HA16108FP-E [RENESAS]

2A SWITCHING CONTROLLER, 600kHz SWITCHING FREQ-MAX, PDSO16, SOP-16;
HA16108FP-E
型号: HA16108FP-E
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

2A SWITCHING CONTROLLER, 600kHz SWITCHING FREQ-MAX, PDSO16, SOP-16

开关 光电二极管
文件: 总40页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA16107P/FP, HA16108P/FP  
PWM Switching Regulator for  
High-performance Voltage Mode Control  
REJ03F0141-0400  
(Previous: ADE-204-012C)  
Rev.4.00  
Jun 15, 2005  
Description  
The IC products in this series are primary control switching regulator control IC’s appropriate for obtaining stabilized  
DC voltages from commercial AC power.  
These IC’s can directly drive power MOS FET’s, they have a timer function built in to the secondary overcurrent  
protection, and they can perform intermittent operation or delayed latched shutdown as protection operations in unusual  
conditions. They can be used to implement switching power supplies with a high level of safety due to the wide range  
of built-in functionality.  
Functions  
6.45 V reference voltage  
Triangle wave generator  
Error amplifier  
Under voltage lockout protector  
PWM comparator  
Pulse-by-pulse current limitting  
Timer-latch current limitting (HA16107)  
ON/OFF timer function (HA16108)  
Soft start and quick shutdown  
Output circuit for power MOS FET driving  
Features  
Operating frequencies up to a high 600 kHz  
Built-in pre-driver circuit for driving power MOS FET  
Built-in timer latch over-current protection function (HA16107)  
The OCL enables intermittent operation by an ON/OFF timer for prevention of secondary overcurrent. (HA16108)  
The UVL function (under voltage lockout) is applied to both Vin and Vref.  
ON/OFF reset: an auto-reset function which is based on the time constant of an external capacitor and observation  
of drops in Vin.  
Since the over-voltage protection function OVP (the TL pin) only observes voltage drops in Vin, it is possible to use  
the OVP and ON/OFF pin for independent purposes.  
Built-in 34 V Zener diode between Vin and ground.  
Rev.4.00 Jun 15, 2005 page 1 of 39  
HA16107P/FP, HA16108P/FP  
Ordering Information  
Typical Threshold Voltage  
UVL1 OVP  
Hi: 16.2 V  
Package Code  
(Previous Code)  
Product  
HA16107P  
Notes  
7.0 V  
Timer latch protection DP-16  
PRSP0016DH-A  
Lo: 9.5 V  
HA16107FP  
(FP-16DA)  
DP-16  
HA16108P  
Hi: 16.2 V  
Lo: 9.5 V  
Hi: 7.0 V  
On-off timer  
protection  
Lo: 1.3 V  
HA16108FP  
PRSP0016DH-A  
(FP-16DA)  
Pin Arrangement  
Note 2  
TL, ON/OFF  
VIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT  
E/O  
CL(+)  
VE  
IN()  
NC  
CL()  
GND  
Note 1  
RT1  
CT  
IN(+)  
ST  
RT2  
Vref  
(Top view)  
Notes: 1. In the SOP package models (HA16107FP and HA16108FP) pins 4, 5, and 13 are connected  
inside the IC. However, all must be connected to the system ground.  
2. Pin 16 is TL (HA16107), ON/OFF (HA16108).  
Rev.4.00 Jun 15, 2005 page 2 of 39  
HA16107P/FP, HA16108P/FP  
Pin Functions  
HA16107P, HA16108P  
Pin No. Symbol  
Pin Functions  
1
VIN  
Input voltage  
2
OUT  
CL (+)  
VE  
Pulse output  
3
Current limiter  
4
Output ground  
Current limiter  
5
CL (–)  
RT1  
6
Timing resistor (rising time)  
Timing capacitor  
Timing resistor (falling time)  
Reference voltage output  
Soft start  
7
CT  
8
RT2  
9
Vref  
10  
11  
12  
13  
14  
15  
16  
ST  
IN (+)  
GND  
NC  
Error amp (+) input  
Ground  
NC  
IN (–)  
E/O  
Error amp (–) input  
Error output  
TL, ON/OFF  
Timer latch (HA16107), ON/OFF (HA16108)  
HA16107FP, HA16108FP  
Pin No. Symbol  
Pin Functions  
Input voltage  
1
VIN  
2
OUT  
CL (+)  
GND  
GND  
RT1  
Pulse output  
3
Current limiter  
4
Ground  
5
Ground  
6
Timing resistor (rising time)  
Timing capacitor  
7
CT  
8
RT2  
Timing resistor (falling time)  
Reference voltage output  
Soft start  
9
Vref  
10  
11  
12  
13  
14  
15  
16  
ST  
IN (+)  
GND  
GND  
IN (–)  
E/O  
Error amp (+) input  
Ground  
Ground  
Error amp (–) input  
Error output  
TL, ON/OFF  
Timer latch (HA16107), ON/OFF (HA16108)  
Rev.4.00 Jun 15, 2005 page 3 of 39  
HA16107P/FP, HA16108P/FP  
Block Diagram  
HA16107P/FP  
TL  
E/O  
15  
IN ()  
NC  
13  
GND  
12  
IN (+)  
11  
ST  
10  
Vref  
9
16  
14  
EA  
Error amp.  
+
140 µA  
VIN  
34 V  
UVL1  
Vref  
6.45 V  
H
L
zener type  
Ref.  
voltage  
Gen.  
UVL2  
16 µA  
VL VH  
O
V
P
H
L
UVL2  
R
S
Q
4 V 5 V  
4 µA  
UVL1  
ST  
On/Off latch  
(VTH = 7 V)  
Triangle waveform  
UVL1 and UVL2  
Pulse-by-pulse latch  
PWM Comparator  
+ + −  
Triangle waveform OSC  
3.4 V 10 µA  
Vref  
Q
R
Triangle waveform  
Latch reset pulse  
QCLM  
Q
S
Current  
limiter  
ON duty pulse  
OUT  
VC  
VE  
1
2
3
4
5
6
7
8
VIN  
OUT  
CL (+)  
VE  
CL ()  
RT1  
RT2  
CT  
HA16108P/FP  
ON/OFF  
E/O  
15  
IN ()  
NC  
13  
GND  
12  
IN (+)  
11  
ST  
10  
Vref  
9
16  
14  
EA  
Error amp.  
+
140 µA  
VIN  
34 V  
Vref  
UVL1  
6.45 V  
H
L
zener type  
Ref.  
voltage  
Gen.  
UVL2  
16 µA  
VL VH  
O
V
P
H
L
UVL2  
R
S
Q
4 V 5 V  
4 µA  
UVL1  
ST  
Triangle waveform  
UVL1 and UVL2  
On/Off latch  
(VTH = 7 V)  
PWM Comparator  
+ + −  
Triangle waveform OSC  
3.4 V 10 µA  
Pulse-by-pulse latch  
Vref  
Q
R
Triangle waveform  
Latch reset pulse  
QCLM  
Q
S
Current  
limiter  
ON duty pulse  
OUT  
VC  
VE  
1
2
3
4
5
6
7
8
VIN  
OUT  
CL (+)  
VE  
CL ()  
RT1  
CT  
RT2  
Note: Dotted lines apply to the SOP package model (pins 4, 5, and 13: ground)  
Rev.4.00 Jun 15, 2005 page 4 of 39  
HA16107P/FP, HA16108P/FP  
Function and Timing Chart  
Triangle Waveform and PWM Output  
Timing chart (during normal operation)  
Triangle waveform  
is output to CT pin  
VTH 4.2 V typ  
E/O  
CT  
VTL 2.2 V typ  
2VBE  
0 V  
VRT2  
OUT  
VIN  
0 V  
Dead band  
tDB  
tON  
Oscillator equivalent circuit  
Vref  
9
(connected internally)  
× 2  
× 2  
× 2  
RT2  
VRT2  
+
8
I2  
I1  
I1  
Comparator for  
triangle waveform  
oscillation  
6
7
2I2  
× 2  
RT1  
CT  
+
0.6 V  
The ×2s are transistors whose emitter area is doubled.  
Vref 2VBE  
RT1  
CT × RT1 × 2V  
RT2  
I1 =  
I2 =  
tDB  
=
0.4 × CT × RT1 (s)  
Du max =  
Vref 2VBE  
2RT1  
Vref 2VBE  
RT2  
RT2  
1 Du max  
tON tDB  
(s)  
fOSC  
(Hz)  
2RT1 RT2  
tDB  
Note: When fOSC is high, the actual value will differ from that given by the formula due to the delay time.  
Determine the correct constants after constructing a test circuit.  
Rev.4.00 Jun 15, 2005 page 5 of 39  
HA16107P/FP, HA16108P/FP  
1. Timing in Normal Operation  
Timing in these ICs is based on a triangular voltage waveform. The rising edge (leading edge) defines the deadband  
time tDB. The falling edge (trailing edge) defines the ON-duty control band tON. PWM output is on in the area  
within tON that is bounded above by the triangle wave VCT and error output VE/O  
The following pin outputs are related to PWM control:  
CT (pin 7): triangle-wave voltage output  
.
E/O (pin 15): error output voltage  
RT2 (pin 8): ON-duty pulse output voltage  
OUT (pin 2): PWM pulse output (for driving the gate of a power MOS FET)  
2. Triangle Oscillator, Waveform and Frequency  
The triangle oscillator in these ICs generates a triangular waveform by charging and discharging timing capacitor CT  
with a constant current, as shown in the equivalent circuit. The CT charge current is:  
V
REF 2VBE  
I(CTchg) = I1 =  
RT1  
The discharge current is:  
V
REF 2VBE  
I(CTdischg) = 2I2 I1, where I2 =  
RT2  
In these equations Vref (reference voltage) is typically 6.45 V, and VBE (base-emitter voltage of internal transistors)  
is about 0.7 V.  
The deadband time is:  
CT × RT1 × 2V  
tDB  
=
+ 0.25 µs  
V
REF 2VBE  
0.4 × CT × RT1 + 0.25 µs  
The ON-duty time is:  
RT2  
2RT1 RT2  
tON = tDB  
×
The 0.25 µs in these equations is a correction term for internal circuit delays.  
The maximum ON-duty is  
RT2  
Du max =  
2RT1  
The oscillating frequency is:  
1
fOSC  
=
0.4 CT RT1 + 0.25 µ  
+ 0.25 µ  
RT2  
1 –  
2RT1  
1
=
(Hz)  
0.8 CT RT12 + 0.25µ × 2RT1  
+ 0.25 µ  
2RT1 RT2  
When RT1 = RT2, the maximum ON-duty is 50%, and:  
1
fOSC  
0.8 CT RT1 + 0.25 µ × 2 + 0.25 µ  
1
=
(Hz)  
0.8 CT RT1 + 0.75 µ  
This approximation is fairly close, but it should be checked in-circuit.  
Rev.4.00 Jun 15, 2005 page 6 of 39  
HA16107P/FP, HA16108P/FP  
3. Programming of Maximum ON-Duty (Du Max)  
The preceding equations should be used to program the deadband or maximum ON-duty. The following table gives  
a summary.  
Condition  
RT1 > RT2  
RT1 = RT2  
RT1 < RT2  
Triangle  
waveform  
Du max  
Less than 50%  
50%  
Greater than 50%*  
Note: In a primary-control switching regulator, Du Max > 50% is dangerous because the transformer will saturate.  
Soft Start and Quick Shutdown  
One purpose of the soft-start function is to protect the switching controller and power MOS FET from surges at power-  
up. Another purpose is to let the secondary-side DC voltage rise smoothly.  
When power goes off, the quick-shutdown function rapidly discharges the capacitor in the soft-start circuit (and at the  
same time switches the PWM output off) to prepare for the next power-on.  
The soft-start function in these ICs lets the PWM output develop smoothly from zero to the designated pulse width at  
power-up. The soft-start voltage is the 3.8 V voltage value of an internal Zener diode, so the PWM output is able to  
start widening gradually as soon as the soft-start function starts operating. The soft-start function will start promptly  
even if CST is large.  
The soft-start and quick-shutdown modes are selected automatically in the IC, under control of the UVL signal.  
Rev.4.00 Jun 15, 2005 page 7 of 39  
HA16107P/FP, HA16108P/FP  
Timing waveforms  
Level determined by transformer  
VIN  
16.2 V  
VIN  
9.5 V  
6.45 V  
5 V  
Vref  
4 V  
0 V  
Vref  
VST  
VCT  
CST discharge  
4.2 V  
3.8 V  
2.2 V  
V
VE/O  
CT, VST  
,
0 V  
VE/O  
VIN  
0 V  
Quick shutdown  
(Time t)  
VOUT  
(PWM pulse)  
Soft start  
Normal operation  
Vref  
Vref  
ST  
9
from Vref  
from UVL2  
(Effective for  
CST  
quick shutdown)  
+
+
10  
Zener  
diode  
3.8 V  
PWM comparator  
VCT  
10 µA  
E/O  
15  
7
Note: The soft-start time constant is determined by CST and the constant-current value (typically 10 µA).  
Rev.4.00 Jun 15, 2005 page 8 of 39  
HA16107P/FP, HA16108P/FP  
Vref Protection Functions: Overvoltage and Undervoltage  
Vref overvoltage and undervoltage conditions are detected by the overvoltage detection circuit and UVL2 circuit.  
PWM output shuts down when Vref 8 V. UVL2 detects undervoltage with hysteresis between approximately 4 V and  
5 V. PWM output also shuts down below these voltages. It follows that PWM output will shut off whenever the Vref  
pin is shorted to the power supply (VIN) or ground (GND). PWM output also shuts off when VIN is turned on or off.  
The following diagram shows how these protection functions operate when power comes on and goes off (Vref < 6.45  
V), and when a high external voltage is applied to the Vref pin (Vref > 6.45 V).  
PWM output shut-  
down region  
PWM output  
operating region  
PWM  
OUT  
Power-off,  
or shorted  
to ground  
Shorted to  
power supply  
PWM output  
shut-down region  
Power-up  
Vref  
0
4 V 5 V 6.45 V 8 V  
10 V  
Vref  
OVP  
UVL2  
1. Current-Limiter Circuit  
The current limiter pin (CL) is connected to the emitter of an npn transistor, as shown in the block diagram. The  
threshold voltage is 240 mV typ. The switching speed of this circuit is approximately 100 ns from detection of  
overcurrent to shut-down of PWM output. Switching speed increases with the strength of the signal input to the CL  
pin.  
Instead of simple pulse-by-pulse current limiting, in these ICs the current limiting circuit is linked to the timer-and-  
latch or ON/OFF timer circuit, and also detects the degree of overcurrent. The overcurrent value is determined from  
the point at which current limiting is triggered in the ON-duty cycle. With a large overcurrent (causing current  
limiting to operate even at a small ON-duty), the IC automatically shortens the timer time.  
Rev.4.00 Jun 15, 2005 page 9 of 39  
HA16107P/FP, HA16108P/FP  
Undervoltage Lockout and PWM Output  
The undervoltage lockout function turns off the PWM pulse output when the controller’s supply voltage goes below a  
designated value. These ICs have two undervoltage lockout circuits. The UVL1 circuit senses the supply voltage VIN.  
The UVL2 circuit senses the Vref voltage. A feature of these ICs is that PWM output is turned on only when both  
voltages are above designated values. Otherwise, the IC operates in standby mode.  
The two built-in undervoltage lockout circuits make it possible to configure an extremely safe power supply system.  
PWM output will shut down under a variety of abnormal conditions, such as if Vref is shorted to ground while VIN is  
applied.  
1
UVL1 (VIN and Vref)  
*
16.2 V  
IIN  
9.5 V  
VIN  
0
0
10 V  
20 V  
30 V  
6.45 V  
34 V  
Notes: 1. Breakdown voltage of  
the internal Zener  
Vref  
diode (Vz = 34 V typ).  
2. Hysteresis characteristic.  
2
*
VIN  
10 V  
20 V  
30 V  
UVL2 (Vref and PWM output)  
Vref  
6.45 V  
5 V  
4 V  
VIN  
0
10 V  
20 V  
30 V  
Operating region  
OUT  
VIN  
0
10 V  
20 V  
30 V  
PWM output shut-down region  
UVL1 and UVL2  
VIN (UVL1)  
Vref (UVL2)  
PWM OUT  
L
L
L
H
L
H
H
L
H
L
L
OUT  
Standby mode  
Note: Double circles indicate standby mode.  
Rev.4.00 Jun 15, 2005 page 10 of 39  
HA16107P/FP, HA16108P/FP  
Timer Latch and ON/OFF Timer  
The HA16107 has a built-in timer-latch function. The HA16108 has a built-in ON/OFF timer function.  
The timer-latch function is an overvoltage protection function that combines latched shutdown of PWM output with a  
timer function to vary the time until latched shutdown occurs according to the overcurrent value. A dedicated voltage  
detection pin is provided in addition to Vref overvoltage protection.  
The ON/OFF timer function is equivalent to the above timer-latch function without the latch. If overcurrent is detected  
continuously, PWM output shuts down temporarily, then normal operation resumes. This process repeats, temporary  
shutdown alternating with normal operation.  
Both the timer-latch function in the HA16107 and the ON/OFF function in the HA16108 wait for an interval after  
overcurrent detection before shutting down PWM output. The interval is determined by capacitor CTM and the value of  
the charge/discharge current supplied internally from the IC. Normal operation therefore continues if a single  
overcurrent spike is detected, while if continuous overcurrent is detected, the current and voltage droop curves for the  
secondary-side output have sharp characteristics.  
1. Use of Timer-Latch Pin (HA16107)  
Timer-Latch Usage  
See external circuit 1 in the following diagram. Under continuous overcurrent, the CML switch turns on,  
charging CTM with 12 µA. PWM output shuts down when the voltage at pin 15 exceeds 7 V.  
Overvoltage Protection Usage  
See external circuit 2 in the diagram. This configuration is suitable when overvoltage is detected by an OVP  
signal received through an optocoupler from the DC output on the secondary side of an AC/DC converter.  
PWM output shuts down when the OVP signal allows the voltage at the TL pin to exceed 7 V. The shutdown is  
latched. VIN must go below approximately 6.5 V (VINR2) to release the latched state.  
External circuit 1  
External circuit 2  
VIN  
16 µA  
from CML  
OVP with  
latch timer  
OVP signal  
(from secondary)  
15  
TL  
CTM  
4 µA  
HA16107  
Latch  
VTH  
7.0 V  
(PWM output shuts down)  
B
VTL  
A
0 V  
t
OCL detected continuously  
(activating pulse-by-pulse current limiter)  
Notes: 1. Path A is followed if the OCL input stops before VTH is reached.  
2. Path B is followed if OCL is detected continuously until the latch point is reached.  
3. The latch function is cleared when VIN goes below approximately 7.0 V.  
Rev.4.00 Jun 15, 2005 page 11 of 39  
HA16107P/FP, HA16108P/FP  
2. Use of ON/OFF Timer Pin (HA16108)  
External Circuit  
16 µA  
from CML  
OVP with  
ION  
16  
+
latch timer  
IOFF  
4 µA  
HA16108  
ON/OFF Timer Operation  
tOFF  
tON  
VTHH  
7.0 V  
VTHL  
1.2 V  
0 V  
t
OCL detected  
(PWM output on) output  
shut down  
PWM  
OCL detected  
(PWM output on)  
Pulse-by-pulse current limiting  
C × 5.8 V  
(0.9 Du) × 16 µA 4 µA  
tON  
C × 5.8 V  
4 µA  
tOFF  
Notes: 1. C is the capacitance of an external timing capacitor connected between this pin and ground.  
2. Du is the ON-duty of the PWM output when overcurrent limiting is triggered.  
3. The values of tON and tOFF for TL can be determined by the same equations as given for  
the ON/OFF timer, except that 5.8 V (VTHH VTHL) becomes VTHH = 7 V.  
4. If the timer goes off during soft start or in the undervoltage lockout region, after recovery,  
output will come on after the soft-start time or after the rise time to the undervoltage lockout  
release point, which is determined by the time constant.  
Rev.4.00 Jun 15, 2005 page 12 of 39  
HA16107P/FP, HA16108P/FP  
Absolute Maximum Ratings  
(Ta = 25°C)  
Item  
Supply voltage  
Symbol  
Rating Value  
Units  
Notes  
VIN  
30  
V
Output current (DC)  
Output current (peak)  
Current limiter voltage  
Error amp input voltage  
E/O output voltage  
RT1 pin current  
IO  
±0.2  
A
Iopeak  
VCL  
±2  
A
+4, –1  
Vref  
V
VIEA  
VIE/O  
IRT1  
IRT2  
PT  
V
Vref  
V
500  
µA  
mA  
mW  
°C  
°C  
RT2 pin current  
5
Power dissipation  
680  
1, 2  
Operating temperature range  
Storage temperature range  
Topr  
Tstg  
–20 to +85  
–55 to +125  
Notes: 1. For the “FP” products (SOP package), this value is when mounted on a 40 by 40 by 1.6 mm glass epoxy  
substrate. However, this value must be derated by 8.3 mW/°C from Ta = 45°C. When the wiring density is  
10%, and 11.1 mW/°C from Ta = 64°C when the wiring density is 30%.  
2. For the “P” products (DIP package), this value is valid up to 45°C, and must be derated by  
8.3 mW/°C above 45°C.  
3. In the case of SOP, use center 4 pins, (4), (5), (12), (13) for solder-mounting and connect the wide ground  
pattern, because these pins are available for heat sink of this IC.  
30% Wiring density  
10% Wiring density  
45°C 64°C  
700  
600  
500  
400  
300  
200  
100  
20  
0
20  
40  
60  
80  
100 120 140  
Ambient temperature Ta (°C)  
Rev.4.00 Jun 15, 2005 page 13 of 39  
HA16107P/FP, HA16108P/FP  
Electrical Characteristics  
(Ta = 25°C, VIN = 18 V, fOSC = 100 kHz)  
Section  
Item  
Output voltage  
Line regulation  
Load regulation  
Symbol  
Vref  
Min  
6.10  
Typ  
6.45  
30  
Max  
6.80  
60  
Unit  
V
Test Conditions  
Note  
Reference  
voltage  
Line  
mV  
mV  
12 V VIN 30 V  
0 mA IO 10 mA  
Load  
30  
60  
Temperature  
stability  
Vref/  
Ta  
40  
ppm/  
°C  
Short circuit current  
IOS  
30  
50  
mA  
V
Vref = 0 V  
Over voltage protec-  
tion (Vref OVP  
voltage)  
Vrovp  
7.4  
8.0  
9.0  
Triangle  
wave  
generator  
Maximum frequency  
Minimum frequency  
Voltage stability  
fmax  
fmin  
600  
1
kHz  
kHz  
%
f/fo1  
±1  
±3  
12 V VIN 30 V  
fo1 = (fmax + fmin)/2  
Temperature stability  
Frequency accuracy  
Minimum deadband  
f/fo2  
fOSC  
tDB  
270  
±1  
300  
%
kHz  
µs  
–20°C Ta +85°C  
fo2 = (fmax + fmin)/2  
330  
1.0  
2.5  
RT1 = RT2 = 27 kΩ  
CT = 120 pF  
PWM  
comparator pulse width  
Low level threshold  
VTL  
1.9  
2.2  
V
voltage  
High level threshold  
Differential threshold  
VTH  
3.8  
1.7  
4.2  
2.0  
±1  
4.6  
2.3  
±3  
V
V
VTH  
DB1  
Deadband width  
initial accuracy  
%
RT1 = RT2 = 27 kΩ  
CT = 470 pF  
Deadband width  
voltage stability  
DB2  
DB3  
±0.2  
±1  
±2.0  
%
%
12 V VIN 30 V  
(Dmax – Dmin)/2  
Deadband width  
–20°C Ta +85°C  
temperature stability  
(Dmax – Dmin)/2  
Error amp  
Input offset voltage  
Input bias current  
Input sink current  
Output source current  
VIO  
2
10  
2.0  
mV  
µA  
µA  
µA  
V
IIB  
0.8  
140  
140  
Iosink  
Iosource  
VOH  
80  
80  
VO = 2 V  
VO = 5 V  
IO = 10 µA  
High level output  
voltage  
Vref –  
1.5  
Low level output  
voltage  
VOL  
0.5  
V
IO = 10 µA  
Voltage gain  
Band width  
GV  
55  
15  
dB  
MHz  
V
f = 10 kHz  
BW  
(–) Common mode  
voltage  
VCM  
+
1.2  
(+) Common mode  
voltage  
VCM  
Vref –  
1.5  
V
Over-  
current  
detector  
(+) Threshold voltage  
(+) Bias current  
VTH  
IB+  
VTH  
IB–  
toff  
+
0.216  
0.240  
180  
0.264  
250  
V
µA  
V
VCL+ = 0 V  
(–) Threshold voltage  
(–) Bias current  
–0.264 –0.240  
–0.216  
1350  
1, 2  
1, 2  
950  
100  
µA  
ns  
VCL = –0.3 V  
CL; open  
Response time  
VCL = +0.35 V  
Notes: 1. Only applies to the HA16107P, HA16108P  
2. The terminal should not be applied under –1.0 V.  
Rev.4.00 Jun 15, 2005 page 14 of 39  
HA16107P/FP, HA16108P/FP  
Electrical Characteristics (cont.)  
(Ta = 25°C, VIN = 18 V, fOSC = 100 kHz)  
Section  
Item  
High level voltage  
Sink current  
Symbol  
VSTH  
Min  
3.2  
7
Typ  
3.8  
Max  
4.4  
Unit  
V
Test Conditions  
Isink = 1 mA  
Note  
Soft start  
Isink  
10  
13  
µA  
V
VST = 2.0 V  
Under  
voltage  
lockout 1  
VIN high level thre-  
shold voltage  
VINTH  
14.7  
16.2  
17.7  
VIN low level thre-  
shold voltage  
VINTL  
VTH  
VrTH  
VrTL  
8.5  
5.2  
4.5  
3.5  
6.5  
9.5  
6.2  
5.0  
4.0  
7.0  
10.5  
7.2  
5.5  
4.5  
7.5  
V
V
V
V
V
Threshold differential  
voltage  
(VINTH – VINTL)  
Under  
voltage  
lockout 2  
Vref high level thre-  
shold voltage  
Vref low level thre-  
shold voltage  
Timer  
latch,  
Latch threshold  
voltage  
VTHH  
Latch threshold  
voltage  
ON/OFF  
timer *2  
VIN reset voltage  
Reset voltage  
VINR2  
VTHL2  
6.0  
1.0  
2.0  
6.5  
1.3  
3.0  
7.0  
1.6  
V
V
V
1
Differential threshold to V  
UVL low voltage  
(VINTL – VINR2  
Over current  
)
Source current  
(OCL mode)  
Isource  
8
2.5  
12  
4
16  
µA  
µA  
detection mode  
Sink current  
(latch mode)  
Isink  
5.5  
TL(ON/OFF)  
terminal = 4 V  
Output  
Low voltage  
High voltage  
VOL1  
VOH  
1.7  
2.2  
V
V
Iosink = 0.2 A  
VIN  
Iosource = 0.2 A  
2.2  
Low voltage  
VOL2  
0.5  
V
Iosink = 1 mA  
(standby mode)  
Rising time  
tr  
40  
60  
ns  
ns  
CL = 1000 pF  
CL = 1000 pF  
VIN = 14 V  
Falling time  
tf  
Total  
Standby current  
Operation current  
Ist  
IIN1  
160  
16  
250  
20  
µA  
mA  
VIN = 30 V,  
CL = 1000 pF,  
f = 100 kHz  
Operation current  
IIN2  
12  
16  
mA  
VIN = 30 V,  
f = 100 kHz,  
Output open  
ON/OFF latch  
current  
IIN3  
VZ  
350  
34  
460  
µA  
VIN = 14 V  
VIN – GND Zener  
voltage  
30  
V
Notes: 1. Only applies to the HA16108P/FP.  
2. Timer latch: HA16107P/FP.  
ON/OFF timer: HA16108P/FP.  
Rev.4.00 Jun 15, 2005 page 15 of 39  
HA16107P/FP, HA16108P/FP  
Note on Standby Current  
In the test circuit shown in figure 1, the operating current at the start of PWM pulse output is the standby current.  
If the resistance connected externally to the Vref pin (including RT2) is smaller than that of the test circuit, the apparent  
standby current will increase.  
VIN  
Ist  
Vref  
HA16107  
Series  
+
CIN  
IIN  
Rref  
Figure 1 Standby Current Test Circuit  
Rev.4.00 Jun 15, 2005 page 16 of 39  
HA16107P/FP, HA16108P/FP  
Application Note  
Case:  
When DC power is applied directly as the power supply of the HA16107/HA16108, without using the transformer  
backup coil.  
Phenomenon:  
The IC may not be activated in the case of a circuit in which VIN rises quickly (10 V/100 µs or faster), such as that  
shown in figure 2.  
Reason:  
Because of the IC circuit configuration, the timer latch block operates first.  
Remedy (counter measure):  
Take remedial action such as configuring a time constant circuit as shown in figure 3, to keep the VIN rise speed  
below 10 V/100 µs.  
If the IC power supply consists of an activation resistance and backup coil, as in an AC/DC converter, The VIN rise  
speed is usually around 1 V/100 µs, and there is no risk of this phenomenon occurring.  
Output  
Input  
VIN  
HA16107  
Series  
VIN  
Feedback  
GND  
Figure 2 Example of Circuit with Fast VIN Rise Time  
Input  
Output  
Time constant  
circuit  
R 51Ω  
VIN  
HA16107  
Series  
VIN  
18 V  
Feedback  
1 µF  
C
GND  
Figure 3 Sample Remedial Circuit  
Rev.4.00 Jun 15, 2005 page 17 of 39  
HA16107P/FP, HA16108P/FP  
Characteristic Curves  
Operating Current vs. Power Supply Voltage  
40  
30  
20  
10  
Ta = 25°C  
RT1  
CT = 470 pF  
fOSC = 100 kHz  
=
R
27 kΩ  
=
T2  
0
10  
20  
30  
40  
Power supply voltage (V)  
Latch Current vs. Power Supply Voltage  
2.0  
1.5  
1.0  
0.5  
Ta = 25°C  
T1 = RT2 = 27 kΩ  
R
CT =470 pF  
fOSC = 100 kHz  
0
10  
20  
30  
40  
Power supply voltage (V)  
Rev.4.00 Jun 15, 2005 page 18 of 39  
HA16107P/FP, HA16108P/FP  
Standby Current vs. Power Supply Voltage  
400  
Ta = 25°C  
T1 = RT2 = 27 k  
R
CT =470 pF  
300  
200  
100  
fOSC = 100 kHz  
0
4
8
12  
16  
20  
Power supply voltage (V)  
Output VOH vs. Reference Voltage  
20  
15  
10  
5
Ta = 25°C  
IN = 20 V  
V
CT = 470 pF  
Vref  
UVL2 Voltage  
Vref  
OVP Voltage  
0
2
4
6
8
10  
Reference voltage (V)  
Rev.4.00 Jun 15, 2005 page 19 of 39  
HA16107P/FP, HA16108P/FP  
Reference Voltage vs. Power Supply Voltage  
8
Ta = 25°C  
RT1 = RT2 = 27 kΩ  
CT =470 pF  
6
4
2
fOSC = 100 kHz  
0
10  
20  
30  
Power supply voltage (V)  
Output OFF Time vs. VCL  
400  
300  
200  
100  
Ta = 25°C  
RT1 = RT2 = 27 kΩ  
CT =470 pF  
VCL  
fOSC = 100 kHz  
CL = 100 pF  
CL = unloaded  
0
0.2  
0.3  
0.4  
VCL (V)  
Rev.4.00 Jun 15, 2005 page 20 of 39  
HA16107P/FP, HA16108P/FP  
Output ON Duty vs. Error Input Voltage  
60  
50  
40  
30  
Ta = 25°C  
T1 = RT2 = 27 kΩ  
R
CT =470 pF  
fOSC = 100 kHz  
20  
10  
0
1
2
3
4
5
Error input voltage (V)  
Rev.4.00 Jun 15, 2005 page 21 of 39  
HA16107P/FP, HA16108P/FP  
Reference Voltage and PWM Out vs. CL(+)  
0
0.1  
0.2  
0.3  
0.4  
3.0  
0
0.1  
0.2  
0.3  
0.4  
3.0  
CL(+)  
Reference Voltage and PWM Out vs. CL()  
0
0.1  
0.2  
0.3  
0.4  
1.0  
0
0.1  
0.2  
0.3  
0.4  
1.0  
CL()  
Rev.4.00 Jun 15, 2005 page 22 of 39  
HA16107P/FP, HA16108P/FP  
Timing Resistance vs. Deadband Duty  
20  
VIN  
Ta  
=
18V  
=
25°C  
15  
10  
5
CT  
= 470 pF  
f
OSC 100 kHz  
RT1  
R
T2  
0
80  
30  
40  
50  
60  
70  
Deadband duty (%)  
Temperature Fluctuation vs. Ambient Temperature  
2000  
1000  
0
VIN  
= 18V  
RT1  
=
R
= 27 kΩ  
T2  
CT  
=
470 pF  
100 kHz  
fOSC  
=
1000  
2000  
20  
85  
0
25  
50  
75  
Ambient temperature (°C)  
Rev.4.00 Jun 15, 2005 page 23 of 39  
HA16107P/FP, HA16108P/FP  
Frequency Variance vs. Ambient Temperature  
18V  
10  
VIN  
RT1  
=
=
R
= 27 kΩ  
T2  
CT  
=
470 pF  
= 100 kHz  
5
0
fOSC  
5  
10  
20  
0
25  
50  
75  
85  
Ambient temperature (°C)  
Frequency Variance vs. Ambient Temperature  
= 18V  
10  
5
VIN  
RT1  
=
R
= 27 kΩ  
T2  
CT  
= 120 pF  
fOSC = 300 kHz  
0
5  
10  
20  
0
25  
50  
75  
85  
Ambient temperature (°C)  
Rev.4.00 Jun 15, 2005 page 24 of 39  
HA16107P/FP, HA16108P/FP  
Frequency Variance vs. Ambient Temperature  
18V  
10  
VIN  
=
=
RT1  
R
= 13 kΩ  
T2  
CT  
=
120 pF  
= 600 kHz  
5
0
fOSC  
5  
10  
20  
0
25  
50  
75  
85  
Ambient temperature (°C)  
Output ON Duty Variance vs. Ambient Temperature  
= 18V  
10  
5
VIN  
0
f
f
=
=
100 kHz  
300 kHz  
5  
f
=
600 kHz  
10  
20  
0
25  
50  
75  
85  
Ambient temperature (°C)  
Rev.4.00 Jun 15, 2005 page 25 of 39  
HA16107P/FP, HA16108P/FP  
Oscillator Frequency vs. Timing Resistance  
600  
500  
VIN = 18 V  
Ta = 25°C  
300  
100  
90  
70  
50  
30  
10  
9
7
5
7
10  
30  
50  
70  
100  
Timing resistance RT1 (= RT2) (kΩ)  
Rev.4.00 Jun 15, 2005 page 26 of 39  
HA16107P/FP, HA16108P/FP  
Vout Output Rising Waveform  
Test circuit  
Ta  
= 25°C  
40  
30  
RT1  
=
R
= 27 kΩ  
T2  
CT  
= 470 pF  
VIN  
fOSC  
=
100 kHz  
Current probe  
IO  
20  
TL  
+
10  
1 µF  
OUT  
CL  
0
CL (+)  
1000 pF  
27 k  
RT1  
500  
0
470 pF  
CT  
ST  
CST  
+
1 µF  
RT2 Vref  
27 k  
500  
* Current probe: Tektronix AM503  
200 ns/div  
Vout Output Falling Waveform  
40  
30  
20  
10  
0
500  
0
500  
200 ns/div  
Rev.4.00 Jun 15, 2005 page 27 of 39  
HA16107P/FP, HA16108P/FP  
HA16107  
Operating waveform at the TL pin  
When overcurrent is input at the point  
VIN = 18V  
Test circuit  
R
T1 = RT2 = 27 kΩ  
VIN  
CT = 470 pF  
where the duty cycle is 0%.  
fOSC = 100 kHz  
7
6
5
4
3
2
1
0
TL  
+
OUT  
SW  
1 µF  
CL  
CL(+)  
1000 pF  
Clock  
470 pF  
B
RT1  
CT  
27 k  
ST  
CST  
1 µF  
+
RT2 Vref  
27 kΩ  
A
Triangle  
wave  
CL(+) when  
input at a  
duty of 0%  
0.5 sec/div  
CL(+) when  
input at a  
tON  
tOFF  
duty of 30%  
Output pulse shutdown region  
t1  
SW ON SW OFF  
t2  
When overcurrent is input at the point  
where the duty cycle is 30%.  
t1  
t2  
Du =  
× 100 (%)  
7
A
Enlargement of section  
6
5
4
3
2
1
0
b
c
a
VTL  
B
CTL discharged at 4 µA  
CTL discharged at 12 µA  
t
B
Enlargement of section  
A
VTL  
CTL discharged at 4 µA  
t
0.5 sec/div  
tOFF  
tON  
a
to  
to  
b
c
: PWM pulse output is High  
b
: The point where overcurrent  
is detected  
Output pulse shutdown region  
SW ON SW OFF  
b
: PWM pulse output is Low.  
Rev.4.00 Jun 15, 2005 page 28 of 39  
HA16107P/FP, HA16108P/FP  
HA16108  
Operating waveform at the ON/OFF pin  
When overcurrent is input at the point  
VIN = 18V  
Test circuit  
RT1 = RT2 = 27 k½  
CT = 470 pF  
VIN  
where the duty cycle is 0%.  
fOSC = 100kHz  
7
6
ON/OFF  
+
OUT  
1 µF  
CL  
1000 pF  
CL(+)  
B
Clock  
470 pF  
5
4
RT1  
CT  
27 k½  
ST  
CST  
1 µF  
+
RT2  
3
2
27 k½  
A
1
0
Triangle  
wave  
CL(+) when  
input at a  
duty of 0%  
0.5 sec/div  
tON  
tOFF  
tON  
tOFF  
tON tOFF  
CL(+) when  
input at a  
duty of 30%  
t1  
Output pulse shutdown region  
SW ON  
SW OFF  
t
2
When overcurrent is input at the point  
where the duty cycle is 30%.  
t1  
Du =  
× 100 (%)  
t
2
7
6
A
Enlargement of section  
B
c
b
a
V TL  
5
4
CTL discharged at 4 µA  
CTL discharged at 12 µA  
3
2
t
A
B
Enlargement of section  
1
0
V TL  
CTL discharged at 4 µA  
0.5 sec/div  
t
tON  
tOFF  
tON  
tOFF  
a
b
to  
: PWM pulse output is High.  
b
: The point where overcurrent  
is detected.  
Output pulse shutdown region  
SW ON  
SW OFF  
to c : PWM pulse output is Low.  
b
Rev.4.00 Jun 15, 2005 page 29 of 39  
HA16107P/FP, HA16108P/FP  
Error Amplifier Characteristic  
60  
40  
20  
0
0
45  
AVO  
φ
90  
135  
180  
10 k 30 k 100 k 300 k 1 M  
3 M 10 M 30 M 100 M  
Input signal frequency fIN (Hz)  
Examples of Drooping Characteristics of Power Supplies Using these Ics  
5.0  
ON  
Pulse by pulse  
Current limiter operation  
Normal operation  
Latch state here  
A
2.5  
B
A
B
Heavy load  
Light load  
OFF  
0
1
2
3
4
IOUT (DC) (A)  
HA16107 (Latch shut-down)  
5.0  
ON  
Pulse by pulse  
Current limiter operation  
OFF  
A
B
2.5  
A
B
Heavy load  
Light load  
0
1
2
3
4
IOUT (DC) (A)  
HA16108 (Intermittent operation by means of ON/OFF timer)  
Rev.4.00 Jun 15, 2005 page 30 of 39  
HA16107P/FP, HA16108P/FP  
Operating Circuit Example  
Flyback Transforrmer Application Example  
(IC Vref used as system as reference voltage)  
Schottky barrier diode  
HRP 24  
El-30  
Trans former  
Bridge Diode  
Start-up Resistor  
140 V  
+
82 kΩ  
1 W  
5 V  
OUTPUT  
+
40T  
6T  
2SK1567  
470 µF  
51 Ω  
HZP 16  
1.5 Ω  
23T  
+
3 W  
RFI  
HRP 32  
Current Sense  
18.9 V  
FILTER  
50 V  
22 µF  
OVP  
Detector  
HZP 16  
TL  
AC  
INPUT  
Timerlatch  
Capacitor  
VIN  
+
16 V  
1 µF  
E/O −  
IN()  
NC  
OUT  
CL(+)  
VE  
330  
kΩ  
110 Ω  
51 Ω  
Current  
Sense  
L.P.F.  
510 kΩ  
68  
kΩ  
Phase  
Comp.  
4700 pF  
CL()  
GND  
27 kΩ  
IN(+)  
3.225 V  
RT1  
470 pF  
ST  
Soft Start  
Cap.  
CT  
fosc = 100 kHz,  
Dumax = 50%  
1 µF  
+
16 V  
33k33kΩ  
Vref  
RT2  
Frequency,  
Max, Duty  
Setting  
27 kΩ  
1 µF  
16 V  
+
HA16107P/FP  
6.45 V  
Rev.4.00 Jun 15, 2005 page 31 of 39  
HA16107P/FP, HA16108P/FP  
Forward Transformer Application Example  
Rev.4.00 Jun 15, 2005 page 32 of 39  
HA16107P/FP, HA16108P/FP  
When OVP signal is inserted at CL(+) pin  
VIN  
RB  
OVP detector  
VIN  
OUT  
CL(+)  
TL  
+
1 µF  
When the OVP detection Zener diode turns on, latch shutdown of the output  
is performed after the elapse of the time determined by the capacitance  
connected the TL pin.  
Rev.4.00 Jun 15, 2005 page 33 of 39  
HA16107P/FP, HA16108P/FP  
Application  
1. Use of Error Amplifier for Flyback Transformer Primary-Side Control  
In this example, the fact that the transformers winding ratio and voltage ratio in Figure 4 are mutually proportional is  
made use of in a flyback transformer type AC-DC converter. As fluctuation of output voltage V2 also appears in IC  
power supply voltage V3, this is divided by a resistance and amplified by an error amplifier. An advantage of this  
method is that a photocoupler need not be used, making it possible to configure a power supply with a small number of  
parts (this example cannot be applied to a forward transformer).  
V1(input voltage)  
Commercial AC input  
Output  
Start-up  
N1  
N3  
resistance  
To switch element  
V3(IC power supply voltage)  
V2(output voltage)  
N2  
R4  
C1  
R1  
R3  
Flyback  
transformer  
R2  
R1 + R2  
1
2
14  
× V3 =  
Vref  
E/O  
15  
Error amp.  
+
R2  
N3  
N2  
Where V3 =  
× V2,  
11  
2.5V  
Figure 4 Error Amplifier Peripheral Circuitry Diagram  
<Determining External Constants around Error Amplifier>  
1. Detrrrmining DC Characteristics  
In Figure 4, the relational expression in the box is satisfied, and therefore parameters are determined based on this.  
The absolute value of the number of transformer windings is determined based on the equation N1:N2:N3 = V1:V2:V3,  
taking primary inductance into consideration.  
Next, IC operating voltage V3 is made around 11V to 18V, taking the UVL voltage into consideration. If V3 is too  
large, the power consumption of the IC will increase, causing heat emission problems. If V3 is too small, on the  
other hand, there will be problems with defective power supply start-up.  
2. Determining Error Amplifier Gain vs. Frequency Characteristic  
Taking the configuration in Figure 4, the error amplifier gain characteristic with respect to fluctuation of output  
voltage V2 is as shown in Figure 5.  
G1  
G2  
R6 0  
R6 = 0  
f1 fAC  
f2  
fOSC  
Frequency f (Hz)  
Figure 5 Error Amplifier Characteristic  
Rev.4.00 Jun 15, 2005 page 34 of 39  
HA16107P/FP, HA16108P/FP  
In Figure 5, the parameters are given by the following equations.  
Gain  
G1 = V3/V2 × R3/R1  
G2 = V3/V2 × R4/R1  
Corner frequencies  
f1 = 1/(2π C1 R3)  
f2 = 1/(2π C1 R4)  
Where R3>>R4 (10:1 or above)  
G1 is made around 30 to 50 dB, taking both regulation and stability into consideration.  
f1 is made a lower value than commercial frequency ripple fAC, thus preventing hunting (a system instability  
phenomenon).  
Next, G2 is set to 0 dB or less as a guideline, so that there is no gain in IC operating frequency fOSC (several tens to  
several hundreds of kHz). f2 should be set to a value that is substantially smaller than fOSC, and that is appropriate for  
the power supply response speed (several kHz). In the case of a bridge type rectification circuit, the commercial  
frequency ripple is twice the input frequency (with a 50 Hz commercial frequency, fAC = 100 Hz).  
2. External Constant Design for Current Detection Section (HA16107, HA16108, HA16666)  
In the above IC models, which incorporate a current detection function, a low-pass filter such as shown in Figure 6 must  
be inserted between switch element current detection resistance RCS and the current detection pin of the IC.  
140V  
Input voltage VB  
Floating capacitance  
CX  
Output  
From PWM  
output pin  
of IC  
Switch element  
power MOS FET  
To current  
detection pin  
of IC  
ID  
RA  
V11  
Current detection resistance  
V12  
RB  
RCS  
CA  
Several hundred m  
to several Ω  
Filter (LPF)  
Figure 6 Current Detection Circuit  
Rev.4.00 Jun 15, 2005 page 35 of 39  
HA16107P/FP, HA16108P/FP  
The reason for this is that, when the switch element is on in each cycle, there is an impulse current associated with  
charging of transformer floating capacitance CX, and IC current detection malfunctions (see Figure 7).  
VTH  
V11  
V12  
Figure 7 Current Detection Waveform  
<Setting Numeric Values>  
If the switch element current to be detected is designated ID, and the current detection resistance RCS, then the following  
equation is satisfied using the parameters in Figure 6.  
ID × RCS = ((RA + RB)/RB) VTH  
VTH is the detection level voltage of the IC (240 mV in the case of the HA16107, for example). RA and RB are set to  
values on the order of several hundred to several k, so that RCS is not affected.  
Next, the filter cutoff frequency is set according to the following equation.  
fC = 1/(2π CA (RA/RB))  
fC can be found with the following guideline, using IC operating frequency fOSC, power supply rating on-duty D, and  
power MOS element turn-on time tON  
.
fosc/D fC 1/(100 × tON  
)
Value 100 in the above equation provides a margin for noise, ringing, and so forth.  
<Actual Example>  
In an SW power supply using an HA16107, with a 100 kHz operating frequency and a D value of 30%, the relevant  
values were as follows: VB = 140 V, CX = 80 pF, tON = 10 ns. Thus, when RCS = 1 , the V11 level peak value reaches  
the following figure.  
V11 (peak) = RCS × ID peak  
= RCS × (VB × CX)/tON  
= 1Ω × (140 V × 80 pF)/10 ns  
= 1.12 (V)  
A filter with the following constants was then inserted.  
RA = RB = 1 k, CA = 1000 pF  
At this time, the detectable drain current is 0.48 (A), and the filter cutoff frequency is 318 (kHz). Note that increasing a  
filter time constant is effective against noise, but if the value is too large, error will arise in the switch element current  
detection level.  
Rev.4.00 Jun 15, 2005 page 36 of 39  
HA16107P/FP, HA16108P/FP  
3. IC Heat Emission Problem and Countermeasures (HA16107 Series, HA16114 Series)  
While the above ICs can directly drive a power MOS FET gate, if the method of use is not thoroughly investigated,  
there will be a tendency for the gate drive power to increase and a problem of heat emission by the IC may occur.  
This section should therefore be noted and appropriate measures taken to prevent this kind of problem.  
1. Power MOS FET Drive Characteristics  
When power MOS FET drive is performed, in order to lower the on-resistance sufficiently, overdrive is normally  
performed with a voltage considerably higher than 5 V, for example, such as the 15 V power supply voltage of the  
IC.  
At this time, the power that should be supplied from the IC to the power MOS FET is determined by gate load Qg in  
Figure 9.  
2. IC Heat-Emission Power Calculation (Figure 9)  
The power that contributes to IC heat emission is calculated by means of the following equation.  
Pd = VIN IQ + 2Qg VIN f  
Where  
VIN : Power supply voltage of IC  
IQ : Operating current of IC (unloaded)  
Qg : Above-mentioned gate load  
f
: Operating frequency of IC  
The coefficient, 2, indicates that gate discharging also contributes to heat emission.  
4. Power MOS FET Gate Resistance Design (HA16107 Series, HA16114 Series)  
There are the following three purposes in connecting a gate resistance, and the circuit is generally of the kind shown in  
Figure 8.  
(1) To suppress peak current due to gate charging  
(2) To protect IC output pins  
(3) To provide drive appropriate to power MOS FET input characteristics  
DG  
To transformer  
Power  
MOS FET  
OUT  
RG1  
RG2  
CS  
IC  
output pin  
RCS  
Figure 8 Gate Drive Circuit  
Rev.4.00 Jun 15, 2005 page 37 of 39  
HA16107P/FP, HA16108P/FP  
This gate resistance RG is given by the following equation.  
RG = (VG/IG) – (VG × tON)/Qg, RG = RG1 + RG2  
IG : Gate input peak current  
VG : Gate drive voltage wave high value (equal to power supply voltage of IC)  
tON : Power MOS FET turn-on time  
tOFF : Power MOS FET turn-off time  
Qg : Gate charge according to Figure 9  
VDS  
VDS  
(V)  
VGS  
(V)  
VGS  
Qg (nc)  
Figure 9 Power MOS FET Dynamic Input Characteristics  
Refer to the power MOS FET catalog for information on tON and Qg.  
By dividing RG into RG1 and RG2, it is possible for speed to be slowed when the power MOS FET is on, and  
increased when off.  
Power MOS FET on and off times when mounted, tON’ and tOFF’, are as follows.  
tON’ = tON + Qg(RG1 + RG2)/VG  
tOFF’ = tOFF + Qg RG2/VG  
<Actual Example>  
When driving a power MOS FET and 2SK1567 with an HA16107, etc.  
(RG1 = 100 , RG2 = 20 , VG = 15 V)  
t
ON’ = 70 ns + 36 nc (100 + 20 )/(15 V) = 360 (ns)  
tOFF’ = 135 ns + 36 nc (20 )/(15 V) = 183 (ns)  
Generally, the gate resistance values in the case of this circuit configuration are on the order of 100 to 470 for RG1  
and 10 to 47 for RG2.  
Rev.4.00 Jun 15, 2005 page 38 of 39  
HA16107P/FP, HA16108P/FP  
Package Dimensions  
As of January, 2003  
19.20  
20.00 Max  
Unit: mm  
16  
1
9
8
1.3  
1.11 Max  
7.62  
+ 0.13  
0.05  
0.25  
2.54 ± 0.25  
0.48 ± 0.10  
0° 15°  
Package Code  
JEDEC  
JEITA  
DP-16  
Conforms  
Conforms  
1.07 g  
Mass (reference value)  
JEITA Package Code  
P-SOP16-5.5x10.06-1.27  
RENESAS Code  
PRSP0016DH-A  
Previous Code  
FP-16DA  
MASS[Typ.]  
0.24g  
NOTE)  
1. DIMENSIONS"*1 (Nom)"AND"*2"  
DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION"*3"DOES NOT  
INCLUDE TRIM OFFSET.  
*1  
D
F
16  
9
bp  
b1  
Index mark  
Dimension in Millimeters  
Reference  
Symbol  
Min  
Nom  
10.06  
5.5  
Max  
10.5  
Terminal cross section  
D
E
1
8
bp  
A 2  
A 1  
A
*3  
e
0.00  
0.34  
0.17  
0.10  
0.20  
2.20  
0.50  
Z
x
M
L1  
b
0.42  
0.40  
0.22  
0.20  
p
b
1
c
0.27  
c
1
θ
H E  
e
0
°
8°  
7.50  
7.80  
1.27  
8.00  
y
x
0.12  
0.15  
0.80  
0.90  
L
y
Z
Detail F  
L
0.50  
0.70  
1.15  
L
1
Rev.4.00 Jun 15, 2005 page 39 of 39  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble  
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits,  
(ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's  
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of  
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is  
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor  
home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to  
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes  
no responsibility for any damage, liability or other loss resulting from the information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life  
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a  
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater  
use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and  
cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology (Shanghai) Co., Ltd.  
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China  
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon 2.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY