCR3 has been cleared to 0,  
RDR and bit RDRF are not affected and retain their previous state.  
Note that if data reception is completed while bit RDRF is still set to 1, an overrun error  
(OER) will result and the receive data will be lost.  
Bit 5: Overrun error (OER)  
Bit 5 indicates that an overrun error has occurred during reception.  
Bit 5  
OER  
Description  
0
Reception in progress or completed*1  
Clearing conditions:  
(initial value)  
After reading OER = 1, cleared by writing 0 to OER  
1
An overrun error has occurred during reception*2  
Setting conditions:  
When reception is completed with RDRF set to 1  
Notes: 1. When bit RE in SCR3 is cleared to 0, bit OER is not affected and retains its previous  
state.  
2. RDR retains the receive data it held before the overrun error occurred, and data  
received after the error is lost. Reception cannot be continued with bit OER set to 1,  
and in synchronous mode, transmission cannot be continued either.  
265  
Bit 4: Framing error (FER)  
Bit 4 indicates that a framing error has occurred during reception in asynchronous mode.  
Bit 4  
FER  
Description  
0
Reception in progress or completed*1  
Clearing conditions:  
(initial value)  
After reading FER = 1, cleared by writing 0 to FER  
1
A framing error has occurred during reception  
Setting conditions:  
When the stop bit at the end of the receive data is checked for a value  
of 1 at the end of reception, and the stop bit is 0*2  
Notes: 1. When bit RE in SCR3 is cleared to 0, bit FER is not affected and retains its previous  
state.  
2. Note that, in 2-stop-bit mode, only the first stop bit is checked for a value of 1, and the  
second stop bit is not checked. When a framing error occurs the receive data is  
transferred to RDR but bit RDRF is not set. Reception cannot be continued with bit  
FER set to 1. In synchronous mode, neither transmission nor reception is possible  
when bit FER is set to 1.  
Bit 3: Parity error (PER)  
Bit 3 indicates that a parity error has occurred during reception with parity added in asynchronous  
mode.  
Bit 3  
PER  
Description  
0
Reception in progress or completed*1  
Clearing conditions:  
(initial value)  
After reading PER = 1, cleared by writing 0 to PER  
1
A parity error has occurred during reception*2  
Setting conditions:  
When the number of 1 bits in the receive data plus parity bit does not  
match the parity designated by bit PM in the serial mode register (SMR)  
Notes: 1. When bit RE in SCR3 is cleared to 0, bit PER is not affected and retains its previous  
state.  
2. Receive data in which it a parity error has occurred is still transferred to RDR, but bit  
RDRF is not set. Reception cannot be continued with bit PER set to 1. In synchronous  
mode, neither transmission nor reception is possible when bit FER is set to 1.  
266  
Bit 2: Transmit end (TEND)  
Bit 2 indicates that bit TDRE is set to 1 when the last bit of a transmit character is sent.  
Bit 2 is a read-only bit and cannot be modified.  
Bit 2  
TEND  
Description  
0
Transmission in progress  
Clearing conditions:  
After reading TDRE = 1, cleared by writing 0 to TDRE  
When data is written to TDR by an instruction  
1
Transmission ended  
(initial value)  
Setting conditions:  
When bit TE in SCR3 is cleared to 0  
When bit TDRE is set to 1 when the last bit of a transmit character is sent  
Bit 1: Multiprocessor bit receive (MPBR)  
Bit 1 stores the multiprocessor bit in a receive character during multiprocessor format reception in  
asynchronous mode.  
Bit 1 is a read-only bit and cannot be modified.  
Bit 1  
MPBR  
Description  
0
1
Data in which the multiprocessor bit is 0 has been received*  
Data in which the multiprocessor bit is 1 has been received  
(initial value)  
Note: * When bit RE is cleared to 0 in SCR3 with the multiprocessor format, bit MPBR is not  
affected and retains its previous state.  
Bit 0: Multiprocessor bit transfer (MPBT)  
Bit 0 stores the multiprocessor bit added to transmit data when transmitting in asynchronous  
mode. The bit MPBT setting is invalid when synchronous mode is selected, when the  
multiprocessor communication function is disabled, and when not transmitting.  
Bit 0  
MPBT  
Description  
0
1
A 0 multiprocessor bit is transmitted  
A 1 multiprocessor bit is transmitted  
(initial value)  
267  
10.2.8  
Bit rate register (BRR)  
Bit  
7
BRR7  
1
6
BRR6  
1
5
BRR5  
1
4
BRR4  
1
3
BRR3  
1
2
BRR2  
1
1
BRR1  
1
0
BRR0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BRR is an 8-bit register that designates the transmit/receive bit rate in accordance with the baud  
rate generator operating clock selected by bits CKS1 and CKS0 of the serial mode register (SMR).  
BRR can be read or written by the CPU at any time.  
BRR is initialized to H'FF upon reset, and in standby, module standby, or watch mode.  
Table 10.3 shows examples of BRR settings in asynchronous mode. The values shown are for  
active (high-speed) mode.  
Table 10.3 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1)  
OSC  
32.8 kHz  
Error  
(%)  
Cannot be used, —  
38.4 kHz  
Error  
2 MHz  
Error  
2.4576 MHz  
Error  
(%)  
21 0.83 —  
4 MHz  
Error  
B Bit Rate  
(bit/s)  
n
N
n
N
(%)  
0
n
N
(%)  
n
2
3
3
0
3
3
2
2
0
0
0
0
N
n
N
(%)  
110  
3
2
150  
as error  
0
12 0.16  
155 0.16  
124 0  
3
2
0
0
2
25 0.16  
200  
exceeds 3%  
0
2
0
0
250  
0
1
0
0
153 0.26 0  
249 0  
300  
0
103 0.16  
51 0.16  
25 0.16  
12 0.16  
1
0
1
0
7
3
1
0
0
0
0
0
0
0
0
0
2
12 0.16  
103 0.16  
51 0.16  
25 0.16  
12 0.16  
600  
0
0
0
0
0
1200  
2400  
4800  
9600  
19200  
31250  
38400  
0
0
0
0
0
0
1
0
268  
Notes: 1. The setting should be made so that the error is not more than 1%.  
2. The value set in BRR is given by the following equation:  
OSC  
N =  
1  
(64 × 22n × B)  
where  
B: Bit rate (bit/s)  
N: Baud rate generator BRR setting (0 N 255)  
OSC: Value of ø (Hz)  
OSC  
n: Baud rate generator input clock number (n = 0, 2, or 3)  
(The relation between n and the clock is shown in table 10.4.)  
3. The error in table 10.3 is the value obtained from the following equation, rounded to  
two decimal places.  
B (rate obtained from n, N, OSC) R(bit rate in left-hand column in table 10.3.)  
Error (%) =  
× 100  
R (bit rate in left-hand column in table 10.3.)  
Table 10.4 Relation between n and Clock  
SMR Setting  
n
0
0
2
3
Clock  
ø
øw/2*1/øw  
CKS1  
CKS0  
0
0
1
1
0
1
0
1
*2  
ø/16  
ø/64  
Notes: 1. ø w/2 clock in active (medium-speed/high-speed) mode and sleep mode  
2. ø w clock in subactive mode and subsleep mode  
3. In subactive or subsleep mode, SCI3 can be operated when CPU clock is øw/2 only.  
Table 10.5 shows the maximum bit rate for each frequency. The values shown are for active  
(high-speed) mode.  
269  
Table 10.5 Maximum Bit Rate for Each Frequency (Asynchronous Mode)  
Maximum Bit Rate  
(bit/s)  
Setting  
OSC (MHz)  
n
0
0
0
0
N
0
0
0
0
0.0384*  
600  
2
31250  
2.4576  
4
38400  
62500  
* : When SMR is set up to CKS1 = 0, CKS0 = 1.  
Table 10.6 shows examples of BRR settings in synchronous mode. The values shown are for  
active (high-speed) mode.  
Table 10.6 Examples of BRR Settings for Various Bit Rates (Synchronous Mode)  
OSC  
B Bit Rate  
(bit/s)  
200  
38.4 kHz  
2 MHz  
4 MHz  
n
N
Error  
n
N
Error  
0
n
N
Error  
0
0
23  
0
0
0
249  
99  
49  
24  
9
2
124  
199  
99  
49  
19  
9
250  
2
0
300  
0
0
500  
1k  
2.5k  
5k  
0
0
0
0
0
0
10k  
0
0
0
0
25k  
0
0
0
0
50k  
0
4
0
0
0
100k  
250k  
500k  
1M  
0
0
0
0
4
0
0
1
0
0
0
0
Blank: Cannot be set.  
: A setting can be made, but an error will result.  
270  
Notes:  
The value set in BRR is given by the following equation:  
OSC  
N =  
1  
(8 × 22n × B)  
where  
B: Bit rate (bit/s)  
N: Baud rate generator BRR setting (0 N 255)  
OSC: Value of ø (Hz)  
OSC  
n: Baud rate generator input clock number (n = 0, 2, or 3)  
(The relation between n and the clock is shown in table 10.7.)  
Table 10.7 Relation between n and Clock  
SMR Setting  
n
0
0
2
3
Clock  
ø
øw/2*1/øw  
CKS1  
CKS0  
0
0
1
1
0
1
0
1
*2  
ø/16  
ø/64  
Notes: 1. ø w/2 clock in active (medium-speed/high-speed) mode and sleep mode  
2. ø w clock in subactive mode and subsleep mode  
3. In subactive or subsleep mode, SCI3 can be operated when CPU clock is øw/2 only.  
271  
10.2.9  
Clock stop register 1 (CKSTPR1)  
Bit  
7
6
5
4
3
2
1
0
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP  
1
1
1
1
1
1
1
Initial value  
Read/Write  
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bits relating to SCI3 are described here. For details of the other bits, see the  
sections on the relevant modules.  
Bit 6: SCI3-1 module standby mode control (S31CKSTP)  
Bit 6 controls setting and clearing of module standby mode for SCI31.  
S31CKSTP Description  
0
1
SCI3-1 is set to module standby mode  
SCI3-1 module standby mode is cleared  
(initial value)  
Note: All SCI31 register is initialized in module standby mode.  
Bit 5: SCI3-2 module standby mode control (S32CKSTP)  
Bit 5 controls setting and clearing of module standby mode for SCI32.  
S32CKSTP Description  
0
1
SCI3-2 is set to module standby mode  
SCI3-2 module standby mode is cleared  
(initial value)  
Note: All SCI32 register is initialized in module standby mode.  
272  
10.2.10 Serial Port Control Register (SPCR)  
Bit  
7
1
6
1
5
4
3
2
1
0
SPC32 SPC31 SCINV3 SCINV2 SCINV1 SCINV0  
Initial value  
Read/Write  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SPCR is an 8-bit readable/writable register that performs RXD , RXD , TXD , and TXD pin  
31  
32  
31  
32  
input/output data inversion switching. SPCR is initialized to H'C0 by a reset.  
Bit 0: RXD pin input data inversion switch  
31  
Bit 0 specifies whether or not RXD pin input data is to be inverted.  
31  
Bit 0  
SCINV0  
Description  
0
1
RXD31 input data is not inverted  
RXD31 input data is inverted  
(initial value)  
Bit 1: TXD pin output data inversion switch  
31  
Bit 1 specifies whether or not TXD pin output data is to be inverted.  
31  
Bit 1  
SCINV1  
Description  
0
1
TXD31 output data is not inverted  
TXD31 output data is inverted  
(initial value)  
Bit 2: RXD pin input data inversion switch  
32  
Bit 2 specifies whether or not RXD pin input data is to be inverted.  
32  
Bit 2  
SCINV2  
Description  
0
1
RXD32 input data is not inverted  
RXD32 input data is inverted  
(initial value)  
273  
Bit 3: TXD pin output data inversion switch  
32  
Bit 3 specifies whether or not TXD pin output data is to be inverted.  
32  
Bit 3  
SCINV3  
Description  
0
1
TXD32 output data is not inverted  
TXD32 output data is inverted  
(initial value)  
Bit 4: P3 /TXD pin function switch (SPC31)  
5
31  
This bit selects whether pin P3 /TXD is used as P3 or as TXD .  
5
31  
5
31  
Bit 4  
SPC31  
Description  
0
1
Functions as P35 I/O pin  
(initial value)  
Functions as TXD31 output pin*  
Note: * Set the TE bit in SCR3 after setting this bit to 1.  
Bit 5: P4 /TXD pin function switch (SPC32)  
2
32  
This bit selects whether pin P4 /TXD is used as P4 or as TXD .  
2
32  
2
32  
Bit 5  
SPC32  
Description  
0
1
Functions as P42 I/O pin  
(initial value)  
Functions as TXD32 output pin*  
Note: * Set the TE bit in SCR3 after setting this bit to 1.  
Bits 7 to 6: Reserved bits  
Bits 7 to 6 are reserved; they are always read as 1 and cannot be modified.  
274  
10.3  
Operation  
10.3.1  
Overview  
SCI3 can perform serial communication in two modes: asynchronous mode in which  
synchronization is provided character by character, and synchronous mode in which  
synchronization is provided by clock pulses. The serial mode register (SMR) is used to select  
asynchronous or synchronous mode and the data transfer format, as shown in table 10.8.  
The clock source for SCI3 is determined by bit COM in SMR and bits CKE1 and CKE0 in SCR3,  
as shown in table 10.9.  
1. Synchronous mode  
Choice of 5-, 7-, or 8-bit data length  
Choice of parity addition, multiprocessor bit addition, and addition of 1 or 2 stop bits. (The  
combination of these parameters determines the data transfer format and the character length.)  
Framing error (FER), parity error (PER), overrun error (OER), and break detection during  
reception  
Choice of internal or external clock as the clock source  
When internal clock is selected: SCI3 operates on the baud rate generator clock, and a clock  
with the same frequency as the bit rate can be output.  
When external clock is selected: A clock with a frequency 16 times the bit rate must be input.  
(The on-chip baud rate generator is not used.)  
2. Synchronous mode  
Data transfer format: Fixed 8-bit data length  
Overrun error (OER) detection during reception  
Choice of internal or external clock as the clock source  
When internal clock is selected: SCI3 operates on the baud rate generator clock, and a serial  
clock is output.  
When external clock is selected: The on-chip baud rate generator is not used, and SCI3  
operates on the input serial clock.  
275  
Table 10.8 SMR Settings and Corresponding Data Transfer Formats  
SMR  
Data Transfer Format  
Multiprocessor Parity Stop Bit  
bit 7 bit 6 bit 2 bit 5 bit 3  
Data  
COM CHR MP  
PE  
STOP Mode  
Length  
Bit  
Bit  
Length  
0
0
1
0
1
*
0
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
*
Asynchronous 8-bit data No  
mode  
No  
1 bit  
2 bits  
1 bit  
1
0
1
0
1
0
1
*
Yes  
No  
2 bits  
1 bit  
7-bit data  
2 bits  
1 bit  
Yes  
No  
2 bits  
1 bit  
8-bit data Yes  
5-bit data No  
7-bit data Yes  
5-bit data No  
2 bits  
1 bit  
2 bits  
1 bit  
2 bits  
1 bit  
Yes  
No  
2 bits  
No  
1
Synchronous 8-bit data No  
mode  
*: Dont care  
276  
Table 10.9 SMR and SCR3 Settings and Clock Source Selection  
SMR  
SCR3  
bit 7 bit 1 bit 0  
Transmit/Receive Clock  
Clock Source SCK3x Pin Function  
COM CKE1 CKE0 Mode  
0
1
0
0
1
0
0
0
1
1
1
Asynchronous Internal  
mode  
I/O port (SCK3x pin not used)  
Outputs clock with same frequency as bit rate  
Outputs clock with frequency 16 times bit rate  
Outputs serial clock  
1
0
1
1
0
1
External  
Synchronous Internal  
mode  
External  
Inputs serial clock  
0
1
1
Reserved (Do not specify these combinations)  
3. Interrupts and continuous transmission/reception  
SCI3 can carry out continuous reception using RXI and continuous transmission using TXI.  
These interrupts are shown in table 10.10.  
Table 10.10 Transmit/Receive Interrupts  
Interrupt Flags Interrupt Request Conditions  
Notes  
RXI  
TXI  
TEI  
RDRF When serial reception is performed  
The RXI interrupt routine reads the  
RIE  
normally and receive data is transferred receive data transferred to RDR and  
from RSR to RDR, bit RDRF is set to 1, clears bit RDRF to 0. Continuous  
and if bit RIE is set to 1 at this time, RXI reception can be performed by  
is enabled and an interrupt is requested. repeating the above operations until  
(See figure 10.2 (a).)  
reception of the next RSR data is  
completed.  
TDRE When TSR is found to be empty (on  
The TXI interrupt routine writes the  
TIE  
completion of the previous transmission) next transmit data to TDR and clears  
and the transmit data placed in TDR is bit TDRE to 0. Continuous  
transferred to TSR, bit TDRE is set to 1. transmission can be performed by  
If bit TIE is set to 1 at this time, TXI is  
enabled and an interrupt is requested. the data transferred to TSR has  
(See figure 10.2 (b).)  
TEND When the last bit of the character in  
repeating the above operations until  
been transmitted.  
TEI indicates that the next transmit  
TEIE  
TSR is transmitted, if bit TDRE is set to data has not been written to TDR  
1, bit TEND is set to 1. If bit TEIE is set when the last bit of the transmit  
to 1 at this time, TEI is enabled and an character in TSR is sent.  
interrupt is requested. (See figure 10.2  
(c).)  
277  
RDR  
RDR  
RSR (reception in progress)  
RDRF = 0  
RSR(reception completed, transfer)  
RXD3x pin  
RXD3x pin  
RDRF 1  
(RXI request when RIE = 1)  
Figure 10.2 (a) RDRF Setting and RXI Interrupt  
TDR (next transmit data)  
TDR  
TSR (transmission in progress)  
TDRE = 0  
TSR(transmission completed, transfer)  
TXD3x pin  
TXD3x pin  
TDRE 1  
(TXI request when TIE = 1)  
Figure 10.2 (b) TDRE Setting and TXI Interrupt  
TDR  
TDR  
TSR (transmission in progress)  
TEND = 0  
TSR (reception completed)  
TXD3x pin  
TXD3x pin  
TEND 1  
(TEI request when TEIE = 1)  
Figure 10.2 (c) TEND Setting and TEI Interrupt  
278  
10.3.2  
Operation in Asynchronous Mode  
In asynchronous mode, serial communication is performed with synchronization provided  
character by character. A start bit indicating the start of communication and one or two stop bits  
indicating the end of communication are added to each character before it is sent.  
SCI3 has separate transmission and reception units, allowing full-duplex communication. As the  
transmission and reception units are both double-buffered, data can be written during transmission  
and read during reception, making possible continuous transmission and reception.  
1. Data transfer format  
The general data transfer format in asynchronous communication is shown in figure 10.3.  
(LSB)  
(MSB)  
1
Serial Start  
Parity  
bit  
Stop  
bit(s)  
Mark  
state  
Transmit/receive data  
5, 7 or 8 bits  
data  
bit  
1 bit  
1 or 2 bits  
1 bit  
or none  
One transfer data unit (character or frame)  
Figure 10.3 Data Format in Asynchronous Communication  
In asynchronous communication, the communication line is normally in the mark state (high  
level). SCI3 monitors the communication line and when it detects a space (low level), identifies  
this as a start bit and begins serial data communication.  
One transfer data character consists of a start bit (low level), followed by transmit/receive data  
(LSB-first format, starting from the least significant bit), a parity bit (high or low level), and  
finally one or two stop bits (high level).  
In asynchronous mode, synchronization is performed by the falling edge of the start bit during  
reception. The data is sampled on the 8th pulse of a clock with a frequency 16 times the bit  
period, so that the transfer data is latched at the center of each bit.  
279  
Table 10.11 shows the 12 data transfer formats that can be set in asynchronous mode. The format  
is selected by the settings in the serial mode register (SMR).  
280  
Table 10.11 Data Transfer Formats (Asynchronous Mode)  
SMR  
Serial Data Transfer Format and Frame Length  
CHR PE MP STOP  
1
2
3
4
5
6
7
8
9
10 11 12  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
S
8-bit data  
8-bit data  
STOP  
S
STOP STOP  
S
S
8-bit data  
8-bit data  
MPB  
STOP  
MPB  
STOP STOP  
S
S
8-bit data  
8-bit data  
P
STOP  
P
STOP STOP  
S
S
S
S
5-bit data  
5-bit data  
7-bit data  
7-bit data  
STOP  
STOP STOP  
STOP  
STOP STOP  
MPB  
S
S
S
S
S
S
7-bit data  
7-bit data  
7-bit data  
7-bit data  
5-bit data  
5-bit data  
STOP  
MPB STOP  
STOP  
P
P
STOP  
STOP STOP  
P
P
STOP  
STOP STOP  
Notation:  
S: Start bit  
STOP: Stop bit  
P: Parity bit  
MPB: Multiprocessor bit  
281  
2. Clock  
Either an internal clock generated by the baud rate generator or an external clock input at the  
SCK pin can be selected as the SCI3 transmit/receive clock. The selection is made by means of  
3x  
bit COM in SMR and bits SCE1 and CKE0 in SCR3. See table 10.9 for details on clock source  
selection.  
When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit  
3x  
rate.  
When SCI3 operates on an internal clock, the clock can be output at the SCK pin. In this case  
3x  
the frequency of the output clock is the same as the bit rate, and the phase is such that the clock  
rises at the center of each bit of transmit/receive data, as shown in figure 10.4.  
Clock  
Serial  
data  
0
D0 D1 D2 D3 D4 D5 D6 D7 0/1  
1 character (1 frame)  
1
1
Figure 10.4 Phase Relationship between Output Clock and Transfer Data  
(Asynchronous Mode) (8-bit data, parity, 2 stop bits)  
3. Data transfer operations  
SCI3 initialization  
Before data is transferred on SCI3, bits TE and RE in SCR3 must first be cleared to 0, and then  
SCI3 must be initialized as follows.  
Note: If the operation mode or data transfer format is changed, bits TE and RE must first be  
cleared to 0.  
When bit TE is cleared to 0, bit TDRE is set to 1.  
Note that the RDRF, PER, FER, and OER flags and the contents of RDR are retained  
when RE is cleared to 0.  
When an external clock is used in asynchronous mode, the clock should not be stopped  
during operation, including initialization. When an external clock is used in synchronous  
mode, the clock should not be supplied during operation, including initialization.  
282  
Figure 10.5 shows an example of a flowchart for initializing SCI3.  
Start  
Clear bits TE and  
RE to 0 in SCR3  
1. Set clock selection in SCR3. Be sure to  
Set bits CKE1  
and CKE0  
1
2
clear the other bits to 0. If clock output  
is selected in asynchronous mode, the  
clock is output immediately after setting  
bits CKE1 and CKE0. If clock output is  
selected for reception in synchronous  
mode, the clock is output immediately  
after bits CKE1, CKE0, and RE are  
set to 1.  
Set data transfer  
format in SMR  
2. Set the data transfer format in the serial  
mode register (SMR).  
Set value in BRR  
3
Wait  
3. Write the value corresponding to the  
transfer rate in BRR. This operation is  
not necessary when an external clock  
is selected.  
No  
Has 1-bit period  
elapsed?  
4. Wait for at least one bit period, then set  
bits TIE, RIE, MPIE, and TEIE in SCR3,  
and set bits RE and TE to 1 in PMR7.  
Setting bits TE and RE enables the TXD3x  
and RXD3x pins to be used. In asynchronous  
mode the mark state is established when  
transmitting, and the idle state waiting for  
a start bit when receiving.  
Yes  
Set bits SPC31 and  
SPC32 to 1 in SPCR  
Set bits TIE, RIE,  
MPIE, and TEIE in  
SCR3, and set bits  
RE and TE to 1  
in PMR7  
4
End  
Figure 10.5 Example of SCI3 Initialization Flowchart  
283  
Transmitting  
Figure 10.6 shows an example of a flowchart for data transmission. This procedure should be  
followed for data transmission after initializing SCI3.  
Start  
Sets bits SPC31 and  
SPC32 to 1 in SPCR  
Read bit TDRE  
1. Read the serial status register (SSR)  
and check that bit TDRE is set to 1,  
then write transmit data to the transmit  
data register (TDR). When data is  
written to TDR, bit TDRE is cleared to 0  
automatically.  
1
in SSR  
No  
TDRE = 1?  
Yes  
(After the TE bit is set to 1, one frame of  
1s is output, then transmission is possible.)  
2. When continuing data transmission,  
be sure to read TDRE = 1 to confirm that  
a write can be performed before writing  
data to TDR. When data is written to  
TDR, bit TDRE is cleared to 0  
Write transmit  
data to TDR  
Yes  
automatically.  
Continue data  
transmission?  
2
3. If a break is to be output when data  
transmission ends, set the port PCR to 1  
and clear the port PDR to 0, then clear bit  
TE in SCR3 to 0.  
No  
Read bit TEND  
in SSR  
No  
No  
TEND = 1?  
Yes  
3
Break output?  
Yes  
Set PDR = 0,  
PCR = 1  
Clear bit TE to 0  
in SCR3  
End  
Figure 10.6 Example of Data Transmission Flowchart (Asynchronous Mode)  
284  
SCI3 operates as follows when transmitting data.  
SCI3 monitors bit TDRE in SSR, and when it is cleared to 0, recognizes that data has been written  
to TDR and transfers data from TDR to TSR. It then sets bit TDRE to 1 and starts transmitting. If  
bit TIE in SCR3 is set to 1 at this time, a TXI request is made.  
Serial data is transmitted from the TXD3x pin using the relevant data transfer format in table  
10.11. When the stop bit is sent, SCI3 checks bit TDRE. If bit TDRE is cleared to 0, SCI3  
transfers data from TDR to TSR, and when the stop bit has been sent, starts transmission of the  
next frame. If bit TDRE is set to 1, bit TEND in SSR bit is set to 1the mark state, in which 1s are  
transmitted, is established after the stop bit has been sent. If bit TEIE in SCR3 is set to 1 at this  
time, a TEI request is made.  
Figure 10.12 shows an example of the operation when transmitting in asynchronous mode.  
Start  
bit  
Transmit  
data  
Parity Stop Start  
Transmit  
data  
Parity Stop  
Mark  
state  
bit  
bit bit  
bit  
bit  
Serial  
data  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
1
1
1 frame  
TDRE  
TEND  
LSI  
TXI request  
TDRE  
TXI request  
TEI request  
operation  
cleared to 0  
User  
processing  
Data written  
to TDR  
Figure 10.7 Example of Operation when Transmitting in Asynchronous Mode  
(8-bit data, parity, 1 stop bit)  
285  
Receiving  
Figure 10.8 shows an example of a flowchart for data reception. This procedure should be  
followed for data reception after initializing SCI3.  
Start  
Read bits OER,  
PER, FER in SSR  
1. Read bits OER, PER, and FER in the  
serial status register (SSR) to determine  
if there is an error. If a receive error has  
occurred, execute receive error  
processing.  
1
Yes  
OER + PER  
+ FER = 1?  
2. Read SSR and check that bit RDRF is  
set to 1. If it is, read the receive data  
in RDR. When the RDR data is read,  
bit RDRF is cleared to 0 automatically.  
No  
Read bit RDRF  
in SSR  
2
3. When continuing data reception, finish  
reading of bit RDRF and RDR before  
receiving the stop bit of the current  
frame. When the data in RDR is read,  
bit RDRF is cleared to 0 automatically.  
No  
RDRF = 1?  
Yes  
Read receive  
data in RDR  
Receive error  
processing  
4
Yes  
Continue data  
reception?  
3
No  
(A)  
Clear bit RE to  
0 in SCR3  
End  
Figure 10.8 Example of Data Reception Flowchart (Asynchronous Mode)  
286  
4. If a receive error has  
occurred, read bits OER,  
PER, and FER in SSR to  
identify the error, and after  
carrying out the necessary  
error processing, ensure  
that bits OER, PER, and  
FER are all cleared to 0.  
Reception cannot be  
Start receive  
error processing  
4
Overrun error  
processing  
Yes  
Yes  
OER = 1?  
No  
Yes  
Break?  
No  
resumed if any of these  
bits is set to 1. In the case  
of a framing error, a break  
can be detected by reading  
the value of the RXD3x pin.  
FER = 1?  
No  
Framing error  
processing  
Yes  
PER = 1?  
No  
Clear bits OER, PER,  
FER to 0 in SSR  
Parity error  
processing  
(A)  
End of receive  
error processing  
Figure 10.8 Example of Data Reception Flowchart (Asynchronous Mode) (cont)  
287  
SCI3 operates as follows when receiving data.  
SCI3 monitors the communication line, and when it detects a 0 start bit, performs internal  
synchronization and begins reception. Reception is carried out in accordance with the relevant  
data transfer format in table 10.11. The received data is first placed in RSR in LSB-to-MSB order,  
and then the parity bit and stop bit(s) are received. SCI3 then carries out the following checks.  
Parity check  
SCI3 checks that the number of 1 bits in the receive data conforms to the parity (odd or even)  
set in bit PM in the serial mode register (SMR).  
Stop bit check  
SCI3 checks that the stop bit is 1. If two stop bits are used, only the first is checked.  
Status check  
SCI3 checks that bit RDRF is set to 0, indicating that the receive data can be transferred from  
RSR to RDR.  
If no receive error is found in the above checks, bit RDRF is set to 1, and the receive data is stored  
in RDR. If bit RIE is set to 1 in SCR3, an RXI interrupt is requested. If the error checks identify a  
receive error, bit OER, PER, or FER is set to 1 depending on the kind of error. Bit RDRF retains  
its state prior to receiving the data. If bit RIE is set to 1 in SCR3, an ERI interrupt is requested.  
Table 10.12 shows the conditions for detecting a receive error, and receive data processing.  
Note: No further receive operations are possible while a receive error flag is set. Bits OER,  
FER, PER, and RDRF must therefore be cleared to 0 before resuming reception.  
Table 10.12 Receive Error Detection Conditions and Receive Data Processing  
Receive Error Abbreviation Detection Conditions  
Receive Data Processing  
Overrun error OER  
Framing error FER  
When the next date receive  
operation is completed while bit from RSR to RDR  
RDRF is still set to 1 in SSR  
Receive data is not transferred  
When the stop bit is 0  
Receive data is transferred  
from RSR to RDR  
Parity error  
PER  
When the parity (odd or even) set Receive data is transferred  
in SMR is different from that of  
the received data  
from RSR to RDR  
288  
Figure 10.9 shows an example of the operation when receiving in asynchronous mode.  
Start  
bit  
Receive  
data  
Parity Stop Start  
Receive  
data  
Parity Stop Mark state  
bit  
bit bit  
bit  
bit  
(idle state)  
Serial  
data  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
0
1
1 frame  
RDRF  
FER  
LSI  
operation  
RXI request RDRF  
cleared to 0  
0 start bit  
detected  
ERI request in  
response to  
framing error  
User  
processing  
RDR data read  
Framing error  
processing  
Figure 10.9 Example of Operation when Receiving in Asynchronous Mode  
(8-bit data, parity, 1 stop bit)  
10.3.3  
Operation in Synchronous Mode  
In synchronous mode, SCI3 transmits and receives data in synchronization with clock pulses. This  
mode is suitable for high-speed serial communication.  
SCI3 has separate transmission and reception units, allowing full-duplex communication with a  
shared clock.  
As the transmission and reception units are both double-buffered, data can be written during  
transmission and read during reception, making possible continuous transmission and reception.  
289  
1. Data transfer format  
The general data transfer format in asynchronous communication is shown in figure 10.10.  
*
*
Serial  
clock  
LSB  
Bit 0  
MSB  
Bit 7  
Serial  
data  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Don't  
care  
Don't  
care  
8 bits  
One transfer data unit (character or frame)  
Note: * High level except in continuous transmission/reception  
Figure 10.10 Data Format in Synchronous Communication  
In synchronous communication, data on the communication line is output from one falling edge of  
the serial clock until the next falling edge. Data confirmation is guaranteed at the rising edge of  
the serial clock.  
One transfer data character begins with the LSB and ends with the MSB. After output of the  
MSB, the communication line retains the MSB state.  
When receiving in synchronous mode, SCI3 latches receive data at the rising edge of the serial  
clock.  
The data transfer format uses a fixed 8-bit data length.  
Parity and multiprocessor bits cannot be added.  
2. Clock  
Either an internal clock generated by the baud rate generator or an external clock input at the  
SCK pin can be selected as the SCI3 serial clock. The selection is made by means of bit COM  
3x  
in SMR and bits CKE1 and CKE0 in SCR3. See table 10.9 for details on clock source selection.  
When SCI3 operates on an internal clock, the serial clock is output at the SCK pin. Eight pulses  
3x  
of the serial clock are output in transmission or reception of one character, and when SCI3 is not  
transmitting or receiving, the clock is fixed at the high level.  
290  
3. Data transfer operations  
SCI3 initialization  
Data transfer on SCI3 first of all requires that SCI3 be initialized as described in 10.1.4 (3)(a).  
SCI3 initialization, and shown in figure 10.5.  
Transmitting  
Figure 10.11 shows an example of a flowchart for data transmission. This procedure should be  
followed for data transmission after initializing SCI3.  
Start  
Sets bits SPC31 and  
SPC32 to 1 in SPCR  
1. Read the serial status register (SSR) and  
Read bit TDRE  
check that bit TDRE is set to 1, then write  
1
in SSR  
transmit data to the transmit data register  
(TDR). When data is written to TDR, bit  
TDRE is cleared to 0 automatically, the  
clock is output, and data transmission is  
No  
started. When clock output is selected,  
the clock is output and data transmission  
started when data is written to TDR.  
TDRE = 1?  
Yes  
2. When continuing data transmission, be  
sure to read TDRE = 1 to confirm that  
a write can be performed before writing  
data to TDR. When data is written to  
TDR, bit TDRE is cleared to 0 automatically.  
Write transmit  
data to TDR  
Yes  
Continue data  
transmission?  
2
No  
Read bit TEND  
in SSR  
No  
TEND = 1?  
Yes  
Clear bit TE to 0  
in SCR3  
End  
Figure 10.11 Example of Data Transmission Flowchart (Synchronous Mode)  
291  
SCI3 operates as follows when transmitting data.  
SCI3 monitors bit TDRE in SSR, and when it is cleared to 0, recognizes that data has been written  
to TDR and transfers data from TDR to TSR. It then sets bit TDRE to 1 and starts transmitting. If  
bit TIE in SCR3 is set to 1 at this time, a TXI request is made.  
When clock output mode is selected, SCI3 outputs 8 serial clock pulses. When an external clock  
is selected, data is output in synchronization with the input clock.  
Serial data is transmitted from the TXD3x pin in order from the LSB (bit 0) to the MSB (bit 7).  
When the MSB (bit 7) is sent, checks bit TDRE. If bit TDRE is cleared to 0, SCI3 transfers data  
from TDR to TSR, and starts transmission of the next frame. If bit TDRE is set to 1, SCI3 sets bit  
TEND to 1 in SSR, and after sending the MSB (bit 7), retains the MSB state. If bit TEIE in SCR3  
is set to 1 at this time, a TEI request is made.  
After transmission ends, the SCK pin is fixed at the high level.  
Note: Transmission is not possible if an error flag (OER, FER, or PER) that indicates the data  
reception status is set to 1. Check that these error flags are all cleared to 0 before a  
transmit operation.  
Figure 10.12 shows an example of the operation when transmitting in synchronous mode.  
Serial  
clock  
Serial  
data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
TDRE  
TEND  
LSI  
operation  
TXI request  
TDRE cleared TXI request  
to 0  
TEI request  
User  
processing  
Data written  
to TDR  
Figure 10.12 Example of Operation when Transmitting in Synchronous Mode  
292  
Receiving  
Figure 10.13 shows an example of a flowchart for data reception. This procedure should be  
followed for data reception after initializing SCI3.  
Start  
Read bit OER  
1
1. Read bit OER in the serial status register  
(SSR) to determine if there is an error.  
If an overrun error has occurred, execute  
overrun error processing.  
in SSR  
Yes  
OER = 1?  
No  
2. Read SSR and check that bit RDRF is  
set to 1. If it is, read the receive data in  
RDR. When the RDR data is read, bit  
RDRF is cleared to 0 automatically.  
Read bit RDRF  
in SSR  
2
3. When continuing data reception, finish  
reading of bit RDRF and RDR before  
receiving the MSB (bit 7) of the current  
frame. When the data in RDR is read,  
bit RDRF is cleared to 0 automatically.  
No  
RDRF = 1?  
Yes  
4. If an overrun error has occurred, read bit  
OER in SSR, and after carrying out the  
necessary error processing, clear bit OER  
to 0. Reception cannot be resumed if bit  
OER is set to 1.  
Read receive  
data in RDR  
Overrun error  
processing  
4
Yes  
Continue data  
reception?  
3
No  
Start overrun  
error processing  
Clear bit RE to  
0 in SCR3  
4
End  
Overrun error  
processing  
Clear bit OER to  
0 in SSR  
End of overrun  
error processing  
Figure 10.13 Example of Data Reception Flowchart (Synchronous Mode)  
293  
SCI3 operates as follows when receiving data.  
SCI3 performs internal synchronization and begins reception in synchronization with the serial  
clock input or output.  
The received data is placed in RSR in LSB-to-MSB order.  
After the data has been received, SCI3 checks that bit RDRF is set to 0, indicating that the receive  
data can be transferred from RSR to RDR.  
If this check shows that there is no overrun error, bit RDRF is set to 1, and the receive data is  
stored in RDR. If bit RIE is set to 1 in SCR3, an RXI interrupt is requested. If the check  
identifies an overrun error, bit OER is set to 1.  
Bit RDRF remains set to 1. If bit RIE is set to 1 in SCR3, an ERI interrupt is requested.  
See table 10.12 for the conditions for detecting a receive error, and receive data processing.  
Note: No further receive operations are possible while a receive error flag is set. Bits OER,  
FER, PER, and RDRF must therefore be cleared to 0 before resuming reception.  
Figure 10.14 shows an example of the operation when receiving in synchronous mode.  
Serial  
clock  
Serial  
data  
Bit 7  
Bit 0  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
RDRF  
OER  
LSI  
operation  
RXI request  
RDRE cleared  
to 0  
RXI request  
ERI request in  
response to  
overrun error  
User  
processing  
RDR data read  
RDR data has  
not been read  
(RDRF = 1)  
Overrun error  
processing  
Figure 10.14 Example of Operation when Receiving in Synchronous Mode  
294  
Simultaneous transmit/receive  
Figure 10.15 shows an example of a flowchart for a simultaneous transmit/receive operation. This  
procedure should be followed for simultaneous transmission/reception after initializing SCI3.  
Start  
Sets bits SPC31 and  
SPC32 to 1 in SPCR  
1. Read the serial status register (SSR) and  
Read bit TDRE  
1
check that bit TDRE is set to 1, then write  
transmit data to the transmit data register  
(TDR). When data is written to TDR, bit  
TDRE is cleared to 0 automatically.  
in SSR  
No  
TDRE = 1?  
Yes  
2. Read SSR and check that bit RDRF is set  
to 1. If it is, read the receive data in RDR.  
When the RDR data is read, bit RDRF is  
cleared to 0 automatically.  
Write transmit  
data to TDR  
3. When continuing data transmission/reception,  
finish reading of bit RDRF and RDR before  
receiving the MSB (bit 7) of the current frame.  
Before receiving the MSB (bit 7) of the current  
frame, also read TDRE = 1 to confirm that a  
write can be performed, then write data to TDR.  
When data is written to TDR, bit TDRE is cleared  
to 0 automatically, and when the data in RDR is  
read, bit RDRF is cleared to 0 automatically.  
Read bit OER  
in SSR  
Yes  
OER = 1?  
No  
4. If an overrun error has occurred, read bit OER  
in SSR, and after carrying out the necessary  
error processing, clear bit OER to 0. Transmis-  
sion and reception cannot be resumed if bit  
OER is set to 1.  
Read bit RDRF  
in SSR  
2
See figure 10-13 for details on overrun error  
processing.  
No  
RDRF = 1?  
Yes  
Read receive data  
in RDR  
Overrun error  
processing  
4
Continue data  
transmission/reception?  
Yes  
3
No  
Clear bits TE and  
RE to 0 in SCR3  
End  
Figure 10.15 Example of Simultaneous Data Transmission/Reception Flowchart  
(Synchronous Mode)  
295  
Notes: 1. When switching from transmission to simultaneous transmission/reception, check that  
SCI3 has finished transmitting and that bits TDRE and TEND are set to 1, clear bit TE  
to 0, and then set bits TE and RE to 1 simultaneously.  
2. When switching from reception to simultaneous transmission/reception, check that  
SCI3 has finished receiving, clear bit RE to 0, then check that bit RDRF and the error  
flags (OER, FER, and PER) are cleared to 0, and finally set bits TE and RE to 1  
simultaneously.  
10.3.4  
Multiprocessor Communication Function  
The multiprocessor communication function enables data to be exchanged among a number of  
processors on a shared communication line. Serial data communication is performed in  
asynchronous mode using the multiprocessor format (in which a multiprocessor bit is added to the  
transfer data).  
In multiprocessor communication, each receiver is assigned its own ID code. The serial  
communication cycle consists of two cycles, an ID transmission cycle in which the receiver is  
specified, and a data transmission cycle in which the transfer data is sent to the specified receiver.  
These two cycles are differentiated by means of the multiprocessor bit, 1 indicating an ID  
transmission cycle, and 0, a data transmission cycle.  
The sender first sends transfer data with a 1 multiprocessor bit added to the ID code of the receiver  
it wants to communicate with, and then sends transfer data with a 0 multiprocessor bit added to the  
transmit data. When a receiver receives transfer data with the multiprocessor bit set to 1, it  
compares the ID code with its own ID code, and if they are the same, receives the transfer data  
sent next. If the ID codes do not match, it skips the transfer data until data with the multiprocessor  
bit set to 1 is sent again.  
In this way, a number of processors can exchange data among themselves.  
Figure 10.16 shows an example of communication between processors using the multiprocessor  
format.  
296  
Sender  
Communication line  
Receiver A  
(ID = 01)  
Receiver B  
(ID = 02)  
Receiver C  
(ID = 03)  
Receiver D  
(ID = 04)  
Serial  
data  
H'01  
H'AA  
(MPB = 1)  
(MPB = 0)  
ID transmission cycle  
Data transmission cycle  
(specifying the receiver) (sending data to the receiver  
specified buy the ID)  
MPB: Multiprocessor bit  
Figure 10.16 Example of Inter-Processor Communication Using Multiprocessor Format  
(Sending data H'AA to receiver A)  
There is a choice of four data transfer formats. If a multiprocessor format is specified, the parity  
bit specification is invalid. See table 10.11 for details.  
For details on the clock used in multiprocessor communication, see 10.1.4, Operation in  
Synchronous Mode.  
Multiprocessor transmitting  
Figure 10.17 shows an example of a flowchart for multiprocessor data transmission. This  
procedure should be followed for multiprocessor data transmission after initializing SCI3.  
297  
Start  
Sets bits SPC31 and  
SPC32 to 1 in SPCR  
Read bit TDRE  
in SSR  
1. Read the serial status register (SSR)  
and check that bit TDRE is set to 1,  
1
then set bit MPBT in SSR to 0 or 1 and  
write transmit data to the transmit data  
register (TDR). When data is written to  
TDR, bit TDRE is cleared to 0 automatically.  
No  
TDRE = 1?  
Yes  
2. When continuing data transmission, be  
sure to read TDRE = 1 to confirm that a  
write can be performed before writing data  
to TDR. When data is written to TDR, bit  
TDRE is cleared to 0 automatically.  
Set bit MPDT  
in SSR  
3. If a break is to be output when data  
transmission ends, set the port PCR to 1  
and clear the port PDR to 0, then clear bit  
TE in SCR3 to 0.  
Write transmit  
data to TDR  
Yes  
Continue data  
transmission?  
2
No  
Read bit TEND  
in SSR  
No  
No  
TEND = 1?  
Yes  
3
Break output?  
Yes  
Set PDR = 0,  
PCR = 1  
Clear bit TE to  
0 in SCR3  
End  
Figure 10.17 Example of Multiprocessor Data Transmission Flowchart  
298  
SCI3 operates as follows when transmitting data.  
SCI3 monitors bit TDRE in SSR, and when it is cleared to 0, recognizes that data has been written  
to TDR and transfers data from TDR to TSR. It then sets bit TDRE to 1 and starts transmitting. If  
bit TIE in SCR3 is set to 1 at this time, a TXI request is made.  
Serial data is transmitted from the TXD pin using the relevant data transfer format in table 10.11.  
When the stop bit is sent, SCI3 checks bit TDRE. If bit TDRE is cleared to 0, SCI3 transfers data  
from TDR to TSR, and when the stop bit has been sent, starts transmission of the next frame. If  
bit TDRE is set to 1 bit TEND in SSR bit is set to 1, the mark state, in which 1s are transmitted, is  
established after the stop bit has been sent. If bit TEIE in SCR3 is set to 1 at this time, a TEI  
request is made.  
Figure 10.18 shows an example of the operation when transmitting using the multiprocessor  
format.  
Start  
bit  
Transmit  
data  
Stop Start  
bit bit  
Transmit  
data  
Stop  
bit  
Mark  
state  
MPB  
MPB  
Serial  
data  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
1
1
1 frame  
TDRE  
TEND  
LSI  
operation  
TXI request TDRE  
cleared to 0  
TXI request  
TEI request  
User  
processing  
Data written  
to TDR  
Figure 10.18 Example of Operation when Transmitting using Multiprocessor Format  
(8-bit data, multiprocessor bit, 1 stop bit)  
Multiprocessor receiving  
Figure 10.19 shows an example of a flowchart for multiprocessor data reception. This procedure  
should be followed for multiprocessor data reception after initializing SCI3.  
299  
Start  
1. Set bit MPIE to 1 in SCR3.  
Set bit MPIE to 1  
in SCR3  
1
2
2. Read bits OER and FER in the serial  
status register (SSR) to determine if  
there is an error. If a receive error has  
occurred, execute receive error processing.  
Read bits OER  
and FER in SSR  
3. Read SSR and check that bit RDRF is  
set to 1. If it is, read the receive data in  
RDR and compare it with this receiver's  
own ID. If the ID is not this receiver's,  
set bit MPIE to 1 again. When the RDR  
data is read, bit RDRF is cleared to 0  
automatically.  
Yes  
OER + FER = 1?  
No  
Read bit RDRF  
in SSR  
3
4. Read SSR and check that bit RDRF is  
set to 1, then read the data in RDR.  
No  
RDRF = 1?  
Yes  
5. If a receive error has occurred, read bits  
OER and FER in SSR to identify the error,  
and after carrying out the necessary error  
processing, ensure that bits OER and FER  
are both cleared to 0. Reception cannot be  
resumed if either of these bits is set to 1.  
In the case of a framing error, a break can  
be detected by reading the value of the  
RXD3x pin.  
Read receive  
data in RDR  
No  
Own ID?  
Yes  
Read bits OER  
and FER in SSR  
Yes  
OER + FER = 1?  
No  
Read bit RDRF  
in SSR  
4
No  
RDRF = 1?  
Yes  
Read receive  
Receive error  
processing  
data in RDR  
5
Yes  
Continue data  
reception?  
No  
(A)  
Clear bit RE to  
0 in SCR3  
End  
Figure 10.19 Example of Multiprocessor Data Reception Flowchart  
300  
Start receive  
error processing  
Overrun error  
processing  
Yes  
Yes  
OER = 1?  
No  
Yes  
Break?  
No  
FER = 1?  
No  
Framing error  
processing  
Clear bits OER and  
FER to 0 in SSR  
(A)  
End of receive  
error processing  
Figure 10.19 Example of Multiprocessor Data Reception Flowchart (cont)  
Figure 10.20 shows an example of the operation when receiving using the multiprocessor format.  
301  
Start  
bit  
Receive  
data (ID1)  
Stop Start  
bit bit  
Receive data  
(Data1)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
Serial  
data  
1
0
D0 D1  
D7  
1
0
D0 D1  
1 frame  
D7  
1
1
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
LSI  
operation  
RXI request  
MPIE cleared  
to 0  
RDRF cleared  
to 0  
No RXI request  
RDR retains  
previous state  
User  
processing  
RDR data read  
When data is not  
this receiver's ID,  
bit MPIE is set to  
1 again  
(a) When data does not match this receiver's ID  
Start  
bit  
Receive  
data (ID2)  
Stop Start  
bit bit  
Receive data  
(Data2)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
Serial  
data  
1
0
D0 D1  
D7  
1
0
D0 D1  
1 frame  
D7  
1
1
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
ID2  
Data2  
LSI  
operation  
RXI request  
MPIE cleared  
to 0  
RDRF cleared  
to 0  
RXI request RDRF cleared  
to 0  
User  
processing  
RDR data read  
When data is  
this receiver's  
ID, reception  
is continued  
RDR data read  
Bit MPIE set to  
1 again  
(b) When data matches this receiver's ID  
Figure 10.20 Example of Operation when Receiving using Multiprocessor Format  
(8-bit data, multiprocessor bit, 1 stop bit)  
302  
10.4  
Interrupts  
SCI3 can generate six kinds of interrupts: transmit end, transmit data empty, receive data full, and  
three receive error interrupts (overrun error, framing error, and parity error). These interrupts have  
the same vector address.  
The various interrupt requests are shown in table 10.13.  
Table 10.13 SCI3 Interrupt Requests  
Interrupt  
Vector  
Abbreviation Interrupt Request  
Address  
RXI  
TXI  
TEI  
ERI  
Interrupt request initiated by receive data full flag (RDRF)  
H'0022/H'0024  
Interrupt request initiated by transmit data empty flag (TDRE)  
Interrupt request initiated by transmit end flag (TEND)  
Interrupt request initiated by receive error flag (OER, FER, PER)  
Each interrupt request can be enabled or disabled by means of bits TIE and RIE in SCR3.  
When bit TDRE is set to 1 in SSR, a TXI interrupt is requested. When bit TEND is set to 1 in  
SSR, a TEI interrupt is requested. These two interrupts are generated during transmission.  
The initial value of bit TDRE in SSR is 1. Therefore, if the transmit data empty interrupt request  
(TXI) is enabled by setting bit TIE to 1 in SCR3 before transmit data is transferred to TDR, a TXI  
interrupt will be requested even if the transmit data is not ready.  
Also, the initial value of bit TEND in SSR is 1. Therefore, if the transmit end interrupt request  
(TEI) is enabled by setting bit TEIE to 1 in SCR3 before transmit data is transferred to TDR, a TEI  
interrupt will be requested even if the transmit data has not been sent.  
Effective use of these interrupt requests can be made by having processing that transfers transmit  
data to TDR carried out in the interrupt service routine.  
To prevent the generation of these interrupt requests (TXI and TEI), on the other hand, the enable  
bits for these interrupt requests (bits TIE and TEIE) should be set to 1 after transmit data has been  
transferred to TDR.  
When bit RDRF is set to 1 in SSR, an RXI interrupt is requested, and if any of bits OER, PER, and  
FER is set to 1, an ERI interrupt is requested. These two interrupt requests are generated during  
reception.  
For further details, see 3.3, Interrupts.  
303  
10.5  
Application Notes  
The following points should be noted when using SCI3.  
1. Relation between writes to TDR and bit TDRE  
Bit TDRE in the serial status register (SSR) is a status flag that indicates that data for serial  
transmission has not been prepared in TDR. When data is written to TDR, bit TDRE is cleared to  
0 automatically. When SCI3 transfers data from TDR to TSR, bit TDRE is set to 1.  
Data can be written to TDR irrespective of the state of bit TDRE, but if new data is written to  
TDR while bit TDRE is cleared to 0, the data previously stored in TDR will be lost of it has not  
yet been transferred to TSR. Accordingly, to ensure that serial transmission is performed  
dependably, you should first check that bit TDRE is set to 1, then write the transmit data to TDR  
once only (not two or more times).  
2. Operation when a number of receive errors occur simultaneously  
If a number of receive errors are detected simultaneously, the status flags in SSR will be set to the  
states shown in table 10.14. If an overrun error is detected, data transfer from RSR to RDR will  
not be performed, and the receive data will be lost.  
Table 10.14 SSR Status Flag States and Receive Data Transfer  
SSR Status Flags  
Receive Data Transfer  
RDRF* OER FER PER RSR  
RDR  
Receive Error Status  
Overrun error  
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
1
1
X
O
O
X
X
O
X
Framing error  
Parity error  
Overrun error + framing error  
Overrun error + parity error  
Framing error + parity error  
Overrun error + framing error + parity error  
O : Receive data is transferred from RSR to RDR.  
X : Receive data is not transferred from RSR to RDR.  
Note: * Bit RDRF retains its state prior to data reception. However, note that if RDR is read after an  
overrun error has occurred in a frame because reading of the receive data in the previous  
frame was delayed, RDRF will be cleared to 0.  
304  
3. Break detection and processing  
When a framing error is detected, a break can be detected by reading the value of the RXD pin  
3x  
directly. In a break, the input from the RXD pin becomes all 0s, with the result that bit FER is  
3x  
set and bit PER may also be set.  
SCI3 continues the receive operation even after receiving a break. Note, therefore, that even  
though bit FER is cleared to 0 it will be set to 1 again.  
4. Mark state and break detection  
When bit TE is cleared to 0, the TXD pin functions as an I/O port whose input/output direction  
3x  
and level are determined by PDR and PCR. This fact can be used to set the TXD pin to the  
3x  
mark state, or to detect a break during transmission.  
To keep the communication line in the mark state (1 state) until bit TE is set to 1, set PCR = 1 and  
PDR = 1. Since bit TE is cleared to 0 at this time, the TXD pin functions as an I/O port and 1 is  
3x  
output.  
To detect a break, clear bit TE to 0 after setting PCR = 1 and PDR = 0.  
When bit TE is cleared to 0, the transmission unit is initialized regardless of the current  
transmission state, the TXD pin functions as an I/O port, and 0 is output from the TXD pin.  
3x  
3x  
5. Receive error flags and transmit operation (synchronous mode only)  
When a receive error flag (OER, PER, or FER) is set to 1, transmission cannot be started even if  
bit TDRE is cleared to 0. The receive error flags must be cleared to 0 before starting transmission.  
Note also that receive error flags cannot be cleared to 0 even if bit RE is cleared to 0.  
6. Receive data sampling timing and receive margin in asynchronous mode  
In asynchronous mode, SCI3 operates on a basic clock with a frequency 16 times the transfer rate.  
When receiving, SCI3 performs internal synchronization by sampling the falling edge of the start  
bit with the basic clock. Receive data is latched internally at the 8th rising edge of the basic clock.  
This is illustrated in figure 10.21.  
305  
16 clock pulses  
8 clock pulses  
0
7
15  
0
7
15 0  
Internal  
basic clock  
Receive data  
(RXD3x)  
Start bit  
D0  
D1  
Synchronization  
sampling timing  
Data sampling  
timing  
Figure 10.21 Receive Data Sampling Timing in Asynchronous Mode  
Consequently, the receive margin in asynchronous mode can be expressed as shown in equation  
(1).  
1
2N  
D 0.5  
M ={(0.5 –  
) –  
(L 0.5) F} × 100 [%]  
N
..... Equation (1)  
where  
M: Receive margin (%)  
N: Ratio of bit rate to clock (N = 16)  
D: Clock duty (D = 0.5 to 1.0)  
L: Frame length (L = 9 to 12)  
F: Absolute value of clock frequency deviation  
Substituting 0 for F (absolute value of clock frequency deviation) and 0.5 for D (clock duty) in  
equation (1), a receive margin of 46.875% is given by equation (2).  
When D = 0.5 and F = 0,  
M = {0.5 1/(2 × 16)} × 100 [%]  
= 46.875%  
..... Equation (2)  
However, this is only a computed value, and a margin of 20% to 30% should be allowed when  
carrying out system design.  
306  
7. Relation between RDR reads and bit RDRF  
In a receive operation, SCI3 continually checks the RDRF flag. If bit RDRF is cleared to 0 when  
reception of one frame ends, normal data reception is completed. If bit RDRF is set to 1, this  
indicates that an overrun error has occurred.  
When the contents of RDR are read, bit RDRF is cleared to 0 automatically. Therefore, if bit  
RDR is read more than once, the second and subsequent read operations will be performed while  
bit RDRF is cleared to 0. Note that, when an RDR read is performed while bit RDRF is cleared to  
0, if the read operation coincides with completion of reception of a frame, the next frame of data  
may be read. This is illustrated in figure 10.22.  
Frame 1  
Data 1  
Frame 2  
Data 2  
Frame 3  
Data 3  
Communication  
line  
RDRF  
RDR  
Data 1  
Data 2  
(A)  
(B)  
RDR read  
RDR read  
Data 1 is read at point  
Data 2 is read at point (B)  
(A)  
Figure 10.22 Relation between RDR Read Timing and Data  
In this case, only a single RDR read operation (not two or more) should be performed after first  
checking that bit RDRF is set to 1. If two or more reads are performed, the data read the first time  
should be transferred to RAM, etc., and the RAM contents used. Also, ensure that there is  
sufficient margin in an RDR read operation before reception of the next frame is completed. To  
be precise in terms of timing, the RDR read should be completed before bit 7 is transferred in  
synchronous mode, or before the STOP bit is transferred in asynchronous mode.  
8. Transmit and receive operations when making a state transition  
Make sure that transmit and receive operations have completely finished before carrying out state  
transition processing.  
307  
9. Switching SCK function  
3
If pin SCK is used as a clock output pin by SCI3 in synchronous mode and is then switched to a  
3
general input/output pin (a pin with a different function), the pin outputs a low level signal for half  
a system clock (ø) cycle immediately after it is switched.  
This can be prevented by either of the following methods according to the situation.  
a. When an SCK function is switched from clock output to non clock-output  
3
When stopping data transfer, issue one instruction to clear bits TE and RE to 0 and to set bits  
CKE1 and CKE0 in SCR3 to 1 and 0, respectively. In this case, bit COM in SMR should be left 1.  
The above prevents SCK from being used as a general input/output pin. To avoid an intermediate  
3
level of voltage from being applied to SCK , the line connected to SCK should be pulled up to  
3
3
the V level via a resistor, or supplied with output from an external device.  
CC  
b. When an SCK function is switched from clock output to general input/output  
3
When stopping data transfer,  
(i) Issue one instruction to clear bits TE and RE to 0 and to set bits CKE1 and CKE0 in SCR3 to  
1 and 0, respectively.  
(ii) Clear bit COM in SMR to 0  
(iii) Clear bits CKE1 and CKE0 in SCR3 to 0  
Note that special care is also needed here to avoid an intermediate level of voltage from being  
applied to SCK .  
3
10. Set up at subactive or subsleep mode  
At subactive or subsleep mode, SCI3 becomes possible use only at CPU clock is øw/2.  
308  
Section 11 14-Bit PWM  
11.1  
Overview  
The H8/3864 Series is provided with a 14-bit PWM (pulse width modulator) on-chip, which can  
be used as a D/A converter by connecting a low-pass filter.  
11.1.1  
Features of the 14-bit PWM are as follows.  
Choice of two conversion periods  
Features  
Any of the following four conversion periods can be chosen:  
131,072/ø, with a minimum modulation width of 8/ø (PWCR1 = 1, PWCR0 = 1)  
65,536/ø, with a minimum modulation width of 4/ø (PWCR1 = 1, PWCR0 = 0)  
32,768/ø, with a minimum modulation width of 2/ø (PWCR1 = 0, PWCR0 = 1)  
16,384/ø, with a minimum modulation width of 1/ø (PWCR1 = 0, PWCR0 = 0)  
Pulse division method for less ripple  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
11.1.2  
Block Diagram  
Figure 11.1 shows a block diagram of the 14-bit PWM.  
309  
PWDRL  
PWDRU  
ø/2  
ø/4  
PWM  
waveform  
generator  
ø/8  
ø/16  
PWCR  
PWM  
Notation:  
PWDRL: PWM data register L  
PWDRU: PWM data register U  
PWCR: PWM control register  
Figure 11.1 Block Diagram of the 14 bit PWM  
Pin Configuration  
11.1.3  
Table 11.1 shows the output pin assigned to the 14-bit PWM.  
Table 11.1 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
PWM output pin  
PWM  
Output  
Pulse-division PWM waveform output  
11.1.4  
Register Configuration  
Table 11.2 shows the register configuration of the 14-bit PWM.  
Table 11.2 Register Configuration  
Name  
Abbrev.  
PWCR  
R/W  
W
Initial Value  
H'FC  
Address  
H'FFD0  
H'FFD1  
H'FFD2  
H'FFFB  
PWM control register  
PWM data register U  
PWM data register L  
Clock stop register 2  
PWDRU  
PWDRL  
CKSTPR2  
W
H'C0  
W
H'00  
R/W  
H'FF  
310  
11.2  
Register Descriptions  
11.2.1  
PWM Control Register (PWCR)  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
0
PWCR1 PWCR0  
Initial value  
Read/Write  
0
0
W
W
PWCR is an 8-bit write-only register for input clock selection.  
Upon reset, PWCR is initialized to H'FC.  
Bits 7 to 2: Reserved bits  
Bits 7 to 2 are reserved; they are always read as 1, and cannot be modified.  
Bits 1 and 0: Clock select 1 and 0 (PWCR1, PWCR0)  
Bits 1 and 0 select the clock supplied to the 14-bit PWM. These bits are write-only bits; they are  
always read as 1.  
Bit 1  
Bit 0  
PWCR1  
PWCR0  
Description  
0
0
1
1
0
1
0
1
The input clock is ø/2 (tø* = 2/ø)  
The conversion period is 16,384/ø, with a minimum  
modulation width of 1/ø  
(initial value)  
The input clock is ø/4 (tø* = 4/ø)  
The conversion period is 32,768/ø, with a minimum  
modulation width of 2/ø  
The input clock is ø/8 (tø* = 8/ø)  
The conversion period is 65,536/ø, with a minimum  
modulation width of 4/ø  
The input clock is ø/16 (tø* = 16/ø)  
The conversion period is 131,072/ø, with a minimum  
modulation width of 8/ø  
Note: * Period of PWM input clock.  
311  
11.2.2  
PWM Data Registers U and L (PWDRU, PWDRL)  
PWDRU  
Bit  
7
1
6
1
5
4
3
2
1
0
PWDRU5PWDRU4PWDRU3PWDRU2 PWDRU1PWDRU0  
Initial value  
Read/Write  
0
0
0
0
0
0
W
W
W
W
W
W
PWDRL  
Bit  
7
6
5
4
3
2
1
0
PWDRL7 PWDRL6 PWDRL5 PWDRL4 PWDRL3 PWDRL2 PWDRL1 PWDRL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PWDRU and PWDRL form a 14-bit write-only register, with the upper 6 bits assigned to PWDRU  
and the lower 8 bits to PWDRL. The value written to PWDRU and PWDRL gives the total high-  
level width of one PWM waveform cycle.  
When 14-bit data is written to PWDRU and PWDRL, the register contents are latched in the PWM  
waveform generator, updating the PWM waveform generation data. The 14-bit data should  
always be written in the following sequence:  
1. Write the lower 8 bits to PWDRL.  
2. Write the upper 6 bits to PWDRU.  
PWDRU and PWDRL are write-only registers. If they are read, all bits are read as 1.  
Upon reset, PWDRU and PWDRL are initialized to H'C000.  
11.2.3  
Clock Stop Register 2 (CKSTPR2)  
Bit  
7
6
5
4
3
2
1
0
AECKSTP WDCKSTP PWCKSTP LDCKSTP  
1
1
1
1
1
1
1
Initial value  
Read/Write  
1
R/W  
R/W  
R/W  
R/W  
CKSTPR2 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to the PWM is described here. For details of the other bits, see the  
sections on the relevant modules.  
312  
Bit 1: PWM module standby mode control (PWCKSTP)  
Bit 1 controls setting and clearing of module standby mode for the PWM.  
PWCKSTP Description  
0
1
PWM is set to module standby mode  
PWM module standby mode is cleared  
(initial value)  
313  
11.3  
Operation  
11.3.1  
Operation  
When using the 14-bit PWM, set the registers in the following sequence.  
1. Set bit PWM in port mode register 3 (PMR3) to 1 so that pin P3 /PWM is designated for PWM  
0
output.  
2. Set bits PWCR1 and PWCR0 in the PWM control register (PWCR) to select a conversion  
period of 131,072/ø (PWCR1 = 1, PWCR0 = 1), 65,536/ø (PWCR1 = 1, PWCR0 = 0),  
32,768/ø (PWCR1 = 0, PWCR0 = 1), or 16,384/ø (PWCR1 = 0, PWCR0 = 0).  
3. Set the output waveform data in PWM data registers U and L (PWDRU/L). Be sure to write in  
the correct sequence, first PWDRL then PWDRU. When data is written to PWDRU, the data  
in these registers will be latched in the PWM waveform generator, updating the PWM  
waveform generation in synchronization with internal signals.  
One conversion period consists of 64 pulses, as shown in figure 11.2. The total of the high-  
level pulse widths during this period (T ) corresponds to the data in PWDRU and PWDRL.  
H
This relation can be represented as follows.  
T = (data value in PWDRU and PWDRL + 64) × t /2  
H
ø
where tø is the PWM input clock period: 2/ø (PWCR = H'0), 4/ø (PWCR = H'1), 8/ø (PWCR =  
H'2), or 16/ø (PWCR = H'3).  
Example: Settings in order to obtain a conversion period of 32,768 µs:  
When PWCR1 = 0 and PWCR0 = 0, the conversion period is 16,384/ø, so ø must be  
0.5 MHz. In this case, tfn = 512 µs, with 1/ø (resolution) = 2.0 µs.  
When PWCR1 = 0 and PWCR0 = 1, the conversion period is 32,768/ø, so ø must be 1  
MHz. In this case, tfn = 512 µs, with 2/ø (resolution) = 2.0 µs.  
When PWCR1 = 1 and PWCR0 = 0, the conversion period is 65,536/ø , so ø must be 2  
MHz. In this case, tfn = 512 µs, with 4/ø (resolution) = 2.0 µs.  
Accordingly, for a conversion period of 32,768 µs, the system clock frequency (ø)  
must be 0.5 MHz, 1 MHz, or 2 MHz.  
314  
1 conversion period  
tf1  
tf2  
tf63  
tf64  
tH1  
tH2  
tH3  
tH63  
tH64  
TH = t H1 + t H2+ tH3  
+ ..... tH64  
t f1 = tf2 = tf3 ..... = tf84  
Figure 11.2 PWM Output Waveform  
11.3.2 PWM Operation Modes  
PWM operation modes are shown in table 11.3.  
Table 11.3 PWM Operation Modes  
Operation  
Module  
Watch Subactive Subsleep Standby Standby  
Mode  
Reset Active  
Sleep  
PWCR  
PWDRU  
PWDRL  
Reset Functions Functions Held  
Reset Functions Functions Held  
Reset Functions Functions Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
315  
316  
Section 12 A/D Converter  
12.1  
Overview  
The H8/3864 Series includes on-chip a resistance-ladder-based successive-approximation analog-  
to-digital converter, and can convert up to 8 channels of analog input.  
12.1.1  
Features  
The A/D converter has the following features.  
10-bit resolution  
Eight input channels  
Conversion time: approx. 15.5 µs per channel (at 2 MHz operation)  
Built-in sample-and-hold function  
Interrupt requested on completion of A/D conversion  
A/D conversion can be started by external trigger input  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
317  
12.1.2  
Block Diagram  
Figure 12.1 shows a block diagram of the A/D converter.  
ADTRG  
AMR  
AN0  
AN1  
AN2  
AN3  
Multiplexer  
AN4  
ADSR  
AN5  
AN6  
AN7  
AVCC  
+
Com-  
parator  
Control logic  
AVCC  
AVSS  
Reference  
voltage  
ADRRH  
ADRRL  
AVSS  
IRRAD  
Notation:  
AMR: A/D mode register  
ADSR: A/D start register  
ADRR: A/D result register  
IRRAD: A/D conversion end interrupt request flag  
Figure 12.1 Block Diagram of the A/D Converter  
318  
12.1.3  
Pin Configuration  
Table 12.1 shows the A/D converter pin configuration.  
Table 12.1 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
Analog power supply AVCC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Power supply and reference voltage of analog part  
Ground and reference voltage of analog part  
Analog input channel 0  
Analog ground  
Analog input 0  
Analog input 1  
Analog input 2  
Analog input 3  
Analog input 4  
Analog input 5  
Analog input 6  
Analog input 7  
External trigger input  
AVSS  
AN0  
AN1  
Analog input channel 1  
AN2  
Analog input channel 2  
AN3  
Analog input channel 3  
AN4  
Analog input channel 4  
AN5  
Analog input channel 5  
AN6  
Analog input channel 6  
AN7  
Analog input channel 7  
ADTRG  
External trigger input for starting A/D conversion  
12.1.4  
Register Configuration  
Table 12.2 shows the A/D converter register configuration.  
Table 12.2 Register Configuration  
Name  
Abbrev.  
AMR  
R/W  
R/W  
R/W  
R
Initial Value  
H'30  
Address  
H'FFC6  
H'FFC7  
H'FFC4  
H'FFC5  
H'FFFA  
A/D mode register  
A/D start register  
A/D result register H  
A/D result register L  
Clock stop register 1  
ADSR  
H'7F  
ADRRH  
ADRRL  
CKSTPRT1  
Not fixed  
Not fixed  
H'FF  
R
R/W  
319  
12.2  
Register Descriptions  
12.2.1  
A/D Result Registers (ADRRH, ADRRL)  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
ADR9 ADR8 ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0  
Not Not Not Not Not Not Not Not Not Not  
fixed fixed fixed fixed fixed fixed fixed fixed fixed fixed  
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
R
R
ADRRH  
ADRRL  
ADRRH and ADRRL together comprise a 16-bit read-only register for holding the results of  
analog-to-digital conversion. The upper 8 bits of the data are held in ADRRH, and the lower 2  
bits in ADRRL.  
ADRRH and ADRRL can be read by the CPU at any time, but the ADRRH and ADRRL values  
during A/D conversion are not fixed. After A/D conversion is complete, the conversion result is  
stored as 10-bit data, and this data is held until the next conversion operation starts.  
ADRRH and ADRRL are not cleared on reset.  
12.2.2  
A/D Mode Register (AMR)  
Bit  
7
6
TRGE  
0
5
1
4
1
3
2
1
0
CKS  
0
CH3  
0
CH2  
0
CH1  
0
CH0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AMR is an 8-bit read/write register for specifying the A/D conversion speed, external trigger  
option, and the analog input pins.  
Upon reset, AMR is initialized to H'30.  
320  
Bit 7: Clock select (CKS)  
Bit 7 sets the A/D conversion speed.  
Bit 7  
Conversion Time  
ø = 5 MHz  
31 µs  
CKS  
Conversion Period  
62/ø (initial value)  
31/ø  
ø = 1 MHz  
62 µs  
0
1
31 µs  
15.5 µs*  
Note: * Operation is not guaranteed if the conversion time is less than 15.5 µs. Set bit 7 for a value  
of at least 15.5 µs.  
Bit 6: External trigger select (TRGE)  
Bit 6 enables or disables the start of A/D conversion by external trigger input.  
Bit 6  
TRGE  
Description  
0
1
Disables start of A/D conversion by external trigger  
(initial value)  
Enables start of A/D conversion by rising or falling edge of external trigger at pin  
ADTRG*  
Note: * The external trigger (ADTRG) edge is selected by bit INTEG4 of IEGR. See 1. Interrupt  
edge select register (IEGR) in 3.3.2 for details.  
Bits 5 and 4: Reserved bits  
Bits 5 and 4 are reserved; they are always read as 1, and cannot be modified.  
321  
Bits 3 to 0: Channel select (CH3 to CH0)  
Bits 3 to 0 select the analog input channel.  
The channel selection should be made while bit ADSF is cleared to 0.  
Bit 3  
CH3  
Bit 2  
CH2  
Bit 1  
CH1  
Bit 0  
CH0  
Analog Input Channel  
0
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
0
0
*
0
0
1
1
0
0
1
1
*
0
1
0
1
0
1
0
1
No channel selected  
(initial value)  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
Note: * Dont care  
12.2.3  
A/D Start Register (ADSR)  
Bit  
7
ADSF  
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Initial value  
Read/Write  
R/W  
The A/D start register (ADSR) is an 8-bit read/write register for starting and stopping A/D  
conversion.  
A/D conversion is started by writing 1 to the A/D start flag (ADSF) or by input of the designated  
edge of the external trigger signal, which also sets ADSF to 1. When conversion is complete, the  
converted data is set in ADRRH and ADRRL, and at the same time ADSF is cleared to 0.  
322  
Bit 7: A/D start flag (ADSF)  
Bit 7 controls and indicates the start and end of A/D conversion.  
Bit 7  
ADSF  
Description  
0
Read: Indicates the completion of A/D conversion  
Write: Stops A/D conversion  
(initial value)  
1
Read: Indicates A/D conversion in progress  
Write: Starts A/D conversion  
Bits 6 to 0: Reserved bits  
Bits 6 to 0 are reserved; they are always read as 1, and cannot be modified.  
12.2.4  
Clock Stop Register 1 (CKSTPR1)  
Bit  
7
6
5
4
3
2
1
0
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP  
1
1
1
1
1
1
1
Initial value  
Read/Write  
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to the A/D converter is described here. For details of the other bits,  
see the sections on the relevant modules.  
Bit 4: A/D converter module standby mode control (ADCKSTP)  
Bit 4 controls setting and clearing of module standby mode for the A/D converter.  
ADCKSTP Description  
0
1
A/D converter is set to module standby mode  
A/D converter module standby mode is cleared  
(initial value)  
323  
12.3  
Operation  
12.3.1  
A/D Conversion Operation  
The A/D converter operates by successive approximations, and yields its conversion result as 10-  
bit data.  
A/D conversion begins when software sets the A/D start flag (bit ADSF) to 1. Bit ADSF keeps a  
value of 1 during A/D conversion, and is cleared to 0 automatically when conversion is complete.  
The completion of conversion also sets bit IRRAD in interrupt request register 2 (IRR2) to 1. An  
A/D conversion end interrupt is requested if bit IENAD in interrupt enable register 2 (IENR2) is  
set to 1.  
If the conversion time or input channel needs to be changed in the A/D mode register (AMR)  
during A/D conversion, bit ADSF should first be cleared to 0, stopping the conversion operation,  
in order to avoid malfunction.  
12.3.2  
Start of A/D Conversion by External Trigger Input  
The A/D converter can be made to start A/D conversion by input of an external trigger signal.  
External trigger input is enabled at pin ADTRG when bit IRQ4 in PMR1 is set to 1 and bit TRGE  
in AMR is set to 1. Then when the input signal edge designated in bit IEG4 of interrupt edge  
select register (IEGR) is detected at pin ADTRG, bit ADSF in ADSR will be set to 1, starting A/D  
conversion.  
Figure 12.2 shows the timing.  
ø
Pin ADTRG  
(when bit  
IEG4 = 0)  
ADSF  
A/D conversion  
Figure 12.2 External Trigger Input Timing  
324  
12.3.3  
A/D Converter Operation Modes  
A/D converter operation modes are shown in table 12.3.  
Table 12.3 A/D Converter Operation Modes  
Operation  
Module  
Watch Subactive Subsleep Standby Standby  
Mode  
Reset Active  
Sleep  
AMR  
Reset Functions Functions Held  
Reset Functions Functions Held  
Held* Functions Functions Held  
Held* Functions Functions Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
Held  
ADSR  
ADRRH  
ADRRL  
Note: * Undefined in a power-on reset.  
12.4  
Interrupts  
When A/D conversion ends (ADSF changes from 1 to 0), bit IRRAD in interrupt request register 2  
(IRR2) is set to 1.  
A/D conversion end interrupts can be enabled or disabled by means of bit IENAD in interrupt  
enable register 2 (IENR2).  
For further details see 3.3, Interrupts.  
12.5  
Typical Use  
An example of how the A/D converter can be used is given below, using channel 1 (pin AN1) as  
the analog input channel. Figure 12.3 shows the operation timing.  
1. Bits CH3 to CH0 of the A/D mode register (AMR) are set to 0101, making pin AN the analog  
1
input channel. A/D interrupts are enabled by setting bit IENAD to 1, and A/D conversion is  
started by setting bit ADSF to 1.  
2. When A/D conversion is complete, bit IRRAD is set to 1, and the A/D conversion result is  
stored is stored in ADRRH and ADRRL. At the same time ADSF is cleared to 0, and the A/D  
converter goes to the idle state.  
3. Bit IENAD = 1, so an A/D conversion end interrupt is requested.  
4. The A/D interrupt handling routine starts.  
5. The A/D conversion result is read and processed.  
6. The A/D interrupt handling routine ends.  
If ADSF is set to 1 again afterward, A/D conversion starts and steps 2 through 6 take place.  
325  
Figures 12.4 and 12.5 show flow charts of procedures for using the A/D converter.  
Figure 12.3 Typical A/D Converter Operation Timing  
326  
Start  
Set A/D conversion speed  
and input channel  
Disable A/D conversion  
end interrupt  
Start A/D conversion  
Read ADSR  
No  
ADSF = 0?  
Yes  
Read ADRRH/ADRRL data  
Yes  
Perform A/D  
conversion?  
No  
End  
Figure 12.4 Flow Chart of Procedure for Using A/D Converter (Polling by Software)  
327  
Start  
Set A/D conversion speed  
and input channels  
Enable A/D conversion  
end interrupt  
Start A/D conversion  
Yes  
A/D conversion  
end interrupt?  
No  
Clear bit IRRAD to  
0 in IRR2  
Read ADRRH/ADRRL data  
Yes  
Perform A/D  
conversion?  
No  
End  
Figure 12.5 Flow Chart of Procedure for Using A/D Converter (Interrupts Used)  
12.6  
Application Notes  
Data in ADRRH and ADRRL should be read only when the A/D start flag (ADSF) in the A/D  
start register (ADSR) is cleared to 0.  
Changing the digital input signal at an adjacent pin during A/D conversion may adversely  
affect conversion accuracy.  
When A/D conversion is started after clearing module standby mode, wait for 10 ø clock  
cycles before starting.  
328  
Section 13 LCD Controller/Driver  
13.1  
Overview  
The H8/3867 Series and H8/3827 Series has an on-chip segment type LCD control circuit, LCD  
driver, and power supply circuit, enabling it to directly drive an LCD panel.  
13.1.1  
Features  
1. Features  
Features of the LCD controller/driver are given below.  
Display capacity  
Duty Cycle  
Static  
1/2  
Internal Driver  
32 seg  
Segment External Expansion Driver  
256 seg  
128 seg  
64 seg  
64 seg  
32 seg  
1/3  
32 seg  
1/4  
32 seg  
LCD RAM capacity  
8 bits × 32 bytes (256 bits)  
Word access to LCD RAM  
All eight segment output pins can be used individually as port pins.  
Common output pins not used because of the duty cycle can be used for common double-  
buffering (parallel connection).  
Display possible in operating modes other than standby mode  
Choice of 11 frame frequencies  
Built-in power supply split-resistance, supplying LCD drive power  
Use of module standby mode enables this module to be placed in standby mode independently  
when not used.  
Built-in step-up constant-voltage (5 V) power supply allows LCD display even at low voltages.  
(H8/3867 Series)  
A or B waveform selectable by software  
329  
13.1.2  
Block Diagram  
Figure 13.1 shows a block diagram of the LCD controller/driver.  
V0  
V
V
V
V
1
2
3
LCD drive power supply  
(built-in step-up constant-  
voltage circuit)  
M
SS  
CL2  
ø/2 to ø/256  
øw  
COM  
1
4
Common  
driver  
Common  
data latch  
COM  
SEG32/CL  
1
2
SEG31/CL  
LPCR  
LCR  
SEG30/DO  
SEG29/M  
SEG28  
LCR2  
Segment  
driver  
32-bit shift  
register  
Display timing generator  
CL1  
LCD RAM  
(32 bytes)  
SEG  
1
SEGn, DO  
Notation:  
LPCR: LCD port control register  
LCR: LCD control register  
LCR2: LCD control register 2  
Figure 13.1 Block Diagram of LCD Controller/Driver  
330  
13.1.3  
Pin Configuration  
Table 13.1 shows the LCD controller/driver pin configuration.  
Table 13.1 Pin Configuration  
Name  
Abbrev.  
SEG32 to SEG1 Output LCD segment drive pins  
All pins are multiplexed as port pins  
I/O  
Function  
Segment output pins  
(setting programmable)  
Common output pins  
COM4 to COM1  
Output LCD common drive pins  
Pins can be used in parallel with static or  
1/2 duty  
Segment external  
expansion signal pins  
CL1  
CL2  
M
Output Display data latch clock, multiplexed as  
SEG32  
Output Display data shift clock, multiplexed as  
SEG31  
Output LCD alternation signal, multiplexed as  
SEG29  
DO  
Output Serial display data, multiplexed as SEG30  
LCD power supply pins  
V0, V1, V2, V3  
Used when a bypass capacitor is  
connected externally, and when an  
external power supply circuit is used  
13.1.4  
Register Configuration  
Table 13.2 shows the register configuration of the LCD controller/driver.  
Table 13.2 LCD Controller/Driver Registers  
Name  
Abbrev.  
LPCR  
LCR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Initial Value  
H'00  
Address  
H'FFC0  
LCD port control register  
LCD control register  
LCD control register 2  
LCD RAM  
H'80  
H'FFC1  
LCR2  
H'60  
H'FFC2  
Undefined  
H'FF  
H'F740, H'F75F  
H'FFFB  
Clock stop register 2  
CKSTPR2  
331  
13.2  
Register Descriptions  
13.2.1  
LCD Port Control Register (LPCR)  
Bit  
7
DTS1  
0
6
DTS0  
0
5
CMX  
0
4
3
SGS3  
0
2
SGS2  
0
1
SGS1  
0
0
SGS0  
0
SGX  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LPCR is an 8-bit read/write register which selects the duty cycle and LCD driver pin functions.  
LPCR is initialized to H'00 upon reset.  
Bits 7 to 5: Duty cycle select 1 and 0 (DTS1, DTS0), common function select (CMX)  
The combination of DTS1 and DTS0 selects static, 1/2, 1/3, or 1/4 duty. CMX specifies whether  
or not the same waveform is to be output from multiple pins to increase the common drive power  
when not all common pins are used because of the duty setting.  
Bit 7  
Bit 6  
Bit 5  
DTS1 DTS0 CMX  
Duty Cycle Common Drivers Notes  
0
0
0
1
0
1
Static  
COM1 (initial value) Do not use COM4, COM3, and  
COM2.  
COM4 to COM1  
COM4, COM3, and COM2 output  
the same waveform as COM1.  
0
1
1/2 duty  
COM2 to COM1  
COM4 to COM1  
Do not use COM4 and COM3.  
COM4 outputs the same waveform  
as COM3, and COM2 outputs the  
same waveform as COM1.  
1
1
0
1
0
1
0
1
1/3 duty  
1/4 duty  
COM3 to COM1  
COM4 to COM1  
COM4 to COM1  
Do not use COM4.  
Do not use COM4.  
332  
Bit 4: Expansion signal select (SGX)  
Bit 4 selects whether the SEG /CL , SEG /CL , SEG /DO, and SEG /M pins are used as  
32  
1
31  
2
30  
29  
segment pins (SEG to SEG ) or as segment external expansion pins (CL , CL , DO, M).  
32  
29  
1
2
Bit 4  
SGX  
Description  
0
1
Pins SEG32 to SEG29  
*
(Initial value)  
Pins CL1, CL2, DO, M  
Note: * These pins function as ports when the setting of SGS3 to SGS0 is 0000 or 0001.  
Bit 3: Segment driver select 3 to 0 (SGS3 to SGS0)  
Bits 3 to 0 select the segment drivers to be used.  
Function of Pins SEG32 to SEG1  
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SEG32 to SEG24 to SEG16 to SEG8 to  
SGX SGS3 SGS2 SGS1 SGS0 SEG25  
SEG17  
SEG9  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
SEG1  
Port  
Port  
Port  
Port  
Port  
SEG  
Port  
Notes  
0
0
0
0
0
0
1
0
*
0
0
0
1
1
*
0
*
0
0
1
0
1
*
0
*
0
1
*
*
*
*
0
*
Port  
Port  
(Initial value)  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
Port*  
Port  
SEG  
SEG  
SEG  
Port  
1
Setting prohibited  
*: Dont care  
Note: * SEG32 to SEG29 are external expansion pins.  
333  
13.2.2  
LCD Control Register (LCR)  
Bit  
7
1
6
PSW  
0
5
ACT  
0
4
DISP  
0
3
CKS3  
0
2
CKS2  
0
1
CKS1  
0
0
CKS0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LCR is an 8-bit read/write register which performs LCD drive power supply on/off control and  
display data control, and selects the frame frequency.  
LCR is initialized to H'80 upon reset.  
Bit 7: Reserved bit  
Bit 7 is reserved; it is always read as 1 and cannot be modified.  
Bit 6: LCD drive power supply on/off control (PSW)  
Bit 6 can be used to turn the LCD drive power supply off when LCD display is not required in a  
power-down mode, or when an external power supply is used. When the ACT bit is cleared to 0,  
or in standby mode, the LCD drive power supply is turned off regardless of the setting of this bit.  
Bit 6  
PSW  
Description  
0
1
LCD drive power supply off  
LCD drive power supply on  
(initial value)  
Bit 5: Display function activate (ACT)  
Bit 5 specifies whether or not the LCD controller/driver is used. Clearing this bit to 0 halts  
operation of the LCD controller/driver. The LCD drive power supply is also turned off, regardless  
of the setting of the PSW bit. However, register contents are retained.  
Bit 5  
ACT  
Description  
0
1
LCD controller/driver operation halted  
LCD controller/driver operates  
(initial value)  
334  
Bit 4: Display data control (DISP)  
Bit 4 specifies whether the LCD RAM contents are displayed or blank data is displayed regardless  
of the LCD RAM contents.  
Bit 4  
DISP  
Description  
0
1
Blank data is displayed  
LCD RAM data is display  
(initial value)  
Bits 3 to 0: Frame frequency select 3 to 0 (CKS3 to CKS0)  
Bits 3 to 0 select the operating clock and the frame frequency. In subactive mode, watch mode,  
and subsleep mode, the system clock (ø) is halted, and therefore display operations are not  
performed if one of the clocks from ø/2 to ø/256 is selected. If LCD display is required in these  
modes, øw, øw/2, or øw/4 must be selected as the operating clock.  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Frame Frequency*2  
Operating Clock ø = 2 MHz  
ø = 250 kHz*1  
128 Hz*3 (initial value)  
CKS3  
CKS2  
CKS1  
CKS0  
0
0
0
1
1
1
1
1
1
1
1
*
*
*
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
1
*
øw  
øw/2  
øw/4  
ø/2  
64 Hz*3  
32 Hz*3  
0
1
0
1
0
1
0
1
244 Hz  
122 Hz  
61 Hz  
30.5 Hz  
ø/4  
977 Hz  
488 Hz  
244 Hz  
122 Hz  
61 Hz  
30.5 Hz  
ø/8  
ø/16  
ø/32  
ø/64  
ø/128  
ø/256  
*: Dont care  
Notes: 1. This is the frame frequency in active (medium-speed, øosc/16) mode when ø = 2 MHz.  
2. When 1/3 duty is selected, the frame frequency is 4/3 times the value shown.  
3. This is the frame frequency when øw = 32.768 kHz.  
335  
13.2.3  
LCD Control Register 2 (LCR2)  
Bit  
7
LCDAB  
0
6
1
5
1
4
SUPS  
0
3
CDS3  
0
2
CDS2  
0
1
CDS1  
0
0
CDS0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LCR2 is an 8-bit read/write register which controls switching between the A waveform and B  
waveform, selects the drive power supply, controls the step-up constant-voltage (5 V) power  
supply, and selects the duty cycle of the charge/discharge pulses which control disconnection of  
the power supply split-resistance from the power supply circuit.  
LCR2 is initialized to H'60 upon reset.  
Bit 7: A waveform/B waveform switching control (LCDAB)  
Bit 7 specifies whether the A waveform or B waveform is used as the LCD drive waveform.  
Bit 7  
LCDAB  
Description  
0
1
Drive using A waveform  
Drive using B waveform  
(initial value)  
Bits 6 and 5: Reserved bits  
Bits 6 and 5 are reserved; they are always read as 1 and cannot be modified.  
Bit 4: Drive power supply select, step-up constant-voltage (5 V) power supply control (SUPS)  
(Applies to the H8/3867 Series only)  
When V is selected as the drive power supply, the step-up constant-voltage (5 V) power supply  
CC  
simultaneously stops operating; when 5 V is selected as the drive power supply, the step-up  
constant-voltage (5 V) power supply simultaneously operates.  
Bit 4  
SUPS  
Description  
0
Drive power supply is VCC, step-up constant-voltage (5 V) power supply halts  
(Initial value)  
1
Drive power supply is 5 V, step-up constant-voltage (5 V) power supply operates  
336  
Bits 3 to 0: Charge/discharge pulse duty cycle select (CDS3 to CDS0)  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CDS3  
CDS2  
CDS1  
CDS0  
Duty Cycle  
Notes  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
*
*
0
1
0
1
0
1
0
1
*
*
1
Fixed high  
(initial value)  
1/8  
2/8  
3/8  
4/8  
5/8  
6/8  
0
Fixed low  
1/16  
1/32  
*: Dont care  
Bits 3 to 0 select the duty cycle while the power supply split-resistance is connected to the power  
supply circuit.  
When a 0 duty cycle is selected, the power supply split-resistance is permanently disconnected  
from the power supply circuit, so power should be supplied to pins V1, V2, and V3 by an external  
circuit.  
Figure 13.2 shows the waveform of the charge/discharge pulses. The duty cycle is Tc/Tw.  
1 frame  
T
W
COM1  
Tc  
Tdc  
Tc : Power supply split-resistance  
connected  
Tdc : Power supply split-resistance  
disconnected  
Charge/discharge  
pulses  
Figure 13.2 Example of A Waveform with 1/2 Duty and 1/2 Bias  
337  
13.2.4  
Clock Stop Register 2 (CKSTPR2)  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
AECKSTP WDCKSTP PWCKSTP LDCKSTP  
Initial value  
Read/Write  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
CKSTPR2 is an 8-bit read/write register that performs module standby mode control for peripheral  
modules. Only the bit relating to the LCD controller/driver is described here. For details of the  
other bits, see the sections on the relevant modules.  
Bit 0: LCD controller/driver module standby mode control (LDCKSTP)  
Bit 0 controls setting and clearing of module standby mode for the LCD controller/driver.  
Bit 0  
LDCKSTP  
Description  
0
1
LCD controller/driver is set to module standby mode  
LCD controller/driver module standby mode is cleared  
(initial value)  
338  
13.3  
Operation  
13.3.1  
Settings up to LCD Display  
To perform LCD display, the hardware and software related items described below must first be  
determined.  
1. Hardware settings  
a. Using 1/2 duty  
When 1/2 duty is used, interconnect pins V and V as shown in figure 13.3.  
2
3
VCC  
V0  
V1  
V2  
V3  
VSS  
Figure 13.3 Handling of LCD Drive Power Supply when Using 1/2 Duty  
b. Large-panel display  
As the impedance of the built-in power supply split-resistance is large, it may not be  
suitable for driving a large panel. If the display lacks sharpness when using a large panel,  
refer to section 13.3.7, Boosting the LCD Drive Power Supply. When static or 1/2 duty is  
selected, the common output drive capability can be increased. Set CMX to 1 when  
selecting the duty cycle. In this mode, with a static duty cycle pins COM to COM output  
4
1
the same waveform, and with 1/2 duty the COM waveform is output from pins COM and  
1
2
COM , and the COM waveform is output from pins COM and COM .  
1
2
4
3
c. Luminance adjustment function (V pin)  
0
Connecting a resistance between the V and V pins enables the luminance to be adjusted.  
0
1
For details, see 13.3.3, Luminance Adjustment Function (V Pin).  
0
d. LCD drive power supply setting  
With the H8/3867 Series, there are two ways of providing LCD power: by using the on-  
chip power supply circuit, or by using an external circuit. With the H8/3867 Series, the on-  
chip power supply circuit allows the selection of either the power supply voltage (V ) or  
CC  
a step-up constant voltage (5 V). For details of the step-up constant-voltage power supply,  
see 13.3.4, Step-Up Constant-Voltage (5 V) Power Supply.  
339  
When the on-chip power supply circuit is used for the LCD drive power supply, the V  
0
and V pins should be interconnected externally, as shown in figure 13.4 (a).  
1
When an external power supply circuit is used for the LCD drive power supply, connect  
the external power supply to the V pin, and short the V pin to V externally, as shown  
1
0
CC  
in figure 13.4 (b).  
V
CC  
V
CC  
V0  
V1  
V2  
V3  
V0  
V1  
V2  
V3  
External power supply  
V
SS  
V
SS  
(a) Using on-chip power supply circuit  
(b) Using external power supply circuit  
Figure 13.4 Examples of LCD Power Supply Pin Connections  
e. Low-power-consumption LCD drive system  
Use of a low-power-consumption LCD drive system enables the power consumption  
required for LCD drive to be optimized. For details, see 13.3.5, Low-Power-Consumption  
LCD Drive System.  
f. Segment external expansion  
The number of segments can be increased by connecting an HD66100 externally. For  
details, see section 13.3.8, Connection to HD66100.  
340  
2. Software settings  
a. Duty selection  
Any of four duty cycles—static, 1/2 duty, 1/3 duty, or 1/4 duty—can be selected with bits  
DTS1 and DTS0.  
b. Segment selection  
The segment drivers to be used can be selected with bits SGS to SGS .  
3
0
c. Frame frequency selection  
The frame frequency can be selected by setting bits CKS to CKS . The frame frequency  
3
0
should be selected in accordance with the LCD panel specification. For the clock selection  
method in watch mode, subactive mode, and subsleep mode, see 13.3.6, Operation in  
Power-Down Modes.  
d. A or B waveform selection  
Either the A or B waveform can be selected as the LCD waveform to be used by means of  
LCDAB.  
e. LCD drive power supply selection  
When the on-chip power supply circuit is used, the power supply to be used can be selected  
with the SUPS bit. When an external power supply circuit is used, select V with the  
CC  
SUPS bit and turn the LCD drive power supply off with the PSW bit.  
341  
13.3.2  
Relationship between LCD RAM and Display  
The relationship between the LCD RAM and the display segments differs according to the duty  
cycle. LCD RAM maps for the different duty cycles when segment external expansion is not used  
are shown in figures 13.5 to 13.8, and LCD RAM maps when segment external expansion is used  
in figures 13.9 to 13.12.  
After setting the registers required for display, data is written to the part corresponding to the duty  
using the same kind of instruction as for ordinary RAM, and display is started automatically when  
turned on. Word- or byte-access instructions can be used for RAM setting.  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
SEG2  
SEG2  
SEG2  
SEG2  
SEG1  
SEG1  
SEG1  
SEG1  
SEG32  
COM4  
SEG32  
COM3  
SEG32  
COM2  
SEG32  
COM1  
SEG31  
COM4  
SEG31  
COM3  
SEG31  
COM2  
SEG31  
COM1  
H'F74F  
Figure 13.5 LCD RAM Map when Not Using Segment External Expansion (1/4 Duty)  
342  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
SEG2  
SEG2  
SEG2  
SEG1  
SEG1  
SEG1  
H'F74F  
SEG32  
COM3  
SEG32  
COM2  
SEG32  
COM1  
SEG31  
COM3  
SEG31  
COM2  
SEG31  
COM1  
Space not used for display  
Figure 13.6 LCD RAM Map when Not Using Segment External Expansion (1/3 Duty)  
343  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
SEG  
4
SEG  
4
SEG  
3
SEG  
3
SEG  
2
SEG  
2
SEG  
1
SEG1  
Display space  
SEG32  
SEG32  
SEG31  
SEG31  
SEG30  
SEG30  
SEG29  
SEG29  
H'F747  
Space not used for display  
H'F74F  
COM  
2
COM  
1
COM  
2
COM  
1
COM  
2
COM  
1
COM  
2
COM1  
Figure 13.7 LCD RAM Map when Not Using Segment External Expansion (1/2 Duty)  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
H'F743  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
Display  
space  
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
Space not  
used for  
display  
H'F74F  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
Figure 13.8 LCD RAM Map when Not Using Segment External Expansion (Static Mode)  
344  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
SEG  
2
SEG  
2
SEG  
2
SEG  
2
SEG  
1
SEG  
1
SEG  
1
SEG1  
Expansion  
driver display  
space  
SEG64  
SEG64  
SEG64  
SEG64  
SEG63  
SEG63  
SEG63  
SEG63  
H'F75F  
COM  
4
COM  
3
COM  
2
COM  
1
COM  
4
COM  
3
COM  
1
COM1  
Figure 13.9 LCD RAM Map when Using Segment External Expansion  
(SGX = “1”, SGS3 to SGS0 = “0000” 1/4 Duty)  
345  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
SEG  
2
SEG  
2
SEG  
2
SEG  
1
SEG  
1
SEG1  
Expansion  
driver display  
space  
SEG64  
SEG64  
SEG64  
SEG63  
SEG63  
SEG63  
H'F75F  
COM  
3
COM  
2
COM  
1
COM  
3
COM  
1
COM1  
Space not used for display  
Figure 13.10 LCD RAM Map when Using Segment External Expansion  
(SGX = “1”, SGS3 to SGS0 = “0000” 1/3 Duty)  
346  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
SEG  
4
SEG  
4
SEG  
3
SEG  
3
SEG  
2
SEG  
2
SEG  
1
SEG1  
Expansion  
driver display  
space  
SEG128  
SEG128  
SEG127  
SEG127  
SEG126  
SEG126  
SEG125  
SEG125  
H'F75F  
COM  
2
COM  
1
COM  
2
COM  
1
COM  
2
COM  
1
COM  
2
COM1  
Figure 13.11 LCD RAM Map when Using Segment External Expansion  
(SGX = “1”, SGS3 to SGS0 = “0000” 1/2 Duty)  
347  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
H'F740  
SEG  
8
SEG  
7
SEG  
6
SEG  
5
SEG  
4
SEG  
3
SEG  
2
SEG1  
Expansion  
driver display  
space  
SEG256  
SEG255  
SEG254  
SEG253  
SEG252  
SEG251  
SEG250  
SEG249  
H'F75F  
COM  
1
COM  
1
COM  
1
COM  
1
COM  
1
COM  
1
COM  
1
COM1  
Figure 13.12 LCD RAM Map when Using Segment External Expansion  
(SGX = “1”, SGS3 to SGS0 = “0000” Static)  
348  
13.3.3  
Figure 13.13 shows a detailed block diagram of the LCD drive power supply unit.  
The voltage output to the V pin is either V or the 5 V output from the step-up conversion  
Luminance Adjustment Function (V0 Pin)  
0
CC  
power supply circuit. When either of these voltages is used directly as the LCD drive power  
supply, the V and V pins should be shorted. Also, connecting a variable resistance, R, between  
0
1
the V and V pins makes it possible to adjust the voltage applied to the V pin, and so to provide  
0
1
1
luminance adjustment for the LCD panel.  
VCC  
V0  
5V  
*Step-up constant-  
voltage power supply  
Power supply  
selector  
R
V1  
V2  
V3  
VSS  
* Applies to the H8/3867 Series  
Figure 13.13 LCD Drive Power Supply Unit  
349  
13.3.4  
Step-Up Constant-Voltage (5 V) Power Supply  
The H8/3867 Series has an on-chip step-up constant-voltage (5 V) power supply which enables a 5  
V constant voltage to be obtained independently of V . This feature is not provided in the  
CC  
H8/3827 Series.  
When the SUPS bit is set to 1 in LCD control register 2 (LCR2), the step-up constant-voltage (5  
V) power supply operates, and a 5 V constant voltage is output from the V pin. Either short the  
0
V and V pins or connect a resistance to divide the voltage.  
0
1
Note: The step-up constant-voltage (5 V) power supply must not be used for any purpose other  
than the H8/3864 SeriesLCD drive power supply. When a large panel is driven, the  
power supply capacity may be insufficient. In this case, either use V as the power  
CC  
supply or use an external power supply circuit.  
13.3.5  
Low-Power-Consumption LCD Drive System  
The use of the built-in split-resistance is normally the easiest method for implementing the LCD  
power supply circuit, but since the built-in resistance is fixed, a certain direct current flows  
constantly from the built-in resistances V to V . As this current does not depend on the  
CC  
SS  
current dissipation of the LCD panel, if an LCD panel with a small current dissipation is used, a  
wasteful amount of power will be consumed. The H8/3864 Series is equipped with a function to  
minimize this waste of power. Use of this function makes it possible to achieve the optimum  
power supply circuit for the LCD panels current dissipation.  
1. Principles  
a. Capacitors are connected as external circuits to LCD power supply pins V1, V2, and V3, as  
shown in figure 13.14.  
b. The capacitors connected to V1, V2, and V3 are repeatedly charged and discharged in the  
cycle shown in figure 13.14, maintaining the potentials.  
c. At this time, the charged potential is a potential corresponding to the V1, V2, and V3 pins,  
respectively. (For example, with 1/3 bias drive, the charge for V2 is 2/3 that of V1, and that  
for V3 is 1/3 that of V1.)  
d. Power is supplied to the LCD panel by means of the charges accumulated in these  
capacitors.  
e. The capacitances and charging/discharging periods of these capacitors are therefore  
determined by the current dissipation of the LCD panel.  
f. The charging and discharging periods can be selected by software.  
350  
2. Example of operation (with 1/3 bias drive)  
a. During charging period Tc in the figure, the potential is divided among pins V1, V2, and  
V3 by the built-in split-resistance (the potential of V2 being 2/3 that of V1, and that of V3  
being 1/3 that of V1), as shown in figure 13.14, and external capacitors C1, C2, and C3 are  
charged. The LCD panel is continues to be driven during this time.  
b. In the following discharging period, Tdc, charging is halted and the charge accumulated in  
each capacitor is discharged, driving the LCD panel.  
c. At this time, a slight voltage drop occurs due to the discharging; optimum values must be  
selected for the charging period and the capacitor capacitances to ensure that this does not  
affect the driving of the LCD panel.  
d. In this way, the capacitors connected to V1, V2, and V3 are repeatedly charged and  
discharged in the cycle shown in figure 13.14, maintaining the potentials and continuously  
driving the LCD panel.  
e. As can be seen from the above description, the capacitances and charging/discharging  
periods of the capacitors are determined by the current dissipation of the LCD panel used.  
The charging/discharging periods can be selected with bits CDS3 to CDS0.  
f. The actual capacitor capacitances and charging/discharging periods must be determined  
experimentally in accordance with the current dissipation requirements of the LCD panel.  
An optimum current value can be selected, in contrast to the case in which a direct current  
flows constantly in the built-in split-resistance.  
Charging  
period Tc  
Discharging  
period Tdc  
Voltage drop  
associated with  
discharging due  
to LCD panel  
driving  
Vd1  
Vd2  
V1 potential  
V2 potential  
V0  
V1  
V2  
V3  
V1×2/3  
V1×1/3  
C1  
C2  
V3 potential  
Vd3  
C3  
Power supply voltage fluctuation in 1/3 bias system  
Figure 13.14 Example of Low-Power-Consumption LCD Drive Operation  
351  
1 frame  
1 frame  
M
M
Data  
Data  
V
V
V
V
1
V
V
V
V
1
2
2
COM  
1
2
3
4
COM  
1
2
3
3
3
SS  
SS  
V
V
V
V
1
V
V
V
V
1
COM  
COM  
COM  
COM  
COM  
2
2
3
3
SS  
SS  
V
V
V
V
1
V
V
V
V
1
2
2
3
3
SS  
SS  
V
V
V
V
1
2
3
SS  
V
V
V
V
1
V
V
V
V
1
2
2
SEG  
n
SEG  
n
3
3
SS  
SS  
(a) Waveform with 1/4 duty  
1 frame  
(b) Waveform with 1/3 duty  
1 frame  
M
M
Data  
Data  
V
V
V
1
V
1
2,  
V
3
3
COM  
1
2
COM  
1
SS  
V
V
SS  
1
V
V
V
1
COM  
SEG  
n
2,  
V
SS  
V
SS  
SEG  
n
(d) Waveform with static output  
(c) Waveform with 1/2 duty  
Figure 13.15 Output Waveforms for Each Duty Cycle (A Waveform)  
352  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
M
M
Data  
Data  
V1  
V2  
COM1  
COM2  
V1  
V3  
V2  
COM1  
COM2  
VSS  
V1  
V3  
VSS  
V1  
V2  
V3  
V2  
V3  
VSS  
V1  
V2  
VSS  
V1  
COM3  
COM4  
V3  
V2  
VSS  
COM3  
SEGn  
V3  
V1  
VSS  
V2  
V3  
VSS  
V1  
V1  
V2  
V2  
SEGn  
V3  
V3  
VSS  
VSS  
(a) Waveform with 1/4 duty  
(b) Waveform with 1/3 duty  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
1 frame  
M
M
Data  
Data  
V1  
V1  
COM1  
V2, V3  
VSS  
COM1  
COM2  
VSS  
V1  
V1  
V2, V3  
VSS  
SEGn  
VSS  
V1  
V2, V3  
VSS  
SEGn  
(d) Waveform with static output  
(c) Waveform with 1/2 duty  
Figure 13.16 Output Waveforms for Each Duty Cycle (B Waveform)  
353  
Table 13.3 Output Levels  
Data  
M
0
0
1
1
0
1
0
1
Static  
Common output  
Segment output  
Common output  
Segment output  
Common output  
Segment output  
Common output  
Segment output  
V1  
V1  
V2, V3  
V1  
V3  
V2  
V3  
V2  
VSS  
VSS  
V2, V3  
VSS  
V2  
V1  
VSS  
V1  
VSS  
V1  
1/2 duty  
1/3 duty  
1/4 duty  
VSS  
V1  
VSS  
V1  
VSS  
V1  
V3  
VSS  
V1  
V2  
VSS  
V1  
V3  
VSS  
13.3.6  
Operation in Power-Down Modes  
In the H8/3867 Series, the LCD controller/driver can be operated even in the power-down modes.  
The operating state of the LCD controller/driver in the power-down modes is summarized in table  
13.4.  
In subactive mode, watch mode, and subsleep mode, the system clock oscillator stops, and  
therefore, unless øw, øw/2, or øw/4 has been selected by bits CKS3 to CKS0, the clock will not be  
supplied and display will halt. Since there is a possibility that a direct current will be applied to  
the LCD panel in this case, it is essential to ensure that øw, øw/2, or øw/4 is selected. In active  
(medium-speed) mode, the system clock is switched, and therefore CKS3 to CKS0 must be  
modified to ensure that the frame frequency does not change.  
Table 13.4 Power-Down Modes and Display Operation  
Sub-  
Sub-  
Module  
Mode  
Reset Active Sleep  
Watch  
Stops  
Runs  
active  
sleep  
Standby Standby  
Clock  
ø
Runs Runs  
Runs Runs  
Runs  
Runs  
Stops  
Stops  
Runs  
Stops  
Stops  
Runs  
Stops  
Stops  
Stops*4  
Stops*4  
Stops  
øw  
Stops*1  
Stops*2  
Display  
ACT = 0Stops Stops  
Stops  
operation ACT = 1Stops Functions Functions Functions*3 Functions*3 Functions*3 Stops*2  
Stops  
Notes: 1. The subclock oscillator does not stop, but clock supply is halted.  
2. The LCD drive power supply is turned off regardless of the setting of the PSW bit.  
3. Display operation is performed only if øw, øw/2, or øw/4 is selected as the operating  
clock.  
4. The clock supplied to the LCD stops.  
354  
13.3.7  
Boosting the LCD Drive Power Supply  
When a large panel is driven, the on-chip power supply capacity may be insufficient. If the power  
supply capacity is insufficient when using the step-up constant power supply (5 V), either use V  
as the power supply or use an external power supply circuit. If the power supply capacity is  
CC  
insufficient when V is used as the power supply, the power supply impedance must be reduced.  
CC  
This can be done by connecting bypass capacitors of around 0.1 to 0.3 µF to pins V to V , as  
1
3
shown in figure 13.17, or by adding a split-resistance externally.  
V0  
V1  
VCC  
R = several kto  
several MΩ  
R
H8/3864 Series  
V2  
V3  
R
R
C= 0.1 to 0.3µF  
VSS  
Figure 13.17 Connection of External Split-Resistance  
355  
13.3.8  
Connection to HD66100  
If the segments are to be expanded externally, an HD66100 should be connected. Connecting one  
HD66100 provides 80-segment expansion. When carrying out external expansion, select the  
external expansion signal function of pins SEG to SEG with the SGX bit in LPCR, and set bits  
32  
29  
SGS3 to SGS0 to 0000 or 0001. Data is output externally from SEG of the LCD RAM. SEG  
1
28  
to SEG function as ports.  
1
Figure 13.18 shows examples of connection to an HD66100. The output level is determined by a  
combination of the data and the M pin output, but these combinations differ from those in the  
HD66100. Table 13.3 shows the output levels of the LCD drive power supply, and figures 13.15  
and 13.16 show the common and segment waveforms for each duty cycle.  
When ACT is cleared to 0, operation stops with CL = 0, CL = 0, M = 0, and DO at the data  
2
1
value (1 or 0) being output at that instant. In standby mode, the expansion pins go to the high-  
impedance (floating) state.  
When external expansion is implemented, the load in the LCD panel increases and the on-chip  
power supply may not provide sufficient current capacity. In this case, measures should be taken  
as described in section 13.3.7, Boosting the LCD Drive Power Supply.  
356  
VCC  
V0  
VCC  
V1  
V1  
V4  
V4  
V3  
V3  
H8/3867  
V2  
Series chip  
VSS  
GND HD66100  
VEE  
SHL  
CL1  
CL2  
DI  
SEG32/CL1  
SEG31/CL2  
SEG30/DO  
SEG29/M  
M
(a) 1/3 bias, 1/4 or 1/3 duty  
VCC  
V0  
VCC  
V1  
V1  
V4  
V4  
V3  
V3  
H8/3867  
Series chip  
V2  
VSS  
GND HD66100  
VEE  
SHL  
CL1  
CL2  
DI  
SEG32/CL1  
SEG31/CL2  
SEG30/DO  
SEG29/M  
M
(b) 1/2 duty  
VCC  
V0  
VCC  
V1  
V1  
V4  
V4  
V3  
V3  
H8/3867  
Series chip  
V2  
VSS  
GND HD66100  
VEE  
SHL  
CL1  
CL2  
DI  
SEG32/CL1  
SEG31/CL2  
SEG30/DO  
SEG29/M  
M
(c) Static mode  
Figure 13.18 Connection to HD66100  
357  
358  
Section 14 Power Supply Circuit  
14.1  
Overview  
The H8/3867 Series incorporates an internal power supply step-down circuit. Use of this circuit  
enables the internal power supply to be fixed at a constant level of approximately 1.5 V,  
independently of the voltage of the power supply connected to the external V pin. As a result,  
CC  
the current consumed when an external power supply is used at 1.8 V or above can be held down  
to virtually the same low level as when used at approximately 1.5 V. It is, of course, also possible  
to use the same level of external power supply voltage and internal power supply voltage without  
using the internal power supply step-down circuit.  
14.2  
When Using the Internal Power Supply Step-Down Circuit  
Connect the external power supply to the V pin, and connect a capacitance of approximately 0.1  
CC  
µF between CV and V , as shown in figure 14.1. The internal step-down circuit is made  
CC  
SS  
effective simply by adding this external circuit.  
Notes: 1. In the external circuit interface, the external power supply voltage connected to V  
CC  
and the GND potential connected to V are the reference levels. For example, for port  
SS  
input/output levels, the V level is the reference for the high level, and the V level  
CC  
SS  
is that for the low level.  
2. When the internal power supply step-down circuit is used, operating frequency f is  
osc  
0.4 MHz to 2 MHz when V = 2.2 V to 5.5 V, and 0.4 MHz to 1 MHz otherwise.  
CC  
3. The LCD power supply and A/D converter analog power supply are not affected by  
internal step-down processing.  
VCC  
Step-down circuit  
CVCC  
Stabilization  
capacitance  
(approx. 0.1µF)  
Internal  
Internal  
power  
logic  
supply  
VSS  
Figure 14.1 Power Supply Connection when Internal Step-Down Circuit Is Used  
359  
14.3  
When Not Using the Internal Power Supply Step-Down Circuit  
When the internal power supply step-down circuit is not used, connect the external power supply  
to the V pin and CV pin, as shown in figure 14.2. The external power supply is then input  
CC  
CC  
directly to the internal power supply.  
Note: The permissible range for the power supply voltage is 1.8 V to 5.5 V. Operation cannot be  
guaranteed if a voltage outside this range (less than 1.8 V or more than 5.5 V) is input.  
VCC  
Step-down circuit  
CVCC  
Internal  
Internal  
power  
logic  
supply  
VSS  
Figure 14.2 Power Supply Connection when Internal Step-Down Circuit Is Not Used  
360  
Section 15 Electrical Characteristics  
15.1  
H8/3867 Series and H8/3827 Series Absolute Maximum Ratings  
Table 15.1 lists the absolute maximum ratings.  
Table 15.1 Absolute Maximum Ratings  
Item  
Symbol  
VCC, CVCC  
AVCC  
VPP  
Value  
Unit  
V
Power supply voltage  
Analog power supply voltage  
Programming voltage  
–0.3 to +7.0  
–0.3 to +7.0  
–0.3 to +13.0  
–0.3 to VCC +0.3  
–0.3 to AVCC +0.3  
–20 to +75  
V
V
Input voltage  
Ports other than Port B  
Port B  
Vin  
V
AVin  
V
Operating temperature  
Storage temperature  
Topr  
°C  
°C  
Tstg  
–55 to +125  
Note: Permanent damage may occur to the chip if maximum ratings are exceeded. Normal  
operation should be under the conditions specified in Electrical Characteristics. Exceeding  
these values can result in incorrect operation and reduced reliability.  
361  
15.2  
H8/3867 Series and H8/3827 Series Electrical Characteristics  
15.2.1  
Power Supply Voltage and Operating Range  
The power supply voltage and operating range are indicated by the shaded region in the figures.  
1. Power supply voltage and oscillator frequency range  
6.0  
38.4  
32.768  
4.0  
3.2  
2.0  
1.0  
0.4  
1.8  
2.6  
4.5  
5.5  
CC (V)  
1.8  
3.0  
4.5  
V
5.5  
2.2  
3.0  
V
CC (V)  
Active (high-speed) mode  
Sleep (high-speed) mode  
All operating modes  
Internal power supply step-down circuit not used  
2.0  
1.0  
0.4  
1.8 2.2  
5.5  
CC (V)  
V
Active (high-speed) mode  
Sleep (high-speed) mode  
Internal power supply step-down circuit used  
362  
2. Power supply voltage and operating frequency range  
3.0  
19.2  
2.0  
1.6  
16.384  
1.0  
0.5  
0.2  
9.6  
1.8  
2.6  
4.5  
5.5  
CC (V)  
8.192  
2.2  
3.0  
V
Active (high-speed) mode  
Sleep (high-speed) mode (except CPU)  
4.8  
Internal power supply step-down circuit not used  
4.096  
375  
1.8  
3.6  
5.5  
CC (V)  
V
250  
200  
Subactive mode  
Subsleep mode (except CPU)  
Watch mode (except CPU)  
125  
62.5  
4.096  
1.8  
2.6  
4.5  
5.5  
CC (V)  
2.2  
3.0  
V
Active (medium-speed) mode (except A/D  
converter and PWM)  
Sleep (medium-speed) mode (except A/D  
converter and PWM)  
Internal power supply step-down circuit not used  
1.0  
0.5  
0.2  
1.8 2.2  
5.5  
CC (V)  
V
Active (high-speed) mode  
Sleep (high-speed) mode (except CPU)  
Internal power supply step-down circuit used  
125  
62.5  
4.096  
1.8 2.2  
5.5  
CC (V)  
V
Active (medium-speed) mode (except A/D  
converter and PWM)  
Sleep (medium-speed) mode (except A/D  
converter and PWM)  
Internal power supply step-down circuit used  
363  
3. Analog power supply voltage and A/D converter operating range  
2.0  
250  
200  
0.5  
0.2  
1.8  
3.0  
4.5 5.5  
AVCC (V)  
1.8  
3.0  
4.5 5.5  
AVCC (V)  
Active (high-speed) mode  
Sleep (high-speed) mode  
Active (medium-speed) mode  
Sleep (medium-speed) mode  
Internal power supply step-down circuit  
not used  
Internal power supply step-down circuit  
not used  
1.0  
0.5  
0.2  
1.8  
3.0  
4.5 5.5  
AVCC (V)  
Active (high-speed) mode  
Sleep (high-speed) mode  
Internal power supply step-down circuit  
used  
364  
15.2.2  
DC Characteristics  
Table 15.2 lists the DC characteristics of the H8/3864.  
Table 15.2 DC Characteristics  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Min  
VIH RES, 0.8 VCC  
Typ Max  
Unit Test Condition  
Notes  
Input high  
voltage  
VCC + 0.3  
VCC + 0.3  
V
VCC = 4.0 to 5.5 V  
Except the above  
WKP0 to WKP7, 0.9 VCC  
IRQ0 to IRQ4,  
AEVL, AEVH,  
TMIC, TMIF,  
TMIG  
SCK31, SCK32  
,
ADTRG  
RXD31, RXD32  
,
0.7 VCC  
0.8 VCC  
0.8 VCC  
0.9 VCC  
0.9 VCC  
0.7 VCC  
0.8 VCC  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
V
V
VCC = 4.0 to 5.5 V  
Except the above  
VCC = 4.0 to 5.5 V  
Except the above  
VCC = 1.8 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
Except the above  
UD  
OSC1  
X1  
V
V
P10 to P17,  
P30 to P37,  
P40 to P43,  
P50 to P57,  
P60 to P67,  
P70 to P77,  
P80 to P87,  
PA0 to PA3  
PB0 to PB7  
0.7 VCC  
0.8 VCC  
AVCC + 0.3  
AVCC + 0.3  
VCC = 4.0 V to 5.5 V  
Except the above  
Note: Connect the TEST pin to VSS  
.
365  
Table 15.2 DC Characteristics (cont)  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Min  
VIL RES, 0.3  
Typ Max  
Unit Test Condition  
Notes  
Input low  
voltage  
0.2 VCC  
0.1 VCC  
V
VCC = 4.0 to 5.5 V  
Except the above  
WKP0 to WKP7, 0.3  
IRQ0 to IRQ4,  
AEVL, AEVH,  
TMIC, TMIF,  
TMIG  
SCK31, SCK32  
,
ADTRG  
RXD31, RXD32  
,
0.3  
0.3  
0.3  
0.3 VCC  
0.2 VCC  
0.2  
V
V
VCC = 4.0 to 5.5 V  
Except the above  
UD  
OSC1  
When internal step-  
down circuit is  
used.  
0.3  
0.3  
0.3  
0.3  
0.3  
0.2 VCC  
0.1 VCC  
0.1 VCC  
0.3 VCC  
0.2 VCC  
VCC = 4.0 to 5.5 V  
Except the above  
VCC = 1.8 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
Except the above  
X1  
V
V
P10 to P17,  
P30 to P37,  
P40 to P43,  
P50 to P57,  
P60 to P67,  
P70 to P77,  
P80 to P87,  
PA0 to PA3,  
PB0 to PB7  
Output high VOH  
voltage  
P10 to P17,  
P30 to P37,  
VCC 1.0 —  
VCC 0.5 —  
VCC 0.3 —  
V
VCC = 4.0 V to 5.5 V  
IOH = 1.0 mA  
P40 to P42,  
P50 to P57,  
VCC = 4.0 V to 5.5 V  
IOH = 0.5 mA  
P60 to P67,  
P70 to P77,  
P80 to P87,  
PA0 to PA3  
IOH = 0.1 mA  
366  
Table 15.2 DC Characteristics (cont)  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Min  
Typ Max  
Unit Test Condition  
Notes  
Output low VOL  
voltage  
P10 to P17,  
P40 to P42  
0.6  
V
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.5  
0.5  
IOL = 0.4 mA  
IOL = 0.4 mA  
P50 to P57, P60  
to P67, P70 to  
P77, P80 to P87,  
PA0 to PA3  
P30 to P37  
1.5  
0.6  
VCC = 4.0 V to 5.5 V  
IOL = 10 mA  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.5  
20.0  
1.0  
1.0  
IOL = 0.4 mA  
VIN = 0.5 V to  
VCC 0.5 V  
*2  
*1  
Input/output | IIL  
leakage  
|
RES, P43  
µA  
µA  
current  
OSC1, X1,  
P10 to P17,  
P30 to P37,  
P40 to P42,  
P50 to P57,  
P60 to P67,  
P70 to P77,  
P80 to P87,  
PA0 to PA3  
VIN = 0.5 V to  
VCC 0.5 V  
PB0 to PB7  
1.0  
VIN = 0.5 V to  
AVCC 0.5 V  
Pull-up  
MOS  
Ip  
P10 to P17,  
P30 to P37,  
50.0  
300.0  
µA  
VCC = 5 V,  
VIN = 0 V  
current  
P50 to P57,  
P60 to P67  
35.0  
VCC = 2.7 V,  
VIN = 0 V  
Reference  
value  
367  
Table 15.2 DC Characteristics (cont)  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Min  
Typ Max  
Unit Test Condition  
Notes  
Input  
CIN  
All input pins  
except power  
supply, RES,  
P43, PB0 to PB7  
15.0  
pF  
f = 1 MHz,  
VIN =0 V,  
Ta = 25°C  
capacitance  
*2  
*1  
*2  
*1  
RES  
0.7  
80.0  
15.0  
50.0  
15.0  
15.0  
1.0  
P43  
PB0 to PB7  
VCC  
*3  
*4  
*5  
Active  
mode  
IOPE1  
mA Active (high-speed)  
mode VCC = 5 V,  
fOSC = 2MHz  
current  
*3  
*4  
*5  
dissipation IOPE2  
VCC  
0.3  
0.5  
mA Active (medium-  
speed) mode  
VCC = 5 V,  
fOSC = 2MHz  
Divided by 128  
*3  
*4  
*5  
Sleep mode ISLEEP  
current  
VCC  
0.4  
15  
0.6  
30  
mA VCC=5 V,  
fOSC=2MHz  
dissipation  
*3  
*4  
*5  
Subactive  
mode  
ISUB  
VCC  
µA  
VCC = 2.7 V,  
LCD on 32-kHz  
crystal oscillator  
(øSUB=øw/2)  
current  
dissipation  
*3  
*4  
8
µA  
VCC = 2.7 V,  
LCD on 32-kHz  
crystal oscillator  
(øSUB=øw/8)  
Reference  
value  
*5  
*3  
*4  
*5  
Subsleep  
mode  
ISUBSP  
VCC  
7.5  
16  
µA  
VCC = 2.7 V,  
LCD on 32-kHz  
crystal oscillator  
(øSUB=øw/2)  
current  
dissipation  
368  
Table 15.2 DC Characteristics (cont)  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Min  
Typ Max  
Unit Test Condition  
Notes  
*3  
*4  
*5  
Watch  
IWATCH VCC  
2.8  
1.0  
6
µA  
µA  
V
VCC = 2.7 V 3  
2-kHz crystal  
oscillator  
mode  
current  
dissipation  
LCD not used  
*3  
*4  
Standby  
mode  
ISTBY  
VCC  
5.0  
32-kHz crystal  
oscillator not used  
current  
dissipation  
*3  
*4  
RAM data  
retaining  
voltage  
VRAM  
VCC  
1.5  
Notes: 1. Applies to the Mask ROM products.  
2. Applies to the HD6473867 and HD6473827.  
3. Pin states during current measurement.  
RES  
Other LCD Power  
Mode  
Pin  
Internal State  
Pins  
Supply  
Oscillator Pins  
Active (high-speed)  
VCC  
Operates  
VCC  
Halted  
System clock oscillator:  
crystal  
mode (IOPE1  
)
Active (medium-  
Subclock oscillator:  
Pin X1 = GND  
speed) mode (IOPE2  
)
Sleep mode  
VCC  
VCC  
VCC  
Only timers operate  
Operates  
VCC  
VCC  
Halted  
Halted  
Halted  
Subactive mode  
Subsleep mode  
System clock oscillator:  
Only timers operate, VCC  
CPU stops  
crystal  
Subclock oscillator:  
Watch mode  
VCC  
Only time base  
VCC  
Halted  
Halted  
crystal  
operates, CPU stops  
Standby mode  
VCC  
CPU and timers both VCC  
stop  
System clock oscillator:  
crystal  
Subclock oscillator:  
Pin X1 = GND  
4. Excludes current in pull-up MOS transistors and output buffers.  
5. When internal step-down circuit is used.  
369  
Table 15.2 DC Characteristics (cont)  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Min  
Typ Max  
Unit Test Condition  
Notes  
Allowable  
output low  
IOL  
Output pins  
2.0  
mA VCC = 4.0 V to 5.5 V  
except port 3  
current  
Port 3  
10.0  
0.5  
VCC = 4.0 V to 5.5 V  
(per pin)  
All output pins  
Allowable  
output low  
IOL  
Output pins  
40.0  
mA VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
except port 3  
current  
(total)  
Port 3  
80.0  
20.0  
2.0  
All output pins  
All output pins  
Allowable  
IOH  
mA VCC = 4.0 V to 5.5 V  
Except the above  
output high  
current  
0.2  
(per pin)  
Allowable  
I  
All output pins  
15.0  
10.0  
mA VCC = 4.0 V to 5.5 V  
Except the above  
OH  
output high  
370  
15.2.3  
AC Characteristics  
Table 15.3 lists the control signal timing, and tables 15.4 lists the serial interface timing of the  
H8/3864.  
Table 15.3 Control Signal Timing  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC SS SS a  
(including subactive mode) unless otherwise indicated.  
Applicable  
Symbol Pins  
Values  
Min Typ  
Reference  
Item  
Max Unit Test Condition  
Figure  
*2  
System clock  
oscillation  
frequency  
fOSC  
tOSC  
tcyc  
OSC1, OSC2  
0.4  
0.4  
0.4  
0.4  
0.4  
167  
250  
313  
500  
6
MHz VCC = 4.5 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
VCC = 2.6 V to 5.5 V  
VCC = 2.2 V to 5.5 V  
Except the above  
4
3.2  
2
1
OSC clock (øOSC  
)
OSC1, OSC2  
2500 ns  
2500  
2500  
2500  
2500  
VCC = 4.5 V to 5.5 V Figure 15.1  
*2  
cycle time  
VCC = 3.0 V to 5.5 V  
VCC = 2.6 V to 5.5 V  
VCC = 2.2 V to 5.5 V Figure 15.1  
Except the above  
1000 —  
System clock (ø)  
2
128  
tOSC  
cycle time  
244.1 µs  
Subclock oscillation fW  
frequency  
X1, X2  
X1, X2  
32.768  
or 38.4  
kHz  
Watch clock (øW  
)
tW  
2
30.5 or —  
µs  
tW  
Figure 15.1  
cycle time  
26.0  
*1  
Subclock (øSUB  
)
tsubcyc  
8
cycle time  
Instruction cycle  
time  
2
45  
8
tcyc  
tsubcyc  
Oscillation  
trc  
OSC1, OSC2  
20  
0.1  
µs  
Figure 15.9  
Figure 15.9  
*2  
stabilization time  
VCC = 2.2 V to 5.5 V  
ms  
ms  
Figure 15.9  
Figure 15.9  
VCC = 2.2 V to 5.5 V  
50  
Except the above  
371  
Table 15.3 Control Signal Timing (cont)  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
V
CC  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Applicable  
Symbol Pins  
Values  
Min Typ  
Reference  
Figure  
Item  
Max Unit Test Condition  
Oscillation  
trc  
X1, X2  
2.0  
s
stabilization time  
External clock high tCPH  
width  
OSC1  
70  
ns  
VCC = 4.5 V to 5.5 V Figure 15.1  
*2  
100  
140  
200  
400  
VCC = 3.0 V to 5.5 V  
VCC = 2.6 V to 5.5 V  
VCC = 2.2 V to 5.5 V Figure 15.1  
Except the above  
X1  
15.26  
or  
µs  
ns  
13.02  
External clock low tCPL  
width  
OSC1  
70  
VCC = 4.5 V to 5.5 V Figure 15.1  
*2  
100  
140  
200  
400  
VCC = 3.0 V to 5.5 V  
VCC = 2.6 V to 5.5 V  
VCC = 2.2 V to 5.5 V Figure 15.1  
Except the above  
X1  
15.26  
or  
µs  
ns  
13.02  
External clock rise tCPr  
time  
OSC1  
10  
20  
30  
55  
VCC = 4.5 V to 5.5 V Figure 15.1  
*2  
VCC = 2.6 V to 5.5 V  
Except the above  
Figure 15.1  
X1  
55.0 ns  
External clock fall  
time  
tCPf  
OSC1  
20  
30  
55  
ns  
VCC = 4.5 V to 5.5 V Figure 15.1  
*2  
VCC = 2.6 V to 5.5 V  
Except the above  
Figure 15.1  
Figure 15.2  
X1  
55.0 ns  
tcyc  
Pin RES low width tREL  
RES  
372  
Table 15.3 Control Signal Timing (cont)  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
V
CC  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Applicable  
Symbol Pins  
Values  
Min Typ  
Reference  
Figure  
Item  
Max Unit Test Condition  
Input pin high width tIH  
IRQ0 to IRQ4,  
WKP0 to WKP7  
ADTRG, TMIC  
TMIF, TMIG,  
AEVL, AEVH  
2
2
4
tcyc  
Figure 15.3  
tsubcyc  
Input pin low width tIL  
IRQ0 to IRQ4,  
WKP0 to WKP7,  
ADTRG, TMIC,  
TMIF, TMIG,  
tcyc  
Figure 15.3  
Figure 15.4  
tsubcyc  
AEVL, AEVH  
UD pin minimum  
modulation width  
tUDH  
tUDL  
UD  
tcyc  
tsubcyc  
Notes: 1. Selected with SA1 and SA0 of system clock control register 2 (SYSCR2).  
2. Internal power supply step-down circuit not used  
Table 15.4 Serial Interface (SCI3-1, SCI3-2) Timing  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC  
SS  
SS  
a
(including subactive mode) unless otherwise indicated.  
Values  
Reference  
Item  
Input clock Asynchronous tscyc  
cycle Synchronous  
Symbol Min  
Typ Max Unit  
Test Conditions  
Figure  
4
0.6  
1
tcyc or  
tsubcyc  
tscyc  
Figure 15.5  
6
Input clock pulse width  
Transmit data delay time  
(synchronous)  
tSCKW  
tTXD  
0.4  
Figure 15.5  
tcyc or  
tsubcyc  
ns  
VCC = 4.0 V to 5.5 V Figure 15.6  
Except the above  
1
Receive data setup time  
(synchronous)  
tRXS  
200.0  
400.0  
200.0  
400.0  
VCC = 4.0 V to 5.5 V Figure 15.6 *1  
Except the above  
VCC = 4.0 V to 5.5 V Figure 15.6 *1  
Except the above Figure 15.6  
Figure 15.6  
Receive data hold time  
(synchronous)  
tRXH  
ns  
Note: 1. When internal step-down circuit is not used.  
373  
15.2.4  
A/D Converter Characteristics  
Table 15.5 shows the A/D converter characteristics of the H8/3864.  
Table 15.5 A/D Converter Characteristics  
V
CC  
= 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C (including subactive mode)  
SS  
SS  
a
unless otherwise indicated.  
Applicable  
Symbol Pins  
Values  
Reference  
Item  
Min  
Typ Max  
Unit Test Condition  
Figure  
*1  
Analog power AVCC  
supply voltage  
AVCC  
1.8  
5.5  
V
Analog input  
voltage  
AVIN  
AN0 to AN7 0.3  
AVCC + 0.3  
V
Analog power AIOPE  
AVCC  
1.5  
mA  
µA  
AVCC = 5 V  
*2  
supply current AISTOP1 AVCC  
600  
Reference  
value  
*3  
AISTOP2 AVCC  
CAIN AN0 to AN7  
5
µA  
pF  
Analog input  
capacitance  
15.0  
Allowable  
RAIN  
10.0  
k
signal source  
impedance  
Resolution  
10  
bit  
(data length)  
*4  
Nonlinearity  
error  
±2.5  
±5.5  
LSB AVCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
AVCC = 2.0 V to 5.5 V  
VCC = 2.0 V to 5.5 V  
*5  
±7.5  
±0.5  
Except the above  
LSB  
Quantization  
error  
374  
Table 15.5 A/D Converter Characteristics (cont)  
V
CC  
= 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C (including subactive mode)  
SS  
SS  
a
unless otherwise indicated.  
Applicable  
Symbol Pins  
Values  
Reference  
Item  
Min  
Typ Max  
Unit Test Condition  
Figure  
*4  
Absolute  
accuracy  
±3.0  
LSB AVCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
±6.0  
AVCC = 2.0 V to 5.5 V  
VCC = 2.0 V to 5.5 V  
*5  
*4  
±8.0  
155  
Except the above  
Conversion  
time  
15.5  
µs  
AVCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
62  
155  
Except the above  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby, watch, subactive, and subsleep modes  
while the A/D converter is idle.  
4. When internal step-down circuit is not used.  
5. Conversion time 124 µs  
375  
15.2.5  
LCD Characteristics  
Table 15.6 shows the LCD characteristics.  
Table 15.6 LCD Characteristics  
V
CC  
= 1.8 V to 5.5 V, AV = 1.8 V to 5.5 V, V = AV = 0.0 V, T = –20°C to +75°C  
CC SS SS a  
(including subactive mode) unless otherwise specified.  
Applicable Test  
Values  
Reference  
Item  
Symbol Pins  
Conditions  
Min Typ Max Unit Figure  
*1  
Segment driver  
drop voltage  
VDS  
SEG1 to  
SEG32  
ID = 2 µA  
V1 = 2.7 to 5.5 V  
0.6  
V
V
M
V
*1  
Common driver  
drop voltage  
VDC  
COM1 to  
COM4  
ID = 2 µA  
V1 = 2.7 to 5.5 V  
0.3  
LCD power supply RLCD  
split-resistance  
Between V1 and 0.5 3.0 9.0  
VSS  
*2  
On-chip liquid  
crystal display  
power supply  
voltage  
VLP  
V0  
5.0  
Reference  
value  
*3  
Liquid crystal  
VLCD  
V1  
2.2  
5.5  
V
display voltage  
Notes: 1. The voltage drop from power supply pins V1, V2, V3, and VSS to each segment pin or  
common pin.  
2. The output voltage in step-up constant-voltage power supply operation (unloaded).  
3. When the liquid crystal display voltage is supplied from an external power source,  
ensure that the following relationship is maintained: V1  
V
V
V
.
SS  
2
3
376  
Table 15.7 AC Characteristics for External Segment Expansion  
V
CC  
= 1.8 V to 5.5 V, V = 0.0 V, T = –20°C to +75°C (including subactive mode) unless  
SS  
a
otherwise specified.  
Applicable Test  
Values  
Reference  
Item  
Symbol Pins  
Conditions  
Min  
800  
800  
500  
300  
300  
1000  
Typ Max Unit Figure  
*1  
Clock high width  
Clock low width  
Clock setup time  
Data setup time  
Data hold time  
M delay time  
tCWH  
tCWL  
tCSU  
tSU  
CL1, CL2  
ns  
ns  
ns  
ns  
ns  
Figure 15.9  
Figure 15.9  
Figure 15.9  
Figure 15.9  
Figure 15.9  
Figure 15.9  
Figure 15.9  
*1  
*1  
*1  
*1  
CL2  
CL1, CL2  
DO  
tDH  
DO  
tDM  
M
1000 ns  
170 ns  
Clock rise and fall tCT  
times  
CL1, CL2  
Note: 1. Value when the frame frequency is set to between 30.5 Hz and 488 Hz.  
377  
15.3  
Operation Timing  
Figures 15.1 to 15.6 show timing diagrams.  
tOSC, tw  
V
IH  
OSC1  
x1  
V
IL  
tCPH  
tCPr  
tCPL  
tCPf  
Figure 15.1 Clock Input Timing  
RES  
V
IL  
tREL  
Figure 15.2 RES Low Width  
IRQ0 to IRQ4,  
WKP0 to WKP7,  
ADTRG,  
TMIC, TMIF,  
TMIG,  
V
IH  
V
IL  
AEVL, AEVH  
tIL  
tIH  
Figure 15.3 Input Timing  
378  
VIH  
UD  
VIL  
tUDL  
tUDH  
Figure 15.4 UD Pin Minimum Modulation Width Timing  
tSCKW  
SCK31  
SCK32  
tscyc  
Figure 15.5 SCK3 Input Clock Timing  
379  
tscyc  
*
*
SCK31 VIH or VOH  
SCK32  
VIL or VOL  
tTXD  
*
TXD31  
TXD32  
(transmit data)  
VOH  
VOL  
tRXS  
tRXH  
RXD31  
RXD32  
(receive data)  
Note: * Output timing reference levels  
Output high  
Output low  
VOH = 1/2Vcc + 0.2 V  
VOL = 0.8 V  
Load conditions are shown in figure 15-8.  
Figure 15.6 SCI3 Synchronous Mode Input/Output Timing  
380  
t
CT  
V
CC 0.5V  
CL1  
0.4V  
t
CWH  
t
CWH  
t
CSU  
VCC 0.5V  
CL2  
0.4V  
t
CSU  
t
CWL  
t
CT  
V
0.4V  
CC 0.5V  
DO  
M
t
SU  
t
DH  
0.4V  
t
DM  
Figure 15.7 Segment Expansion Signal Timing  
381  
15.4  
Output Load Circuit  
VCC  
2.4 k  
Output pin  
30 pF  
12 kΩ  
Figure 15.8 Output Load Condition  
15.5  
Resonator Equivalent Circuit  
LS  
CS  
RS  
OSC  
1
OSC  
2
CO  
Crystal Resonator Parameter  
Ceramic Resonator Parameters  
Frequency  
1
Frequency  
0.4  
4.193  
100  
16 pF  
4
(MHz)  
(MHz)  
RS  
(max)  
(max)  
40 Ω  
RS  
(max)  
(max)  
8.6 Ω  
8.8 Ω  
36 pF  
CO  
3.5 pF  
CO  
326 pF  
Figure 15.9 Resonator Equivalent Circuit  
382  
Appendix A CPU Instruction Set  
A.1  
Instructions  
Operation Notation  
Rd8/16  
General register (destination) (8 or 16 bits)  
General register (source) (8 or 16 bits)  
General register (8 or 16 bits)  
Condition code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
V (overflow) flag in CCR  
C (carry) flag in CCR  
Program counter  
Rs8/16  
Rn8/16  
CCR  
N
Z
V
C
PC  
SP  
Stack pointer  
#xx: 3/8/16  
Immediate data (3, 8, or 16 bits)  
Displacement (8 or 16 bits)  
Absolute address (8 or 16 bits)  
Addition  
d: 8/16  
@aa: 8/16  
+
×
÷
Subtraction  
Multiplication  
Division  
Logical AND  
Logical OR  
Exclusive logical OR  
Move  
Logical complement  
Condition Code Notation  
Symbol  
Modified according to the instruction result  
Not fixed (value not guaranteed)  
Always cleared to 0  
*
0
Not affected by the instruction execution result  
383  
Table A.1 lists the H8/300L CPU instruction set.  
Table A.1 Instruction Set  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
Mnemonic  
Operation  
I H N Z V C  
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
B
B
B
B
B
#xx:8 Rd8  
2
2
2
4
2
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 4  
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 6  
Rs8 Rd8  
MOV.B @Rs, Rd  
MOV.B @(d:16, Rs), Rd  
MOV.B @Rs+, Rd  
@Rs16 Rd8  
@(d:16, Rs16)Rd8  
@Rs16 Rd8  
Rs16+1 Rs16  
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B Rs, @Rd  
B
B
B
B
B
@aa:8 Rd8  
2
— — ↕ ↕ 0 4  
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 4  
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 6  
@aa:16 Rd8  
Rs8 @Rd16  
4
2
4
2
MOV.B Rs, @(d:16, Rd)  
MOV.B Rs, @Rd  
Rs8 @(d:16, Rd16)  
Rd161 Rd16  
Rs8 @Rd16  
MOV.B Rs, @aa:8  
MOV.B Rs, @aa:16  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
B
B
Rs8 @aa:8  
2
— — ↕ ↕ 0 4  
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 4  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 4  
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 6  
Rs8 @aa:16  
#xx:16 Rd  
4
W
W
W
W
W
4
2
2
4
2
Rs16 Rd16  
MOV.W @Rs, Rd  
MOV.W @(d:16, Rs), Rd  
MOV.W @Rs+, Rd  
@Rs16 Rd16  
@(d:16, Rs16) Rd16  
@Rs16 Rd16  
Rs16+2 Rs16  
MOV.W @aa:16, Rd  
MOV.W Rs, @Rd  
W
W
W
W
@aa:16 Rd16  
4
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 4  
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 6  
Rs16 @Rd16  
2
4
2
MOV.W Rs, @(d:16, Rd)  
MOV.W Rs, @Rd  
Rs16 @(d:16, Rd16)  
Rd162 Rd16  
Rs16 @Rd16  
MOV.W Rs, @aa:16  
POP Rd  
W
W
Rs16 @aa:16  
4
2
— — ↕ ↕ 0 6  
— — ↕ ↕ 0 6  
@SP Rd16  
SP+2 SP  
PUSH Rs  
W
SP2 SP  
2
— — ↕ ↕ 0 6  
Rs16 @SP  
384  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
Mnemonic  
Operation  
I
H N Z V C  
ADD.B #xx:8, Rd  
ADD.B Rs, Rd  
ADD.W Rs, Rd  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
ADDS.W #1, Rd  
ADDS.W #2, Rd  
INC.B Rd  
B
B
Rd8+#xx:8 Rd8  
Rd8+Rs8 Rd8  
Rd16+Rs16 Rd16  
Rd8+#xx:8 +C Rd8  
Rd8+Rs8 +C Rd8  
Rd16+1 Rd16  
Rd16+2 Rd16  
Rd8+1 Rd8  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ 2  
W
B
(1) ↕ ↕ ↕ ↕ 2  
(2) ↕ ↕ 2  
(2) ↕ ↕ 2  
B
W
W
B
— — — — — — 2  
— — — — — — 2  
— — ↕ ↕ ↕ 2  
DAA.B Rd  
B
Rd8 decimal adjust Rd8  
Rd8Rs8 Rd8  
Rd16Rs16 Rd16  
Rd8#xx:8 C Rd8  
Rd8Rs8 C Rd8  
Rd161 Rd16  
Rd162 Rd16  
Rd81 Rd8  
*
↕ ↕ * (3) 2  
SUB.B Rs, Rd  
SUB.W Rs, Rd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
SUBS.W #1, Rd  
SUBS.W #2, Rd  
DEC.B Rd  
B
↕ ↕ ↕ ↕ ↕ 2  
W
B
(1) ↕ ↕ ↕ ↕ 2  
(2) ↕ ↕ 2  
(2) ↕ ↕ 2  
B
W
W
B
— — — — — — 2  
— — — — — — 2  
— — ↕ ↕ ↕ 2  
DAS.B Rd  
B
Rd8 decimal adjust Rd8  
0Rd Rd  
*
↕ ↕ * 2  
NEG.B Rd  
B
↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ 2  
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
CMP.W Rs, Rd  
B
Rd8#xx:8  
B
Rd8Rs8  
W
Rd16Rs16  
(1) ↕ ↕ ↕ ↕ 2  
385  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
Mnemonic  
Operation  
I H N Z V C  
MULXU.B Rs, Rd  
DIVXU.B Rs, Rd  
B
B
Rd8 × Rs8 Rd16  
2
2
— — — — — — 14  
— — (5) (6) — — 14  
Rd16÷Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
NOT.B Rd  
B
B
B
B
B
B
B
B
Rd8 #xx:8 Rd8  
Rd8 Rs8 Rd8  
Rd8 #xx:8 Rd8  
Rd8 Rs8 Rd8  
Rd8 #xx:8 Rd8  
Rd8 Rs8 Rd8  
Rd Rd  
2
2
2
2
2
2
2
2
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ ↕ ↕ 2  
SHAL.B Rd  
C
0
C
0
b7  
b7  
b7  
b7  
b0  
SHAR.B Rd  
SHLL.B Rd  
SHLR.B Rd  
ROTXL.B Rd  
ROTXR.B Rd  
B
B
B
B
B
2
2
2
2
2
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — 0 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
b0  
C
b0  
0
C
b0  
C
b7  
b0  
b7  
b0  
C
386  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
Mnemonic  
Operation  
I H N Z V C  
ROTL.B Rd  
B
B
2
2
— — ↕ ↕ 0 2  
C
b7  
b0  
ROTR.B Rd  
— — ↕ ↕ 0 2  
C
b7  
b0  
BSET #xx:3, Rd  
BSET #xx:3, @Rd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
(#xx:3 of Rd8) 1  
2
4
4
2
4
4
2
4
4
2
4
4
2
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
(#xx:3 of @Rd16) 1  
(#xx:3 of @aa:8) 1  
(Rn8 of Rd8) 1  
BSET Rn, @Rd  
BSET Rn, @aa:8  
BCLR #xx:3, Rd  
BCLR #xx:3, @Rd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
(Rn8 of @Rd16) 1  
(Rn8 of @aa:8) 1  
(#xx:3 of Rd8) 0  
(#xx:3 of @Rd16) 0  
(#xx:3 of @aa:8) 0  
(Rn8 of Rd8) 0  
BCLR Rn, @Rd  
BCLR Rn, @aa:8  
BNOT #xx:3, Rd  
(Rn8 of @Rd16) 0  
(Rn8 of @aa:8) 0  
(#xx:3 of Rd8) ←  
(#xx:3 of Rd8)  
BNOT #xx:3, @Rd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
B
B
B
B
B
(#xx:3 of @Rd16) ←  
(#xx:3 of @Rd16)  
4
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
(#xx:3 of @aa:8) ←  
(#xx:3 of @aa:8)  
4
(Rn8 of Rd8) ←  
(Rn8 of Rd8)  
2
4
4
BNOT Rn, @Rd  
BNOT Rn, @aa:8  
(Rn8 of @Rd16) ←  
(Rn8 of @Rd16)  
(Rn8 of @aa:8) ←  
(Rn8 of @aa:8)  
387  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
Mnemonic  
Operation  
I H N Z V C  
BTST #xx:3, Rd  
BTST #xx:3, @Rd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
(#xx:3 of Rd8) Z  
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
(#xx:3 of @Rd16) Z  
(#xx:3 of @aa:8) Z  
(Rn8 of Rd8) Z  
BTST Rn, @Rd  
BTST Rn, @aa:8  
BLD #xx:3, Rd  
(Rn8 of @Rd16) Z  
(Rn8 of @aa:8) Z  
(#xx:3 of Rd8) C  
BLD #xx:3, @Rd  
BLD #xx:3, @aa:8  
BILD #xx:3, Rd  
(#xx:3 of @Rd16) C  
(#xx:3 of @aa:8) C  
(#xx:3 of Rd8) C  
BILD #xx:3, @Rd  
BILD #xx:3, @aa:8  
BST #xx:3, Rd  
(#xx:3 of @Rd16) C  
(#xx:3 of @aa:8) C  
C (#xx:3 of Rd8)  
BST #xx:3, @Rd  
BST #xx:3, @aa:8  
BIST #xx:3, Rd  
C (#xx:3 of @Rd16)  
C (#xx:3 of @aa:8)  
C (#xx:3 of Rd8)  
BIST #xx:3, @Rd  
BIST #xx:3, @aa:8  
BAND #xx:3, Rd  
BAND #xx:3, @Rd  
BAND #xx:3, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @Rd  
BIAND #xx:3, @aa:8  
BOR #xx:3, Rd  
C (#xx:3 of @Rd16)  
C (#xx:3 of @aa:8)  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
BOR #xx:3, @Rd  
BOR #xx:3, @aa:8  
BIOR #xx:3, Rd  
BIOR #xx:3, @Rd  
388  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
Branching  
Condition  
Mnemonic  
Operation  
I H N Z V C  
BIOR #xx:3, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @Rd  
BXOR #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @Rd  
BIXOR #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
B
C (#xx:3 of @aa:8) C  
4
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 6  
— — — — — — 8  
— — — — — — 6  
B
C
C
C
C
C
C
(#xx:3 of Rd8) C  
2
4
4
2
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
2
2
B
(#xx:3 of @Rd16) C  
(#xx:3 of @aa:8) C  
(#xx:3 of Rd8) C  
B
B
B
(#xx:3 of @Rd16) C  
(#xx:3 of @aa:8) C  
B
PC PC+d:8  
PC PC+2  
If  
C
C
Z = 0  
Z = 1  
condition  
is true  
then  
PC ←  
PC+d:8  
else next;  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
C = 0  
C = 1  
Z = 0  
Z = 1  
V = 0  
V = 1  
N = 0  
N = 1  
BEQ d:8  
BVC d:8  
BVS d:8  
BPL d:8  
BMI d:8  
BGE d:8  
N
N
Z
V = 0  
BLT d:8  
V = 1  
BGT d:8  
(N V) = 0  
(N V) = 1  
BLE d:8  
Z
JMP @Rn  
PC Rn16  
PC aa:16  
JMP @aa:16  
JMP @@aa:8  
BSR d:8  
PC @aa:8  
SP2 SP  
PC @SP  
PC PC+d:8  
389  
Table A.1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
Mnemonic  
Operation  
I H N Z V C  
JSR @Rn  
SP2 SP  
PC @SP  
2
4
2
— — — — — — 6  
— — — — — — 8  
— — — — — — 8  
2 — — — — — — 8  
PC Rn16  
JSR @aa:16  
JSR @@aa:8  
SP2 SP  
PC @SP  
PC aa:16  
SP2 SP  
PC @SP  
PC @aa:8  
RTS  
RTE  
PC @SP  
SP+2 SP  
CCR @SP  
SP+2 SP  
2 ↕ ↕ ↕ ↕ ↕ ↕ 10  
PC @SP  
SP+2 SP  
SLEEP  
Transit to sleep mode.  
2 — — — — — — 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
— — — — — — 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
2 — — — — — — 2  
4 — — — — — — (4)  
LDC #xx:8, CCR  
LDC Rs, CCR  
STC CCR, Rd  
ANDC #xx:8, CCR  
ORC #xx:8, CCR  
XORC #xx:8, CCR  
NOP  
B
B
B
B
B
B
#xx:8 CCR  
2
2
2
2
2
2
Rs8 CCR  
CCR Rd8  
CCR #xx:8 CCR  
CCR #xx:8 CCR  
CCR #xx:8 CCR  
PC PC+2  
EEPMOV  
if R4L0  
Repeat @R5 @R6  
R5+1 R5  
R6+1 R6  
R4L1 R4L  
Until R4L=0  
else next;  
Notes: (1) Set to 1 when there is a carry or borrow from bit 11; otherwise cleared to 0.  
(2) If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to 0.  
(3) Set to 1 if decimal adjustment produces a carry; otherwise retains value prior to arithmetic operation.  
(4) The number of states required for execution is 4n + 9 (n = value of R4L).  
(5) Set to 1 if the divisor is negative; otherwise cleared to 0.  
(6) Set to 1 if the divisor is zero; otherwise cleared to 0.  
390  
A.2  
Operation Code Map  
Table A.2 is an operation code map. It shows the operation codes contained in the first byte of the  
instruction code (bits 15 to 8 of the first instruction word).  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is 0.  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is 1.  
391  
392  
A.3  
Number of Execution States  
The tables here can be used to calculate the number of states required for instruction execution.  
Table A.4 indicates the number of states required for each cycle (instruction fetch, read/write,  
etc.), and table A.3 indicates the number of cycles of each type occurring in each instruction. The  
total number of states required for execution of an instruction can be calculated from these two  
tables as follows:  
Execution states = I × S + J × S + K × S + L × S + M × S + N × S  
N
I
J
K
L
M
Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.  
BSET #0, @FF00  
From table A.4:  
I = L = 2, J = K = M = N= 0  
From table A.3:  
S = 2, S = 2  
I
L
Number of states required for execution = 2 × 2 + 2 × 2 = 8  
When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and  
on-chip RAM is used for stack area.  
JSR @@ 30  
From table A.4:  
I = 2, J = K = 1, L = M = N = 0  
From table A.3:  
S = S = S = 2  
I
J
K
Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8  
393  
Table A.3 Number of Cycles in Each Instruction  
Execution Status  
Access Location  
(instruction cycle)  
Instruction fetch  
On-Chip Memory  
On-Chip Peripheral Module  
SI  
2
Branch address read  
Stack operation  
SJ  
SK  
SL  
SM  
SN  
Byte data access  
Word data access  
Internal operation  
2 or 3*  
1
Note: * Depends on which on-chip module is accessed. See 2.9.1, Notes on Data Access for  
details.  
394  
Table A.4 Number of Cycles in Each Instruction  
Instruction Branch  
Stack  
Byte Data  
Access  
L
Word Data Internal  
Fetch  
I
Addr. Read Operation  
J
Access  
M
Operation  
N
Instruction  
Mnemonic  
K
ADD  
ADD.B #xx:8, Rd  
ADD.B Rs, Rd  
ADD.W Rs, Rd  
ADDS.W #1, Rd  
ADDS.W #2, Rd  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
ANDC #xx:8, CCR  
BAND #xx:3, Rd  
BAND #xx:3, @Rd  
BAND #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
1
2
2
ADDS  
ADDX  
AND  
ANDC  
BAND  
1
1
Bcc  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
BEQ d:8  
BVC d:8  
BVS d:8  
BPL d:8  
BMI d:8  
BGE d:8  
BLT d:8  
BGT d:8  
BLE d:8  
BCLR  
BCLR #xx:3, Rd  
BCLR #xx:3, @Rd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
BCLR Rn, @Rd  
BCLR Rn, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @Rd  
BIAND #xx:3, @aa:8  
2
2
2
2
BIAND  
1
1
395  
Table A.4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data  
Access  
L
Word Data Internal  
Fetch  
I
Addr. Read Operation  
J
Access  
M
Operation  
N
Instruction  
Mnemonic  
K
BILD  
BILD #xx:3, Rd  
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
2
1
2
2
1
2
2
1
2
BILD #xx:3, @Rd  
BILD #xx:3, @aa:8  
BIOR #xx:3, Rd  
BIOR #xx:3, @Rd  
BIOR #xx:3, @aa:8  
BIST #xx:3, Rd  
1
1
BIOR  
BIST  
1
1
BIST #xx:3, @Rd  
BIST #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @Rd  
BIXOR #xx:3, @aa:8  
BLD #xx:3, Rd  
2
2
BIXOR  
BLD  
1
1
BLD #xx:3, @Rd  
BLD #xx:3, @aa:8  
BNOT #xx:3, Rd  
BNOT #xx:3, @Rd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
1
1
BNOT  
2
2
BNOT Rn, @Rd  
BNOT Rn, @aa:8  
BOR #xx:3, Rd  
2
2
BOR  
BOR #xx:3, @Rd  
BOR #xx:3, @aa:8  
BSET #xx:3, Rd  
BSET #xx:3, @Rd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
1
1
BSET  
2
2
BSET Rn, @Rd  
BSET Rn, @aa:8  
BSR d:8  
2
2
BSR  
BST  
1
BST #xx:3, Rd  
BST #xx:3, @Rd  
BST #xx:3, @aa:8  
BTST #xx:3, Rd  
BTST #xx:3, @Rd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
2
2
BTST  
1
1
BTST Rn, @Rd  
1
396  
Table A.4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data  
Access  
L
Word Data Internal  
Fetch  
I
Addr. Read Operation  
J
Access  
M
Operation  
N
Instruction  
BTST  
Mnemonic  
K
BTST Rn, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @Rd  
BXOR #xx:3, @aa:8  
CMP. B #xx:8, Rd  
CMP. B Rs, Rd  
CMP.W Rs, Rd  
DAA.B Rd  
2
1
2
2
1
1
1
1
1
1
1
2
1
2
2
2
2
2
2
1
1
1
1
1
2
1
1
2
1
2
1
1
2
2
1
1
2
1
2
1
BXOR  
1
1
CMP  
DAA  
DAS  
DAS.B Rd  
DEC  
DEC.B Rd  
DIVXU  
EEPMOV  
INC  
DIVXU.B Rs, Rd  
EEPMOV  
12  
1
2n+2*  
INC.B Rd  
JMP  
JMP @Rn  
JMP @aa:16  
2
2
JMP @@aa:8  
1
1
JSR  
JSR @Rn  
1
1
1
JSR @aa:16  
2
JSR @@aa:8  
LDC  
LDC #xx:8, CCR  
LDC Rs, CCR  
MOV  
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
MOV.B @Rs, Rd  
MOV.B @(d:16, Rs), Rd  
MOV.B @Rs+, Rd  
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B Rs, @Rd  
MOV.B Rs, @(d:16, Rd)  
MOV.B Rs, @Rd  
MOV.B Rs, @aa:8  
MOV.B Rs, @aa:16  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
MOV.W @Rs, Rd  
MOV.W @(d:16, Rs), Rd  
MOV.W @Rs+, Rd  
MOV.W @aa:16, Rd  
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
2
Note: n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.  
397  
Table A.4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data  
Access  
L
Word Data Internal  
Fetch  
I
Addr. Read Operation  
J
Access  
M
Operation  
N
Instruction  
Mnemonic  
K
MOV  
MOV.W Rs, @Rd  
MOV.W Rs, @(d:16, Rd)  
MOV.W Rs, @Rd  
MOV.W Rs, @aa:16  
MULXU.B Rs, Rd  
NEG.B Rd  
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
MULXU  
NEG  
NOP  
NOT  
OR  
12  
NOP  
NOT.B Rd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
ORC #xx:8, CCR  
ROTL.B Rd  
ORC  
ROTL  
ROTR  
ROTXL  
ROTXR  
RTE  
ROTR.B Rd  
ROTXL.B Rd  
ROTXR.B Rd  
RTE  
2
1
2
2
RTS  
RTS  
SHAL  
SHAR  
SHLL  
SHLR  
SLEEP  
STC  
SHAL.B Rd  
SHAR.B Rd  
SHLL.B Rd  
SHLR.B Rd  
SLEEP  
STC CCR, Rd  
SUB.B Rs, Rd  
SUB.W Rs, Rd  
SUBS.W #1, Rd  
SUBS.W #2, Rd  
POP Rd  
SUB  
SUBS  
POP  
1
1
2
2
PUSH  
SUBX  
PUSH Rs  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
XORC #xx:8, CCR  
XOR  
XORC  
398  
Appendix B Internal I/O Registers  
B.1  
Addresses  
Lower  
Register  
Bit Names  
Bit 3  
Module  
Name  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 2  
Bit 1  
Bit 0  
H'90  
WEGR  
WKEGS7 WKEGS6 WKEGS5 WKEGS4 WKEGS3 WKEGS2 WKEGS1 WKEGS0 System  
control  
H'91  
H'92  
H'93  
H'94  
H'95  
H'96  
H'97  
H'98  
H'99  
H'9A  
H'9B  
H'9C  
H'9D  
H'9E  
H'9F  
H'A0  
H'A1  
H'A2  
H'A3  
H'A4  
H'A5  
H'A6  
H'A7  
H'A8  
H'A9  
H'AA  
H'AB  
H'AC  
H'AD  
H'AE  
H'AF  
H'B0  
SPCR  
SPC32  
SPC31  
SCINV3  
SCINV2  
SCINV1  
SCINV0  
CWOS  
SCI  
CWOSR  
Timer A  
ECCSR  
ECH  
OVH  
OVL  
CH2  
CUEH  
ECH3  
ECL3  
CUEL  
ECH2  
ECL2  
CRCH  
ECH1  
ECL1  
CRCL  
ECH0  
ECL0  
Asynchro-  
nous event  
counter  
ECH7  
ECL7  
COM31  
ECH6  
ECL6  
CHR31  
ECH5  
ECL5  
PE31  
ECH4  
ECL4  
PM31  
ECL  
SMR31  
BRR31  
SCR31  
TDR31  
SSR31  
RDR31  
STOP31 MP31  
CKS311 CKS310 SCI31  
BRR317 BRR316 BRR315 BRR314 BRR313 BRR312 BRR311 BRR310  
TIE31 RIE31 TE31 RE31 MPIE31 TEIE31 CKE31 CKE310  
TDR317 TDR316 TDR315 TDR314 TDR313 TDR312 TDR311 TDR310  
TDRE31 RDRF31 OER31 FER31 PER31 TEND31 MPBR31 MPBT31  
RDR317 RDR316 RDR315 RDR314 RDR313 RDR312 RDR311 RDR310  
SMR32  
BRR32  
SCR32  
TDR32  
SSR32  
RDR32  
COM32  
BRR327 BRR326 BRR325 BRR324 BR323  
TIE32 RIE32 TE32 RE32 MPIE32  
TDR327 TDR326 TDR325 TDR324 TDR323 TDR322 TDR321 TDR320  
TDRE32 RDRF32 OER32 FER32 PER32 TEND32 MPBR32 MPBT32  
RDR327 RDR326 RDR325 RDR324 RDR323 RDR322 RDR321 RDR320  
CHR32  
PE32  
PM32  
STOP32 MP32  
BRR322 BRR321 BRR320  
TEIE32 CKE321 CKE320  
CKS321 CKS320 SCI32  
TMA  
TMA7  
TMA6  
TMA5  
TMA3  
TMA2  
TMA1  
TMA0  
Timer A  
399  
Lower  
Register  
Bit Names  
Bit 3  
Module  
Name  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 2  
Bit 1  
Bit 0  
H'B1  
H'B2  
H'B3  
H'B4  
H'B5  
TCA  
TCA7  
B6WI  
TCW7  
TMC7  
TCA6  
TCWE  
TCW6  
TMC6  
TCA5  
B4WI  
TCW5  
TMC5  
TCA4  
TCA3  
TCA2  
WDON  
TCW2  
TMC2  
TCA1  
BOW1  
TCW1  
TMC1  
TCA0  
WRST  
TCWO  
TMC0  
Timer A  
Watchdog  
timer  
TCSRW  
TCW  
TCSRWE B2WI  
TCW4  
TCW3  
TMC  
Timer C  
TCC/TLC TCC/  
TLC7  
TCC6/  
TLC6  
TCC5/  
TLC5  
TCC4/  
TLC4  
TCC3/  
TLC3  
TCC2/  
TLC2  
TCC1/  
TLC1  
TCC0/  
TLC0  
H'B6  
H'B7  
H'B8  
H'B9  
H'BA  
H'BB  
H'BC  
H'BD  
H'BE  
H'BF  
H'C0  
H'C1  
H'C2  
H'C3  
H'C4  
H'C5  
H'C6  
H'C7  
H'C8  
H'C9  
H'CA  
H'CB  
H'CC  
H'CD  
H'CE  
H'CF  
H'D0  
H'D1  
H'D2  
H'D3  
H'D4  
TCRF  
TOLH  
OVFH  
TCFH7  
TCFL7  
CKSH2  
CMFH  
TCFH6  
TCFL6  
CKSH1  
OVIEH  
TCFH5  
TCFL5  
CKSH0  
CCLRH  
TCFH4  
TCFL4  
TOLL  
CKSL2  
CMFL  
CKSL1  
OVIEL  
TCFH1  
TCFL1  
CKSL0  
CCLRL  
TCFH0  
TCFL0  
Timer F  
TCSRF  
TCFH  
OVFL  
TCFH3  
TCFL3  
TCFH2  
TCFL2  
TCFL  
OCRFH  
OCRFL  
TMG  
OCRFH7 OCRFH6 OCRFH5 OCRFH4 OCRFH3 OCRFH2 OCRFH1 OCRFH0  
OCRFL7 OCRFL6 OCRFL5 OCRFL4 OCRFL3 OCRFL2 OCRFL1 OCRFL0  
OVFH  
OVFL  
OVIE  
IIEGS  
CCLR1  
CCLR0  
CKS1  
CKS0  
Timer G  
ICRGF  
ICRGR  
ICRGF7 ICRGF6 ICRGF5 ICRGF4 ICRGF3 ICRGF2 ICRGF1 ICRGFO  
ICRGR7 ICRGR6 ICRGR5 ICRGR4 ICRGR3 ICRGR2 ICRGR1 ICRGRO  
LPCR  
LCR  
DTS1  
DTS0  
PSW  
CMX  
ACT  
SGX  
SGS3  
CKS3  
CDS3  
SGS2  
CKS2  
CDS2  
SGS1  
CKS1  
CDS1  
SGS0  
CKS0  
CDS0  
LCD  
DISP  
SUPS  
controller/  
driver  
LCR2  
LCDAB  
ADRRH  
ADRRL  
AMR  
ADR9  
ADR1  
CKS  
ADR8  
ADR0  
TRGE  
ADR7  
ADR6  
ADR5  
ADR4  
ADR3  
ADR2  
A/D  
converter  
CH3  
CH2  
CH1  
CH0  
ADSR  
PMR1  
ADSF  
IRQ3  
IRQ2  
IRQ1  
IRQ4  
TMIG  
TMOFH  
TMOFL  
TMOW  
I/O port  
PMR3  
PMR5  
AEVL  
AEVH  
WKP6  
WDCKS NCS  
IRQ0  
RESO  
WKP2  
UD  
PWM  
WKP7  
WKP5  
WKP4  
WKP3  
WKP1  
WKP0  
PWCR  
PWCR1  
PWCR0  
Bit 14  
PWDRU  
PWDRL  
PWDRU5 PWDRU4 PWDRU3 PWDRU2 PWDRU1 PWDRU0 PWM  
PWDRL7 PWDRL6 PWDRL5 PWDRL4 PWDRL3 PWDRL2 PWDRL1 PWDRL0  
PDR1  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
I/O Port  
400  
Lower  
Register  
Bit Names  
Bit 3  
Module  
Name  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 2  
Bit 1  
Bit 0  
H'D5  
I/O Port  
H'D6  
H'D7  
H'D8  
H'D9  
H'DA  
H'DB  
H'DC  
H'DD  
H'DE  
H'DF  
H'E0  
H'E1  
H'E2  
H'E3  
H'E4  
H'E5  
H'E6  
H'E7  
H'E8  
H'E9  
H'EA  
H'EB  
H'EC  
H'ED  
H'EE  
H'EF  
H'F0  
H'F1  
H'F2  
H'F3  
H'F4  
H'F5  
H'F6  
H'F7  
H'F8  
PDR3  
PDR4  
PDR5  
PDR6  
PDR7  
PDR8  
P37  
P36  
P35  
P34  
P33  
P43  
P53  
P63  
P73  
P83  
P32  
P42  
P52  
P62  
P72  
P82  
P31  
P41  
P51  
P61  
P71  
P81  
P30  
P40  
P50  
P60  
P70  
P80  
P57  
P67  
P77  
P87  
P56  
P66  
P76  
P86  
P55  
P65  
P75  
P85  
P54  
P64  
P74  
P84  
PDRA  
PDRB  
PA3  
PB3  
PA2  
PB2  
PA1  
PB1  
PA0  
PB0  
PB7  
PB6  
PB5  
PB4  
PUCR1  
PUCR3  
PUCR5  
PUCR6  
PCR1  
PUCR17 PUCR16 PUCR15 PUCR14 PUCR13 PUCR12 PUCR11 PUCR10 I/O Port  
PUCR37 PUCR36 PUCR35 PUCR34 PUCR33 PUCR32 PUCR31 PUCR30  
PUCR57 PUCR56 PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
PUCR67 PUCR66 PUCR65 PUCR64 PUCR63 PUCR62 PUCR61 PUCR60  
PCR17  
PCR16  
PCR15  
PCR14  
PCR13  
PCR12  
PCR11  
PCR10  
PCR3  
PCR4  
PCR5  
PCR6  
PCR7  
PCR8  
PCR37  
PCR36  
PCR35  
PCR34  
PCR33  
PCR32  
PCR42  
PCR52  
PCR62  
PCR72  
PCR82  
PCR31  
PCR41  
PCR51  
PCR61  
PCR71  
PCR81  
PCR30  
PCR40  
PCR50  
PCR60  
PCR70  
PCR80  
PCR57  
PCR67  
PCR77  
PCR87  
PCR56  
PCR66  
PCR76  
PCR86  
PCR55  
PCR65  
PCR75  
PCR85  
PCR54  
PCR64  
PCR74  
PCR84  
PCR53  
PCR63  
PCR73  
PCR83  
PCRA  
PCRA3  
PCRA2  
PCRA1  
PCRA0  
SYSCR1 SSBY  
STS2  
STS1  
STS0  
NESEL  
IEG4  
LSON  
DTON  
IEG3  
MA1  
MA0  
System  
control  
SYSCR2  
IEGR  
MSON  
IEG2  
IEN2  
IENTFL  
SA1  
SA0  
IEG1  
IEN1  
IENTC  
IEG0  
IEN0  
IENEC  
IENR1  
IENR2  
IENTA  
IENDT  
IENWP  
IEN4  
IEN3  
IENAD  
IENTG  
IENTFH  
IRR1  
IRRTA  
IRRDT  
IRRI4  
IRRI3  
IRRI2  
IRRI1  
IRRI0  
IRRI2  
IRRAD  
IRRTG  
IRRTFH IRRTFL  
IRRTC  
IRREC  
401  
Lower  
Register  
Bit Names  
Bit 3  
Module  
Name  
Address Name  
Bit 7  
IWPF7  
Bit 6  
Bit 5  
Bit 4  
IWPF4  
Bit 2  
Bit 1  
Bit 0  
H'F9  
IWPR  
IWPF6  
IWPF5  
IWPF3  
IWPF2  
IWPF1  
IWPF0  
System  
H'FA  
H'FB  
H'FC  
H'FD  
H'FE  
H'FF  
Legend  
CKSTPR1  
CKSTPR2  
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP control  
AECKSTP WDCKSTP PWCKSTP LDCKSTP  
SCI: Serial Communication Interface  
402  
B.2  
Functions  
Register  
acronym  
Register  
name  
Address to which the  
register is mapped  
Name of  
on-chip  
supporting  
module  
TMC—Timer mode register C  
H'B4  
Timer C  
Bit  
numbers  
Bit  
7
TMC7  
0
6
TMC6  
0
5
4
1
3
1
2
TMC2  
0
1
TMC1  
0
0
TMC0  
0
Initial bit  
values  
TMC5  
0
Initial value  
Read/Write  
Names of the  
bits. Dashes  
() indicate  
reserved bits.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
0
1
0
1
0
1
0
1
0
1
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/64  
Internal clock: ø/16  
Internal clock: ø/4  
Possible types of access  
Full name  
of bit  
R
Read only  
Write only  
W
1
R/W Read and write  
Descriptions  
of bit settings  
Internal clock: øW/4  
External event (TMIC): Rising or falling edge  
Counter up/down control  
0
0
1
*
TCC is an up-counter  
TCC is a down-counter  
1
TCC up/down control is determined by input at pin  
UD. TCC is a down-counter if the UD input is high,  
and an up-counter if the UD input is low.  
Auto-reload function select  
0
1
Interval timer function selected  
Auto-reload function selected  
*: Dont care  
403  
WEGR—Wakeup Edge Select Register  
H'90  
System control  
Bit  
7
6
5
4
3
2
1
0
WKEGS7 WKEGS6 WKEGS5 WKEGS4 WKEGS3 WKEGS2 WKEGS1 WKEGS0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
WKPn edge selected  
0
1
WKPn pin falling edge detected  
WKPn pin rising edge detected  
(n = 0 to 7)  
404  
SPCR—Serial Port Control Register  
H'91  
SCI  
Bit  
7
1
6
1
5
4
3
2
1
0
SPC32 SPC31 SCINV3 SCINV2 SCINV1 SCINV0  
Initial value  
Read/Write  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RXD31 pin input data inversion switch  
0
1
RXD31 input data is not inverted  
RXD31 input data is inverted  
TXD31 pin output data inversion switch  
0
1
TXD31 output data is not inverted  
TXD31 output data is inverted  
RXD32 pin input data inversion switch  
0
1
RXD32 input data is not inverted  
RXD32 input data is inverted  
TXD32 pin output data inversion switch  
0
1
TXD32 output data is not inverted  
TXD32 output data is inverted  
P35TXD31 pin function switch  
0
1
Functions as P35 I/O pin  
Functions as TXD31 output pin  
P42/TXD32pin function switch  
0
1
Function as P42 I/O pin  
Function as TXD32 output pin  
405  
CWOSR—Subclock Output Select Register  
H'92  
Timer A  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
CWOS  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R/W  
TMOW pin clock select  
0
1
Clock output from TMA is output  
W is output  
ø
406  
ECCSR—Event counter control/status register  
H'95  
AEC  
Bit  
7
6
5
4
3
CUEH  
0
2
1
CRCH  
0
0
CRCL  
0
OVH  
0
OVL  
0
CH2  
0
CUEL  
0
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Counter reset control L  
0
1
ECL is reset  
ECL reset is cleared  
and count-up function  
is enabled  
Counter reset control H  
0
1
ECH is reset  
ECH reset is cleared and  
count-up function is enabled  
Count-up enable L  
0
ECL event clock input is disabled.  
ECL value is held  
1
ECL event clock input is enabled  
Count-up enable H  
0
ECH event clock input is disabled.  
ECH value is held  
1
ECH event clock input is enabled  
Channel select  
0
ECH and ECL are used together as a single-  
channel 16-bit event counter  
1
ECH and ECL are used as two independent  
8-bit event counter channels  
Counter overflow L  
0
1
ECL has not overflowed  
ECL has overflowed  
Counter overflow H  
0
1
ECH has not overflowed  
ECH has overflowed  
407  
ECH—Event counter H  
H'96  
AEC  
Bit  
7
ECH7  
0
6
ECH6  
0
5
ECH5  
0
4
ECH4  
0
3
ECH3  
0
2
1
ECH1  
0
0
ECH0  
0
ECH2  
Initial value  
Read/Write  
0
R
R
R
R
R
R
R
R
ECL—Event counter L  
H'97  
AEC  
Bit  
7
ECL7  
0
6
ECL6  
0
5
ECL5  
0
4
ECL4  
0
3
ECL3  
0
2
ECL2  
0
1
ECL1  
0
0
ECL0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
408  
SMR31—Serial mode register 31  
H'98  
SCI31  
Bit  
7
6
5
PE31  
0
4
3
2
1
0
COM31 CHR31  
PM31 STOP31 MP31 CKS311 CKS310  
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
1
0
1
0
1
ø clock  
øw/2 clock  
ø/16 clock  
ø/64 clock  
Multiprocessor mode  
0
Multiprocessor communication  
function disabled  
1
Multiprocessor communication  
function enabled  
Stop bit length  
0
1
1 stop bit  
2 stop bits  
Parity mode  
0
1
Even parity  
Odd parity  
Parity enable  
0
1
Parity bit addition and checking disabled  
Parity bit addition and checking enabled  
Character length  
0
1
8-bit data/5-bit data  
7-bit data/5-bit data  
Communication mode  
0
1
Asynchronous mode  
Synchronous mode  
409  
BRR31—Bit rate register31  
H'99  
SCI31  
Bit  
7
6
5
4
3
2
1
0
BRR317 BRR316 BRR315 BRR314 BRR313 BRR312 BRR311 BRR310  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
410  
SCR31—Serial control register 31  
H'9A  
SCI31  
Bit  
7
TIE31  
0
6
RIE31  
0
5
TE31  
0
4
3
2
1
0
RE31 MPIE31 TEIE31 CKE311 CKE310  
Initial value  
Read/Write  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock enable  
Bit 1  
Bit 0  
CKE311 CKE310 Communication Mode  
Description  
Clock Source  
Internal clock  
Internal clock  
Internal clock  
Reserved (Do not specify this combination)  
External clock  
External clock  
SCK3 Pin Function  
I/O port  
Serial clock output  
Clock output  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
0
0
1
1
0
1
0
1
Clock input  
Serial clock input  
Reserved (Do not specify this combination)  
Reserved (Do not specify this combination)  
Transmit end interrupt enable  
0
1
Transmit end interrupt request (TEI) disabled  
Transmit end interrupt request (TEI) enabled  
Multiprocessor interrupt enable  
0
Multiprocessor interrupt request disabled (normal receive operation)  
[Clearing conditions]  
When data is received in which the multiprocessor bit is set to 1  
1
Multiprocessor interrupt request enabled  
The receive interrupt request (RXI), receive error interrupt request (ERI), and setting of the  
RDRF, FER, and OER flags in the serial status register (SSR), are disabled until data with  
the multiprocessor bit set to 1 is received.  
Receive enable  
0
1
Receive operation disabled (RXD pin is I/O port)  
Receive operation enabled (RXD pin is receive data pin)  
Transmit enable  
0
1
Transmit operation disabled (TXD pin is transmit data pin)  
Transmit operation enabled (TXD pin is transmit data pin)  
Receive interrupt enable  
0
1
Receive data full interrupt request (RXI) and receive error interrupt request (ERI) disabled  
Receive data full interrupt request (RXI) and receive error interrupt request (ERI) enabled  
Transmit interrupt enable  
0
1
Transmit data empty interrupt request (TXI) disabled  
Transmit data empty interrupt request (TXI) enabled  
411  
TDR31—Transmit data register 31  
H'9B  
SCI31  
Bit  
7
6
5
4
3
2
1
0
TDR317 TDR316 TDR315 TDR314 TDR313 TDR312 TDR311 TDR310  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Data for transfer to TSR  
412  
SSR31—Serial status register31  
H'9C  
SCI3  
Bit  
7
6
5
4
3
2
1
0
TDRE31 RDRF31 OER31 FER31 PER31 TEND31 MPBR31 MPBT31  
Initial value  
Read/Write  
1
0
0
0
0
1
0
0
R/(W)*  
R/(W)  
R/(W)*  
R/(W)*  
R/(W)*  
R
R
R/W  
*
Multiprocessor bit transfer  
0
1
A 0 multiprocessor bit is transmitted  
A 1 multiprocessor bit is transmitted  
Multiprocessor bit receive  
0
1
Data in which the multiprocessor bit is 0 has been received  
Data in which the multiprocessor bit is 1 has been received  
Transmit end  
0
Transmission in progress  
[Clearing conditions]  
After reading TDRE31 = 1, cleared by writing 0 to TDRE  
When data is written to TDR31 by an instruction  
Transmission ended  
[Setting conditions]  
1
When bit TE in serial control register 31 (SCR31) is cleared to 0  
When bit TDRE31 is set to 1 when the last bit of a transmit character is sent  
Parity error  
0
Reception in progress or completed normally  
[Clearing conditions] After reading PER31 = 1, cleared by writing 0 to PER31  
A parity error has occurred during reception  
1
[Setting conditions] When the number of 1 bits in the receive data plus parity bit does not match the parity  
designated by the parity mode bit (PM31) in the serial mode register (SMR31)  
Framing error  
0
Reception in progress or completed normally  
[Clearing conditions] After reading FER31 = 1, cleared by writing 0 to FER31  
A framing error has occurred during reception  
1
[Setting conditions] When the stop bit at the end of the receive data is checked for a value of 1 at completion of  
reception, and the stop bit is 0  
Overrun error  
Reception in progress or completed  
0
[Clearing conditions] After reading OER31 = 1, cleared by writing 0 to OER31  
1
An overrun error has occurred during reception  
[Setting conditions] When the next serial reception is completed with RDRF31 set to 1  
Receive data register full  
0
There is no receive data in RDR31  
[Clearing conditions]  
After reading RDRF31 = 1, cleared by writing 0 to RDRF31  
When RDR31 data is read by an instruction  
1
There is receive data in RDR31  
[Setting conditions] When reception ends normally and receive data is transferred from RSR31 to RDR31  
Transmit data register empty  
0
Transmit data written in TDR31 has not been transferred to TSR31  
[Clearing conditions]  
After reading TDRE31 = 1, cleared by writing 0 to TDRE31  
When data is written to TDR31 by an instruction  
1
Transmit data has not been written to TDR31, or transmit data written in TDR31 has been transferred to TSR31  
[Setting conditions] When bit TE in serial control register 31 (SCR31) is cleared to 0  
When data is transferred from TDR31 to TSR31  
Note: * Only a write of 0 for flag clearing is possible.  
413  
RDR31—Receive data register 31  
H'F9D  
SCI31  
Bit  
7
6
5
4
3
2
1
0
RDR317 RDR316 RDR315 RDR314 RDR313 RDR312 RDR311 RDR310  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
414  
SMR32—Serial mode register 32  
H'A8  
SCI32  
Bit  
7
6
5
PE32  
0
4
3
2
1
0
COM32 CHR32  
PM32 STOP32 MP32 CKS321 CKS320  
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
1
0
1
0
1
ø clock  
øw/2 clock  
ø/16 clock  
ø/64 clock  
Multiprocessor mode  
0
Multiprocessor communication  
function disabled  
1
Multiprocessor communication  
function enabled  
Stop bit length  
0
1
1 stop bit  
2 stop bits  
Parity mode  
0
1
Even parity  
Odd parity  
Parity enable  
0
1
Parity bit addition and checking disabled  
Parity bit addition and checking enabled  
Character length  
0
1
8-bit data/5-bit data  
7-bit data/5-bit data  
Communication mode  
0
1
Asynchronous mode  
Synchronous mode  
415  
BRR32—Bit rate register 32  
H'A9  
SCI32  
Bit  
7
6
5
4
3
2
1
0
BRR327 BRR326 BRR325 BRR324 BRR323 BRR322 BRR321 BRR3120  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
416  
SCR32—Serial control register 32  
H'AA  
SCI32  
Bit  
7
TIE32  
0
6
RIE32  
0
5
TE32  
0
4
3
2
1
0
RE32 MPIE32 TEIE32 CKE321 CKE320  
Initial value  
Read/Write  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock enable  
Bit 1  
Bit 0  
CKE321 CKE320 Communication Mode  
Description  
Clock Source  
Internal clock  
Internal clock  
Internal clock  
Reserved (Do not specify this combination)  
External clock  
External clock  
SCK3 Pin Function  
I/O port  
Serial clock output  
Clock output  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
0
0
1
1
0
1
0
1
Clock input  
Serial clock input  
Reserved (Do not specify this combination)  
Reserved (Do not specify this combination)  
Transmit end interrupt enable  
0
1
Transmit end interrupt request (TEI) disabled  
Transmit end interrupt request (TEI) enabled  
Multiprocessor interrupt enable  
0
Multiprocessor interrupt request disabled (normal receive operation)  
[Clearing conditions]  
When data is received in which the multiprocessor bit is set to 1  
1
Multiprocessor interrupt request enabled  
The receive interrupt request (RXI), receive error interrupt request (ERI), and setting of the  
RDRF, FER, and OER flags in the serial status register (SSR), are disabled until data with  
the multiprocessor bit set to 1 is received.  
Receive enable  
0
1
Receive operation disabled (RXD pin is I/O port)  
Receive operation enabled (RXD pin is receive data pin)  
Transmit enable  
0
1
Transmit operation disabled (TXD pin is transmit data pin)  
Transmit operation enabled (TXD pin is transmit data pin)  
Receive interrupt enable  
0
1
Receive data full interrupt request (RXI) and receive error interrupt request (ERI) disabled  
Receive data full interrupt request (RXI) and receive error interrupt request (ERI) enabled  
Transmit interrupt enable  
0
1
Transmit data empty interrupt request (TXI) disabled  
Transmit data empty interrupt request (TXI) enabled  
417  
TDR32—Transmit data register 32  
H'AB  
SCI32  
Bit  
7
6
5
4
3
2
1
0
TDR327 TDR326 TDR325 TDR324 TDR323 TDR322 TDR321 TDR320  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Data for transfer to TSR  
418  
SSR32—Serial status register 32  
H'AC  
SCI32  
Bit  
7
6
5
4
3
2
1
0
TDRE32 RDRF32 OER32 FER32 PER32 TEND32 MPBR32 MPBT32  
Initial value  
Read/Write  
1
0
0
0
0
1
0
0
R/(W)*  
R/(W)  
R/(W)*  
R/(W)*  
R/(W)*  
R
R
R/W  
*
Multiprocessor bit transfer  
0
1
A 0 multiprocessor bit is transmitted  
A 1 multiprocessor bit is transmitted  
Multiprocessor bit receive  
0
1
Data in which the multiprocessor bit is 0 has been received  
Data in which the multiprocessor bit is 1 has been received  
Transmit end  
0
Transmission in progress  
[Clearing conditions]  
After reading TDRE32 = 1, cleared by writing 0 to TDRE32  
When data is written to TDR32 by an instruction  
Transmission ended  
[Setting conditions]  
1
When bit TE in serial control register 32 (SCR32) is cleared to 0  
When bit TDRE32 is set to 1 when the last bit of a transmit character is sent  
Parity error  
0
Reception in progress or completed normally  
[Clearing conditions] After reading PER32 = 1, cleared by writing 0 to PER32  
A parity error has occurred during reception  
1
[Setting conditions] When the number of 1 bits in the receive data plus parity bit does not match the parity  
designated by the parity mode bit (PM32) in the serial mode register (SMR32)  
Framing error  
0
Reception in progress or completed normally  
[Clearing conditions] After reading FER32 = 1, cleared by writing 0 to FER32  
A framing error has occurred during reception  
1
[Setting conditions] When the stop bit at the end of the receive data is checked for a value of 1 at completion of  
reception, and the stop bit is 0  
Overrun error  
Reception in progress or completed  
0
[Clearing conditions] After reading OER32 = 1, cleared by writing 0 to OER32  
1
An overrun error has occurred during reception  
[Setting conditions] When the next serial reception is completed with RDRF32 set to 1  
Receive data register full  
0
There is no receive data in RDR32  
[Clearing conditions]  
After reading RDRF32 = 1, cleared by writing 0 to RDRF32  
When RDR32 data is read by an instruction  
1
There is receive data in RDR32  
[Setting conditions] When reception ends normally and receive data is transferred from RSR32 to RDR32  
Transmit data register empty  
0
Transmit data written in TDR32 has not been transferred to TSR32  
[Clearing conditions]  
After reading TDRE32 = 1, cleared by writing 0 to TDRE32  
When data is written to TDR32 by an instruction  
1
Transmit data has not been written to TDR32, or transmit data written in TDR32 has been transferred to TSR32  
[Setting conditions] When bit TE32 in serial control register 32 (SCR32) is cleared to 0  
When data is transferred from TDR32 to TSR32  
Note: * Only a write of 0 for flag clearing is possible.  
419  
RDR32—Receive data register 32  
H'AD  
SCI32  
Bit  
7
6
5
4
3
2
1
0
RDR327 RDR326 RDR325 RDR324 RDR323 RDR322 RDR321 RDR320  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
TMA—Timer mode register A  
H'B0  
Timer A  
Bit  
7
TMA7  
0
6
TMA6  
0
5
TMA5  
0
4
1
3
TMA3  
0
2
1
TMA1  
0
0
TMA0  
0
TMA2  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock output select Internal clock select  
0
0
1
0
1
0
1
0
1
0
1
0
1
ø/32  
ø/16  
ø/8  
Prescaler and Divider Ratio  
TMA3 TMA2 TMA1 TMA0 or Overflow Period  
Function  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSW  
PSW  
PSW  
PSW  
ø/8192  
ø/4096  
ø/2048  
ø/512  
ø/256  
ø/128  
ø/32  
Interval  
timer  
ø/4  
1
øW/32  
øW/16  
øW/8  
øW/4  
ø/8  
1
1 s  
Time  
base  
(when  
using  
32.768 kHz)  
0.5 s  
0.25 s  
0.03125 s  
PSW and TCA are reset  
420  
TCA—Timer counter A  
H'B1  
Timer A  
Bit  
7
TCA7  
0
6
TCA6  
0
5
TCA5  
0
4
TCA4  
0
3
TCA3  
0
2
1
TCA1  
0
0
TCA2  
TCA0  
Initial value  
Read/Write  
0
0
R
R
R
R
R
R
R
R
Count value  
421  
TCSRW—Timer control/status register W  
H'B2  
Watchdog timer  
Bit  
7
B6WI  
1
6
TCWE  
0
5
4
3
2
1
B0WI  
1
0
WRST  
0
B4WI TCSRWE B2WI  
WDON  
0
Initial value  
Read/Write  
1
0
1
*
*
*
*
R/(W)  
R
R/(W)  
R
R/(W)  
R
R/(W)  
R
Watchdog timer reset  
0
[Clearing conditions]  
Reset by RES pin  
When TCSRWE = 1, and 0 is written in both B0WI and WRST  
[Setting condition]  
1
When TCW overflows and a reset signal is generated  
Bit 0 write inhibit  
0
1
Bit 0 is write-enabled  
Bit 0 is write-protected  
Watchdog timer on  
0
1
Watchdog timer operation is disabled  
Watchdog timer operation is enabled  
Bit 2 write inhibit  
0
1
Bit 2 is write-enabled  
Bit 2 is write-protected  
Timer control/status register W write enable  
0
1
Data cannot be written to bits 2 and 0  
Data can be written to bits 2 and 0  
Bit 4 write inhibit  
0
1
Bit 4 is write-enabled  
Bit 4 is write-protected  
Timer counter W write enable  
0
1
Data cannot be written to TCW  
Data can be written to TCW  
Bit 6 write inhibit  
0
1
Bit 6 is write-enabled  
Bit 6 is write-protected  
Note: * Write is permitted only under certain conditions.  
422  
TCW—Timer counter W  
H'B3  
Watchdog timer  
Bit  
7
TCW7  
0
6
TCW6  
0
5
TCW5  
0
4
TCW4  
0
3
TCW3  
0
2
1
0
TCW2  
0
TCW1  
0
TCW0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
TMC—Timer mode register C  
H'B4  
Timer C  
Bit  
7
TMC7  
0
6
TMC6  
0
5
TMC5  
0
4
1
3
1
2
TMC2  
0
1
TMC1  
0
0
TMC0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
1
0
1
0
1
0
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/64  
Internal clock: ø/16  
Internal clock: ø/4  
0
0
1
1
0
0
1
0
0
0
0
1
1
1
Internal clock: øw/4  
External event (TMIC): Counting  
on rising or falling edge  
1
1
1
Counter up/down control  
0
0
0
1
TCC is an up-counter  
TCC is a down-counter  
1
Hardware control of TCC up/down operation by UD pin input  
UD pin input high: Down-counter  
*
UD pin input low: Up-counter  
* : Dont care  
Auto-reload function select  
0
1
Interval timer function selected  
Auto-reload function selected  
423  
TCC—Timer counter C  
H'B5  
Timer C  
Bit  
7
TCC7  
0
6
TCC6  
0
5
TCC5  
0
4
TCC4  
0
3
TCC3  
0
2
1
TCC1  
0
0
TCC2  
TCC0  
Initial value  
Read/Write  
0
0
R
R
R
R
R
R
R
R
Count value  
TLC—Timer load register C  
H'B5  
Timer C  
Bit  
7
TLC7  
0
6
TLC6  
0
5
TLC5  
0
4
TLC4  
0
3
TLC3  
0
2
TLC2  
0
1
TLC1  
0
0
TLC0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reload value  
424  
TCRF—Timer control register F  
H'B6  
Timer F  
Bit  
7
TOLH  
0
6
5
4
3
TOLL  
0
2
1
0
CKSH2 CKSH1 CKSH0  
CKSL2 CKSL1 CKSL0  
Initial value  
Read/Write  
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Clock select L  
0
Counting on external event (TMIF)  
rising/falling edge  
*
*
1
1
1
0
0
1
0
1
0
Internal clock ø/32  
Internal clock ø/16  
Internal clock ø/4  
Internal clock øw/4  
1
1
1
Toggle output level L  
0
1
Low level  
High level  
Clock select H  
0
*
*
16-bit mode, counting on TCFL  
overflow signal  
1
1
1
0
0
1
0
1
0
Internal clock ø/32  
Internal clock ø/16  
Internal clock ø/4  
Internal clock øw/4  
1
1
1
* : Dont care  
Toggle output level H  
0
1
Low level  
High level  
425  
TCSRF—Timer control/status register F  
H'B7  
Timer F  
Bit  
7
6
5
4
3
2
1
0
OVFH  
CMFH OVIEH CCLRH OVFL  
CMFL  
OVIEL CCLRL  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/(W)*  
R/(W)  
R/(W)  
R/(W)  
R/(W)*  
R/W*  
R/W  
R/W  
*
Counter clear L  
0
1
TCFL clearing by compare match is disabled  
TCFL clearing by compare match is enabled  
Timer overflow interrupt enable L  
0
1
TCFL overflow interrupt request is disabled  
TCFL overflow interrupt request is enabled  
Compare match flag L  
0
Clearing conditions:  
After reading CMFL = 1, cleared by writing 0 to CMFL  
Setting conditions:  
1
Set when the TCFL value matches the OCRFL value  
Timer overflow flag L  
0
Clearing conditions:  
After reading OVFL = 1, cleared by writing 0 to OVFL  
Setting conditions:  
1
Set when TCFL overflows from H'FF to H'00  
Counter clear H  
0
16-bit mode: TCF clearing by compare match is disabled  
8-bit mode: TCFH clearing by compare match is disabled  
16-bit mode: TCF clearing by compare match is enabled  
8-bit mode: TCFH clearing by compare match is enabled  
1
Timer overflow interrupt enable H  
TCFH overflow interrupt request is disabled  
TCFH overflow interrupt request is enabled  
0
1
Compare match flag H  
0
Clearing conditions:  
After reading CMFH = 1, cleared by writing 0 to CMFH  
1
Setting conditions:  
Set when the TCFH value matches the OCRFH value  
Timer overflow flag H  
0
Clearing conditions:  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
Setting conditions:  
Set when TCFH overflows from H'FF to H'00  
Note: * Bits 7, 6, 3, and 2 can only be written with 0, for flag clearing.  
426  
TCFH—8-bit timer counter FH  
H'B8  
Timer F  
Bit  
7
6
5
4
3
2
1
0
TCFH7 TCFH6 TCFH5 TCFH4 TCFH3 TCFH2 TCFH1 TCFH0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
TCFL—8-bit timer counter FL  
H'B9  
Timer F  
Bit  
7
6
5
4
3
2
1
0
TCFL7 TCFL6 TCFL5 TCFL4 TCFL3 TCFL2 TCFL1 TCFL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
OCRFH—Output compare register FH  
H'BA  
Timer F  
Bit  
7
6
5
4
3
2
1
0
OCRFH7 OCRFH6 OCRFH5 OCRFH4 OCRFH3 OCRFH2 OCRFH1 OCRFH0  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OCRFL—Output compare register FL  
H'BB  
Timer F  
Bit  
7
6
5
4
3
2
1
0
OCRFL7 OCRFL6 OCRFL5 OCRFL4 OCRFL3 OCRFL2 OCRFL1 OCRFL0  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
427  
TMG—Timer mode register G  
H'BC  
Timer G  
Bit  
7
OVFH  
0
6
OVFL  
0
5
OVIE  
0
4
3
2
1
CKS1  
0
0
CKS0  
0
IIEGS CCLR1 CCLR0  
Initial value  
Read/Write  
0
0
0
R/(W)* R/(W)*  
W
W
W
W
W
W
Clock select  
0
0
1
1
0
1
0
1
Internal clock: counting on ø/64  
Internal clock: counting on ø/32  
Internal clock: counting on ø/2  
Internal clock: counting on øw/4  
Counter clear  
TCG clearing is disabled  
0
1
0
1
0
0
1
1
TCG cleared by falling edge of input capture input signal  
TCG cleared by rising edge of input capture input signal  
TCG cleared by both edges of input capture input signal  
Input capture interrupt edge select  
0
1
Interrupt generated on rising edge of input capture input signal  
Interrupt generated on falling edge of input capture input signal  
Timer overflow interrupt enable  
TCG overflow interrupt request is disabled  
TCG overflow interrupt request is enabled  
0
1
Timer overflow flag L  
0
Clearing conditions:  
After reading OVFL = 1, cleared by writing 0 to OVFL  
1
Setting conditions:  
Set when TCG overflows from H'FF to H'00  
Timer overflow flag H  
0
Clearing conditions:  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
Setting conditions:  
Set when TCG overflows from H'FF to H'00  
Note: * Bits 7 and 6 can only be written with 0, for flag clearing.  
428  
ICRGF—Input capture register GF  
H'BD  
Timer G  
Bit  
7
6
5
4
3
2
1
0
ICRGF7 ICRGF6 ICRGF5 ICRGF4 ICRGF3 ICRGF2 ICRGF1 ICRGF0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ICRGR—Input capture register GR  
H'BE  
Timer G  
Bit  
7
6
5
4
3
2
1
0
ICRGR7 ICRGR6 ICRGR5 ICRGR4 ICRGR3 ICRGR2 ICRGR1 ICRGR0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
429  
LPCR—LCD port control register  
H'C0  
LCD controller/driver  
Bit  
7
DTS1  
0
6
DTS0  
0
5
CMX  
0
4
3
SGS3  
0
2
1
SGS1  
0
0
SGS0  
0
SGX  
0
SGS2  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock enable  
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Function of Pins SEG32 to SEG1  
SEG20 SEG16 SEG12  
Notes  
SEG32  
SEG28  
SEG24  
SEG8  
SEG4  
SGX SGS3 SGS2 SGS1 SGS0 to SEG29 to SEG25 to SEG21 to SEG17 to SEG13 to SEG9 to SEG5 to SEG1  
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
1
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
Port  
(Initial value)  
SEG  
SEG  
SEG  
SEG  
Port*  
*
*
*
*
0
SEG  
Port  
*
0
*
0
1
Use prohibited  
*
*
*
*
* : Don't care  
Note: * SEG32 to SEG29 are external expansion pins.  
Bit 4  
SGX  
0
Description  
Pins SEG32to SEG29  
*
(Initial value)  
1
Pins CL1, CL2, DO, M  
Note: * These pins function as ports when the setting of SGS3 to SGS0 is 0000 or 0001.  
Duty select, common function select  
Bit 7 Bit 6 Bit 5  
DTS1 DTS0 CMX  
Duty Cycle  
Static  
Notes  
Common Drivers  
COM1  
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
COM4 to COM1 COM4 to COM2 output the same waveform as COM1  
COM2 to COM1  
1/2 duty  
1/3 duty  
1/4 duty  
COM4 to COM1 COM outputs the same waveform as COM and COM outputs the same waveform as COM  
1
4
3
2
COM3 to COM1  
COM4 to COM1 COM4 outputs a non-selected waveform  
COM4 to COM1  
430  
LCR—LCD control register  
H'C1  
LCD controller/driver  
Bit  
7
1
6
PSW  
0
5
4
DISP  
0
3
CKS3  
0
2
CKS2  
0
1
0
ACT  
0
CKS1  
0
CKS0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Frame frequency select  
Bit 1 Bit 1  
Bit 2  
CKS2  
Bit 3  
CKS3  
Operating Clock  
CKS1 CKS0  
øw  
0
0
0
1
1
1
1
1
1
1
1
*
*
*
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
1
*
øw  
øw/2  
ø/2  
0
1
0
1
0
1
0
1
ø/4  
ø/8  
ø/16  
ø/32  
ø/64  
ø/128  
ø/256  
*
: Dont care  
Display data control  
0
1
Blank data is displayed  
LCD RAM data is displayed  
Display function activate  
LCD controller/driver operation halted  
LCD controller/driver operates  
0
1
LCD drive power supply on/off control  
0
1
LCD drive power supply off  
LCD drive power supply on  
431  
LCR2—LCD control register 2  
H'C2  
LCD  
Bit  
7
LCDAB  
0
6
1
5
1
4
SUPS  
0
3
CDS3  
0
2
CDS2  
0
1
CDS1  
0
0
CDS0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Charge/discharge pulse duty cycle select  
Bit 1 Bit 1  
Bit 2  
CDS2  
Bit 3  
CDS3  
Duty Cycle  
CDS1 CDS0  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
*
*
0
1
0
1
0
1
0
1
*
*
1
1/8  
2/8  
3/8  
4/8  
5/8  
6/8  
0
1/16  
1/32  
*
: Dont care  
5 V regulator control  
0
1
5 V regulator halted  
5 V regulator operates  
Applies to the H8/3867 Series  
A waveform/B waveform switching control  
0
1
Drive using A waveform  
Drive using B waveform  
432  
AMR—A/D mode register  
H'C6  
A/D converter  
Bit  
7
6
TRGE  
0
5
1
4
1
3
2
1
0
CKS  
0
CH3  
0
CH2  
0
CH1  
0
CH0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Channel select  
Bit 3 Bit 2 Bit 1 Bit 0  
CH3 CH2 CH1 CH0 Analog Input Channel  
0
0
1
No channel selected  
*
0
*
0
1
0
1
0
1
0
1
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
1
0
1
1
0
* : Dont care  
External trigger select  
0
1
Disables start of A/D conversion by external trigger  
Enables start of A/D conversion by rising or falling edge  
of external trigger at pin ADTRG  
Clock select  
Bit 7  
Conversion Time  
CKS Conversion Period ø = 1 MHz ø = 2 MHz  
0
1
62/ø  
31/ø  
62 µs  
31 µs  
31 µs  
15.5µs*  
Note:  
Operation is not guaranteed with a conversion time of less than 15.5 µs  
Select a setting that gives a conversion time of at least 15.5 µs.  
*
433  
ADRRH—A/D result register H  
ADRRL—A/D result register L  
H'C4  
H'C5  
A/D converter  
ADRRH  
Bit  
7
6
5
4
3
2
1
0
ADR9  
ADR8  
ADR7  
ADR6  
ADR5  
ADR4  
ADR3  
ADR2  
Initial value  
Read/Write  
Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
A/D conversion result  
ADRRL  
Bit  
7
6
5
4
3
2
1
0
ADR1  
ADR0  
Initial value  
Read/Write  
Not fixed Not fixed  
R
R
A/D conversion result  
ADSR—A/D start register  
H'C7  
A/D converter  
Bit  
7
ADSF  
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Initial value  
Read/Write  
R/W  
A/D status flag  
Indicates completion of A/D conversion  
Stops A/D conversion  
0
Read  
Write  
Read  
Write  
Indicates A/D conversion in progress  
Starts A/D conversion  
1
434  
PMR1—Port mode register 1  
H'C8  
I/O port  
Bit  
7
6
5
4
3
2
1
0
IRQ3  
0
IRQ2  
0
IRQ1  
0
IRQ4  
0
TMIG TMOFH TMOFL TMOW  
Initial value  
Read/Write  
0
0
0
0
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
P10/TMOW pin function switch  
0
1
Functions as P10 I/O pin  
Functions as TMOW output pin  
P11/TMOFL pin function switch  
0
1
Functions as P11 I/O pin  
Functions as TMOFL output pin  
P12/TMOFH pin function switch  
0
1
Functions as P12 I/O pin  
Functions as TMOFH output pin  
P13/TMIG pin function switch  
0
1
Functions as P13 I/O pin  
Functions as TMIG input pin  
P14/IRQ4/ADTRG pin function switch  
0
1
Functions as P14 I/O pin  
Functions as IRQ4/ADTRG input pin  
P15/IRQ1/TMIC pin function switch  
0
1
Functions as P15 I/O pin  
Functions as IRQ1/TMIC input pin  
P16/IRQ2 pin function switch  
0
1
Functions as P16 I/O pin  
Functions as IRQ2 input pin  
P17/IRQ3/TMIF pin function switch  
0
1
Functions as P17 I/O pin  
Functions as IRQ3/TMIF input pin  
435  
PMR3—Port mode register 3  
H'CA  
I/O port  
Bit  
7
6
5
4
NCS  
0
3
2
1
UD  
0
0
AEVL  
0
AEVH WDCKS  
IRQ0  
0
RESO  
0
PWM  
0
Initial value  
Read/Write  
0
0
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
P30/PWM pin function switch  
0
1
Functions as P30 I/O pin  
Functions as PWM output pin  
P31/UD pin function switch  
0
1
Functions as P31 I/O pin  
Functions as UD input pin  
P32/RESO pin function switch  
0
1
Functions as P32 I/O pin  
Functions as RESO I/O pin  
P43/IRQ0 pin function switch  
0
1
Functions as P43 I/O pin  
Functions as IRQ0 input pin  
TMIG noise canceler select  
0
1
Noise cancellation function not used  
Noise cancellation function used  
Watchdog timer switch  
0
1
ø8192  
øw/4  
P36/AEVH pin function switch  
0
1
Functions as P36 I/O pin  
Functions as AEVH input pin  
P37/AEVL pin function switch  
0
1
Functions as P37 I/O pin  
Functions as AEVL input pin  
436  
PMR5—Port mode register 5  
H'CC  
I/O port  
PWCR—PWM control register  
H'D0  
14-bit PWM  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
1
PWCR1 PWCR0  
Initial value  
Read/Write  
0
0
W
W
Clock select  
0
The input clock is ø/2 (tø* = 2/ø)  
The conversion period is 16,384/ø, with a minimum modulation width of 1/ø  
The input clock is ø/4 (tø* = 4/ø)  
The conversion period is 32,768/ø, with a minimum modulation width of 2/ø  
1
The input clock is ø/8 (tø* = 8/ø)  
The conversion period is 65,536/ø, with a minimum modulation width of 4/ø  
The input clock is ø/16 (tø* = 16/ø)  
The conversion period is 131,072/ø, with a minimum modulation width of 8/ø  
Note: tø: Period of PWM input clock  
*
437  
PWDRU—PWM data register U  
H'D1  
14-bit PWM  
Bit  
7
1
6
1
5
4
3
2
1
0
PWDRU5 PWDRU4 PWDRU3 PWDRU2 PWDUR1 PWDRU0  
Initial value  
Read/Write  
0
0
0
0
0
0
W
W
W
W
W
W
Upper 6 bits of data for generating PWM waveform  
PWDRL—PWM data register L  
H'D2  
14-bit PWM  
Bit  
7
6
5
4
3
2
1
0
PWDRL7 PWDRL6 PWDRL5 PWDRL4 PWDRL3 PWDRL2 PWDRL1 PWDRL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Lower 8 bits of data for generating PWM waveform  
PDR1—Port data register 1  
H'D4  
I/O ports  
Bit  
7
P17  
0
6
P16  
0
5
P15  
0
4
P14  
0
3
P13  
0
2
P12  
0
1
P11  
0
0
P10  
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR3—Port data register 3  
H'D6  
I/O ports  
Bit  
7
P37  
0
6
P36  
0
5
P35  
0
4
P34  
0
3
P33  
0
2
P32  
0
1
P31  
0
0
P30  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR4—Port data register 4  
H'D7  
I/O ports  
Bit  
7
1
6
1
5
1
4
1
3
P43  
1
2
P42  
0
1
P41  
0
0
P40  
0
Initial value  
Read/Write  
R
R/W  
R/W  
R/W  
438  
PDR5—Port data register 5  
H'D8  
I/O ports  
Bit  
7
P57  
0
6
P56  
0
5
P55  
0
4
P54  
0
3
P53  
0
2
1
P51  
0
0
P52  
0
P50  
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR6—Port data register 6  
H'D9  
I/O ports  
Bit  
7
P67  
0
6
P66  
0
5
P65  
0
4
P64  
0
3
P63  
0
2
P62  
0
1
P61  
0
0
P60  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR7—Port data register 7  
H'DA  
I/O ports  
Bit  
7
P77  
0
6
P76  
0
5
P75  
0
4
P74  
0
3
P73  
0
2
P72  
0
1
0
P70  
0
P7  
1
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR8—Port data register 8  
H'DB  
I/O ports  
Bit  
7
P87  
0
6
P86  
0
5
P85  
0
4
P84  
0
3
P83  
0
2
P82  
0
1
P81  
0
0
P80  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDRA—Port data register A  
H'DD  
I/O ports  
Bit  
7
1
6
1
5
1
4
1
3
PA3  
0
2
PA2  
0
1
PA1  
0
0
PA0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
439  
PDRB—Port data register B  
H'DE  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
PUCR1—Port pull-up control register 1  
H'E0  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR17 PUCR1 PUCR15 PUCR1 PUCR13 PUCR12 PUCR11 PUCR10  
6
4
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR3—Port pull-up control register 3  
H'E1  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR37 PUCR36 PUCR35 PUCR34 PUCR33 PUCR32 PUCR31 PUCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR5—Port pull-up control register 5  
H'E2  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR57 PUCR56 PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR6—Port pull-up control register 6  
H'E3  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR67 PUCR66 PUCR65 PUCR64 PUCR63 PUCR62 PUCR61 PUCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
440  
PCR1—Port control register 1  
H'E4  
I/O ports  
Bit  
7
PCR17  
0
6
5
4
3
2
1
0
PCR16 PCR15 PCR14 PCR13 PCR12 PCR11 PCR10  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 1 input/output select  
0
1
Input pin  
Output pin  
PCR3—Port control register 3  
H'E6  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PCR37 PCR36 PCR35 PCR34 PCR33 PCR32 PCR31 PCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 3 input/output select  
0
1
Input pin  
Output pin  
PCR4—Port control register 4  
H'E7  
I/O ports  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
1
PCR42 PCR41 PCR40  
Initial value  
Read/Write  
0
0
0
W
W
W
Port 4 input/output select  
0
1
Input pin  
Output pin  
441  
PCR5—Port control register 5  
H'E8  
I/O ports  
Bit  
7
PCR57  
0
6
5
4
3
2
1
0
PCR56 PCR55 PCR54 PCR53 PCR52 PCR51 PCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 5 input/output select  
0
1
Input pin  
Output pin  
PCR6—Port control register 6  
H'E9  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PCR67 PCR66 PCR65 PCR64 PCR63 PCR62 PCR61 PCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 6 input/output select  
0
1
Input pin  
Output pin  
PCR7—Port control register 7  
H'EA  
I/O ports  
Bit  
7
PCR77  
0
6
5
4
3
2
1
0
PCR76 PCR75 PCR74 PCR73 PCR7  
PCR71 PCR7  
0
2
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 7 input/output select  
0
1
Input pin  
Output pin  
442  
PCR8—Port control register 8  
H'EB  
I/O ports  
Bit  
7
PCR87  
0
6
5
4
3
2
1
0
PCR86 PCR85 PCR84 PCR83 PCR82 PCR81 PCR80  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 8 input/output select  
0
1
Input pin  
Output pin  
PCRA—Port control register A  
H'ED  
I/O ports  
Bit  
7
0
6
0
5
0
4
0
3
2
1
0
PCRA3 PCRA2 PCRA 1 PCRA 0  
Initial value  
Read/Write  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
Port A input/output select  
0
1
Input pin  
Output pin  
443  
SYSCR1—System control register 1  
H'F0  
System control  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
LSON  
0
2
1
1
0
MA1  
1
MA0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Active (medium-speed)  
mode clock select  
0 0 øosc /16  
1
1 0  
1
øosc /32  
øosc /64  
øosc/128  
Low speed on flag  
0
1
The CPU operates on the system clock (ø)  
The CPU operates on the subclock (øSUB  
)
Standby timer select 2 to 0  
0
0
0
1
0
1
Wait time = 8,192 states  
Wait time = 16,384 states  
Wait time = 32,768 states  
Wait time = 65,536 states  
Wait time = 131,072 states  
Wait time = 2 states  
1
0 0  
1
1
1 0  
1
Wait time = 8 states  
Wait time = 16 states  
Software standby  
0 When a SLEEP instruction is executed in active mode, a transition is  
made to sleep mode  
When a SLEEP instruction is executed in subactive mode, a transition  
is made to subsleep mode  
1 When a SLEEP instruction is executed in active mode, a transition is  
made to standby mode or watch mode  
When a SLEEP instruction is executed in subactive mode, a transition  
is made to watch mode  
444  
SYSCR2—System control register 2  
H'F1  
System control  
Bit  
7
1
6
1
5
1
4
3
2
1
0
NESEL DTON  
MSON  
0
SA1  
0
SA0  
0
Initial value  
Read/Write  
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
Subactive mode clock select  
0
0
1
øW/8  
øW/4  
øW/2  
1
*
Medium speed on flag  
*: Dont care  
0
1
Operates in active (high-speed) mode  
Operates in active (medium-speed) mode  
Direct transfer on flag  
0
When a SLEEP instruction is executed in active mode, a transition is  
made to standby mode, watch mode, or sleep mode  
When a SLEEP instruction is executed in subactive mode, a transition is  
made to watch mode or subsleep mode  
1
When a SLEEP instruction is executed in active (high-speed) mode, a direct  
transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, and  
LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1  
When a SLEEP instruction is executed in active (medium-speed) mode, a direct  
transition is made to active (high-speed) mode if SSBY = 0, MSON = 0, and  
LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1  
When a SLEEP instruction is executed in subactive mode, a direct  
transition is made to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0,  
and MSON = 0, or to active (medium-speed) mode if SSBY = 1, TMA3 = 1,  
LSON = 0, and MSON = 1  
Noise elimination sampling frequency select  
0
1
Sampling rate is øOSC/16  
Sampling rate is øOSC/4  
445  
IEGR—IRQ edge select register  
H'F2  
System control  
Bit  
7
0
6
1
5
1
4
IEG4  
0
3
IEG3  
0
2
1
IEG1  
0
0
IEG0  
0
IEG2  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
IRQ0 edge select  
0
1
Falling edge of IRQ0 pin input is detected  
Rising edge of IRQ0 pin input is detected  
IRQ1 edge select  
0
1
Falling edge of IRQ1, TMIC pin input is detected  
Rising edge of IRQ1, TMIC pin input is detected  
IRQ2 edge select  
0
1
Falling edge of IRQ2 pin input is detected  
Rising edge of IRQ2 pin input is detected  
IRQ3 edge select  
0
1
Falling edge of IRQ3, TMIF pin input is detected  
Rising edge of IRQ3, TMIF pin input is detected  
IRQ4 edge select  
0
1
Falling edge of IRQ4 pin and ADTRG pin is detected  
3. Rising edge of IRQ4 pin and ADTRG pin is detected  
446  
IENR1—Interrupt enable register 1  
H'F3  
System control  
Bit  
7
IENTA  
0
6
5
IENWP  
0
4
IEN4  
0
3
IEN3  
0
2
1
IEN1  
0
0
IEN0  
0
IEN2  
0
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IRQ4 to IRQ0 interrupt enable  
0
1
Disables IRQ4 to IRQ0 interrupt requests  
Enables IRQ4 to IRQ0 interrupt requests  
Wakeup interrupt enable  
0
1
Disables WKP7 to WKP0 interrupt requests  
Enables WKP7 to WKP0 interrupt requests  
Timer A interrupt enable  
0
1
Disables timer A interrupt requests  
Enables timer A interrupt requests  
447  
IENR2—Interrupt enable register 2  
H'F4  
System control  
Bit  
7
6
5
4
3
2
1
0
IENDT IENAD  
IENTG IENTFH IENTFL IENTC IENEC  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/(W)  
R/(W)  
R/W  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
R/(W)  
Asynchronous event counter interrupt enable  
0
Disables asynchronous event counter  
interrupt requests  
1
Enables asynchronous event counter  
interrupt requests  
Timer C interrupt enable  
0
1
Disables timer C interrupt requests  
Enables timer C interrupt requests  
Timer FL interrupt enable  
0
1
Disables timer FL interrupt requests  
Enables timer FL interrupt requests  
Timer FH interrupt enable  
0
1
Disables timer FH interrupt requests  
Enables timer FH interrupt requests  
Timer G interrupt enable  
0
1
Disables timer G interrupt requests  
Enables timer G interrupt requests  
A/D converter interrupt enable  
0
1
Disables A/D converter interrupt requests  
Enables A/D converter interrupt requests  
Direct transition interrupt enable  
0
1
Disables direct transition interrupt requests  
Enables direct transition interrupt requests  
448  
IRR1—Interrupt request register 1  
H'F6  
System control  
Bit  
7
IRRTA  
0
6
5
1
4
3
2
1
0
IRRI4  
0
IRRI3  
0
IRRI2  
0
IRRI1  
0
IRRI0  
0
Initial value  
Read/Write  
0
R/W*  
R/W  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
IRQ4 to IRQ0 interrupt request flags  
0
Clearing conditions:  
When IRRIn = 1, it is cleared by writing 0  
1
Setting conditions:  
When pin IRQn is designated for interrupt  
input and the designated signal edge is input  
(n = 4 to 0)  
Timer A interrupt request flag  
0
Clearing conditions:  
When IRRTA = 1, it is cleared by writing 0  
1
Setting conditions:  
When the timer A counter value overflows (rom H'FF to H'00)  
Note: * Bits 7 and 4 to 0 can only be written with 0, for flag clearing.  
449  
IRR2—Interrupt request register 2  
H'F7  
System control  
Bit  
7
6
5
4
3
2
1
0
IRRDT IRRAD  
IRRTG IRRTFH IRRTFL IRRTC IRREC  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/(W)* R/(W)*  
R/W  
R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*  
Asynchronous event counter interrupt request flag  
Clearing conditions:  
0
When IRREC = 1, it is cleared by writing 0  
1
Setting conditions:  
When the asynchronous event counter value overflows  
Timer C interrupt request flag  
0
Clearing conditions:  
When IRRTC = 1, it is cleared by writing 0  
1
Setting conditions:  
When the timer C counter value overflows  
(from H'FF to H'00) or underflows (from H'00 to H'FF)  
Timer FL interrupt request flag  
0
Clearing conditions:  
When IRRTFL = 1, it is cleared by writing 0  
1
Setting conditions:  
When counter FL and output compare register FL  
match in 8-bit timer mode  
Timer FH interrupt request flag  
0
Clearing conditions:  
When IRRTFH = 1, it is cleared by writing 0  
1
Setting conditions:  
When counter FH and output compare register FH match  
in 8-bit timer mode, or when 16-bit counters FL and FH  
and output compare registers FL and FH match in 16-bit timer mode  
Timer G interrupt request flag  
0
Clearing conditions:  
When IRRTG = 1, it is cleared by writing 0  
1
Setting conditions:  
When the TMIG pin is designated for TMIG input and  
the designated signal edge is input  
A/D converter interrupt request flag  
0
Clearing conditions:  
When IRRAD = 1, it is cleared by writing 0  
1
Setting conditions:  
When the A/D converter completes conversion and  
ADSF is reset  
Direct transition interrupt request flag  
0
Clearing conditions:  
When IRRDT = 1, it is cleared by writing 0  
1
Setting conditions:  
When a SLEEP instruction is executed while DTON is  
set to 1, and a direct transition is made  
Note: * Bits 7, 6 and 4 to 0 can only be written with 0, for flag clearing.  
450  
IWPR—Wakeup interrupt request register  
H'F9  
System control  
Bit  
7
6
5
4
3
2
1
0
IWPF7 IWPF6 IWPF5 IWPF4 IWPF3 IWPF2 IWPF1 IWPF0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*  
Wakeup interrupt request register  
0
Clearing conditions:  
When IWPFn = 1, it is cleared by writing 0  
1
Setting conditions:  
When pin WKPn is designated for wakeup input and a  
falling edge is input at that pin  
(n = 7 to 0)  
Note: * All bits can only be written with 0, for flag clearing.  
451  
CKSTPR1—Clock stop register 1  
H'FA  
System control  
Bit  
7
6
5
4
3
2
1
0
S31CKSTP S32CKSTP ADCKSTP TGCKSTP TFCKSTP TCCKSTP TACKSTP  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Timer A module standby mode control  
0
1
Timer A is set to module standby mode  
Timer A module standby mode is cleared  
Timer C module standby mode control  
0
1
Timer C is set to module standby mode  
Timer C module standby mode is cleared  
Timer F module standby mode control  
0
1
Timer F is set to module standby mode  
Timer F module standby mode is cleared  
Timer G interrupt enable  
0
1
Timer G is set to module standby mode  
Timer G module standby mode is cleared  
A/D converter module standby mode control  
0
1
A/D converter is set to module standby mode  
A/D converter module standby mode is cleared  
SCI3-2 module standby mode control  
0
1
SCI3-2 is set to module standby mode  
SCI3-2 module standby mode is cleared  
SCI3-1 module standby mode control  
0
1
SCI3-1 is set to module standby mode  
SCI3-1 module standby mode is cleared  
452  
CKSTPR2—Clock stop register 2  
H'FB  
System control  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
AECKSTP WDCKSTP PWCKSTP LDCKSTP  
Initial value  
Read/Write  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
LCD module standby mode control  
0
1
LCD is set to module standby mode  
LCD module standby mode is cleared  
PWM module standby mode control  
0
1
PWM is set to module standby mode  
PWM module standby mode is cleared  
WDT module standby mode control  
0
1
WDT is set to module standby mode  
WDT module standby mode is cleared  
Asynchronous event counter module standby mode control  
0
1
Asynchronous event counter is set to module standby mode  
Asynchronous event counter module standby mode is cleared  
453  
Appendix C I/O Port Block Diagrams  
C.1  
Block Diagrams of Port 1  
SBY  
(low level  
during reset  
and in standby  
mode)  
PUCR1  
n
V
CC  
V
CC  
PMR1  
PDR1  
n
P1  
n
n
PCR1  
V
n
SS  
IRQ  
n–4  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
n = 7 to 4  
Figure C.1 (a) Port 1 Block Diagram (Pins P1 to P1 )  
7
4
454  
SBY  
PUCR1  
3
V
CC  
V
CC  
PMR1  
PDR1  
3
P1  
3
3
PCR1  
V
3
SS  
Timer G  
module  
TMIG  
Figure C.1 (b) Port 1 Block Diagram (Pin P1 )  
3
Timer F  
module  
TMOFH (P12)  
TMOFL (P11)  
SBY  
PUCR1  
n
V
CC  
V
CC  
PMR1  
PDR1  
n
P1  
n
n
PCR1  
V
n
SS  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
n= 2, 1  
Figure C.1 (c) Port 1 Block Diagram (Pin P1 , P1 )  
2
1
455  
Timer A  
module  
SBY  
TMOW  
PUCR10  
PMR10  
PDR10  
PCR10  
VCC  
VCC  
P10  
VSS  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
Figure C.1 (d) Port 1 Block Diagram (Pin P1 )  
0
456  
C.2  
Block Diagrams of Port 3  
SBY  
PUCR3n  
PMR3n  
PDR3n  
PCR3n  
VCC  
VCC  
P3n  
VSS  
AEC module  
AEVH(P36)  
AEVL(P37)  
PDR3:  
PCR3:  
Port data register 3  
Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
n=7 to 6  
Figure C.2 (a) Port 3 Block Diagram (Pin P3 to P3 )  
7
6
457  
SBY  
PUCR3  
SCINV1  
VCC  
VCC  
SPC31  
SCI31 module  
TXD31  
P35  
PDR35  
PCR35  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
Figure C.2 (b) Port 3 Block Diagram (Pin P3 )  
5
458  
SBY  
PUCR3  
VCC  
VCC  
SCI31 module  
RE31  
RXD31  
P34  
PDR34  
PCR34  
VSS  
SCINV0  
PDR3: Port data register 3  
PCR3: Port control register 3  
Figure C.2 (c) Port 3 Block Diagram (Pin P3 )  
4
459  
SBY  
PUCR3  
SCI31 module  
SCKIE31  
SCKOE31  
VCC  
SCKO31  
SCKI31  
P33  
PDR33  
PCR33  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
Figure C.2 (d) Port 3 Block Diagram (Pin P3 )  
3
460  
SBY  
RESO  
PUCR32  
PMR32  
PDR32  
PCR32  
VCC  
VCC  
P32  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
Figure C.2 (e) Port 3 Block Diagram (Pin P3 )  
2
461  
SBY  
PUCR31  
PMR31  
PDR31  
PCR31  
VCC  
VCC  
P31  
VSS  
Timer C  
module  
UD  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
Figure C.2 (f) Port 3 Block Diagram (Pin P3 )  
1
462  
PWM module  
PWM  
SBY  
PUCR30  
PMR30  
PDR30  
PCR30  
VCC  
VCC  
P30  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
Figure C.2 (g) Port 3 Block Diagram (Pin P3 )  
0
463  
C.3  
Block Diagrams of Port 4  
PMR43  
P43  
IRQ0  
PMR4: Port mode register 4  
Figure C.3 (a) Port 4 Block Diagram (Pin P4 )  
3
464  
SBY  
SCINV3  
VCC  
SPC32  
SCI32 module  
TXD32  
P42  
PDR42  
PCR4  
2
VSS  
PDR4: Port data register 4  
PCR4: Port control register 4  
Figure C.3 (b) Port 4 Block Diagram (Pin P4 )  
2
465  
SBY  
VCC  
SCI32 module  
RE32  
RXD32  
P41  
PDR41  
PCR41  
VSS  
SCINV2  
PDR4: Port data register 4  
PCR4: Port control register 4  
Figure C.3 (c) Port 4 Block Diagram (Pin P4 )  
1
466  
SBY  
SCI32 module  
SCKIE32  
SCKOE32  
VCC  
SCKO32  
SCKI32  
P40  
PDR40  
PCR40  
VSS  
PDR4: Port data register 4  
PCR4: Port control register 4  
Figure C.3 (d) Port 4 Block Diagram (Pin P4 )  
0
467  
C.4  
Block Diagram of Port 5  
SBY  
PUCR5n  
PMR5n  
PDR5n  
PCR5n  
VCC  
VCC  
P5n  
VSS  
WKPn  
PDR5: Port data register 5  
PCR5: Port control register 5  
PMR5: Port mode register 5  
PUCR5: Port pull-up control register 5  
n = 7 to 0  
Figure C.4 Port 5 Block Diagram  
468  
C.5  
Block Diagram of Port 6  
SBY  
PUCR6n  
PDR6n  
PCR6n  
VCC  
VCC  
P6n  
VSS  
PDR6: Port data register 6  
PCR6: Port control register 6  
PUCR6: Port pull-up control register 6  
n = 7 to 0  
Figure C.5 Port 6 Block Diagram  
469  
C.6  
Block Diagram of Port 7  
SBY  
VCC  
PDR7n  
PCR7n  
P7n  
VSS  
PDR7: Port data register 7  
PCR7: Port control register 7  
n = 7 to 0  
Figure C.6 Port 7 Block Diagram  
470  
C.7  
Block Diagrams of Port 8  
SBY  
VCC  
PDR8n  
PCR8n  
P8n  
VSS  
PDR8:  
Port data register 8  
PCR8:  
Port control register 8  
n= 7 to 0  
Figure C.7 Port 8 Block Diagram  
471  
C.8  
Block Diagram of Port A  
SBY  
VCC  
PDRAn  
PCRAn  
PAn  
VSS  
PDRA: Port data register A  
PCRA: Port control register A  
n = 3 to 0  
Figure C.8 Port A Block Diagram  
472  
C.9  
Block Diagram of Port B  
Internal  
data bus  
PB  
n
A/D module  
AMR3 to AMR0  
DEC  
V
IN  
n = 7 to 0  
Figure C.9 Port B Block Diagram  
473  
Appendix D Port States in the Different Processing States  
Table D.1 Port States Overview  
Port  
Reset  
Sleep  
Subsleep Standby  
Watch  
Subactive Active  
P17 to High  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
High  
High  
Retained  
Functions Functions  
P10  
impedance  
impedance*1  
P37 to High  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
High  
High  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
High  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
P30  
impedance*2  
impedance*1  
P43 to High  
High  
impedance  
P40  
impedance  
P57 to High  
High  
P50  
impedance  
impedance*1  
P67 to High  
High  
impedance  
P60  
impedance  
P77 to High  
High  
impedance  
P70  
impedance  
P87 to High  
High  
impedance  
P80  
impedance  
PA3 to High  
High  
impedance  
PA0  
impedance  
PB7 to High  
High  
High  
High  
PB0  
impedance impedance impedance impedance impedance impedance impedance  
Notes: 1. High level output when MOS pull-up is in on state.  
2. P32 is Functions  
474  
Appendix E List of Product Codes  
Table E.1 H8/3864 Series Product Code Lineup  
Package  
(Hitachi Package Code)  
Product Type  
Product Code Mark Code  
H8/3867 H8/3862 Mask ROM HD6433862H HD6433862(***)H 80 pin QFP (FP-80A)  
Series versions HD6433862F HD6433862(***)F 80-pin QFP (FP-80B)  
HD6433862W HD6433862(***)W 80-pin TQFP (TFP-80C)  
H8/3863 Mask ROM HD6433863H HD6433863(***)H 80-pin QFP (FP-80A)  
versions HD6433863F HD6433863(***)F 80-pin QFP (FP-80B)  
HD6433863W HD6433863(***)W 80-pin TQFP (TFP-80C)  
H8/3864 Mask ROM HD6433864H HD6433864(***)H 80-pin QFP (FP-80A)  
versions HD6433864F HD6433864(***)F 80-pin QFP (FP-80B)  
HD6433864W HD6433864(***)W 80-pin TQFP (TFP-80C)  
H8/3865 Mask ROM HD6433865H HD6433865(***)H 80-pin QFP (FP-80A)  
versions HD6433865F HD6433865(***)F 80-pin QFP (FP-80B)  
HD6433865W HD6433865(***)W 80-pin TQFP (TFP-80C)  
H8/3866 Mask ROM HD6433866H HD6433866(***)H 80-pin QFP (FP-80A)  
versions HD6433866F HD6433866(***)F 80-pin QFP (FP-80B)  
HD6433866W HD6433866(***)W 80-pin TQFP (TFP-80C)  
H8/3867 Mask ROM HD6433867H HD6433867(***)H 80-pin QFP (FP-80A)  
versions  
HD6433867F  
HD6433867(***)F  
80-pin QFP (FP-80B)  
HD6433867W HD6433867(***)W 80-pin TQFP (TFP-80C)  
ZTAT  
HD6473867H HD6473867H  
HD6473867F HD6473867F  
HD6473867W HD6473867W  
Note: For mask ROM versions, (***) is the ROM code.  
80-pin QFP (FP-80A)  
80-pin QFP (FP-80B)  
80-pin TQFP (TFP-80C)  
versions  
475  
Table E.1 H8/3864 Series Product Code Lineup (cont)  
Package  
Product Type  
Product Code Mark Code  
(Hitachi Package Code)  
H8/3827 H8/3822 Mask ROM HD6433822H HD6433822(***)H 80-pin QFP (FP-80A)  
Series versions HD6433822F HD6433822(***)F 80-pin QFP (FP-80B)  
HD6433822W HD6433822(***)W 80-pin TQFP (TFP-80C)  
H8/3823 Mask ROM HD6433823H HD6433823(***)H 80-pin QFP (FP-80A)  
versions HD6433823F HD6433823(***)F 80-pin QFP (FP-80B)  
HD6433823W HD6433823(***)W 80-pin TQFP (TFP-80C)  
H8/3824 Mask ROM HD6433824H HD6433824(***)H 80-pin QFP (FP-80A)  
versions HD6433824F HD6433824(***)F 80-pin QFP (FP-80B)  
HD6433824W HD6433824(***)W 80-pin TQFP (TFP-80C)  
H8/3825 Mask ROM HD6433825H HD6433825(***)H 80-pin QFP (FP-80A)  
versions HD6433825F HD6433825(***)F 80-pin QFP (FP-80B)  
HD6433825W HD6433825(***)W 80-pin TQFP (TFP-80C)  
H8/3826 Mask ROM HD6433826H HD6433826(***)H 80-pin QFP (FP-80A)  
versions HD6433826F HD6433826(***)F 80-pin QFP (FP-80B)  
HD6433826W HD6433826(***)W 80-pin TQFP (TFP-80C)  
H8/3827 Mask ROM HD6433827H HD6433827(***)H 80-pin QFP (FP-80A)  
versions  
HD6433827F  
HD6433827(***)F  
80-pin QFP (FP-80B)  
HD6433827W HD6433827(***)W 80-pin TQFP (TFP-80C)  
ZTAT  
HD6473827H HD6473827H  
HD6473827F HD6473827F  
HD6473827W HD6473827W  
80-pin QFP (FP-80A)  
80-pin QFP (FP-80B)  
80-pin TQFP (TFP-80C)  
versions  
Note: For mask ROM versions, (***) is the ROM code.  
476  
Appendix F Package Dimensions  
Dimensional drawings of H8/3867 and H8/3827 Series packages FP-80A, FP-80B and TFP-80C  
are shown in figures F.1, F.2 and F.3 below.  
17.2 ± 0.3  
Unit: mm  
14  
60  
41  
61  
80  
40  
21  
1
20  
*0.32 ± 0.08  
0.30 ± 0.06  
M
0.12  
0.83  
1.6  
0° – 8°  
0.8 ± 0.3  
0.10  
Hitachi Code  
JEDEC  
FP-80A  
EIAJ  
Conforms  
*Dimension including the plating thickness  
Base material dimension  
Weight (reference value) 1.2 g  
Figure F.1 FP-80A Package Dimensions  
477  
Unit: mm  
24.8 ± 0.4  
20  
41  
64  
40  
25  
65  
80  
1
24  
*0.37 ± 0.08  
0.35 ± 0.06  
2.4  
1.0  
0.15  
0.15  
M
0.8  
0° 10°  
1.2 ± 0.2  
FP-80B  
Hitachi Code  
JEDEC  
EIAJ  
*Dimension including the plating thickness  
Base material dimension  
Weight (reference value) 1.7 g  
Figure F.2 FP-80B Package Dimensions  
478  
14.0 ± 0.2  
Unit: mm  
12  
60  
41  
61  
80  
40  
21  
1
20  
*0.22 ± 0.05  
0.20 ± 0.04  
M
0.10  
1.25  
1.0  
0° 8°  
0.5 ± 0.1  
0.10  
Hitachi Code  
JEDEC  
TFP-80C  
EIAJ  
Conforms  
*Dimension including the plating thickness  
Base material dimension  
Weight (reference value) 0.4 g  
Figure F.3 TFP-80C Package Dimensions  
479  
H8/3867 Series, H8/3827 Series Hardware Manual  
Publication Date: 1st Edition, November 1997  
3rd Edition, February 1999  
Published by:  
Electronic Devices Sales & Marketing Group  
Semiconductor & Integrated Circuits  
Hitachi, Ltd.  
Edited by:  
Technical Documentation Group  
UL Media Co., Ltd.  
Copyright © Hitachi, Ltd., 1997. All rights reserved. Printed in Japan.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY