H8/3835U [RENESAS]

Single-Chip Microcomputer; 单片机
H8/3835U
型号: H8/3835U
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Single-Chip Microcomputer
单片机

文件: 总497页 (文件大小:1170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Hitachi  
Electric and Hitachi XX, to Renesas Technology Corp.  
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand  
names are mentioned in the document, these names have in fact all been changed to Renesas  
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and  
corporate statement, no changes whatsoever have been made to the contents of the document, and  
these changes do not constitute any alteration to the contents of the document itself.  
Renesas Technology Home Page: http://www.renesas.com  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
Cautions  
Keep safety first in your circuit designs!  
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but  
there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire  
or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)  
placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or  
mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation  
product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any  
other rights, belonging to Renesas Technology Corporation or a third party.  
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,  
originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in  
these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents  
information on products at the time of publication of these materials, and are subject to change by Renesas Technology  
Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact  
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these  
inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corporation by various means, including the  
Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and  
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of  
the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other  
loss resulting from the information contained herein.  
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used  
under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an  
authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for  
any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea  
repeater use.  
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these  
materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license  
from the Japanese government and cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is  
prohibited.  
8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.  
Hitachi Single-Chip Microcomputer  
H8/3834U Series  
HD6433833U  
HD6473834U, HD6433834U  
HD6433835U  
HD6433836U  
HD6473837U, HD6433837U  
Hardware Manual  
ADE-602-089  
Preface  
The H8/300L Series of single-chip microcomputers has the high-speed H8/300L CPU at its core,  
with many necessary peripheral functions on-chip. The H8/300L CPU instruction set is  
compatible with the H8/300 CPU.  
The H8/3834U Series has a system-on-a-chip architecture that includes such peripheral functions  
as an LCD controller/driver, five types of timers, a 14-bit PWM, a three-channel serial  
communication interface, and an A/D converter. This makes it ideal for use in systems requiring  
an LCD display.  
This manual describes the hardware of the H8/3834U Series. For details on the H8/3834U Series  
instruction set, refer to the H8/300L Series Programming Manual.  
Contents  
Section 1 Overview..........................................................................................................  
1
1
5
6
6
8
1.1  
1.2  
1.3  
Overview.........................................................................................................................  
Internal Block Diagram ..................................................................................................  
Pin Arrangement and Functions .....................................................................................  
1.3.1 Pin Arrangement.................................................................................................  
1.3.2 Pin Functions ......................................................................................................  
Section 2 CPU................................................................................................................... 13  
2.1  
Overview......................................................................................................................... 13  
2.1.1 Features............................................................................................................... 13  
2.1.2 Address Space..................................................................................................... 14  
2.1.3 Register Configuration........................................................................................ 14  
Register Descriptions...................................................................................................... 15  
2.2.1 General Registers................................................................................................ 15  
2.2.2 Control Registers ................................................................................................ 15  
2.2.3 Initial Register Values......................................................................................... 17  
Data Formats................................................................................................................... 17  
2.3.1 Data Formats in General Registers ..................................................................... 18  
2.3.2 Memory Data Formats........................................................................................ 19  
Addressing Modes .......................................................................................................... 20  
2.4.1 Addressing Modes .............................................................................................. 20  
2.4.2 Effective Address Calculation ............................................................................ 22  
Instruction Set................................................................................................................. 26  
2.5.1 Data Transfer Instructions .................................................................................. 28  
2.5.2 Arithmetic Operations ........................................................................................ 30  
2.5.3 Logic Operations ................................................................................................ 31  
2.5.4 Shift Operations.................................................................................................. 31  
2.5.5 Bit Manipulations ............................................................................................... 33  
2.5.6 Branching Instructions........................................................................................ 37  
2.5.7 System Control Instructions ............................................................................... 39  
2.5.8 Block Data Transfer Instruction ......................................................................... 40  
Basic Operational Timing............................................................................................... 42  
2.6.1 Access to On-Chip Memory (RAM, ROM) ....................................................... 42  
2.6.2 Access to On-Chip Peripheral Modules ............................................................. 43  
CPU States...................................................................................................................... 45  
2.7.1 Overview............................................................................................................. 45  
2.7.2 Program Execution State ................................................................................... 46  
2.7.3 Program Halt State.............................................................................................. 46  
2.7.4 Exception-Handling State................................................................................... 46  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Memory Map .................................................................................................................. 47  
2.8.1 Memory Map ...................................................................................................... 47  
2.8.2 LCD RAM Address Relocation.......................................................................... 52  
Application Notes........................................................................................................... 53  
2.9.1 Notes on Data Access......................................................................................... 53  
2.9.2 Notes on Bit Manipulation.................................................................................. 55  
2.9.3 Notes on Use of the EEPMOV Instruction......................................................... 61  
Section 3 Exception Handling...................................................................................... 63  
3.1  
3.2  
Overview......................................................................................................................... 63  
Reset ............................................................................................................................ 63  
3.2.1 Overview............................................................................................................. 63  
3.2.2 Reset Sequence................................................................................................... 63  
3.2.3 Interrupt Immediately after Reset....................................................................... 65  
Interrupts......................................................................................................................... 66  
3.3.1 Overview............................................................................................................. 66  
3.3.2 Interrupt Control Registers ................................................................................. 68  
3.3.3 External Interrupts .............................................................................................. 77  
3.3.4 Internal Interrupts ............................................................................................... 78  
3.3.5 Interrupt Operations............................................................................................ 79  
3.3.6 Interrupt Response Time..................................................................................... 84  
Application Notes........................................................................................................... 85  
3.4.1 Notes on Stack Area Use.................................................................................... 85  
3.4.2 Notes on Rewriting Port Mode Registers ........................................................... 86  
3.3  
3.4  
Section 4 Clock Pulse Generators............................................................................... 89  
4.1  
Overview......................................................................................................................... 89  
4.1.1 Block Diagram.................................................................................................... 89  
4.1.2 System Clock and Subclock ............................................................................... 89  
System Clock Generator................................................................................................. 90  
Subclock Generator ........................................................................................................ 93  
Prescalers........................................................................................................................ 96  
Note on Oscillators ......................................................................................................... 97  
4.2  
4.3  
4.4  
4.5  
Section 5 Power-Down Modes..................................................................................... 99  
5.1  
Overview......................................................................................................................... 99  
5.1.1 System Control Registers ................................................................................... 102  
Sleep Mode..................................................................................................................... 105  
5.2.1 Transition to Sleep Mode.................................................................................... 105  
5.2.2 Clearing Sleep Mode .......................................................................................... 105  
Standby Mode................................................................................................................. 106  
5.2  
5.3  
5.3.1 Transition to Standby Mode ............................................................................... 106  
5.3.2 Clearing Standby Mode...................................................................................... 106  
5.3.3 Oscillator Settling Time after Standby Mode is Cleared.................................... 106  
5.3.4 Transition to Standby Mode and Port Pin States ................................................ 107  
Watch Mode.................................................................................................................... 108  
5.4.1 Transition to Watch Mode .................................................................................. 108  
5.4.2 Clearing Watch Mode......................................................................................... 108  
5.4.3 Oscillator Settling Time after Watch Mode is Cleared....................................... 108  
Subsleep Mode................................................................................................................ 109  
5.5.1 Transition to Subsleep Mode .............................................................................. 109  
5.5.2 Clearing Subsleep Mode..................................................................................... 109  
Subactive Mode .............................................................................................................. 110  
5.6.1 Transition to Subactive Mode............................................................................. 110  
5.6.2 Clearing Subactive Mode.................................................................................... 110  
5.6.3 Operating Frequency in Subactive Mode ........................................................... 110  
Active (medium-speed) Mode ........................................................................................ 111  
5.7.1 Transition to Active (medium-speed) Mode....................................................... 111  
5.7.2 Clearing Active (medium-speed) Mode ............................................................. 111  
5.7.3 Operating Frequency in Active (medium-speed) Mode ..................................... 111  
Direct Transfer................................................................................................................ 112  
5.8.1 Direct Transfer Overview ................................................................................... 112  
5.8.2 Calculation of Direct Transfer Time before Transition ...................................... 113  
5.4  
5.5  
5.6  
5.7  
5.8  
Section 6 ROM.................................................................................................................. 117  
6.1  
Overview......................................................................................................................... 117  
6.1.1 Block Diagram.................................................................................................... 117  
H8/3834U PROM Mode................................................................................................. 118  
6.2.1 Setting to PROM Mode ..................................................................................... 118  
6.2.2 Socket Adapter Pin Arrangement and Memory Map ......................................... 118  
H8/3834U Programming ................................................................................................ 121  
6.3.1 Writing and Verifying......................................................................................... 121  
6.3.2 Programming Precautions................................................................................... 124  
H8/3837U PROM Mode................................................................................................. 125  
6.4.1 Setting to PROM Mode ...................................................................................... 125  
6.4.2 Socket Adapter Pin Arrangement and Memory Map ......................................... 125  
H8/3837U Programming ................................................................................................ 128  
6.5.1 Writing and Verifying......................................................................................... 128  
6.5.2 Programming Precautions................................................................................... 133  
Reliability of Programmed Data..................................................................................... 134  
6.2  
6.3  
6.4  
6.5  
6.6  
Section 7 RAM ................................................................................................................. 135  
7.1  
Overview......................................................................................................................... 135  
7.1.1 Block Diagram.................................................................................................... 135  
Section 8 I/O Ports........................................................................................................... 137  
8.1 Overview ............................................................................................................................ 137  
8.2  
Port 1 ............................................................................................................................ 139  
8.2.1 Overview............................................................................................................. 139  
8.2.2 Register Configuration and Description ............................................................. 139  
8.2.3 Pin Functions ...................................................................................................... 143  
8.2.4 Pin States ............................................................................................................ 145  
8.2.5 MOS Input Pull-Up............................................................................................. 145  
Port 2 ............................................................................................................................ 146  
8.3.1 Overview............................................................................................................. 146  
8.3.2 Register Configuration and Description ............................................................. 146  
8.3.3 Pin Functions ...................................................................................................... 150  
8.3.4 Pin States ............................................................................................................ 150  
Port 3 ............................................................................................................................ 151  
8.4.1 Overview............................................................................................................. 151  
8.4.2 Register Configuration and Description ............................................................. 151  
8.4.3 Pin Functions ...................................................................................................... 155  
8.4.4 Pin States ............................................................................................................ 157  
8.4.5 MOS Input Pull-Up............................................................................................. 157  
Port 4 ............................................................................................................................ 158  
8.5.1 Overview............................................................................................................. 158  
8.5.2 Register Configuration and Description ............................................................. 158  
8.5.3 Pin Functions ...................................................................................................... 160  
8.5.4 Pin States ............................................................................................................ 161  
Port 5 ............................................................................................................................ 162  
8.6.1 Overview............................................................................................................. 162  
8.6.2 Register Configuration and Description ............................................................. 162  
8.6.3 Pin Functions ...................................................................................................... 165  
8.6.4 Pin States ............................................................................................................ 166  
8.6.5 MOS Input Pull-Up............................................................................................. 166  
Port 6 ............................................................................................................................ 167  
8.7.1 Overview............................................................................................................. 167  
8.7.2 Register Configuration and Description ............................................................. 167  
8.7.3 Pin Functions ...................................................................................................... 169  
8.7.4 Pin States ............................................................................................................ 169  
8.7.5 MOS Input Pull-Up............................................................................................. 170  
Port 7 ............................................................................................................................ 171  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.8.1 Overview............................................................................................................. 171  
8.8.2 Register Configuration and Description ............................................................. 171  
8.8.3 Pin Functions ...................................................................................................... 173  
8.8.4 Pin States ............................................................................................................ 173  
Port 8 ............................................................................................................................ 174  
8.9.1 Overview............................................................................................................. 174  
8.9.2 Register Configuration and Description ............................................................. 174  
8.9.3 Pin Functions ...................................................................................................... 176  
8.9.4 Pin States ............................................................................................................ 176  
8.9  
8.10 Port 9 ............................................................................................................................ 177  
8.10.1 Overview............................................................................................................. 177  
8.10.2 Register Configuration and Description ............................................................. 177  
8.10.3 Pin Functions ...................................................................................................... 179  
8.10.4 Pin States ............................................................................................................ 180  
8.11 Port A ............................................................................................................................ 181  
8.11.1 Overview............................................................................................................. 181  
8.11.2 Register Configuration and Description ............................................................. 181  
8.11.3 Pin Functions ...................................................................................................... 183  
8.11.4 Pin States ............................................................................................................ 184  
8.12 Port B ............................................................................................................................ 185  
8.12.1 Overview............................................................................................................. 185  
8.12.2 Register Configuration and Description ............................................................. 185  
8.13 Port C ............................................................................................................................ 186  
8.13.1 Overview............................................................................................................. 186  
8.13.2 Register Configuration and Description ............................................................. 186  
Section 9 Timers............................................................................................................... 187  
9.1  
9.2  
Overview......................................................................................................................... 187  
Timer A........................................................................................................................... 188  
9.2.1 Overview............................................................................................................. 188  
9.2.2 Register Descriptions.......................................................................................... 190  
9.2.3 Timer Operation.................................................................................................. 192  
9.2.4 Timer A Operation States ................................................................................... 193  
Timer B........................................................................................................................... 194  
9.3.1 Overview............................................................................................................. 194  
9.3.2 Register Descriptions.......................................................................................... 195  
9.3.3 Timer Operation.................................................................................................. 197  
9.3.4 Timer B Operation States ................................................................................... 198  
Timer C........................................................................................................................... 199  
9.4.1 Overview............................................................................................................. 199  
9.4.2 Register Descriptions.......................................................................................... 201  
9.3  
9.4  
9.4.3 Timer Operation.................................................................................................. 204  
9.4.4 Timer C Operation States ................................................................................... 205  
Timer F ........................................................................................................................... 206  
9.5.1 Overview............................................................................................................. 206  
9.5.2 Register Descriptions.......................................................................................... 208  
9.5.3 Interface with the CPU ....................................................................................... 215  
9.5.4 Timer Operation.................................................................................................. 219  
9.5.5 Application Notes............................................................................................... 222  
Timer G........................................................................................................................... 224  
9.6.1 Overview............................................................................................................. 224  
9.6.2 Register Descriptions.......................................................................................... 226  
9.6.3 Noise Canceller Circuit....................................................................................... 230  
9.6.4 Timer Operation.................................................................................................. 231  
9.6.5 Application Notes............................................................................................... 235  
9.6.6 Sample Timer G Application.............................................................................. 239  
9.5  
9.6  
Section 10 Serial Communication Interface............................................................. 241  
10.1 Overview......................................................................................................................... 241  
10.2 SCI1................................................................................................................................ 242  
10.2.1 Overview........................................................................................................... 242  
10.2.2 Register Descriptions........................................................................................ 244  
10.2.3 Operation .......................................................................................................... 249  
10.2.4 Interrupts........................................................................................................... 253  
10.2.5 Application Notes............................................................................................. 253  
10.3 SCI2................................................................................................................................ 254  
10.3.1 Overview........................................................................................................... 254  
10.3.2 Register Descriptions........................................................................................ 256  
10.3.3 Operation .......................................................................................................... 262  
10.3.4 Interrupts........................................................................................................... 269  
10.3.5 Application Notes............................................................................................. 269  
10.4 SCI3................................................................................................................................ 270  
10.4.1 Overview........................................................................................................... 270  
10.4.2 Register Descriptions........................................................................................ 273  
10.4.3 Operation .......................................................................................................... 291  
10.4.4 Operation in Asynchronous Mode.................................................................... 295  
10.4.5 Operation in Synchronous Mode...................................................................... 303  
10.4.6 Multiprocessor Communication Function........................................................ 310  
10.4.7 Interrupts........................................................................................................... 316  
10.4.8 Application Notes............................................................................................. 317  
Section 11 14-Bit PWM ................................................................................................. 323  
11.1 Overview......................................................................................................................... 323  
11.1.1 Features............................................................................................................. 323  
11.1.2 Block Diagram.................................................................................................. 323  
11.1.3 Pin Configuration.............................................................................................. 324  
11.1.4 Register Configuration...................................................................................... 324  
11.2 Register Descriptions...................................................................................................... 325  
11.2.1 PWM Control Register (PWCR) ...................................................................... 325  
11.2.2 PWM Data Registers U and L (PWDRU, PWDRL) ........................................ 326  
11.3 Operation ........................................................................................................................ 327  
Section 12 A/D Converter.............................................................................................. 329  
12.1 Overview......................................................................................................................... 329  
12.1.1 Features............................................................................................................. 329  
12.1.2 Block Diagram.................................................................................................. 329  
12.1.3 Pin Configuration.............................................................................................. 330  
12.1.4 Register Configuration...................................................................................... 330  
12.2 Register Descriptions...................................................................................................... 331  
12.2.1 A/D Result Register (ADRR) ........................................................................... 331  
12.2.2 A/D Mode Register (AMR).............................................................................. 331  
12.2.3 A/D Start Register (ADSR) .............................................................................. 333  
12.3 Operation ........................................................................................................................ 334  
12.3.1 A/D Conversion Operation ............................................................................... 334  
12.3.2 Start of A/D Conversion by External Trigger Input ......................................... 334  
12.4 Interrupts......................................................................................................................... 335  
12.5 Typical Use ..................................................................................................................... 335  
12.6 Application Notes........................................................................................................... 338  
Section 13 LCD Controller/Driver.............................................................................. 339  
13.1 Overview......................................................................................................................... 339  
13.1.1 Features............................................................................................................. 339  
13.1.2 Block Diagram.................................................................................................. 340  
13.1.3 Pin Configuration.............................................................................................. 341  
13.1.4 Register Configuration...................................................................................... 341  
13.2 Register Descriptions...................................................................................................... 342  
13.2.1 LCD Port Control Register (LPCR) ................................................................. 342  
13.2.2 LCD Control Register (LCR) ........................................................................... 344  
13.3 Operation ........................................................................................................................ 346  
13.3.1 Settings Prior to LCD Display.......................................................................... 346  
13.3.2 Relation of LCD RAM to Display.................................................................... 347  
13.3.3 Connection to HD66100................................................................................... 348  
13.3.4 Operation in Power-Down Modes .................................................................... 356  
13.3.5 Boosting the LCD Driver Power Supply .......................................................... 357  
Section 14 Electrical Characteristics.......................................................................... 359  
14.1 H8/3834U Series Absolute Maximum Ratings .............................................................. 359  
14.2 H8/3833U and H8/3834U Electrical Characteristics...................................................... 360  
14.2.1 Power Supply Voltage and Operating Range.................................................... 360  
14.2.2 DC Characteristics............................................................................................ 362  
14.2.3 AC Characteristics ............................................................................................ 367  
14.2.4 A/D Converter Characteristics.......................................................................... 370  
14.2.5 LCD Characteristics.......................................................................................... 371  
14.3 H8/3835U, H8/3836U, and H8/3837U Electrical Characteristics.................................. 372  
14.3.1 Power Supply Voltage and Operating Range.................................................... 372  
14.3.2 DC Characteristics............................................................................................ 374  
14.3.3 AC Characteristics ............................................................................................ 379  
14.3.4 A/D Converter Characteristics.......................................................................... 382  
14.3.5 LCD Characteristics.......................................................................................... 383  
14.4 Operation Timing............................................................................................................ 384  
14.5 Output Load Circuit........................................................................................................ 389  
Appendix A CPU Instruction Set.................................................................................. 391  
A.1  
A.2  
A.3  
Instructions ..................................................................................................................... 391  
Operation Code Map....................................................................................................... 399  
Number of Execution States ........................................................................................... 401  
Appendix B On-Chip Registers..................................................................................... 408  
B.1  
I/O Registers (1) ............................................................................................................. 408  
B.2  
I/O Registers (2) ............................................................................................................. 411  
Appendix C I/O Port Block Diagrams........................................................................ 454  
C.1  
C.2  
C.3  
C.4  
C.5  
C.6  
C.7  
C.8  
C.9  
Schematic Diagram of Port 1.......................................................................................... 454  
Schematic Diagram of Port 2.......................................................................................... 459  
Schematic Diagram of Port 3.......................................................................................... 462  
Schematic Diagram of Port 4.......................................................................................... 468  
Schematic Diagram of Port 5.......................................................................................... 471  
Schematic Diagram of Port 6.......................................................................................... 472  
Schematic Diagram of Port 7.......................................................................................... 473  
Schematic Diagram of Port 8.......................................................................................... 474  
Schematic Diagram of Port 9.......................................................................................... 475  
C.10 Schematic Diagram of Port A......................................................................................... 476  
C.11 Schematic Diagram of Port B......................................................................................... 477  
C.12 Schematic Diagram of Port C......................................................................................... 477  
Appendix D Port States in the Different Processing States .................................. 478  
Appendix E Product Code Lineup ............................................................................... 479  
Appendix F Package Dimensions ................................................................................ 481  
Section 1 Overview  
1.1 Overview  
The H8/300L Series is a series of single-chip microcomputers (MCU: microcomputer unit), built  
around the high-speed H8/300L CPU and equipped with peripheral system functions on-chip.  
Within the H8/300L Series, the H8/3834U Series features an on-chip liquid crystal display (LCD)  
controller/driver. Other on-chip peripheral functions include five timers, a 14-bit pulse width  
modulator (PWM), three serial communication interface channels, and an analog-to-digital (A/D)  
converter. Together these functions make the H8/3834U Series ideally suited for embedded control  
of systems requiring an LCD display. The H8/3834U Series, in particular, features low-voltage  
A/D converter operation (V = AV = 2.7 V to 5.5 V), enabling these devices to be used in  
CC  
CC  
low-voltage, single power supply systems. On-chip memory is 24 kbytes of ROM and 1 kbyte of  
RAM in the H8/3833U, 32 kbytes of ROM and 1 kbyte of RAM in the H8/3834U, 40 kbytes of  
ROM and 2 kbytes of RAM in the H8/3835U, 48 kbytes of ROM and 2 kbytes of RAM in the  
H8/3836U, and 60 kbytes of ROM and 2 kbytes of RAM in the H8/3837U.  
The H8/3834U and H8/3837U both include a ZTAT™ version*, featuring a user-programmable  
on-chip PROM.  
Table 1-1 summarizes the features of the H8/3834U Series.  
Note: * ZTAT is a trademark of Hitachi, Ltd.  
Table 1-1 Features  
Item  
Description  
CPU  
High-speed H8/300L CPU  
• General-register architecture  
General registers: Sixteen 8-bit registers (can be used as eight 16-bit  
registers)  
• Operating speed  
— Max. operating speed: 5 MHz  
— Add/subtract: 0.4 µs (operating at 5 MHz)  
— Multiply/divide: 2.8 µs (operating at 5 MHz)  
— Can run on 32.768 kHz subclock  
• Instruction set compatible with H8/300 CPU  
— Instruction length of 2 bytes or 4 bytes  
— Basic arithmetic operations between registers  
— MOV instruction for data transfer between memory and registers  
1
Table 1-1 Features (cont)  
Item  
Description  
CPU  
Typical instructions  
• Multiply (8 bits × 8 bits)  
• Divide (16 bits ÷ 8 bits)  
• Bit accumulator  
• Register-indirect designation of bit position  
• 13 external interrupt pins: IRQ4 to IRQ0, WKP7 to WKP0  
• 20 internal interrupt sources  
Interrupts  
Clock pulse generators Two on-chip clock pulse generators  
• System clock pulse generator: 1 to 10 MHz  
• Subclock pulse generator: 32.768 kHz  
Power-down modes  
Six power-down modes  
• Sleep mode  
• Standby mode  
• Watch mode  
• Subsleep mode  
• Subactive mode  
• Active (medium-speed) mode  
Large on-chip memory  
Memory  
• H8/3833U: 24-kbyte ROM, 1-kbyte RAM  
• H8/3834U: 32-kbyte ROM, 1-kbyte RAM  
• H8/3835U: 40-kbyte ROM, 2-kbyte RAM  
• H8/3836U: 48-kbyte ROM, 2-kbyte RAM  
• H8/3837U: 60-kbyte ROM, 2-kbyte RAM  
• I/O pins: 71  
I/O ports  
Timers  
• Input pins: 13  
Five on-chip timers  
• Timer A: 8-bit timer  
Count-up timer with selection of eight internal clock signals divided from  
the system clock (ø)* and four clock signals divided from the watch clock  
w)*  
2
Table 1-1 Features (cont)  
Item  
Description  
Timers  
• Timer B: 8-bit timer  
— Count-up timer with selection of seven internal clock signals or event  
input from external pin  
— Auto-reloading  
• Timer C: 8-bit timer  
— Count-up/count-down timer with selection of seven internal clock  
signals or event input from external pin  
— Auto-reloading  
• Timer F: 16-bit timer  
— Can be used as two independent 8-bit timers.  
— Count-up timer with selection of four internal clock signals or event  
input from external pin  
— Compare-match function with toggle output  
• Timer G: 8-bit timer  
— Count-up timer with selection of four internal clock signals  
— Input capture function with built-in noise canceller circuit  
Note: * ø and øw are defined in section 4, Clock Pulse Generators.  
Three channels on chip  
Serial communication  
interface  
• SCI1: synchronous serial interface  
Choice of 8-bit or 16-bit data transfer  
• SCI2: 8-bit synchronous serial interface  
Automatic transfer of 32-byte data segments  
• SCI3: 8-bit synchronous or asynchronous serial interface  
Built-in function for multiprocessor communication  
Pulse-division PWM output for reduced ripple  
14-bit PWM  
• Can be used as a 14-bit D/A converter by connecting to an external  
low-pass filter.  
A/D converter  
• Successive approximations using a resistance ladder  
• Resolution: 8 bits  
• 12-channel analog input port  
• Conversion time: 31/ø or 62/ø per channel  
3
Table 1-1 Features (cont)  
Item  
Specification  
LCD controller/driver  
Up to 40 segment pins and 4 common pins  
• Choice of four duty cycles (static, 1/2, 1/3, 1/4)  
• Segments can be expanded externally  
• Segment pins can be switched to general-purpose ports in groups of  
four  
Product lineup  
Product Code  
Mask ROM  
Version  
ZTAT  
Version  
Package  
ROM/RAM Size  
HD6433833UH  
HD6433833UF  
HD6433833UX  
100-pin QFP (FP-100B)  
100-pin QFP (FP-100A)  
100-pin TQFP (TFP-100B)  
ROM: 24 kbytes  
RAM: 1 kbyte  
HD6433834UH HD6473834UH 100-pin QFP (FP-100B)  
HD6433834UF HD6473834UF 100-pin QFP (FP-100A)  
HD6433834UX HD6473834UX 100-pin TQFP (TFP-100B)  
ROM: 32 kbytes  
RAM: 1 kbyte  
HD6433835UH  
HD6433835UF  
HD6433835UX  
HD6433836UH  
HD6433836UF  
HD6433836UX  
100-pin QFP (FP-100B)  
100-pin QFP (FP-100A)  
100-pin TQFP (TFP-100B)  
100-pin QFP (FP-100B)  
100-pin QFP (FP-100A)  
100-pin TQFP (TFP-100B)  
ROM: 40 kbytes  
RAM: 2 kbytes  
ROM: 48 kbytes  
RAM: 2 kbytes  
HD6433837UH HD6473837UH 100-pin QFP (FP-100B)  
HD6433837UF HD6473837UF 100-pin QFP (FP-100A)  
HD6433837UX HD6473837UX 100-pin TQFP (TFP-100B)  
ROM: 60 kbytes  
RAM: 2 kbytes  
4
1.2 Internal Block Diagram  
Figure 1-1 shows a block diagram of the H8/3834U Series.  
P10/TMOW  
LCD  
driver  
power  
supply  
V1  
V2  
V3  
P11/TMOFL  
P12/TMOFH  
P13/TMIG  
CPU  
H8/300L  
Port 1  
P14/PWM  
PA3/COM4  
PA2/COM3  
PA1/COM2  
PA0/COM1  
Data bus (lower)  
P15/IRQ1/TMIB  
P16/IRQ2/TMIC  
P17/IRQ3/TMIF  
Port A  
P97/SEG40/CL1  
P96/SEG39/CL2  
P95/SEG38/DO  
P94/SEG37/M  
P93/SEG36  
P20/IRQ4/ADTRG  
ROM  
RAM  
P21/UD  
P22  
P23  
Port 2  
Port 9  
P24  
P92/SEG35  
P25  
LCD controller  
SCI1  
Timer A  
Timer B  
Timer C  
P91/SEG34  
P26  
P90/SEG33  
P27  
P30/SCK1  
P31/SI1  
P87/SEG32  
P86/SEG31  
P85/SEG30  
P84/SEG29  
P83/SEG28  
P82/SEG27  
P81/SEG26  
P80/SEG25  
SCI2  
P32/SO1  
P33/SCK2  
P34/SI2  
Port 3  
Port 4  
Port 5  
Port 8  
P35/SO2  
P36/STRB  
P37/CS  
Timer F  
Timer G  
SCI3  
P40/SCK3  
P41/RXD  
P42/TXD  
P43/IRQ0  
P77/SEG24  
P76/SEG23  
P75/SEG22  
P74/SEG21  
P73/SEG20  
P72/SEG19  
P71/SEG18  
P70/SEG17  
14-bit PWM  
Port 7  
A/D converter  
P50/WKP0 /SEG1  
P51/WKP1 /SEG2  
P52/WKP2 /SEG3  
P53/WKP3 /SEG4  
P54/WKP4 /SEG5  
P55/WKP5 /SEG6  
P56/WKP6 /SEG7  
P57/WKP7 /SEG8  
Port B  
Port C  
P67/SEG16  
P66/SEG15  
P65/SEG14  
P64/SEG13  
P63/SEG12  
P62/SEG11  
P61/SEG10  
P60/SEG9  
Port 6  
Figure 1-1 Block Diagram  
5
1.3 Pin Arrangement and Functions  
1.3.1 Pin Arrangement  
The H8/3834U Series pin arrangement is shown in figures 1-2 and 1-3.  
PC3/AN11  
AVSS  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P97/SEG40/CL1  
P96/SEG39/CL2  
P95/SEG38/D0  
P94/SEG37/M  
P93/SEG36  
P92/SEG35  
P91/SEG34  
P90/SEG33  
P87/SEG32  
P86/SEG31  
P85/SEG30  
P84/SEG29  
P83/SEG28  
P82/SEG27  
P81/SEG26  
P80/SEG25  
P77/SEG24  
P76/SEG23  
P75/SEG22  
P74/SEG21  
P73/SEG20  
P72/SEG19  
P71/SEG18  
P70/SEG17  
P67/SEG16  
2
TEST  
3
X2  
4
X1  
5
VSS  
6
OSC1  
7
OSC2  
8
RES  
9
MD0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P20/IRQ4/ADTRG  
P21/UD  
P22  
P23  
P24  
P25  
P26  
P27  
P30/SCK1  
P31/SI1  
P32/SO1  
P33/SCK2  
P34/SI2  
P35/SO2  
P36/STRB  
Figure 1-2 Pin Arrangement (FP-100B, TFP-100B: Top View)  
6
PC0 /AN8  
PC1 /AN9  
PC2 /AN10  
PC3 /AN11  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P10 /TMOW  
VCC  
2
3
P97 /SEG40 /CL1  
P96 /SEG39 /CL2  
P95 /SEG38 /DO  
P94 /SEG37 /M  
P93 /SEG36  
P92 /SEG35  
P91 /SEG34  
P90 /SEG33  
P87 /SEG32  
P86 /SEG31  
P85 /SEG30  
P84 /SEG29  
P83 /SEG28  
P82 /SEG27  
P81 /SEG26  
P80 /SEG25  
P77 /SEG24  
P76 /SEG23  
P75 /SEG22  
P74 /SEG21  
P73 /SEG20  
P72 /SEG19  
P71 /SEG18  
P70 /SEG17  
P67 /SEG16  
P66 /SEG15  
P65 /SEG14  
P64 /SEG13  
4
AV  
5
SS  
TEST  
X2  
6
7
X1  
8
V
9
SS  
OSC1  
OSC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RES  
MD0  
P20 /IRQ4 /ADTRG  
P21 /UD  
P22  
P23  
P24  
P25  
P26  
P27  
P30 /SCK1  
P31 /SI1  
P32 /SO1  
P33 /SCK2  
P34 /SI2  
P35 /SO2  
P36 /STRB  
P37 /CS  
V
SS  
Figure 1-3 Pin Arrangement (FP-100A: Top View)  
7
1.3.2 Pin Functions  
Table 1-2 outlines the pin functions of the H8/3834U Series.  
Table 1-2 Pin Functions  
Pin No.  
Type  
Symbol  
FP-100B FP-100A  
I/O  
Name and Functions  
Power  
source pins  
VCC  
31, 76  
6, 27  
89  
34, 79  
9, 30  
92  
Input  
Power supply: All VCC pins should  
be connected to the system power  
supply (+5 V)  
VSS  
Input  
Input  
Ground: All VSS pins should be  
connected to the system power supply  
(0 V)  
AVCC  
Analog power supply: This is the  
power supply pin for the A/D converter.  
When the A/D converter is not used,  
connect this pin to the system power  
supply (+5 V).  
AVSS  
2
5
Input  
Input  
Analog ground: This is the A/D  
converter ground pin. It should be  
connected to the system power supply  
(0 V).  
V1,  
V2,  
V3  
30,  
29,  
28  
33,  
32,  
31  
LCD power supply: These are power  
supply pins for the LCD controller/  
driver. A built-in resistor divider is  
provided for the power supply, so  
these pins are normally left open.  
Power supply conditions are  
VCC V1 V2 V3 VSS.  
Clock pins  
OSC1  
OSC2  
7
8
10  
Input  
System clock: This pin connects to a  
crystal or ceramic oscillator, or can be  
used to input an external clock.  
See section 4, Clock Pulse  
11  
Output  
Generators, for a typical connection  
diagram.  
X1  
X2  
5
4
8
7
Input  
Subclock: This pin connects to a  
32.768-kHz crystal oscillator.  
See section 4, Clock Pulse  
Generators, for a typical connection  
diagram.  
Output  
8
Table 1-2 Pin Functions (cont)  
Pin No.  
FP-100B FP-100A  
Type  
Symbol  
I/O  
Name and Functions  
System  
control  
RES  
9
12  
13  
6
Input  
Reset: When this pin is driven low,  
the chip is reset  
MD0  
10  
3
Input  
Input  
Mode: This pin controls system  
clock oscillation in the reset state  
TEST  
Test: This is a test pin, not for use in  
application systems. It should be  
connected to VSS  
.
Interrupt  
pins  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
88  
82  
83  
84  
11  
91  
85  
86  
87  
14  
Input  
Input  
External interrupt request 0 to 4:  
These are input pins for external  
interrupts for which there is a choice  
between rising and falling edge  
sensing  
WKP7 to  
WKP0  
43 to  
36  
46 to  
39  
Wakeup interrupt request 0 to 7:  
These are input pins for external  
interrupts that are detected at the  
falling edge  
Timer pins TMOW  
77  
82  
83  
12  
80  
85  
86  
15  
Output Clock output: This is an output pin  
for waveforms generated by the timer  
A output circuit  
TMIB  
TMIC  
UD  
Input  
Input  
Input  
Timer B event counter input: This is  
an event input pin for input to the  
timer B counter  
Timer C event counter input: This is  
an event input pin for input to the  
timer C counter  
Timer C up/down select: This pin  
selects whether the timer C counter is  
used for up- or down-counting. At  
high level it selects up-counting, and  
at low level down-counting.  
TMIF  
84  
87  
Input  
Timer F event counter input: This is  
an event input pin for input to the  
timer F counter  
9
Table 1-2 Pin Functions (cont)  
Pin No.  
FP-100B FP-100A  
Type  
Symbol  
I/O  
Name and Functions  
Timer pins TMOFL  
78  
79  
80  
81  
81  
82  
83  
84  
Output Timer FL output: This is an output  
pin for waveforms generated by the  
timer FL output compare function  
TMOFH  
Output Timer FH output: This is an output  
pin for waveforms generated by the  
timer FH output compare function  
TMIG  
Input  
Timer G capture input: This is an  
input pin for the timer G input capture  
function  
14-bit  
PWM  
Output 14-bit PWM output: This is an output  
pin for waveforms generated by the  
14-bit PWM  
PWM pin  
I/O ports  
PB7 to  
PB0  
97 to  
90  
100 to  
93  
Input  
Input  
Input  
I/O  
Port B: This is an 8-bit input port  
PC3 to  
PC0  
1, 100 to 4 to  
98  
Port C: This is a 4-bit input port  
1
P43  
88  
91  
Port 4 (bit 3): This is a 1-bit input  
port  
P42 to  
P40  
87 to  
85  
90 to  
88  
Port 4 (bits 2 to 0): This is a 3-bit I/O  
port. Input or output can be  
designated for each bit by means of  
port control register 4 (PCR4).  
PA3 to  
PA0  
32 to  
35  
35 to  
38  
I/O  
I/O  
I/O  
I/O  
Port A: This is a 4-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register A  
(PCRA).  
P17 to  
P10  
84 to  
77  
87 to  
80  
Port 1: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 1  
(PCR1).  
P27 to  
P20  
18 to  
11  
21 to  
14  
Port 2: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 2  
(PCR2).  
P37 to  
P30  
26 to  
19  
29 to  
22  
Port 3: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 3  
(PCR3).  
10  
Table 1-2 Pin Functions (cont)  
Pin No.  
FP-100B FP-100A  
Type  
Symbol  
I/O  
Name and Functions  
I/O ports  
P57 to  
P50  
43 to  
36  
46 to  
39  
I/O  
Port 5: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 5  
(PCR5).  
P67 to  
P60  
51 to  
44  
54 to  
47  
I/O  
Port 6: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 6  
(PCR6).  
P77 to  
P70  
59 to  
52  
62 to  
55  
I/O  
Port 7: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 7  
(PCR7).  
P87 to  
P80  
67 to  
60  
70 to  
63  
I/O  
Port 8: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 8  
(PCR8).  
P97 to  
P90  
75 to  
68  
78 to  
71  
I/O  
Port 9: This is an 8-bit I/O port. Input  
or output can be designated for each  
bit by means of port control register 9  
(PCR9).  
Serial  
communi-  
cation  
interface  
(SCI)  
SI1  
20  
21  
19  
23  
24  
22  
26  
23  
24  
22  
26  
27  
25  
29  
Input  
SCI1 receive data input:  
This is the SCI1 data input pin  
SO1  
SCK1  
SI2  
Output SCI1 send data output:  
This is the SCI1 data output pin  
I/O  
SCI1 clock I/O :  
This is the SCI1 clock I/O pin  
Input  
SCI2 receive data input:  
This is the SCI2 data input pin  
SO2  
SCK2  
CS  
Output SCI2 send data output:  
This is the SCI2 data output pin  
I/O  
SCI2 clock I/O :  
This is the SCI2 clock I/O pin  
Input  
SCI2 chip select input:  
This pin controls the start of SCI2  
transfers  
STRB  
25  
28  
Output SCI2 strobe output: This pin outputs  
a strobe pulse each time a byte of  
data is transferred  
11  
Table 1-2 Pin Functions (cont)  
Pin No.  
FP-100B FP-100A  
Type  
Symbol  
I/O  
Name and Functions  
Serial  
communi-  
cation  
interface  
(SCI)  
RXD  
86  
87  
85  
89  
90  
88  
Input  
SCI3 receive data input:  
This is the SCI3 data input pin  
TXD  
Output SCI3 send data output:  
This is the SCI3 data output pin  
SCK3  
I/O  
SCI3 clock I/O :  
This is the SCI3 clock I/O pin  
A/D  
converter  
AN11 to  
AN0  
1, 100 to 4 to 1  
Input  
Analog input channels 0 to 11:  
These are analog data input channels  
to the A/D converter  
90  
100 to  
93  
ADTRG  
11  
14  
Input  
A/D converter trigger input:  
This is the external trigger input pin to  
the A/D converter  
LCD  
controller/  
driver  
COM4 to  
COM1  
35 to  
32  
38 to  
35  
Output LCD common output:  
These are LCD common output pins  
SEG40 to 75 to  
SEG1  
78 to  
39  
Output LCD segment output:  
These are LCD segment output pins  
36  
CL1  
75  
78  
Output LCD latch clock:  
This is the display data latch clock  
output pin for external segment  
expansion  
CL2  
74  
77  
Output LCD shift clock:  
This is the display data shift clock  
output pin for external segment  
expansion  
DO  
M
73  
72  
76  
75  
Output LCD serial data output:  
This is the serial display data output  
pin for external segment expansion  
Output LCD alternating signal output:  
This is the LCD alternating signal  
output pin for external segment  
expansion  
12  
Section 2 CPU  
2.1 Overview  
The H8/300L CPU has sixteen 8-bit general registers, which can also be paired as eight 16-bit  
registers. Its concise, optimized instruction set is designed for high-speed operation.  
2.1.1 Features  
Features of the H8/300L CPU are listed below.  
General-register architecture  
Sixteen 8-bit general registers, also usable as eight 16-bit general registers  
Instruction set with 55 basic instructions, including:  
— Multiply and divide instructions  
— Powerful bit-manipulation instructions  
Eight addressing modes  
— Register direct  
— Register indirect  
— Register indirect with displacement  
— Register indirect with post-increment or pre-decrement  
— Absolute address  
— Immediate  
— Program-counter relative  
— Memory indirect  
64-kbyte address space  
High-speed operation  
— All frequently used instructions are executed in two to four states  
— High-speed arithmetic and logic operations  
8- or 16-bit register-register add or subtract: 0.4 µs*  
8 × 8-bit multiply:  
16 ÷ 8-bit divide:  
2.8 µs*  
2.8 µs*  
Low-power operation modes  
SLEEP instruction for transfer to low-power operation  
Note: * These values are at ø = 5 MHz.  
13  
2.1.2 Address Space  
The H8/300L CPU supports an address space of up to 64 kbytes for storing program code and  
data.  
See 2.8, Memory Map, for details of the memory map.  
2.1.3 Register Configuration  
Figure 2-1 shows the register structure of the H8/300L CPU. There are two groups of registers: the  
general registers and control registers.  
General registers (Rn)  
7
0 7  
0
R0H  
R1H  
R2H  
R3H  
R4H  
R5H  
R6H  
R7H  
R0L  
R1L  
R2L  
R3L  
R4L  
R5L  
R6L  
R7L  
SP: Stack Pointer  
(SP)  
Control registers (CR)  
15  
0
PC  
7 6 5 4 3 2 1 0  
CCR I U H U N Z V C  
PC: Program Counter  
CCR: Condition Code Register  
Carry flag  
Overflow flag  
Zero flag  
Negative flag  
Half-carry flag  
Interrupt mask bit  
User bit  
User bit  
Figure 2-1 CPU Registers  
14  
2.2 Register Descriptions  
2.2.1 General Registers  
All the general registers can be used as both data registers and address registers.  
When used as data registers, they can be accessed as 16-bit registers (R0 to R7), or the high bytes  
(R0H to R7H) and low bytes (R0L to R7L) can be accessed separately as 8-bit registers.  
When used as address registers, the general registers are accessed as 16-bit registers (R0 to R7).  
R7 also functions as the stack pointer (SP), used implicitly by hardware in exception processing  
and subroutine calls. When it functions as the stack pointer, as indicated in figure 2-2, SP (R7)  
points to the top of the stack.  
Lower address side [H'0000]  
Unused area  
SP  
(R7)  
Stack area  
Upper address side [H'FFFF]  
Figure 2-2 Stack Pointer  
2.2.2 Control Registers  
The CPU control registers include a 16-bit program counter (PC) and an 8-bit condition code  
register (CCR).  
Program Counter (PC): This 16-bit register indicates the address of the next instruction the CPU  
will execute. All instructions are fetched 16 bits (1 word) at a time, so the least significant bit of  
the PC is ignored (always regarded as 0).  
15  
Condition Code Register (CCR): This 8-bit register contains internal status information,  
including the interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and  
carry (C) flags. These bits can be read and written by software (using the LDC, STC, ANDC,  
ORC, and XORC instructions). The N, Z, V, and C flags are used as branching conditions for  
conditional branching (Bcc) instructions.  
Bit 7—Interrupt Mask Bit (I): When this bit is set to 1, interrupts are masked. This bit is set to 1  
automatically at the start of exception handling. The interrupt mask bit may be read and written  
by software. For further details, see section 3.3, Interrupts.  
Bit 6—User Bit (U): Can be used freely by the user.  
Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B  
instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and is cleared to 0  
otherwise.  
The H flag is used implicitly by the DAA and DAS instructions.  
When the ADD.W, SUB.W, or CMP.W instruction is executed, the H flag is set to 1 if there is a  
carry or borrow at bit 11, and is cleared to 0 otherwise.  
Bit 4—User Bit (U): Can be used freely by the user.  
Bit 3—Negative Flag (N): Indicates the most significant bit (sign bit) of the result of an  
instruction.  
Bit 2—Zero Flag (Z): Set to 1 to indicate a zero result, and cleared to 0 to indicate a non-zero  
result.  
Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other  
times.  
Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:  
Add instructions, to indicate a carry  
Subtract instructions, to indicate a borrow  
Shift and rotate instructions, to store the value shifted out of the end bit  
The carry flag is also used as a bit accumulator by bit manipulation instructions.  
Some instructions leave some or all of the flag bits unchanged.  
Refer to the H8/300L Series Programming Manual for the action of each instruction on the flag  
bits.  
16  
2.2.3 Initial Register Values  
When the CPU is reset, the program counter (PC) is initialized to the value stored at address  
H'0000 in the vector table, and the I bit in the CCR is set to 1. The other CCR bits and the general  
registers are not initialized. In particular, the stack pointer (R7) is not initialized. To prevent  
program crashes the stack pointer should be initialized by software, by the first instruction  
executed after a reset.  
2.3 Data Formats  
The H8/300L CPU can process 1-bit data, 4-bit (BCD) data, 8-bit (byte) data, and 16-bit (word)  
data.  
Bit manipulation instructions operate on 1-bit data specified as bit n in a byte operand  
(n = 0, 1, 2, ..., 7).  
All arithmetic and logic instructions except ADDS and SUBS can operate on byte data.  
The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and  
DIVXU (16 bits ÷ 8 bits) instructions operate on word data.  
The DAA and DAS instructions perform decimal arithmetic adjustments on byte data in  
packed BCD form. Each nibble of the byte is treated as a decimal digit.  
17  
2.3.1 Data Formats in General Registers  
Data of all the sizes above can be stored in general registers as shown in figure 2-3.  
Data Type Register No.  
Data Format  
7
0
1-bit data  
RnH  
RnL  
7
6
5
4
3
2
1
0
don’t care  
7
0
1-bit data  
don’t care  
7
6
5
4
3
2
1
0
7
0
Byte data  
RnH MSB  
LSB  
don’t care  
7
0
Byte data  
RnL  
don’t care  
MSB  
LSB  
15  
0
Word data  
4-bit BCD data  
Rn  
MSB  
LSB  
7
4
3
0
Upper digit  
Lower digit  
RnH  
RnL  
don’t care  
7
4
3
0
Upper digit  
Lower digit  
4-bit BCD data  
Notation:  
don’t care  
RnH: Upper byte of general register  
RnL: Lower byte of general register  
MSB: Most significant bit  
LSB: Least significant bit  
Figure 2-3 Register Data Formats  
18  
2.3.2 Memory Data Formats  
Figure 2-4 indicates the data formats in memory. For access by the H8/300L CPU, word data  
stored in memory must always begin at an even address. In word access the least significant bit of  
the address is regarded as 0. If an odd address is specified, the access is performed at the  
preceding even address. This rule affects the MOV.W instruction, and also applies to instruction  
fetching.  
Data Type  
Address  
Data Format  
7
0
1-bit data  
Byte data  
Address n  
Address n  
7
6
5
4
3
2
1
0
MSB  
MSB  
LSB  
Upper 8 bits  
Lower 8 bits  
Even address  
Odd address  
Word data  
Byte data (CCR) on stack  
Word data on stack  
LSB  
MSB  
MSB  
CCR  
LSB  
LSB  
Even address  
Odd address  
CCR*  
MSB  
Even address  
Odd address  
LSB  
CCR: Condition code register  
Note: * Ignored on return  
Figure 2-4 Memory Data Formats  
When the stack is accessed using R7 as an address register, word access should always be  
performed. When the CCR is pushed on the stack, two identical copies of the CCR are pushed to  
make a complete word. When they are restored, the lower byte is ignored.  
19  
2.4 Addressing Modes  
2.4.1 Addressing Modes  
The H8/300L CPU supports the eight addressing modes listed in table 2-1. Each instruction uses a  
subset of these addressing modes.  
Table 2-1 Addressing Modes  
No.  
1
Address Modes  
Symbol  
Rn  
Register direct  
2
Register indirect  
@Rn  
3
Register indirect with displacement  
@(d:16, Rn)  
4
Register indirect with post-increment  
Register indirect with pre-decrement  
@Rn+  
@–Rn  
5
6
7
8
Absolute address  
Immediate  
@aa:8 or @aa:16  
#xx:8 or #xx:16  
@(d:8, PC)  
Program-counter relative  
Memory indirect  
@@aa:8  
1. Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit general  
register containing the operand.  
Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and  
DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.  
2. Register Indirect—@Rn: The register field of the instruction specifies a 16-bit general  
register containing the address of the operand in memory.  
3. Register Indirect with Displacement—@(d:16, Rn): The instruction has a second word  
(bytes 3 and 4) containing a displacement which is added to the contents of the specified  
general register to obtain the operand address in memory.  
This mode is used only in MOV instructions. For the MOV.W instruction, the resulting  
address must be even.  
20  
4. Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @–Rn:  
Register indirect with post-increment—@Rn+  
The @Rn+ mode is used with MOV instructions that load registers from memory.  
The register field of the instruction specifies a 16-bit general register containing the  
address of the operand. After the operand is accessed, the register is incremented by 1 for  
MOV.B or 2 for MOV.W. For MOV.W, the original contents of the 16-bit general register  
must be even.  
Register indirect with pre-decrement—@–Rn  
The @–Rn mode is used with MOV instructions that store register contents to memory.  
The register field of the instruction specifies a 16-bit general register which is  
decremented by 1 or 2 to obtain the address of the operand in memory. The register retains  
the decremented value. The size of the decrement is 1 for MOV.B or 2 for MOV.W. For  
MOV.W, the original contents of the register must be even.  
5. Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of the  
operand in memory.  
The absolute address may be 8 bits long (@aa:8) or 16 bits long (@aa:16). The MOV.B and  
bit manipulation instructions can use 8-bit absolute addresses. The MOV.B, MOV.W, JMP,  
and JSR instructions can use 16-bit absolute addresses.  
For an 8-bit absolute address, the upper 8 bits are assumed to be 1 (H'FF). The address range  
is H'FF00 to H'FFFF (65280 to 65535).  
6. Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand (#xx:8) in its  
second byte, or a 16-bit operand (#xx:16) in its third and fourth bytes. Only MOV.W  
instructions can contain 16-bit immediate values.  
The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.  
Some bit manipulation instructions contain 3-bit immediate data in the second or fourth byte  
of the instruction, specifying a bit number.  
7. Program-Counter Relative—@(d:8, PC): This mode is used in the Bcc and BSR  
instructions. An 8-bit displacement in byte 2 of the instruction code is sign-extended to 16  
bits and added to the program counter contents to generate a branch destination address. The  
possible branching range is –126 to +128 bytes (–63 to +64 words) from the current address.  
The displacement should be an even number.  
21  
8. Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The  
second byte of the instruction code specifies an 8-bit absolute address. The word located at  
this address contains the branch destination address.  
The upper 8 bits of the absolute address are assumed to be 0 (H'00), so the address range is  
from H'0000 to H'00FF (0 to 255). Note that with the H8/300L Series, the lower end of the  
address area is also used as a vector area. See 3.3, Interrupts, for details on the vector area.  
If an odd address is specified as a branch destination or as the operand address of a MOV.W  
instruction, the least significant bit is regarded as 0, causing word access to be performed at  
the address preceding the specified address. See 2.3.2, Memory Data Formats, for further  
information.  
2.4.2 Effective Address Calculation  
Table 2-2 shows how effective addresses are calculated in each of the addressing modes.  
Arithmetic and logic instructions use register direct addressing (1). The ADD.B, ADDX, SUBX,  
CMP.B, AND, OR, and XOR instructions can also use immediate addressing (6).  
Data transfer instructions can use all addressing modes except program-counter relative (7) and  
memory indirect (8).  
Bit manipulation instructions use register direct (1), register indirect (2), or absolute addressing (5)  
to specify a byte operand, and 3-bit immediate addressing (6) to specify a bit position in that byte.  
The BSET, BCLR, BNOT, and BTST instructions can also use register direct addressing (1) to  
specify the bit position.  
22  
23  
24  
25  
2.5 Instruction Set  
The H8/300L Series can use a total of 55 instructions, which are grouped by function in table 2-3.  
Table 2-3 Instruction Set  
Function  
Instructions  
Number  
Data transfer  
MOV, PUSH*1, POP*1  
1
Arithmetic operations  
ADD, SUB, ADDX, SUBX, INC, DEC, ADDS,  
SUBS, DAA, DAS, MULXU, DIVXU, CMP, NEG  
14  
Logic operations  
Shift  
AND, OR, XOR, NOT  
4
8
SHAL, SHAR, SHLL, SHLR, ROTL, ROTR,  
ROTXL, ROTXR  
Bit manipulation  
BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR,  
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST  
14  
Branch  
Bcc*2, JMP, BSR, JSR, RTS  
RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP  
EEPMOV  
5
System control  
Block data transfer  
8
1
Total: 55  
Notes: 1. PUSH Rn is equivalent to MOV.W Rn, @–SP.  
POP Rn is equivalent to MOV.W @SP+, Rn.  
2. Bcc is a conditional branch instruction in which cc represents a condition code.  
The following sections give a concise summary of the instructions in each category, and indicate  
the bit patterns of their object code. The notation used is defined next.  
26  
Notation  
Rd  
General register (destination)  
General register (source)  
General register  
Rs  
Rn  
(EAd), <EAd>  
Destination operand  
Source operand  
(EAs), <EAs>  
CCR  
N
Condition code register  
N (negative) flag of CCR  
Z (zero) flag of CCR  
V (overflow) flag of CCR  
C (carry) flag of CCR  
Program counter  
Stack pointer  
Z
V
C
PC  
SP  
#IMM  
disp  
+
Immediate data  
Displacement  
Addition  
Subtraction  
×
Multiplication  
÷
Division  
AND logical  
OR logical  
Exclusive OR logical  
Move  
~
Logical negation (logical complement)  
3-bit length  
:3  
:8  
8-bit length  
:16  
16-bit length  
( ), < >  
Contents of operand indicated by effective address  
27  
2.5.1 Data Transfer Instructions  
Table 2-4 describes the data transfer instructions. Figure 2-5 shows their object code formats.  
Table 2-4 Data Transfer Instructions  
Instruction  
Size*  
Function  
MOV  
B/W  
(EAs) Rd, Rs (EAd)  
Moves data between two general registers or between a general  
register and memory, or moves immediate data to a general register.  
The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:16, @–Rn, and @Rn+  
addressing modes are available for byte or word data. The @aa:8  
addressing mode is available for byte data only.  
The @–R7 and @R7+ modes require word operands. Do not specify  
byte size for these two modes.  
POP  
W
W
@SP+ Rn  
Pops a 16-bit general register from the stack. Equivalent to MOV.W  
@SP+, Rn.  
PUSH  
Rn @–SP  
Pushes a 16-bit general register onto the stack. Equivalent to MOV.W  
Rn, @–SP.  
Notes: * Size: Operand size  
B:  
Byte  
W:  
Word  
Certain precautions are required in data access. See 2.9.1, Notes on Data Access, for details.  
28  
15  
15  
15  
8
8
8
7
7
7
0
0
0
MOV  
op  
rm  
rn  
rn  
rn  
RmRn  
op  
rm  
@Rm←→Rn  
op  
op  
rm  
rm  
@(d:16, Rm)←→Rn  
disp  
15  
15  
15  
8
8
8
7
7
7
0
0
0
@Rm+Rn, or  
Rn @–Rm  
rn  
rn  
op  
rn  
abs  
@aa:8←→Rn  
@aa:16←→Rn  
op  
abs  
15  
15  
8
7
0
0
op  
rn  
IMM  
#xx:8Rn  
8
7
op  
rn  
#xx:16Rn  
IMM  
15  
8
7
0
PUSH, POP  
@SP+Rn, or  
Rn@–SP  
op  
1
1
1
rn  
Notation:  
op: Operation field  
rm, rn: Register field  
disp: Displacement  
abs:  
Absolute address  
IMM: Immediate data  
Figure 2-5 Data Transfer Instruction Codes  
29  
2.5.2 Arithmetic Operations  
Table 2-5 describes the arithmetic instructions.  
Table 2-5 Arithmetic Instructions  
Instruction  
Size*  
Function  
ADD  
SUB  
B/W  
Rd ± Rs Rd, Rd + #IMM Rd  
Performs addition or subtraction on data in two general registers, or  
addition on immediate data and data in a general register. Immediate  
data cannot be subtracted from data in a general register. Word  
data can be added or subtracted only when both words are in general  
registers.  
ADDX  
SUBX  
B
Rd ± Rs ± C Rd, Rd ± #IMM ± C Rd  
Performs addition or subtraction with carry or borrow on byte data in  
two general registers, or addition or subtraction on immediate data and  
data in a general register.  
INC  
B
Rd ± 1 Rd  
DEC  
Increments or decrements a general register  
ADDS  
SUBS  
W
Rd ± 1 Rd, Rd ± 2 Rd  
Adds or subtracts immediate data to or from data in a general register.  
The immediate data must be 1 or 2.  
DAA  
DAS  
B
Rd decimal adjust Rd  
Decimal-adjusts (adjusts to packed BCD) an addition or subtraction  
result in a general register by referring to the CCR  
MULXU  
DIVXU  
CMP  
B
Rd × Rs Rd  
Performs 8-bit × 8-bit unsigned multiplication on data in two general  
registers, providing a 16-bit result  
B
Rd ÷ Rs Rd  
Performs 16-bit ÷ 8-bit unsigned division on data in two general  
registers, providing an 8-bit quotient and 8-bit remainder  
B/W  
Rd – Rs, Rd – #IMM  
Compares data in a general register with data in another general  
register or with immediate data, and the result is stored in the CCR.  
Word data can be compared only between two general registers.  
NEG  
B
0 – Rd Rd  
Obtains the two’s complement (arithmetic complement) of data in a  
general register  
Notes: * Size: Operand size  
B:  
Byte  
W:  
Word  
30  
2.5.3 Logic Operations  
Table 2-6 describes the four instructions that perform logic operations.  
Table 2-6 Logic Operation Instructions  
Instruction  
Size*  
Function  
AND  
B
Rd Rs Rd, Rd #IMM Rd  
Performs a logical AND operation on a general register and another  
general register or immediate data  
OR  
B
B
B
Rd Rs Rd, Rd #IMM Rd  
Performs a logical OR operation on a general register and another  
general register or immediate data  
XOR  
NOT  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical exclusive OR operation on a general register and  
another general register or immediate data  
~ Rd Rd  
Obtains the one’s complement (logical complement) of general register  
contents  
Notes: * Size: Operand size  
B: Byte  
2.5.4 Shift Operations  
Table 2-7 describes the eight shift instructions.  
Table 2-7 Shift Instructions  
Instruction  
Size*  
Function  
SHAL  
SHAR  
B
Rd shift Rd  
Performs an arithmetic shift operation on general register contents  
Rd shift Rd  
SHLL  
SHLR  
B
B
B
Performs a logical shift operation on general register contents  
Rd rotate Rd  
ROTL  
ROTR  
Rotates general register contents  
Rd rotate through carry Rd  
ROTXL  
ROTXR  
Rotates general register contents through the C (carry) bit  
Notes: * Size: Operand size  
B: Byte  
31  
Figure 2-6 shows the instruction code format of arithmetic, logic, and shift instructions.  
15  
15  
15  
15  
15  
15  
15  
8
8
8
8
8
8
8
7
7
7
7
7
7
7
0
0
0
0
0
0
0
ADD, SUB, CMP,  
ADDX, SUBX (Rm)  
op  
op  
op  
rm  
rm  
rm  
rn  
rn  
rn  
ADDS, SUBS, INC, DEC,  
DAA, DAS, NEG, NOT  
op  
MULXU, DIVXU  
ADD, ADDX, SUBX,  
CMP (#XX:8)  
op  
op  
rn  
IMM  
IMM  
rn  
rn  
AND, OR, XOR (Rm)  
AND, OR, XOR (#xx:8)  
rn  
SHAL, SHAR, SHLL, SHLR,  
ROTL, ROTR, ROTXL, ROTXR  
op  
Notation:  
op: Operation field  
rm, rn: Register field  
IMM: Immediate data  
Figure 2-6 Arithmetic, Logic, and Shift Instruction Codes  
32  
2.5.5 Bit Manipulations  
Table 2-8 describes the bit-manipulation instructions. Figure 2-7 shows their object code formats.  
Table 2-8 Bit-Manipulation Instructions  
Instruction  
Size*  
Function  
BSET  
B
1 (<bit-No.> of <EAd>)  
Sets a specified bit in a general register or memory to 1. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
BCLR  
BNOT  
BTST  
B
B
B
0 (<bit-No.> of <EAd>)  
Clears a specified bit in a general register or memory to 0. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
~ (<bit-No.> of <EAd>) (<bit-No.> of <EAd>)  
Inverts a specified bit in a general register or memory. The bit number  
is specified by 3-bit immediate data or the lower three bits of a general  
register.  
~ (<bit-No.> of <EAd>) Z  
Tests a specified bit in a general register or memory and sets or clears  
the Z flag accordingly. The bit number is specified by 3-bit immediate  
data or the lower three bits of a general register.  
BAND  
B
B
C
(<bit-No.> of <EAd>) C  
ANDs the C flag with a specified bit in a general register or memory,  
and stores the result in the C flag.  
BIAND  
C
[~ (<bit-No.> of <EAd>)] C  
ANDs the C flag with the inverse of a specified bit in a general register  
or memory, and stores the result in the C flag.  
The bit number is specified by 3-bit immediate data.  
BOR  
B
B
C
(<bit-No.> of <EAd>) C  
ORs the C flag with a specified bit in a general register or memory, and  
stores the result in the C flag.  
BIOR  
C
[~ (<bit-No.> of <EAd>)] C  
ORs the C flag with the inverse of a specified bit in a general register or  
memory, and stores the result in the C flag.  
The bit number is specified by 3-bit immediate data.  
Notes: * Size: Operand size  
B: Byte  
33  
Table 2-8 Bit-Manipulation Instructions (cont)  
Instruction  
Size*  
Function  
BXOR  
B
C
(<bit-No.> of <EAd>) C  
XORs the C flag with a specified bit in a general register or memory,  
and stores the result in the C flag.  
BIXOR  
B
C
[~(<bit-No.> of <EAd>)] C  
XORs the C flag with the inverse of a specified bit in a general register  
or memory, and stores the result in the C flag.  
The bit number is specified by 3-bit immediate data.  
(<bit-No.> of <EAd>) C  
BLD  
B
B
Copies a specified bit in a general register or memory to the C flag.  
~ (<bit-No.> of <EAd>) C  
BILD  
Copies the inverse of a specified bit in a general register or memory to  
the C flag.  
The bit number is specified by 3-bit immediate data.  
C (<bit-No.> of <EAd>)  
BST  
B
B
Copies the C flag to a specified bit in a general register or memory.  
~ C (<bit-No.> of <EAd>)  
BIST  
Copies the inverse of the C flag to a specified bit in a general register or  
memory.  
The bit number is specified by 3-bit immediate data.  
Notes: * Size: Operand size  
B: Byte  
Certain precautions are required in bit manipulation. See 2.9.2, Notes on Bit Manipulation, for  
details.  
34  
BSET, BCLR, BNOT, BTST  
15  
15  
15  
8
8
8
7
7
7
0
0
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
op  
IMM  
rn  
rn  
Operand: register direct (Rn)  
Bit No.: register direct (Rm)  
op  
rm  
0
op  
op  
rn  
IMM  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
0
15  
15  
15  
8
8
8
7
7
7
0
op  
op  
rn  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: register direct (Rm)  
rm  
0
0
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
op  
IMM  
0
0
0
0
0
0
0
op  
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: register direct (Rm)  
rm  
0
0
BAND, BOR, BXOR, BLD, BST  
15  
15  
8
8
7
7
0
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
op  
IMM  
rn  
0
op  
op  
rn  
IMM  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
0
15  
8
7
0
op  
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
IMM  
0
0
0
0
Notation:  
op:  
rm, rn: Register field  
abs: Absolute address  
IMM: Immediate data  
Operation field  
Figure 2-7 Bit Manipulation Instruction Codes  
35  
BIAND, BIOR, BIXOR, BILD, BIST  
15  
15  
8
8
7
7
0
Operand: register direct (Rn)  
Bit No.: immediate (#xx:3)  
op  
IMM  
rn  
0
op  
op  
rn  
0
0
0
0
0
0
0
Operand: register indirect (@Rn)  
Bit No.: immediate (#xx:3)  
IMM  
0
15  
8
7
0
op  
op  
abs  
Operand: absolute (@aa:8)  
Bit No.: immediate (#xx:3)  
IMM  
0
0
0
0
Notation:  
op:  
rm, rn: Register field  
abs: Absolute address  
IMM: Immediate data  
Operation field  
Figure 2-7 Bit Manipulation Instruction Codes (cont)  
36  
2.5.6 Branching Instructions  
Table 2-9 describes the branching instructions. Figure 2-8 shows their object code formats.  
Table 2-9 Branching Instructions  
Instruction  
Size  
Function  
Bcc  
Branches to the designated address if condition cc is true. The branching  
conditions are given below.  
Mnemonic  
BRA (BT)  
BRN (BF)  
BHI  
Description  
Always (true)  
Never (false)  
High  
Condition  
Always  
Never  
C
C
Z = 0  
Z = 1  
BLS  
Low or same  
Carry clear (high or same)  
Carry set (low)  
Not equal  
BCC (BHS)  
BCS (BLO)  
BNE  
C = 0  
C = 1  
Z = 0  
Z = 1  
V = 0  
V = 1  
N = 0  
N = 1  
BEQ  
Equal  
BVC  
Overflow clear  
Overflow set  
Plus  
BVS  
BPL  
BMI  
Minus  
BGE  
Greater or equal  
Less than  
N
N
Z
Z
V = 0  
BLT  
V = 1  
BGT  
Greater than  
Less or equal  
(N V) = 0  
(N V) = 1  
BLE  
JMP  
BSR  
Branches unconditionally to a specified address  
Branches to a subroutine at a specified displacement from the current  
address  
JSR  
RTS  
Branches to a subroutine at a specified address  
Returns from a subroutine  
37  
15  
15  
15  
8
8
8
7
7
7
0
op  
cc  
disp  
Bcc  
0
op  
rm  
0
0
0
0
JMP (@Rm)  
0
op  
abs  
JMP (@aa:16)  
15  
15  
15  
15  
8
7
7
7
7
0
0
op  
abs  
JMP (@@aa:8)  
BSR  
8
8
8
op  
disp  
0
op  
rm  
0
0
0
0
JSR (@Rm)  
0
op  
abs  
JSR (@aa:16)  
15  
15  
8
7
0
0
op  
abs  
JSR (@@aa:8)  
RTS  
8
7
op  
Notation:  
op: Operation field  
cc: Condition field  
rm: Register field  
disp: Displacement  
abs: Absolute address  
Figure 2-8 Branching Instruction Codes  
38  
2.5.7 System Control Instructions  
Table 2-10 describes the system control instructions. Figure 2-9 shows their object code formats.  
Table 2-10 System Control Instructions  
Instruction  
RTE  
Size*  
Function  
Returns from an exception-handling routine  
SLEEP  
Causes a transition from active mode to a power-down mode. See  
section 5, Power-Down Modes, for details  
LDC  
B
Rs CCR, #IMM CCR  
Moves immediate data or general register contents to the condition code  
register  
STC  
B
B
B
B
CCR Rd  
Copies the condition code register to a specified general register  
CCR #IMM CCR  
ANDC  
ORC  
XORC  
NOP  
Logically ANDs the condition code register with immediate data  
CCR #IMM CCR  
Logically ORs the condition code register with immediate data  
CCR #IMM CCR  
Logically exclusive-ORs the condition code register with immediate data  
PC + 2 PC  
Only increments the program counter  
Notes: * Size: Operand size  
B: Byte  
39  
15  
15  
15  
8
8
8
7
7
7
0
0
0
op  
RTE, SLEEP, NOP  
LDC, STC (Rn)  
op  
rn  
ANDC, ORC,  
XORC, LDC (#xx:8)  
op  
IMM  
Notation:  
op: Operation field  
rn: Register field  
IMM: Immediate data  
Figure 2-9 System Control Instruction Codes  
2.5.8 Block Data Transfer Instruction  
Table 2-11 describes the block data transfer instruction. Figure 2-10 shows its object code format.  
Table 2-11 Block Data Transfer Instruction  
Instruction  
Size  
Function  
If R4L 0 then  
repeat  
EEPMOV  
@R5+ @R6+  
R4L – 1 R4L  
R4L = 0  
until  
else next;  
Moves a data block according to parameters set in general registers R4L,  
R5, and R6.  
R4L: Size of block (bytes)  
R5: Starting source address  
R6: Starting destination address  
Execution of the next instruction starts as soon as the block transfer is  
completed.  
Certain precautions are required in using the EEPMOV instruction. See 2.9.3, Notes on Use of the  
EEPMOV Instruction, for details.  
40  
15  
8
7
0
op  
op  
Notation:  
op: Operation field  
Figure 2-10 Block Data Transfer Instruction Code  
41  
2.6 Basic Operational Timing  
CPU operation is synchronized by a system clock (ø) or a subclock (ø  
). For details on these  
SUB  
clock signals see section 4, Clock Pulse Generators. The period from a rising edge of ø or ø  
to  
SUB  
the next rising edge is called one state. A bus cycle consists of two states or three states. The  
cycle differs depending on whether access is to on-chip memory or to on-chip peripheral modules.  
2.6.1 Access to On-Chip Memory (RAM, ROM)  
Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing  
access in byte or word size. Figure 2-11 shows the on-chip memory access cycle.  
Bus cycle  
T1 state  
T2 state  
ø or øSUB  
Internal address bus  
Address  
Internal read signal  
Internal data bus  
(read access)  
Read data  
Internal write signal  
Internal data bus  
(write access)  
Write data  
Figure 2-11 On-Chip Memory Access Cycle  
42  
2.6.2 Access to On-Chip Peripheral Modules  
On-chip peripheral modules are accessed in two states or three states. The data bus width is 8 bits,  
so access is by byte size only. This means that for accessing word data, two instructions must be  
used. Figures 2-12 and 2-13 show the on-chip peripheral module access cycle.  
Two-state access to on-chip peripheral modules  
Bus cycle  
T1 state  
T2 state  
ø or øSUB  
Internal address bus  
Address  
Internal read signal  
Internal data bus  
(read access)  
Read data  
Internal write signal  
Internal data bus  
(write access)  
Write data  
Figure 2-12 On-Chip Peripheral Module Access Cycle (2-State Access)  
43  
Three-state access to on-chip peripheral modules  
Bus cycle  
T1 state  
T2 state  
Address  
T3 state  
ø or øSUB  
Internal  
address bus  
Internal  
read signal  
Internal  
data bus  
Read data  
(read access)  
Internal  
write signal  
Internal  
data bus  
Write data  
(write access)  
Figure 2-13 On-Chip Peripheral Module Access Cycle (3-State Access)  
44  
2.7 CPU States  
2.7.1 Overview  
There are four CPU states: the reset state, program execution state, program halt state, and  
exception-handling state. The program execution state includes active (high-speed or medium-  
speed) mode and subactive mode. In the program halt state there are a sleep mode, standby mode,  
watch mode, and sub-sleep mode. These states are shown in figure 2-14.  
Figure 2-15 shows the state transitions.  
CPU state  
Reset state  
The CPU is initialized.  
Program  
execution state  
Active  
(high speed) mode  
The CPU executes successive program  
instructions at high speed,  
synchronized by the system clock  
Active  
(medium speed) mode  
The CPU executes successive  
program instructions at  
reduced speed, synchronized  
by the system clock  
Subactive mode  
The CPU executes  
successive program  
instructions at reduced  
speed, synchronized  
by the subclock  
Low-power  
modes  
Program halt state  
Sleep mode  
Standby mode  
Watch mode  
A state in which some  
or all of the chip  
functions are stopped  
to conserve power  
Subsleep mode  
Exception-  
handling state  
A transient state in which the CPU changes  
the processing flow due to a reset or an interrupt  
Note: See section 5, Power-Down Modes, for details on the modes and their transitions.  
Figure 2-14 CPU Operation States  
45  
Reset cleared  
Reset occurs  
Reset state  
Exception-handling state  
Reset  
occurs  
Interrupt  
source  
Reset  
occurs  
Exception- Exception-  
handling  
request  
handling  
complete  
Program halt state  
Program execution state  
SLEEP instruction executed  
Figure 2-15 State Transitions  
2.7.2 Program Execution State  
In the program execution state the CPU executes program instructions in sequence.  
There are three modes in this state, two active modes (high speed and medium speed) and one  
subactive mode. Operation is synchronized with the system clock in active mode (high speed and  
medium speed), and with the subclock in subactive mode. See section 5, Power-Down Modes for  
details on these modes.  
2.7.3 Program Halt State  
In the program halt state there are four modes: sleep mode, standby mode, watch mode, and  
subsleep mode. See section 5, Power-Down Modes for details on these modes.  
2.7.4 Exception-Handling State  
The exception-handling state is a transient state occurring when exception handling is started by a  
reset or interrupt and the CPU changes its normal processing flow. In exception handling caused  
by an interrupt, SP (R7) is referenced and the PC and CCR values are saved on the stack.  
For details on interrupt handling, see section 3, Exception Handling.  
46  
2.8 Memory Map  
2.8.1 Memory Map  
Figure 2-16 (a) shows the H8/3833U memory map. Figure 2-16 (b) shows the H8/3834U memory  
map. Figure 2-16 (c) shows the H8/3835U memory map. Figure 2-16 (d) shows the H8/3836U  
memory map. Figure 2-16 (e) shows the H8/3837U memory map.  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
24 kbytes  
(24,576 bytes)  
On-chip ROM  
H'5FFF  
Reserved  
H'F740  
*
LCD RAM (64 bytes)  
H'F77F  
Reserved  
H'FB80  
On-chip RAM  
1,024 bytes  
H'FF7F  
H'FF80  
H'FF9F  
H'FFA0  
32-byte serial data buffer  
Internal I/O registers  
(96 bytes)  
H'FFFF  
Note: * The LCD RAM addresses are the addresses after a reset.  
Figure 2-16 (a) H8/3833U Memory Map  
47  
H'0000  
Interrupt vector area  
On-chip ROM  
H'0029  
H'002A  
32 kbytes  
(32,768 bytes)  
H'7FFF  
Reserved  
H'F740  
H'F77F  
*
LCD RAM (64 bytes)  
Reserved  
H'FB80  
On-chip RAM  
1,024 bytes  
H'FF7F  
H'FF80  
H'FF9F  
H'FFA0  
32-byte serial data buffer  
Internal I/O registers  
(96 bytes)  
H'FFFF  
Note: * The LCD RAM addresses are the addresses after a reset.  
Figure 2-16 (b) H8/3834U Memory Map  
48  
H'0000  
Interrupt vector area  
On-chip ROM  
H'0029  
H'002A  
40 kbytes  
(40,960 bytes)  
H'9FFF  
Reserved  
H'F740  
LCD RAM* (64 bytes)  
H'F77F  
H'F780  
2,048 bytes  
On-chip RAM  
H'FF7F  
H'FF80  
32-byte serial data buffer  
H'FF9F  
H'FFA0  
Internal I/O registers  
(96 bytes)  
H'FFFF  
Note: *The LCD RAM addresses are the addresses after a reset.  
Figure 2-16 (c) H8/3835U Memory Map  
49  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
48 kbytes  
(49,152 bytes)  
On-chip ROM  
H'BFFF  
H'F740  
Reserved  
LCD RAM* (64 bytes)  
H'F77F  
H'F780  
2,048 bytes  
On-chip RAM  
H'FF7F  
H'FF80  
32-byte serial data buffer  
H'FF9F  
H'FFA0  
Internal I/O registers  
(96 bytes)  
H'FFFF  
Note: *The LCD RAM addresses are the addresses after a reset.  
Figure 2-16 (d) H8/3836U Memory Map  
50  
H'0000  
Interrupt vector area  
H'0029  
H'002A  
60 kbytes  
(60,928 bytes)  
On-chip ROM  
H'EDFF  
H'F740  
Reserved  
LCD RAM* (64 bytes)  
H'F77F  
H'F780  
On-chip RAM  
2,048 bytes  
H'FF7F  
H'FF80  
32-byte serial data buffer  
H'FF9F  
H'FFA0  
Internal I/O registers  
(96 bytes)  
H'FFFF  
Note: *The LCD RAM addresses are the addresses after a reset.  
Figure 2-16 (e) H8/3837U Memory Map  
51  
2.8.2 LCD RAM Address Relocation  
After a reset, the LCD RAM area is located at addresses H'F740 to H'F77F. However, this area  
can be relocated by setting the LCD RAM relocation register (RLCTR) bits. The LCD RAM  
relocation register is explained below.  
LCD RAM relocation register (RLCTR: H'FFCF)  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
0
RLCT1 RLCT0  
Initial value  
Read/Write  
0
0
R/W  
R/W  
RLCTR is an 8-bit read/write register that selects the LCD RAM address space. Upon reset,  
RLCTR is initialized to H'FC.  
Bits 7 to 2: Reserved bits  
Bits 7 to 2 are reserved; they are always read as 1, and cannot be modified.  
Bits 1 and 0: LCD RAM relocation select (RLCT1, RLCT0)  
Bits 1 and 0 select the LCD RAM address space.  
Bit 1  
Bit 0  
RLCT1  
RLCT0  
Description  
0
0
1
1
0
1
0
1
H'F740 toH'F77F  
H'F940 to H'F97F*2  
H'FB40 to H'FB7F*2  
H'FD40 to H'FD7F*1, 2  
(initial value)  
Notes: 1. In devices with 1,024-byte RAM, if RLCT1 to 0 are set to  
11, on-chip RAM addresses H'FB80 to H'FD7F become  
inaccessible.  
2. In devices with 2,048-byte RAM, if RLCT1 to 0 are set to  
any value except 00, these on-chip RAM addresses  
become inaccessible.  
52  
2.9 Application Notes  
2.9.1 Notes on Data Access  
1. The address space of the H8/300L CPU includes empty areas in addition to the RAM,  
registers, and ROM areas available to the user. If these empty areas are mistakenly accessed  
by an application program, the following results will occur.  
Data transfer from CPU to empty area:  
The transferred data will be lost. This action may also cause the CPU to misoperate.  
Data transfer from empty area to CPU:  
Unpredictable data is transferred.  
2. Internal data transfer to or from on-chip modules other than the ROM and RAM areas makes  
use of an 8-bit data width. If word access is attempted to these areas, the following results  
will occur.  
Word access from CPU to I/O register area:  
Upper byte: Will be written to I/O register.  
Lower byte: Transferred data will be lost.  
Word access from I/O register to CPU:  
Upper byte: Will be written to upper part of CPU register.  
Lower byte: Unpredictable data will be written to lower part of CPU register.  
Byte size instructions should therefore be used when transferring data to or from I/O registers  
other than the on-chip ROM and RAM areas. Figure 2-17 shows the data size and number of  
states in which on-chip peripheral modules can be accessed.  
53  
Access  
Word Byte  
States  
H'0000  
Interrupt vector area  
(42 bytes)  
H'0029  
H'002A  
o
o
2
32 kbytes*2  
On-chip ROM  
H'7FFF*2  
Reserved  
H'F740  
H'F77F  
LCD RAM*1 (64 bytes)  
Reserved  
o
o
2
H'FB80*3  
1,024 bytes*3  
On-chip RAM  
o
o
2
H'FF7F  
H'FF80  
H'FF9F  
H'FFA0  
32-byte serial data buffer  
×
×
o
o
2
2
Internal I/O registers  
(96 bytes)  
H'FFA8  
H'FFAD  
×
×
o
o
3
2
H'FFFF  
o : Access possible  
× : Not possible  
Notes: The above example is a description of the H8/3834U.  
1. The indicated addresses for the LCD RAM area are initial values after system reset.  
2. The H8/3833U has 24 kbytes of on-chip ROM, and its ending address is H'5FFF.  
The H8/3835U has 40 kbytes of on-chip ROM, and its ending address is H'9FFF.  
The H8/3836U has 48 kbytes of on-chip ROM, and its ending address is H'BFFF.  
The H8/3837U has 60 kbytes of on-chip ROM, and its ending address is H'EDFF.  
3. The H8/3833U has 1,024 bytes of on-chip RAM and its starting address is H'FB80.  
The H8/3835U, H8/3836U, and H8/3837U each have 2,048 bytes of on-chip RAM, and  
their starting address is H'F780.  
Figure 2-17 Data Size and Number of States for Access to and from  
On-Chip Peripheral Modules  
54  
2.9.2 Notes on Bit Manipulation  
The BSET, BCLR, BNOT, BST, and BIST instructions read one byte of data, modify the data,  
then write the data byte again. Special care is required when using these instructions in cases  
where two registers are assigned to the same address, in the case of registers that include write-  
only bits, and when the instruction accesses an I/O.  
Order of Operation  
Operation  
1
2
3
Read  
Modify  
Write  
Read byte data at the designated address  
Modify a designated bit in the read data  
Write the altered byte data to the designated address  
1. Bit manipulation in two registers assigned to the same address  
Example 1  
Figure 2-18 shows an example in which two timer registers share the same address. When a bit  
manipulation instruction accesses the timer load register and timer counter of a reloadable timer,  
since these two registers share the same address, the following operations take place.  
Order of Operation  
Operation  
1
2
3
Read  
Modify  
Write  
Timer counter data is read (one byte)  
The CPU modifies (sets or resets) the bit designated in the instruction  
The altered byte data is written to the timer load register  
The timer counter is counting, so the value read is not necessarily the same as the value in the  
timer load register. As a result, bits other than the intended bit in the timer load register may be  
modified to the timer counter value.  
R
Count clock  
Timer counter  
R: Read  
W: Write  
Reload  
W
Timer load register  
Internal bus  
Figure 2-18 Timer Configuration Example  
55  
Example 2  
Here a BSET instruction is executed designating port 3.  
P3 and P3 are designated as input pins, with a low-level signal input at P3 and a high-level  
7
6
7
signal at P3 . The remaining pins, P3 to P3 , are output pins and output low-level signals. In  
6
5
0
this example, the BSET instruction is used to change pin P3 to high-level output.  
0
[A: Prior to executing BSET]  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Input  
Input  
Output Output Output Output Output Output  
Low  
level  
High  
level  
Low  
Low  
Low  
Low  
Low  
Low  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
[B: BSET instruction executed]  
BSET #0 @PDR3  
,
The BSET instruction is executed designating port 3.  
[C: After executing BSET]  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Input  
Input  
Output Output Output Output Output Output  
Low  
level  
High  
level  
Low  
Low  
Low  
Low  
Low  
High  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
[D: Explanation of how BSET operates]  
When the BSET instruction is executed, first the CPU reads port 3.  
Since P3 and P3 are input pins, the CPU reads the pin states (low-level and high-level input).  
7
6
P3 to P3 are output pins, so the CPU reads the value in PDR3. In this example PDR3 has a  
5
0
value of H'80, but the value read by the CPU is H'40.  
Next, the CPU sets bit 0 of the read data to 1, changing the PDR3 data to H'41. Finally, the CPU  
writes this value (H'41) to PDR3, completing execution of BSET.  
56  
As a result of this operation, bit 0 in PDR3 becomes 1, and P3 outputs a high-level signal.  
0
However, bits 7 and 6 of PDR3 end up with different values.  
To avoid this problem, store a copy of the PDR3 data in a work area in memory. Perform the bit  
manipulation on the data in the work area, then write this data to PDR3.  
[A: Prior to executing BSET]  
MOV. B #80, R0L  
MOV. B R0L, @RAM0  
MOV. B R0L, @PDR3  
The PDR3 value (H'80) is written to a work area in memory  
(RAM0) as well as to PDR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Input  
Input  
Output Output Output Output Output Output  
Low  
level  
High  
level  
Low  
Low  
Low  
Low  
Low  
Low  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
[B: BSET instruction executed]  
BSET #0 @RAM0  
,
The BSET instruction is executed designating the PDR3  
work area (RAM0).  
57  
[C: After executing BSET]  
MOV. B @RAM0, R0L  
MOV. B R0L, @PDR3  
The work area (RAM0) value is written to PDR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Input  
Input  
Output Output Output Output Output Output  
Low  
level  
High  
level  
Low  
Low  
Low  
Low  
Low  
High  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
2. Bit manipulation in a register containing a write-only bit  
Example 3  
In this example, the port 3 control register PCR3 is accessed by a BCLR instruction.  
As in the examples above, P3 and P3 are input pins, with a low-level signal input at P3 and a  
7
6
7
high-level signal at P3 . The remaining pins, P3 to P3 , are output pins that output low-level  
6
5
0
signals. In this example, the BCLR instruction is used to change pin P3 to an input port. It is  
0
assumed that a high-level signal will be input to this input pin.  
[A: Prior to executing BCLR]  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Input  
Input  
Output Output Output Output Output Output  
Low  
level  
High  
level  
Low  
Low  
Low  
Low  
Low  
Low  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
[B: BCLR instruction executed]  
BCLR #0 @PCR3  
,
The BCLR instruction is executed designating PCR3.  
58  
[C: After executing BCLR]  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Output Output Output Output Output Output Output Input  
Low  
High  
level  
Low  
Low  
Low  
Low  
Low  
High  
level  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
[D: Explanation of how BCLR operates]  
When the BCLR instruction is executed, first the CPU reads PCR3. Since PCR3 is a write-only  
register, the CPU reads a value of H'FF, even though the PCR3 value is actually H'3F.  
Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE. Finally, this value  
(H'FE) is written to PCR3 and BCLR instruction execution ends.  
As a result of this operation, bit 0 in PCR3 becomes 0, making P3 an input port. However, bits 7  
0
and 6 in PCR3 change to 1, so that P3 and P3 change from input pins to output pins.  
7
6
To avoid this problem, store a copy of the PCR3 data in a work area in memory. Perform the bit  
manipulation on the data in the work area, then write this data to PCR3.  
[A: Prior to executing BCLR]  
MOV. B #3F, R0L  
MOV. B R0L, @RAM0  
MOV. B R0L, @PCR3  
The PCR3 value (H'3F) is written to a work area in memory  
(RAM0) as well as to PCR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Input  
Input  
Output Output Output Output Output Output  
Low  
level  
High  
level  
Low  
Low  
Low  
Low  
Low  
Low  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
59  
[B: BCLR instruction executed]  
BCLR #0 @RAM0  
,
The BCLR instruction is executed designating the PCR3  
work area (RAM0).  
[C: After executing BCLR]  
MOV. B @RAM0, R0L  
MOV. B R0L, @PCR3  
The work area (RAM0) value is written to PCR3.  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Input/output  
Pin state  
Input  
Input  
Output Output Output Output Output Output  
Low  
level  
High  
level  
Low  
Low  
Low  
Low  
Low  
High  
level  
level  
level  
level  
level  
level  
PCR3  
PDR3  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
The tables below list registers that share the same address, and registers that contain write-only  
bits.  
Registers with shared addresses  
Register Name  
Abbreviation  
TCB/TLB  
TCC/TLC  
PDR1  
Address  
H'FFB3  
H'FFB5  
H'FFD4  
H'FFD5  
H'FFD6  
H'FFD7  
H'FFD8  
H'FFD9  
H'FFDA  
H'FFDB  
H'FFDC  
H'FFDD  
Timer counter B and timer load register B  
Timer counter C and timer load register C  
Port data register 1*  
Port data register 2*  
PDR2  
Port data register 3*  
PDR3  
Port data register 4*  
PDR4  
Port data register 5*  
PDR5  
Port data register 6*  
PDR6  
Port data register 7*  
PDR7  
Port data register 8*  
PDR8  
Port data register 9*  
PDR9  
Port data register A*  
PDRA  
Note: * These port registers are used also for pin input.  
60  
Registers with write-only bits  
Register Name  
Abbreviation  
PCR1  
Address  
H'FFE4  
H'FFE5  
H'FFE6  
H'FFE7  
H'FFE8  
H'FFE9  
H'FFEA  
H'FFEB  
H'FFEC  
H'FFED  
H'FFB6  
H'FFD0  
H'FFD1  
H'FFD2  
Port control register 1  
Port control register 2  
Port control register 3  
Port control register 4  
Port control register 5  
Port control register 6  
Port control register 7  
Port control register 8  
Port control register 9  
Port control register A  
Timer control register F  
PWM control register  
PWM data register U  
PWM data register L  
PCR2  
PCR3  
PCR4  
PCR5  
PCR6  
PCR7  
PCR8  
PCR9  
PCRA  
TCRF  
PWCR  
PWDRU  
PWDRL  
2.9.3 Notes on Use of the EEPMOV Instruction  
The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes  
specified by R4L from the address specified by R5 to the address specified by R6.  
R5  
R6  
R5 + R4L  
R6 + R4L  
When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not  
exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution of  
the instruction.  
R5  
R6  
R5 + R4L  
H'FFFF  
Not allowed  
R6 + R4L  
61  
Section 3 Exception Handling  
3.1 Overview  
Exception handling is performed in the H8/3834U Series when a reset or interrupt occurs. Table  
3-1 shows the priorities of these two types of exception handling.  
Table 3-1 Exception Handling Types and Priorities  
Priority  
Exception Source  
Reset  
Time of Start of Exception Handling  
High  
Exception handling starts as soon as the reset state is cleared  
Interrupt  
When an interrupt is requested, exception handling starts  
after execution of the present instruction or the exception  
handling in progress is completed  
Low  
3.2 Reset  
3.2.1 Overview  
A reset is the highest-priority exception. The internal state of the CPU and the registers of the on-  
chip peripheral modules are initialized.  
3.2.2 Reset Sequence  
As soon as the RES pin goes low, all processing is stopped and the H8/3834U enters the reset  
state.  
To make sure the chip is reset properly, observe the following precautions.  
At power on: Hold the RES pin low until the clock pulse generator output stabilizes.  
Resetting during operation: Hold the RES pin low for at least 10 system clock cycles.  
If the MD0 pin is at the high level, reset exception handling begins when the RES pin is held low  
for a given period, then returned to the high level. If the MD0 pin is low, however, when the RES  
pin is held low for a given period and then returned to high level, the reset is not cleared  
immediately. First the MD0 pin must go from low to high, then after 8,192 clock cycles the reset  
is cleared and reset exception handling begins.  
63  
Reset exception handling takes place as follows.  
The CPU internal state and the registers of on-chip peripheral modules are initialized, with  
the I bit of the condition code register (CCR) set to 1.  
The PC is loaded from the reset exception handling vector address (H'0000 to H'0001), after  
which the program starts executing from the address indicated in PC.  
When system power is turned on or off, the RES pin should be held low.  
Figures 3-1 and 3-2 show the reset sequence.  
Reset cleared  
Program initial  
instruction prefetch  
Vector fetch  
Internal  
processing  
RES  
MD0  
High  
ø
Internal  
address bus  
(1)  
(2)  
Internal read  
signal  
Internal write  
signal  
Internal data  
bus (16-bit)  
(2)  
(3)  
(1) Reset exception handling vector address (H'0000)  
(2) Program start address  
(3) First instruction of program  
Figure 3-1 Reset Sequence (when MD0 Pin is High)  
64  
Reset cleared  
Vector fetch  
Program initial  
instruction prefetch  
Internal  
processing  
RES  
MD0  
ø
8,192 clock  
cycles  
Internal  
address bus  
(1)  
(2)  
Internal read  
signal  
Internal write  
signal  
Internal data  
bus (16-bit)  
(2)  
(3)  
(1) Reset exception handling vector address (H'0000)  
(2) Program start address  
(3) First instruction of program  
Figure 3-2 Reset Sequence (when MD0 Pin is Low)  
3.2.3 Interrupt Immediately after Reset  
After a reset, if an interrupt were to be accepted before the stack pointer (SP: R7) was initialized,  
PC and CCR would not be pushed onto the stack correctly, resulting in program runaway. To  
prevent this, immediately after reset exception handling all interrupts are masked. For this reason,  
the initial program instruction is always executed immediately after a reset. This instruction  
should initialize the stack pointer (e.g. MOV.W #xx: 16, SP).  
65  
3.3 Interrupts  
3.3.1 Overview  
The interrupt sources include 13 external interrupts (WKP to WKP , IRQ to IRQ ), and 20  
0
7
0
4
internal interrupts from on-chip peripheral modules. Table 3-2 shows the interrupt sources, their  
priorities, and their vector addresses. When more than one interrupt is requested, the interrupt  
with the highest priority is processed.  
The interrupts have the following features:  
Both internal and external interrupts can be masked by the I bit of CCR. When this bit is set  
to 1, interrupt request flags are set but interrupts are not accepted.  
The external interrupt pins IRQ to IRQ can each be set independently to either rising edge  
0
4
sensing or falling edge sensing.  
Table 3-2 Interrupt Sources and Priorities  
Priority  
Interrupt Source  
RES  
Interrupt  
Reset  
IRQ0  
Vector Number  
Vector Address  
H'0000 to H'0001  
H'0008 to H'0009  
H'000A to H'000B  
H'000C to H'000D  
H'000E to H'000F  
H'0010 to H'0011  
H'0012 to H'0013  
High  
0
4
5
6
7
8
9
IRQ0  
IRQ1  
IRQ1  
IRQ2  
IRQ2  
IRQ3  
IRQ3  
IRQ4  
IRQ4  
WKP0  
WKP1  
WKP2  
WKP3  
WKP4  
WKP5  
WKP6  
WKP7  
SCI1  
WKP0  
WKP1  
WKP2  
WKP3  
WKP4  
WKP5  
WKP6  
WKP7  
Low  
SCI1 transfer complete 10  
H'0014 to H'0015  
66  
Table 3-2 Interrupt Sources and Priorities (cont)  
Vector  
Priority  
Interrupt Source  
Timer A  
Interrupt  
Number Vector Address  
High  
Timer A overflow  
11  
12  
13  
14  
H'0016 to H'0017  
H'0018 to H'0019  
H'001A to H'001B  
H'001C to H'001D  
Timer B  
Timer B overflow  
Timer C  
Timer C overflow or underflow  
Timer FL compare match  
Timer FL overflow  
Timer FH compare match  
Timer FH overflow  
Timer G input capture  
Timer G overflow  
Timer FL  
Timer FH  
Timer G  
SCI2  
15  
16  
17  
18  
H'001E to H'001F  
H'0020 to H'0021  
H'0022 to H'0023  
H'0024 to H'0025  
SCI2 transfer complete  
SCI2 transfer abort  
SCI3 transmit end  
SCI3 transmit data empty  
SCI3 receive data full  
SCI3 overrun error  
SCI3 framing error  
SCI3 parity error  
SCI3  
A/D converter  
A/D conversion end  
Direct transfer  
19  
20  
H'0026 to H'0027  
H'0028 to H'0029  
(SLEEP instruction  
executed)  
Low  
Note: Vector addresses H'0002 to H'0007 are reserved and cannot be used.  
67  
3.3.2 Interrupt Control Registers  
Table 3-3 lists the registers that control interrupts.  
Table 3-3 Interrupt Control Registers  
Register Name  
Abbreviation  
IEGR  
R/W  
Initial Value  
H'E0  
Address  
H'FFF2  
H'FFF3  
H'FFF4  
H'FFF6  
H'FFF7  
H'FFF9  
IRQ edge select register  
Interrupt enable register 1  
Interrupt enable register 2  
Interrupt request register 1  
Interrupt request register 2  
Wakeup interrupt request register  
R/W  
IENR1  
IENR2  
IRR1  
R/W  
H'00  
R/W  
H'00  
R/W*  
R/W*  
R/W*  
H'20  
IRR2  
H'00  
IWPR  
H'00  
Note: * Write is enabled only for writing of 0 to clear a flag.  
1. IRQ edge select register (IEGR)  
Bit  
7
1
6
1
5
1
4
IEG4  
0
3
IEG3  
0
2
IEG2  
0
1
0
IEG0  
0
IEG1  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
IEGR is an 8-bit read/write register, used to designate whether pins IRQ to IRQ are set to rising  
0
4
edge sensing or falling edge sensing.  
Bits 7 to 5: Reserved bits  
Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.  
Bit 4: IRQ edge select (IEG4)  
4
Bit 4 selects the input sensing of pin IRQ /ADTRG.  
4
Bit 4  
IEG4  
Description  
0
1
Falling edge of IRQ4/ADTRG pin input is detected  
Rising edge of IRQ4/ADTRG pin input is detected  
(initial value)  
68  
Bit 3: IRQ edge select (IEG3)  
3
Bit 3 selects the input sensing of pin IRQ /TMIF.  
3
Bit 3  
IEG3  
Description  
0
1
Falling edge of IRQ3/TMIF pin input is detected  
Rising edge of IRQ3/TMIF pin input is detected  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
Bit 2: IRQ edge select (IEG2)  
2
Bit 2 selects the input sensing of pin IRQ /TMIC.  
2
Bit 2  
IEG2  
Description  
0
1
Falling edge of IRQ2/TMIC pin input is detected  
Rising edge of IRQ2/TMIC pin input is detected  
Bit 1: IRQ edge select (IEG1)  
1
Bit 1 selects the input sensing of pin IRQ /TMIB.  
1
Bit 1  
IEG1  
Description  
0
1
Falling edge of IRQ1/TMIB pin input is detected  
Rising edge of IRQ1/TMIB pin input is detected  
Bit 0: IRQ edge select (IEG0)  
0
Bit 0 selects the input sensing of pin IRQ .  
0
Bit 0  
IEG0  
Description  
0
1
Falling edge of IRQ0 pin input is detected  
Rising edge of IRQ0 pin input is detected  
69  
2. Interrupt enable register 1 (IENR1)  
Bit  
7
IENTA  
0
6
5
4
IEN4  
0
3
IEN3  
0
2
IEN2  
0
1
IEN1  
0
0
IEN0  
0
IENS1 IENWP  
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IENR1 is an 8-bit read/write register that enables or disables interrupt requests.  
Bit 7: Timer A interrupt enable (IENTA)  
Bit 7 enables or disables timer A overflow interrupt requests.  
Bit 7  
IENTA  
Description  
0
1
Disables timer A interrupts  
Enables timer A interrupts  
(initial value)  
(initial value)  
(initial value)  
Bit 6: SCI1 interrupt enable (IENS1)  
Bit 6 enables or disables SCI1 transfer complete interrupt requests.  
Bit 6  
IENS1  
Description  
0
1
Disables SCI1 interrupts  
Enables SCI1 interrupts  
Bit 5: Wakeup interrupt enable (IENWP)  
Bit 5 enables or disables WKP to WKP interrupt requests.  
7
0
Bit 5  
IENWP  
Description  
0
1
Disables interrupt requests from WKP7 to WKP0  
Enables interrupt requests from WKP7 to WKP0  
70  
Bits 4 to 0: IRQ to IRQ interrupt enable (IEN4 to IEN0)  
4
0
Bits 4 to 0 enable or disable IRQ to IRQ interrupt requests.  
4
0
Bit n  
IENn  
Description  
0
1
Disables interrupt request IRQn  
Enables interrupt request IRQn  
(initial value)  
(n = 4 to 0)  
3. Interrupt Enable Register 2 (IENR2)  
Bit  
7
IENDT  
0
6
5
4
3
2
1
0
IENAD IENS2 IENTG IENTFH IENTFL IENTC IENTB  
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IENR2 is an 8-bit read/write register that enables or disables interrupt requests.  
Bit 7: Direct transfer interrupt enable (IENDT)  
Bit 7 enables or disables direct transfer interrupt requests.  
Bit 7  
IENDT  
Description  
0
1
Disables direct transfer interrupt requests  
Enables direct transfer interrupt requests  
(initial value)  
Bit 6: A/D converter interrupt enable (IENAD)  
Bit 6 enables or disables A/D converter interrupt requests.  
Bit 6  
IENAD  
Description  
0
1
Disables A/D converter interrupt requests  
Enables A/D converter interrupt requests  
(initial value)  
71  
Bit 5: SCI2 interrupt enable (IENS2)  
Bit 5 enables or disables SCI2 transfer complete and transfer abort interrupt requests.  
Bit 5  
IENS2  
Description  
0
1
Disables SCI2 interrupts  
Enables SCI2 interrupts  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
Bit 4: Timer G interrupt enable (IENTG)  
Bit 4 enables or disables timer G input capture and overflow interrupt requests.  
Bit 4  
IENTG  
Description  
0
1
Disables timer G interrupts  
Enables timer G interrupts  
Bit 3: Timer FH interrupt enable (IENTFH)  
Bit 3 enables or disables timer FH compare match and overflow interrupt requests.  
Bit 3  
IENTFH  
Description  
0
1
Disables timer FH interrupts  
Enables timer FH interrupts  
Bit 2: Timer FL interrupt enable (IENTFL)  
Bit 2 enables or disables timer FL compare match and overflow interrupt requests.  
Bit 2  
IENTFL  
Description  
0
1
Disables timer FL interrupts  
Enables timer FL interrupts  
72  
Bit 1: Timer C interrupt enable (IENTC)  
Bit 1 enables or disables timer C overflow or underflow interrupt requests.  
Bit 1  
IENTC  
Description  
0
1
Disables timer C interrupts  
Enables timer C interrupts  
(initial value)  
Bit 0: Timer B interrupt enable (IENTB)  
Bit 0 enables or disables timer B overflow or underflow interrupt requests.  
Bit 0  
IENTB  
Description  
0
1
Disables timer B interrupts  
Enables timer B interrupts  
(initial value)  
SCI3 interrupt control is covered in 10.4.2, in the description of serial control register 3.  
4. Interrupt request register 1 (IRR1)  
Bit  
7
IRRTA  
0
6
5
1
4
3
2
1
0
IRRS1  
0
IRRI4  
0
IRRI3  
0
IRRI2  
0
IRRI1  
0
IRRI0  
0
Initial value  
Read/Write  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
Note: * Only a write of 0 for flag clearing is possible.  
IRR1 is an 8-bit read/write register, in which the corresponding bit is set to 1 when a timer A,  
SCI1, or IRQ to IRQ interrupt is requested. The flags are not cleared automatically when an  
4
0
interrupt is accepted. It is necessary to write 0 to clear each flag.  
Bit 7: Timer A interrupt request flag (IRRTA)  
Bit 7  
IRRTA  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTA = 1, it is cleared by writing 0  
1
Setting conditions:  
When the timer A counter value overflows (goes from H'FF to H'00)  
73  
Bit 6: SCI1 interrupt request flag (IRRS1)  
Bit 6  
IRRS1  
Description  
0
Clearing conditions:  
(initial value)  
When IRRS1 = 1, it is cleared by writing 0  
1
Setting conditions:  
When an SCI1 transfer is completed  
Bit 5: Reserved bit  
Bit 5 is reserved; it is always read as 1, and cannot be modified.  
Bits 4 to 0: IRQ to IRQ interrupt request flags (IRRI4 to IRRI0)  
4
0
Bit n  
IRRIn  
Description  
0
Clearing conditions:  
(initial value)  
When IRRIn = 1, it is cleared by writing 0 to IRRIn.  
1
Setting conditions:  
IRRIn is set when pin IRQn is set to interrupt input, and the designated signal  
edge is detected.  
(n = 4 to 0)  
5. Interrupt request register 2 (IRR2)  
Bit  
7
6
5
4
3
2
1
0
IRRDT IRRAD IRRS2 IRRTG IRRTFH IRRTFL IRRTC IRRTB  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
Note: * Only a write of 0 for flag clearing is possible.  
IRR2 is an 8-bit read/write register, in which the corresponding bit is set to 1 when a direct  
transfer, A/D converter, SCI2, timer G, timer FH, timer FL, timer C, or timer B interrupt is  
requested. The flags are not cleared automatically when an interrupt is accepted. It is necessary  
to write 0 to clear each flag.  
74  
Bit 7: Direct transfer interrupt request flag (IRRDT)  
Bit 7  
IRRDT  
Description  
0
Clearing conditions:  
(initial value)  
When IRRDT = 1, it is cleared by writing 0  
1
Setting conditions:  
When DTON = 1 and a direct transfer is made immediately after a SLEEP instruction  
is executed  
Bit 6: A/D converter interrupt request flag (IRRAD)  
Bit 6  
IRRAD  
Description  
0
Clearing conditions:  
When IRRAD = 1, it is cleared by writing 0  
(initial value)  
(initial value)  
(initial value)  
1
Setting conditions:  
When A/D conversion is completed and ADSF is reset  
Bit 5: SCI2 interrupt request flag (IRRS2)  
Bit 5  
IRRS2  
Description  
0
Clearing conditions:  
When IRRS2 = 1, it is cleared by writing 0  
1
Setting conditions:  
When an SCI2 transfer is completed or aborted  
Bit 4: Timer G interrupt request flag (IRRTG)  
Bit 4  
IRRTG  
Description  
0
Clearing conditions:  
When IRRTG = 1, it is cleared by writing 0  
1
Setting conditions:  
When pin TMIG is set to TMIG input and the designated signal edge is detected  
75  
Bit 3: Timer FH interrupt request flag (IRRTFH)  
Bit 3  
IRRTFH  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTFH = 1, it is cleared by writing 0  
1
Setting conditions:  
When counter FH matches output compare register FH in 8-bit timer mode, or when  
16-bit counter F (TCFL, TCFH) matches output compare register F (OCRFL,  
OCRFH) in 16-bit timer mode  
Bit 2: Timer FL interrupt request flag (IRRTFL)  
Bit 2  
IRRTFL  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTFL = 1, it is cleared by writing 0  
1
Setting conditions:  
When counter FL matches output compare register FL in 8-bit timer mode  
Bit 1: Timer C interrupt request flag (IRRTC)  
Bit 1  
IRRTC  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTC = 1, it is cleared by writing 0  
1
Setting conditions:  
When the timer C counter value overflows (goes from H'FF to H'00) or underflows  
(goes from H'00 to H'FF)  
Bit 0: Timer B interrupt request flag (IRRTB)  
Bit 0  
IRRTB  
Description  
0
Clearing conditions:  
(initial value)  
When IRRTB = 1, it is cleared by writing 0  
1
Setting conditions:  
When the timer B counter value overflows (goes from H'FF to H'00)  
76  
6. Wakeup interrupt request register (IWPR)  
Bit  
7
6
5
4
3
2
1
0
IWPF7 IWPF6 IWPF5 IWPF4 IWPF3 IWPF2 IWPF1 IWPF0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
Note: * Only a write of 0 for flag clearing is possible.  
IWPR is an 8-bit read/write register, in which the corresponding bit is set to 1 when pins WKP7 to  
WKP0 are set to wakeup input and a pin receives a falling edge input. The flags are not cleared  
automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.  
Bits 7 to 0: Wakeup interrupt request flags (WKPF7 to WKPF0)  
Bit n  
IWPFn  
Description  
0
Clearing conditions:  
When IWPFn = 1, it is cleared by writing 0 to IWPFn.  
1
Setting conditions:  
IWPFn is set when pin WKPn is set to wakeup interrupt input, and a falling edge input  
is detected at the pin.  
(n = 7 to 0)  
3.3.3 External Interrupts  
There are 13 external interrupts, WKP to WKP and IRQ to IRQ .  
0
7
0
4
1. Interrupts WKP to WKP  
0
7
Interrupts WKP to WKP are requested by falling edge inputs at pins WKP to WKP . When  
0
7
0
7
these pins are designated as WKP to WKP pins in port mode register 5 (PMR5) and falling edge  
0
7
input is detected, the corresponding bit in the wakeup interrupt request register (IWPR) is set to 1,  
requesting an interrupt. Wakeup interrupt requests can be disabled by clearing the IENWP bit in  
IENR1 to 0. It is also possible to mask all interrupts by setting the CCR I bit to 1.  
When an interrupt exception handling request is received for interrupts WKP0 to WKP7, the CCR  
I bit is set to 1. The vector number for interrupts WKP0 to WKP7 is 9. Since all eight interrupts  
are assigned the same vector number, the interrupt source must be determined by the exception  
handling routine.  
77  
2. Interrupts IRQ to IRQ  
0
4
Interrupts IRQ to IRQ are requested by into pins inputs to IRQ to IRQ . These interrupts are  
0
4
0
4
detected by either rising edge sensing or falling edge sensing, depending on the settings of bits  
IEG0 to IEG4 in the edge select register (IEGR).  
When these pins are designated as pins IRQ to IRQ in port mode registers 1 and 2 (PMR1 and  
0
4
PMR2) and the designated edge is input, the corresponding bit in IRR1 is set to 1, requesting an  
interrupt. Interrupts IRQ to IRQ can be disabled by clearing bits IEN0 to IEN4 in IENR1 to 0.  
0
4
All interrupts can be masked by setting the I bit in CCR to 1.  
When IRQ to IRQ interrupt exception handling is initiated, the I bit is set to 1. Vector numbers  
0
4
4 to 8 are assigned to interrupts IRQ to IRQ . The order of priority is from IRQ (high) to IRQ  
4
0
4
0
(low). Table 3-2 gives details.  
3.3.4 Internal Interrupts  
There are 20 internal interrupts that can be requested by the on-chip peripheral modules. When a  
peripheral module requests an interrupt, the corresponding bit in IRR1 or IRR2 is set to 1.  
Individual interrupt requests can be disabled by clearing the corresponding bit in IENR1 or IENR2  
to 0. All interrupts can be masked by setting the I bit in CCR to 1. When an internal interrupt  
request is accepted, the I bit is set to 1. Vector numbers 10 to 20 are assigned to these interrupts.  
Table 3-2 shows the order of priority of interrupts from on-chip peripheral modules.  
78  
3.3.5 Interrupt Operations  
Interrupts are controlled by an interrupt controller. Figure 3-3 shows a block diagram of the  
interrupt controller. Figure 3-4 shows the flow up to interrupt acceptance.  
Interrupt controller  
External or  
internal  
interrupts  
Interrupt  
request  
External  
interrupts or  
internal  
interrupt  
enable  
signals  
I
CCR (CPU)  
Figure 3-3 Block Diagram of Interrupt Controller  
Interrupt operation is described as follows.  
When an interrupt condition is met while the interrupt enable register bit is set to 1, an  
interrupt request signal is sent to the interrupt controller.  
When the interrupt controller receives an interrupt request, it sets the interrupt request flag.  
From among the interrupts with interrupt request flags set to 1, the interrupt controller selects  
the interrupt request with the highest priority and holds the others pending. (Refer to  
table 3-2 for a list of interrupt priorities.)  
79  
The interrupt controller checks the I bit of CCR. If the I bit is 0, the selected interrupt request  
is accepted; if the I bit is 1, the interrupt request is held pending.  
If the interrupt is accepted, after processing of the current instruction is completed, both PC  
and CCR are pushed onto the stack. The state of the stack at this time is shown in figure 3-5.  
The PC value pushed onto the stack is the address of the first instruction to be executed upon  
return from interrupt handling.  
The I bit of CCR is set to 1, masking all further interrupts.  
The vector address corresponding to the accepted interrupt is generated, and the interrupt  
handling routine located at the address indicated by the contents of the vector address is  
executed.  
Notes:  
1. When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits  
in an interrupt request register, always do so while interrupts are masked (I = 1).  
2. If the above clear operations are performed while I = 0, and as a result a conflict arises  
between the clear instruction and an interrupt request, exception processing for the interrupt  
will be executed after the clear instruction has been executed.  
80  
Program execution state  
No  
IRRIO = 1  
Yes  
No  
IENO = 1  
Yes  
No  
No  
IRRI1 = 1  
Yes  
IEN1 = 1  
Yes  
No  
No  
IRRI2 = 1  
Yes  
IEN2 = 1  
Yes  
No  
No  
IRRDT = 1  
Yes  
IENDT = 1  
Yes  
No  
I = 0  
Yes  
PC contents saved  
CCR contents saved  
I 1  
Branch to interrupt  
handling routine  
Notation:  
PC: Program counter  
CCR: Condition code register  
I: I bit of CCR  
Figure 3-4 Flow up to Interrupt Acceptance  
81  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP (R7)  
SP (R7)  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
CCR  
CCR*  
PCH  
PCL  
Even address  
Stack area  
Prior to start of interrupt  
exception handling  
After completion of interrupt  
exception handling  
PC and CCR  
saved to stack  
Notation:  
PCH: Upper 8 bits of program counter (PC)  
PCL: Lower 8 bits of program counter (PC)  
CCR: Condition code register  
SP: Stack pointer  
1. PC shows the address of the first instruction to be executed upon  
return from the interrupt handling routine.  
Notes:  
2. Register contents must always be saved and restored by word access,  
starting from an even-numbered address.  
* Ignored on return from interrupt.  
Figure 3-5 Stack State after Completion of Interrupt Exception Handling  
Figure 3-6 shows a typical interrupt sequence where the program area is in the on-chip ROM and  
the stack area is in the on-chip RAM.  
82  
Figure 3-6 Interrupt Sequence  
83  
3.3.6 Interrupt Response Time  
Table 3-4 shows the number of wait states after an interrupt request flag is set until the first  
instruction of the interrupt handler is executed.  
Table 3-4 Interrupt Wait States  
Item  
States  
Waiting time for completion of executing instruction*  
Saving of PC and CCR to stack  
Vector fetch  
1 to 13  
4
2
Instruction fetch  
4
Internal processing  
4
Total  
15 to 27  
Note: * Not including EEPMOV instruction.  
84  
3.4 Application Notes  
3.4.1 Notes on Stack Area Use  
When word data is accessed in the H8/3834U Series, the least significant bit of the address is  
regarded as 0. Access to the stack always takes place in word size, so the stack pointer (SP: R7)  
should never indicate an odd address. Use PUSH Rn (MOV.W Rn, @–SP) or POP Rn (MOV.W  
@SP+, Rn) to save or restore register values.  
Setting an odd address in SP may cause a program to crash. An example is shown in figure 3-7.  
PCH  
PCL  
SP  
R1L  
PCL  
H'FEFC  
H'FEFD  
SP  
SP  
H'FEFF  
MOV. B R1L, @–R7  
Stack accessed beyond SP Contents of PCH are lost  
BSR instruction  
SP set to H'FEFF  
Notation:  
PCH: Upper byte of program counter  
PCL: Lower byte of program counter  
R1L: General register R1L  
SP: Stack pointer  
Figure 3-7 Operation when Odd Address is Set in SP  
When CCR contents are saved to the stack during interrupt exception handling or restored when  
RTE is executed, this also takes place in word size. Both the upper and lower bytes of word data  
are saved to the stack; on return, the even address contents are restored to CCR while the odd  
address contents are ignored.  
85  
3.4.2 Notes on Rewriting Port Mode Registers  
When a port mode register is rewritten to switch the functions of external interrupt pins, the  
following points should be observed.  
When an external interrupt pin function is switched by rewriting the port mode register that  
controls these pins (IRQ to IRQ , and WKP to WKP ), the interrupt request flag may be set to 1  
4
0
7
0
at the time the pin function is switched, even if no valid interrupt is input at the pin. Be sure to  
clear the interrupt request flag to 0 after switching pin functions. Table 3-5 shows the conditions  
under which interrupt request flags are set to 1 in this way.  
Table 3-5 Conditions under which Interrupt Request Flag is Set to 1  
Interrupt Request  
Flags Set to 1  
Conditions  
IRR1  
IRRI4  
IRRI3  
IRRI2  
IRRI1  
IRRI0  
• When PMR2 bit IRQ4 is changed from 0 to 1 while pin IRQ4 is low and  
IEGR bit IEG4 = 0.  
• When PMR2 bit IRQ4 is changed from 1 to 0 while pin IRQ4 is low and  
IEGR bit IEG4 = 1.  
• When PMR1 bit IRQ3 is changed from 0 to 1 while pin IRQ3 is low and  
IEGR bit IEG3 = 0.  
• When PMR1 bit IRQ3 is changed from 1 to 0 while pin IRQ3 is low and  
IEGR bit IEG3 = 1.  
• When PMR1 bit IRQ2 is changed from 0 to 1 while pin IRQ2 is low and  
IEGR bit IEG2 = 0.  
• When PMR1 bit IRQ2 is changed from 1 to 0 while pin IRQ2 is low and  
IEGR bit IEG2 = 1.  
• When PMR1 bit IRQ1 is changed from 0 to 1 while pin IRQ1 is low and  
IEGR bit IEG1 = 0.  
• When PMR1 bit IRQ1 is changed from 1 to 0 while pin IRQ1 is low and  
IEGR bit IEG1 = 1.  
• When PMR2 bit IRQ0 is changed from 0 to 1 while pin IRQ0 is low and  
IEGR bit IEG0 = 0.  
• When PMR2 bit IRQ0 is changed from 1 to 0 while pin IRQ0 is low and  
IEGR bit IEG0 = 1.  
86  
Table 3-5 Conditions under which Interrupt Request Flag is Set to 1 (cont)  
Interrupt Request  
Flags Set to 1  
Conditions  
IWPR IWPF7  
When PMR5 bit WKP7 is changed from 0 to 1 while pin WKP7 is low  
When PMR5 bit WKP6 is changed from 0 to 1 while pin WKP6 is low  
When PMR5 bit WKP5 is changed from 0 to 1 while pin WKP5 is low  
When PMR5 bit WKP4 is changed from 0 to 1 while pin WKP4 is low  
When PMR5 bit WKP3 is changed from 0 to 1 while pin WKP3 is low  
When PMR5 bit WKP2 is changed from 0 to 1 while pin WKP2 is low  
When PMR5 bit WKP1 is changed from 0 to 1 while pin WKP1 is low  
When PMR5 bit WKP0 is changed from 0 to 1 while pin WKP0 is low  
IWPF6  
IWPF5  
IWPF4  
IWPF3  
IWPF2  
IWPF1  
IWPF0  
Figure 3-8 shows the procedure for setting a bit in a port mode register and clearing the interrupt  
request flag.  
When switching a pin function, mask the interrupt before setting the bit in the port mode register.  
After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the  
interrupt request flag from 1 to 0. If the instruction to clear the flag is executed immediately after  
the port mode register access without executing an intervening instruction, the flag will not be  
cleared.  
An alternative method is to avoid the setting of interrupt request flags when pin functions are  
switched by keeping the pins at the high level so that the conditions in table 3-5 do not occur.  
Interrupts masked. (Another possibility  
is to disable the relevant interrupt in  
interrupt enable register 1.)  
CCR I bit  
1
Set port mode register bit  
After setting the port mode register bit,  
first execute at least one instruction  
(e.g., NOP), then clear the interrupt  
request flag to 0  
Execute NOP instruction  
Clear interrupt request flag to 0  
Interrupt mask cleared  
CCR I bit  
0
Figure 3-8 Port Mode Register Setting and Interrupt Request Flag  
Clearing Procedure  
87  
Section 4 Clock Pulse Generators  
4.1 Overview  
Clock oscillator circuitry (CPG: clock pulse generator) is provided on-chip, including both a  
system clock pulse generator and a subclock pulse generator. The system clock pulse generator  
consists of a system clock oscillator and system clock dividers. The subclock pulse generator  
consists of a subclock oscillator circuit and a subclock divider.  
4.1.1 Block Diagram  
Figure 4-1 shows a block diagram of the clock pulse generators.  
øOSC/2  
øOSC  
OSC1  
OSC2  
System clock  
oscillator  
System clock  
divider (1/2)  
ø
øOSC/16  
System clock  
divider (1/8)  
(fOSC  
)
ø/2  
to  
ø/8192  
Prescaler S  
(13 bits)  
System clock pulse generator  
øW  
øW/2  
øW  
Subclock  
divider  
(1/2, 1/4, 1/8)  
)
X1  
X2  
øW/4  
øW/8  
Subclock  
oscillator  
øSUB  
(fW  
øW /2  
øW /4  
øW /8  
to  
Prescaler W  
(5 bits)  
Subclock pulse generator  
øW /128  
Figure 4-1 Block Diagram of Clock Pulse Generators  
4.1.2 System Clock and Subclock  
The basic clock signals that drive the CPU and on-chip peripheral modules are ø and ø  
. Four  
SUB  
of the clock signals have names: ø is the system clock, ø  
is the subclock, ø  
is the oscillator  
SUB  
OSC  
clock, and ø is the watch clock.  
W
The clock signals available for use by peripheral modules are ø/2, ø/4, ø/8, ø/16, ø/32, ø/64, ø/128,  
ø/256, ø/512, ø/1024, ø/2048, ø/4096, ø/8192, ø , ø /2, ø /4, ø /8, ø /16, ø /32, ø /64, and  
W
W
W
W
W
W
W
ø /128. The clock requirements differ from one module to another.  
W
89  
4.2 System Clock Generator  
Clock pulse can be supplied to the system clock divider either by connecting a crystal or ceramic  
oscillator, or by providing external clock input.  
1. Connecting a crystal oscillator  
Figure 4-2 shows a typical method of connecting a crystal oscillator.  
C1  
OSC1  
Rf  
Rf = 1 M±20%  
C1 = C2 = 12 pF ±20%  
OSC2  
C2  
Figure 4-2 Typical Connection to Crystal Oscillator  
Figure 4-3 shows the equivalent circuit of a crystal oscillator. An oscillator having the  
characteristics given in table 4-1 should be used.  
CS  
LS  
RS  
OSC1  
OSC2  
C0  
Figure 4-3 Equivalent Circuit of Crystal Oscillator  
Table 4-1 Crystal Oscillator Parameters  
Frequency (MHz)  
Rs max ()  
2
4
8
10  
30  
500  
7
100  
50  
Co max (pF)  
90  
2. Connecting a ceramic oscillator  
Figure 4-4 shows a typical method of connecting a ceramic oscillator.  
C1  
OSC1  
Rf  
Rf = 1 M±20%  
C1 = 30 pF ±10%  
C2 = 30 pF ±10%  
OSC2  
C2  
Ceramic oscillator: Murata  
Figure 4-4 Typical Connection to Ceramic Oscillator  
3. Notes on board design  
When generating clock pulses by connecting a crystal or ceramic oscillator, pay careful attention  
to the following points.  
Avoid running signal lines close to the oscillator circuit, since the oscillator may be adversely  
affected by induction currents. (See figure 4-5.)  
The board should be designed so that the oscillator and load capacitors are located as close as  
possible to pins OSC and OSC .  
1
2
To be avoided  
Signal A Signal B  
C2  
OSC1  
OSC2  
C1  
Figure 4-5 Board Design of Oscillator Circuit  
91  
4. External clock input method  
Connect an external clock signal to pin OSC1, and leave pin OSC open. Figure 4-6 shows a  
2
typical connection.  
OSC1  
OSC2  
External clock input  
Open  
Figure 4-6 External Clock Input (Example)  
Frequency  
Oscillator Clock (øOSC)  
Duty cycle  
45% to 55%  
92  
4.3 Subclock Generator  
1. Connecting a 32.768-kHz crystal oscillator  
Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz crystal  
oscillator, as shown in figure 4-7. Follow the same precautions as noted under 4.2.3 for the  
system clock.  
C1  
X1  
X2  
C1 = C2 = 15 pF (typ.)  
C2  
Figure 4-7 Typical Connection to 32.768-kHz Crystal Oscillator (Subclock)  
Figure 4-8 shows the equivalent circuit of the 32.768-kHz crystal oscillator.  
CS  
LS  
RS  
X1  
X2  
C0  
C0 = 1.5 pF typ  
RS = 14 ktyp  
fW = 32.768 kHz  
Crystal oscillator: MX38T  
(Nihon Denpa Kogyo)  
Figure 4-8 Equivalent Circuit of 32.768-kHz Crystal Oscillator  
93  
2. Inputting an external clock  
(1) Circuit configuration  
An external clock is input to the X pin. The X pin should be left open.  
1
2
An example of the connection in this case is shown in figure 4-9.  
External clock input  
X1  
X2  
Open  
Figure 4-9 Example of Connection when Inputting an External Clock  
(2) External clock  
Input a square waveform to the X pin. When using the CPU, timer A, timer C, timer G, or an  
1
LCD, with a subclock (øw) clock selected, do not stop the clock supply to the X pin.  
1
txH  
VIH  
VIL  
txr  
txf  
txL  
Figure 4-10 External Subclock Timing  
The DC characteristics and timing of an external clock input to the X pin are shown in table 4-2.  
1
94  
Table 4-2 DC Characteristics and Timing  
(V = 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC  
CC  
SS  
SS  
a
unless otherwise specified, including subactive mode)  
Values  
Typ  
Applicable Test  
Item  
Symbol Pin  
Conditions Min  
Max  
Unit Notes  
Input high voltage  
Input low voltage  
VIH  
VIL  
txr  
X1  
VCC –0.3  
–0.3  
VCC +0.3  
0.3  
V
Figure 4.10  
External subclock  
rise time  
100  
ns  
Figure 4.10  
External subclock  
fall time  
txf  
100  
External subclock  
oscillation frequency  
fx  
32.768  
kHz  
µs  
External subclock  
high width  
txH  
txL  
12.0  
12.0  
Figure 4.10  
External subclock  
low width  
µs  
3. Pin connection when not using subclock  
When the subclock is not used, connect pin X to V and leave pin X open, as shown in  
1
CC  
2
figure 4-11.  
VCC  
X1  
X2  
Open  
Figure 4-11 Pin Connection when not Using Subclock  
95  
4.4 Prescalers  
The H8/3834U Series is equipped with two on-chip prescalers having different input clocks  
(prescaler S and prescaler W). Prescaler S is a 13-bit counter using the system clock (ø) as its  
input clock. Its prescaled outputs provide internal clock signals for on-chip peripheral modules.  
Prescaler W is a 5-bit counter using a 32.768-kHz signal divided by 4 (ø /4) as its input clock.  
W
Its prescaled outputs are used by timer A as a time base for timekeeping.  
1. Prescaler S (PSS)  
Prescaler S is a 13-bit counter using the system clock (ø) as its input clock. It is incremented once  
per clock period.  
Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state.  
In standby mode, watch mode, subactive mode, and subsleep mode, the system clock pulse  
generator stops. Prescaler S also stops and is initialized to H'0000.  
The CPU cannot read or write prescaler S.  
The output from prescaler S is shared by timer A, timer B, timer C, timer F, timer G, SCI1, SCI2,  
SCI3, the A/D converter, LCD controller, and 14-bit PWM. The divider ratio can be set separately  
for each on-chip peripheral function.  
In active (medium-speed) mode the clock input to prescaler S is ø  
2. Prescaler W (PSW)  
/16.  
OSC  
Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 (ø /4) as its input clock.  
W
Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state.  
Even in standby mode, watch mode, subactive mode, or subsleep mode, prescaler W continues  
functioning so long as clock signals are supplied to pins X and X .  
1
2
Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register A (TMA).  
Output from prescaler W can be used to drive timer A, in which case timer A functions as a time  
base for timekeeping.  
96  
4.5 Note on Oscillators  
Oscillator characteristics of both the masked ROM and ZTAT™ versions are closely related to  
board design and should be carefully evaluated by the user, referring to the examples shown in this  
section. Oscillator circuit constants will differ depending on the oscillator element, stray  
capacitance in its interconnecting circuit, and other factors. Suitable constants should be  
determined in consultation with the oscillator element manufacturer. Design the circuit so that the  
oscillator element never receives voltages exceeding its maximum rating.  
97  
Section 5 Power-Down Modes  
5.1 Overview  
The H8/3834U Series has seven modes of operation after a reset. These include six power-down  
modes, in which power dissipation is significantly reduced.  
Table 5-1 gives a summary of the seven operation modes. All but the active (high-speed) mode  
are power-down modes.  
Table 5-1 Operation Modes  
Operating Mode  
Description  
Active (high-speed) mode  
The CPU runs on the system clock, executing program  
instructions at high speed  
Active (medium-speed) mode  
Subactive mode  
Sleep mode  
The CPU runs on the system clock, executing program  
instructions at reduced speed  
The CPU runs on the subclock, executing program instructions  
at reduced speed  
The CPU halts. On-chip peripheral modules continue to  
operate on the system clock.  
Subsleep mode  
Watch mode  
The CPU halts. Timer A, timer C, timer G, and the LCD  
controller/driver continue to operate on the subclock.  
The CPU halts. The time-base function of timer A and the LCD  
controller/driver continue to operate on the subclock.  
Standby mode  
The CPU and all on-chip peripheral modules stop operating  
In this section the two active modes (high-speed and medium-speed) are referred to collectively as  
active mode.  
99  
Figure 5-1 shows the transitions among these operation modes. Table 5-2 indicates the internal  
states in each mode.  
Program execution state  
LSON = 0, MSON = 0  
Program halt state  
Reset state  
Program halt state  
Active (high-speed)  
mode  
*
4
SSBY = 1,  
TMA3 = 0,  
LSON = 0  
*
1
SSBY = 0,  
LSON = 0  
*
3
Standby mode  
Sleep mode  
LSON = 0,  
MSON = 1  
*
3
*
4
Active  
(medium-speed)  
mode  
*
1
SSBY = 1,  
TMA3 = 1  
Watch mode  
SSBY = 0,  
LSON = 1,  
TMA3 = 1  
*
1
LSON = 1,  
TMA3 = 1  
SLEEP  
instruction  
Subactive mode  
Subsleep mode  
*
2
Power-down mode  
: Transition caused by exception handling  
A transition between different modes cannot be made to occur simply because an interrupt request is  
generated. Make sure that the interrupt is accepted and interrupt handling is performed.  
Details on the mode transition conditions are given in the explanations of each mode, in sections 5.2  
through 5.8.  
Notes: 1. Timer A interrupt, IRQ0 interrupt, WKP0 to WKP7 interrupts  
2. Timer A interrupt, timer C interrupt, timer G interrupt, IRQ0 to IRQ 4 interrupts,  
WKP0 to WKP7 interrupts  
3. All interrupts  
4. IRQ0 interrupt, IRQ1 interrupt, WKP0 to WKP7 interrupts  
Figure 5-1 Operation Mode Transition Diagram  
100  
Table 5-2 Internal State in Each Operation Mode  
Active Mode  
High  
Speed  
Medium  
Speed  
Sleep  
Mode  
Watch  
Mode  
Subactive Subsleep Standby  
Function  
Mode  
Mode  
Mode  
System clock oscillator Functions Functions Functions Halted  
Subclock oscillator  
Halted  
Halted  
Halted  
Functions Functions Functions Functions Functions Functions Functions  
CPU  
operation  
Instructions Functions Functions Halted  
Halted  
Functions Halted  
Retained  
Halted  
RAM  
Retained  
Retained  
Retained  
Registers  
I/O  
Retained*1  
External IRQ0  
Functions Functions Functions Functions Functions Functions Functions  
interrupts  
IRQ1  
Retained*6  
IRQ2  
IRQ3  
Retained*6  
IRQ4  
WKP0  
Functions Functions Functions Functions Functions Functions Functions  
WKP1  
WKP2  
WKP3  
WKP4  
WKP5  
WKP6  
WKP7  
Peripheral Timer A  
Functions Functions Functions Functions*5 Functions*5 Functions*5 Retained  
module  
functions  
Timer C  
Timer B  
Retained  
Retained  
Retained  
Functions/ Functions/  
Retained*2 Retained*2  
Timer F  
Timer G  
Retained  
Retained  
Functions/ Functions/  
Retained*3 Retained*3  
SCI1  
SCI2  
SCI3  
PWM  
A/D  
Functions Functions Functions Retained  
Reset  
Retained  
Retained  
Retained  
Reset  
Reset  
Reset  
Functions Functions Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Functions Functions Functions Retained  
LCD  
Functions Functions Functions Functions/ Functions/ Functions/ Retained  
Retained*4 Retained*4 Retained*4  
Notes: 1. Register contents held; high-impedance output.  
2. Functions only if external clock or øW/4 internal clock is selected; otherwise halted and retained.  
3. Functions only if øW/2 internal clock is selected; otherwise halted and retained.  
4. Functions only if øW or øW/2 internal clock is selected; otherwise halted and retained.  
5. Functions when timekeeping time-base function is selected.  
6. External interrupt requests are ignored. The interrupt request register contents are not affected.  
101  
5.1.1 System Control Registers  
The operation mode is selected using the system control registers described in table 5-3.  
Table 5-3 System Control Register  
Name  
Abbreviation  
SYSCR1  
R/W  
R/W  
R/W  
Initial Value  
H'07  
Address  
H'FFF0  
H'FFF1  
System control register 1  
System control register 2  
SYSCR2  
H'E0  
1. System control register 1 (SYSCR1)  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
3
2
1
1
0
STS0  
0
LSON  
0
1
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
SYSCR1 is an 8-bit read/write register for control of the power-down modes.  
Bit 7: Software standby (SSBY)  
This bit designates transition to standby mode or watch mode.  
Bit 7  
SSBY  
Description  
0
• When a SLEEP instruction is executed in active mode, a transition  
is made to sleep mode.  
(initial value)  
• When a SLEEP instruction is executed in subactive mode, a transition is made to  
subsleep mode.  
1
• When a SLEEP instruction is executed in active mode, a transition is made to  
standby mode or watch mode.  
• When a SLEEP instruction is executed in subactive mode, a transition is made to  
watch mode.  
Bits 6 to 4: Standby timer select 2 to 0 (STS2 to STS0)  
These bits designate the time the CPU and peripheral modules wait for stable clock operation after  
exiting from standby mode or watch mode to active mode due to an interrupt. The designation  
should be made according to the clock frequency so that the waiting time is at least 10 ms.  
102  
Bit 6  
Bit 5  
Bit 4  
STS2  
STS1  
STS0  
Description  
0
0
0
0
1
0
0
1
1
*
0
1
0
1
*
Wait time = 8,192 states  
Wait time = 16,384 states  
Wait time = 32,768 states  
Wait time = 65,536 states  
Wait time = 131,072 states  
(initial value)  
Note: * Don’t care  
Bit 3: Low speed on flag (LSON)  
This bit chooses the system clock (ø) or subclock (ø  
) as the CPU operating clock when watch  
SUB  
mode is cleared. The resulting operation mode depends on the combination of other control bits  
and interrupt input.  
Bit 3  
LSON  
Description  
0
1
The CPU operates on the system clock (ø)  
(initial value)  
The CPU operates on the subclock (øSUB  
)
Bits 2 to 0: Reserved bits  
These bits are reserved; they are always read as 1, and cannot be modified.  
2. System control register 2 (SYSCR2)  
Bit  
7
1
6
1
5
1
4
3
2
1
0
NESEL DTON MSON  
SA1  
0
SA0  
0
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
SYSCR2 is an 8-bit read/write register for power-down mode control.  
Bits 7 to 5: Reserved bits  
These bits are reserved; they are always read as 1, and cannot be modified.  
Bit 4: Noise elimination sampling frequency select (NESEL)  
This bit selects the frequency at which the watch clock signal (ø ) generated by the subclock  
W
pulse generator is sampled, in relation to the oscillator clock (ø  
) generated by the system clock  
OSC  
pulse generator. When ø  
= 2 to 10 MHz, clear NESEL to 0.  
OSC  
103  
Bit 4  
NESEL  
Description  
0
1
Sampling rate is øOSC/16  
Sampling rate is øOSC/4  
Bit 3: Direct transfer on flag (DTON)  
This bit designates whether or not to make direct transitions among active (high-speed), active  
(medium-speed) and subactive mode when a SLEEP instruction is executed. The mode to which  
the transition is made after the SLEEP instruction is executed depends on a combination of this  
and other control bits.  
Bit 3  
DTON  
Description  
0
When a SLEEP instruction is executed in active mode, a transition  
is made to standby mode, watch mode, or sleep mode.  
(initial value)  
When a SLEEP instruction is executed in subactive mode, a transition is made to  
watch mode or subsleep mode.  
1
When a SLEEP instruction is executed in active (high-speed) mode, a direct  
transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, and  
LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.  
When a SLEEP instruction is executed in active (medium-speed) mode, a direct  
transition is made to active (high-speed) mode if SSBY = 0, MSON = 0, and LSON =  
0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.  
When a SLEEP instruction is executed in subactive mode, a direct transition is made  
to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 0, or to  
active (medium-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 1.  
Bit 2: Medium speed on flag (MSON)  
After standby, watch, or sleep mode is cleared, this bit selects active (high-speed) or active  
(medium-speed) mode.  
Bit 2  
MSON  
Description  
0
1
Operation is in active (high-speed) mode  
Operation is in active (medium-speed) mode  
(initial value)  
104  
Bits 1 and 0: Subactive mode clock select (SA1 and SA0)  
These bits select the CPU clock rate (ø /2, ø /4, or ø /8) in subactive mode. SA1 and SA0  
W
W
W
cannot be modified in subactive mode.  
Bit 1  
SA1  
Bit 0  
SA0  
Description  
øW/8  
0
0
1
0
1
*
(initial value)  
øW/4  
øW/2  
Note: * Don’t care  
5.2 Sleep Mode  
5.2.1 Transition to Sleep Mode  
The system goes from active mode to sleep mode when a SLEEP instruction is executed while the  
SSBY and LSON bits in system control register 1 (SYSCR1) are cleared to 0. In sleep mode CPU  
operation is halted but the on-chip peripheral functions other than PWM are operational. The  
CPU register contents are retained.  
5.2.2 Clearing Sleep Mode  
Sleep mode is cleared by an interrupt (timer A, timer B, timer C, timer F, timer G, IRQ to IRQ ,  
0
4
WKP to WKP , SCI1, SCI2, SCI3, A/D converter) or by input at the RES pin.  
0
7
Clearing by interrupt  
When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts.  
Operation resumes in active (high-speed) mode if MSON = 0 in SYSCR2, or active (medium-  
speed) mode if MSON = 1. Sleep mode is not cleared if the I bit of the condition code register  
(CCR) is set to 1 or the particular interrupt is disabled in the interrupt enable register.  
Clearing by RES input  
When the RES pin goes low, the CPU goes into the reset state and sleep mode is cleared.  
105  
5.3 Standby Mode  
5.3.1 Transition to Standby Mode  
The system goes from active mode to standby mode when a SLEEP instruction is executed while  
the SSBY bit in SYSCR1 is set to 1, the LSON bit is cleared to 0, and bit TMA3 in timer  
register A (TMA) is cleared to 0. In standby mode the clock pulse generator stops, so the CPU  
and on-chip peripheral modules stop functioning. As long as a minimum required voltage is  
applied, the CPU register contents and data in the on-chip RAM will be retained. The I/O ports go  
to the high-impedance state.  
5.3.2 Clearing Standby Mode  
Standby mode is cleared by an interrupt (IRQ , IRQ , WKP to WKP ) or by input at the RES  
0
1
0
7
pin.  
Clearing by interrupt  
When an interrupt is requested, the system clock pulse generator starts. After the time set in bits  
STS2–STS0 in SYSCR1 has elapsed, a stable system clock signal is supplied to the entire chip,  
standby mode is cleared, and interrupt exception handling starts. Operation resumes in active  
(high-speed) mode if MSON = 0 in SYSCR2, or active (medium-speed) mode if MSON = 1.  
Standby mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in  
the interrupt enable register.  
Clearing by RES input  
When the RES pin goes low, the system clock pulse generator starts and standby mode is cleared.  
After the pulse generator output has stabilized, if the RES pin is driven high, the CPU starts reset  
exception handling.  
Since system clock signals are supplied to the entire chip as soon as the system clock pulse  
generator starts functioning, the RES pin should be kept at the low level until the pulse generator  
output stabilizes.  
5.3.3 Oscillator Settling Time after Standby Mode is Cleared  
Bits STS2 to STS0 in SYSCR1 should be set as follows.  
When a crystal oscillator is used  
The table below gives settings for various operating frequencies. Set bits STS2 to STS0 for a  
waiting time of at least 10 ms.  
106  
When an external clock is used  
Any values may be set. Normally the minimum time (STS2 = STS1 = STS0 = 0) should be set.  
Table 5-3 Clock Frequency and Settling Time (times are in ms)  
STS2  
STS1  
STS0  
Waiting Time  
8,192 states  
5 MHz  
1.6  
4 MHz  
2.0  
2 MHz  
4.1  
1 MHz  
8.2  
0.5 MHz  
16.4  
0
0
0
0
1
0
0
1
1
*
0
1
0
1
*
16,384 states  
32,768 states  
65,536 states  
131,072 states  
3.2  
4.1  
8.2  
16.4  
32.8  
65.5  
131.1  
32.8  
6.6  
8.2  
16.4  
32.8  
65.5  
65.5  
13.1  
26.2  
16.4  
32.8  
131.1  
262.1  
Note: * Don’t care  
5.3.4 Transition to Standby Mode and Port Pin States  
The system goes from active (high-speed or medium-speed) mode to standby mode when a  
SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit is cleared  
to 0, and bit TMA3 in TMA is cleared to 0. Port pins (except those with their MOS pull-up turned  
on) enter high-impedance state when the transition to standby mode is made. This timing is  
shown in figure 5-2.  
φ
Internal  
data bus  
SLEEP instruction fetch  
Next instruction fetch  
SLEEP instruction  
execution  
Internal  
processing  
Output  
High-impedance  
Standby mode  
Port pins  
Active (high-speed or medium-speed) mode  
Figure 5-2 Transition to Standby Mode and Port Pin States  
107  
5.4 Watch Mode  
5.4.1 Transition to Watch Mode  
The system goes from active or subactive mode to watch mode when a SLEEP instruction is  
executed while the SSBY bit in SYSCR1 is set to 1 and bit TMA3 in TMA is set to 1.  
In watch mode, operation of on-chip peripheral modules other than timer A and the LCD  
controller is halted. The LCD controller can be selected to operate or to halt. As long as a  
minimum required voltage is applied, the contents of CPU registers and some registers of the on-  
chip peripheral modules, and the on-chip RAM contents, are retained. I/O ports keep the same  
states as before the transition.  
5.4.2 Clearing Watch Mode  
Watch mode is cleared by an interrupt (timer A, IRQ , WKP to WKP ) or by a low input at the  
0
0
7
RES pin.  
Clearing by interrupt  
Watch mode is cleared when an interrupt is requested. The mode to which a transition is made  
depends on the settings of LSON in SYSCR1 and MSON in SYSCR2. If both LSON and MSON  
are cleared to 0, transition is to active (high-speed) mode; if LSON = 0 and MSON = 1, transition  
is to active (medium-speed) mode; if LSON = 1, transition is to subactive mode. When the  
transition is to active mode, after the time set in SYSCR1 bits STS2 to STS0 has elapsed, a stable  
clock signal is supplied to the entire chip, watch mode is cleared, and interrupt exception handling  
starts. Watch mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is  
disabled in the interrupt enable register.  
Clearing by RES input  
Clearing by RES pin is the same as for standby mode; see 5.3.2, Clearing Standby Mode.  
5.4.3 Oscillator Settling Time after Watch Mode is Cleared  
The waiting time is the same as for standby mode; see 5.3.3, Oscillator Settling Time after  
Standby Mode is Cleared.  
108  
5.5 Subsleep Mode  
5.5.1 Transition to Subsleep Mode  
The system goes from subactive mode to subsleep mode when a SLEEP instruction is executed  
while the SSBY bit in SYSCR1 is cleared to 0, LSON bit in SYSCR1 is set to 1, and TMA3 bit in  
TMA is set to 1.  
In subsleep mode, operation of on-chip peripheral modules other than timer A, timer C, timer G,  
and the LCD controller is halted. As long as a minimum required voltage is applied, the contents  
of CPU registers and some registers of the on-chip peripheral modules, and the on-chip RAM  
contents, are retained. I/O ports keep the same states as before the transition.  
5.5.2 Clearing Subsleep Mode  
Subsleep mode is cleared by an interrupt (timer A, timer C, timer G, IRQ to IRQ , WKP to  
0
4
0
WKP ) or by a low input at the RES pin.  
7
Clearing by interrupt  
When an interrupt is requested, subsleep mode is cleared and interrupt exception handling starts.  
Subsleep mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in  
the interrupt enable register.  
Clearing by RES input  
Clearing by RES pin is the same as for standby mode; see 5.3.2, Clearing Standby Mode.  
109  
5.6 Subactive Mode  
5.6.1 Transition to Subactive Mode  
Subactive mode is entered from watch mode if a timer A, IRQ , or WKP to WKP interrupt is  
0
0
7
requested while the LSON bit in SYSCR1 is set to 1. From subsleep mode, subactive mode is  
entered if a timer A, timer C, timer G, IRQ to IRQ , or WKP to WKP interrupt is requested.  
0
4
0
7
A transition to subactive mode does not take place if the I bit of CCR is set to 1 or the particular  
interrupt is disabled in the interrupt enable register.  
5.6.2 Clearing Subactive Mode  
Subactive mode is cleared by a SLEEP instruction or by a low input at the RES pin.  
Clearing by SLEEP instruction  
If a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in  
TMA is set to 1, subactive mode is cleared and watch mode is entered. If a SLEEP instruction is  
executed while SSBY = 0 and LSON = 1 in SYSCR1 and TMA3 = 1 in TMA, subsleep mode is  
entered. Direct transfer to active mode is also possible; see 5.8, Direct Transfer, below.  
Clearing by RES pin  
Clearing by RES pin is the same as for standby mode; see 5.3.2, Clearing Standby Mode.  
5.6.3 Operating Frequency in Subactive Mode  
The operating frequency in subactive mode is set in bits SA1 and SA0 in SYSCR2. The choices  
are ø /2, ø /4, and ø /8.  
W
W
W
110  
5.7 Active (medium-speed) Mode  
5.7.1 Transition to Active (medium-speed) Mode  
If the MSON bit in SYSCR2 is set to 1 while the LSON bit in SYSCR1 is cleared to 0, a transition  
to active (medium-speed) mode results from IRQ , IRQ , or WKP to WKP interrupts in standby  
0
1
0
7
mode, timer A, IRQ , or WKP to WKP interrupts in watch mode, or any interrupt in sleep  
0
0
7
mode. A transition to active (medium-speed) mode does not take place if the I bit of CCR is set to  
1 or the particular interrupt is disabled in the interrupt enable register.  
5.7.2 Clearing Active (medium-speed) Mode  
Active (medium-speed) mode is cleared by a SLEEP instruction or by a low input at the RES pin.  
Clearing by SLEEP instruction  
A transition to standby mode takes place if a SLEEP instruction is executed while the SSBY bit in  
SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, and TMA3 bit in TMA is cleared to  
0. The system goes to watch mode if the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in TMA  
is set to 1 when a SLEEP instruction is executed. Sleep mode is entered if both SSBY and LSON  
are cleared to 0 when a SLEEP instruction is executed. Direct transfer to active (high-speed)  
mode or to subactive mode is also possible. See 5.8, Direct Transfer, below for details.  
Clearing by RES pin  
When the RES pin goes low, the CPU enters the reset state and active (medium-speed) mode is  
cleared.  
5.7.3 Operating Frequency in Active (medium-speed) Mode  
In active (medium-speed) mode, the CPU is clocked at 1/8 the frequency in active (high-speed)  
mode.  
111  
5.8 Direct Transfer  
5.8.1 Direct Transfer Overview  
The CPU can execute programs in three modes: active (high-speed) mode, active (medium-speed)  
mode, and subactive mode. A direct transfer is a transition among these three modes without the  
stopping of program execution. A direct transfer can be made by executing a SLEEP instruction  
while the DTON bit in SYSCR2 is set to 1. After the mode transition, direct transfer interrupt  
exception handling starts.  
If the direct transfer interrupt is disabled in interrupt enable register 2 (IENR2), a transition is  
made instead to sleep mode or watch mode. Note that if a direct transition is attempted while the I  
bit in CCR is set to 1, sleep mode or watch mode will be entered, and it will be impossible to clear  
the resulting mode by means of an interrupt.  
Direct transfer from active (high-speed) mode to active (medium-speed) mode  
When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON  
bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is set to 1, and the DTON bit in  
SYSCR2 is set to 1, a transition is made to active (medium-speed) mode via sleep mode.  
Direct transfer from active (medium-speed) mode to active (high-speed) mode  
When a SLEEP instruction is executed in active (medium-speed) mode while the SSBY and  
LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is cleared to 0, and the DTON  
bit in SYSCR2 is set to 1, a transition is made to active (high-speed) mode via sleep mode.  
Direct transfer from active (high-speed) mode to subactive mode  
When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON  
bits in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set  
to 1, a transition is made to subactive mode via watch mode.  
Direct transfer from subactive mode to active (high-speed) mode  
When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set  
to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is cleared to 0, the  
DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made directly to  
active (high-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to  
STS0 has elapsed.  
112  
Direct transfer from active (medium-speed) mode to subactive mode  
When a SLEEP instruction is executed in active (medium-speed) while the SSBY and LSON bits  
in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a  
transition is made to subactive mode via watch mode.  
Direct transfer from subactive mode to active (medium-speed) mode  
When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set  
to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is set to 1, the DTON bit  
in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made directly to active  
(medium-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to STS0  
has elapsed.  
5.8.2 Calculation of Direct Transfer Time before Transition  
Time required before direct transfer from active (high-speed) mode to active (medium-speed)  
mode  
A direct transfer is made from active (high-speed) mode to active (medium-speed) mode when a  
SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON bits in  
SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is set to 1, and the DTON bit in SYSCR2 is  
set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt  
exception handling completion is calculated by expression (1) below.  
Direct transfer time = (number of states for SLEEP instruction execution + number of states for  
internal processing) × tcyc before transition + number of states for interrupt  
exception handling execution × tcyc after transition  
...... (1)  
Example: Direct transfer time for the H8/3834U Series  
= (2 + 1) × 2tosc + 14 × 16tosc = 230 tosc  
Notation:  
tosc: OSC clock cycle time  
tcyc: System clock (φ) cycle time  
Time required before direct transfer from active (medium-speed) mode to active (high-speed)  
mode  
A direct transfer is made from active (medium-speed) mode to active (high-speed) mode when a  
SLEEP instruction is executed in active (medium-speed) mode while the SSBY and LSON bits in  
SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is cleared to 0, and the DTON bit in  
SYSCR2 is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to  
interrupt exception handling completion is calculated by expression (2) below.  
113  
Direct transfer time = (number of states for SLEEP instruction execution + number of states for  
internal processing) × tcyc before transition + number of states for interrupt  
exception handling execution × tcyc after transition  
...... (2)  
Example: Direct transfer time for the H8/3834U Series  
= (2 + 1) × 16tosc + 14 × 2tosc = 76 tosc  
Notation:  
tosc: OSC clock cycle time  
tcyc: System clock (φ) cycle time  
Time required before direct transfer from subactive mode to active (high-speed) mode  
A direct transfer is made from subactive mode to active (high-speed) mode when a SLEEP  
instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit  
in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is cleared to 0, the DTON bit in SYSCR2 is  
set to 1, and the TMA3 bit in TMA is set to 1. A direct transfer time, that is, the time from  
SLEEP instruction execution to interrupt exception handling completion is calculated by  
expression (3) below.  
Direct transfer time = (number of states for SLEEP instruction execution + number of states for  
internal processing) × tsubcyc before transition + (wait time designated by  
STS2 to STS0 bits in SCR + number of states for interrupt exception  
handling execution) × tcyc after transition  
...... (3)  
Example: Direct transfer time for the H8/3834U Series  
(when CPU clock frequency is φw/8 and wait time is 8192 states)  
= (2 + 1) × 8tw + (8192 + 14) × 2tosc = 24tw + 16412tosc  
Notation:  
tosc: OSC clock cycle time  
tw: Watch clock cycle time  
tcyc: System clock (φ) cycle time  
tsubcyc: Subclock (φSUB) cycle time  
Time required before direct transfer from subactive mode to active (medium-speed) mode  
A direct transfer is made from subactive mode to active (medium-speed) mode when a SLEEP  
instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit  
in SYSCR1 is cleared to 0, the MSON and DTON bits in SYSCR2 are set to 1, and the TMA3 bit  
in TMA is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to  
interrupt exception handling completion is calculated by expression (4) below.  
Direct transfer time = (number of states for SLEEP instruction execution + number of states for  
internal processing) × tsubcyc before transition + (wait time designated by  
114  
STS2 to STS0 bits in SCR + number of states for interrupt exception  
handling execution) × tcyc after transition  
...... (4)  
Example: Direct transfer time for the H8/3834U Series  
(when CPU clock frequency is φw/8 and wait time is 8192 states)  
= (2 + 1) × 8tw + (8192 + 14) × 16tosc = 24tw + 131296tosc  
Notation:  
tosc: OSC clock cycle time  
tw: Watch clock cycle time  
tcyc: System clock (φ) cycle time  
tsubcyc: Subclock (φSUB) cycle time  
115  
Section 6 ROM  
6.1 Overview  
The H8/3833U has 24 kbytes of on-chip ROM, while the H8/3834U has 32 kbytes, the H8/3835U  
has 40 kbytes, the H8/3836U has 48 kbytes, and the H8/3837U has 60 kbytes. The ROM is  
connected to the CPU by a 16-bit data bus, allowing high-speed 2-state access for both byte data  
and word data. The ZTAT™ versions of the H8/3834U and H8/3837U each have 32 kbytes and  
60 kbytes of PROM.  
6.1.1 Block Diagram  
Figure 6-1 shows a block diagram of the on-chip ROM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'0000  
H'0002  
H'0000  
H'0002  
H'0001  
H'0003  
On-chip ROM  
H'7FFE  
H'7FFE  
H'7FFF  
Even-numbered  
address  
Odd-numbered  
address  
Figure 6-1 ROM Block Diagram (H8/3834U)  
117  
6.2 H8/3834U PROM Mode  
6.2.1 Setting to PROM Mode  
If the on-chip ROM is PROM, setting the chip to PROM mode stops operation as a  
microcontroller and allows the PROM to be programmed in the same way as the standard  
HN27C256 EPROM. Table 6-1 shows how to set the chip to PROM mode.  
Table 6-1 Setting to PROM Mode  
Pin Name  
TEST  
Setting  
High level  
Low level  
PB4/AN4  
PB5/AN5  
PB6/AN6  
High level  
6.2.2 Socket Adapter Pin Arrangement and Memory Map  
A standard PROM programmer can be used to program the PROM. A socket adapter is required  
for conversion to 28 pins, as listed in table 6-2.  
Figure 6-2 shows the pin-to-pin wiring of the socket adapter. Figure 6-3 shows a memory map.  
Table 6-2 Socket Adapter  
Package  
Socket Adapter  
HS3834ESH01H  
HS3834ESF01H  
HS3834ESN01H  
100-pin (FP-100B)  
100-pin (FP-100A)  
100-pin (TFP-100B)  
118  
H8/3834U  
EPROM socket  
FP-100A  
12  
47  
48  
49  
50  
51  
52  
53  
54  
70  
69  
68  
67  
66  
65  
64  
63  
55  
91  
57  
58  
59  
60  
61  
62  
56  
34, 79  
92  
6
FP-100B  
9
Pin  
RES  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
P87  
P86  
P85  
P84  
P83  
P82  
P81  
P80  
P70  
P43  
P72  
P73  
P74  
P75  
P76  
P77  
P71  
VCC  
AVCC  
TEST  
X1  
Pin  
HN27C256  
VPP  
EO0  
EO1  
EO2  
EO3  
EO4  
EO5  
EO6  
EO7  
EA0  
EA1  
EA2  
EA3  
EA4  
EA5  
EA6  
EA7  
EA8  
EA9  
EA10  
EA11  
EA12  
EA13  
EA14  
CE  
1
44  
45  
46  
47  
48  
49  
50  
51  
67  
66  
65  
64  
63  
62  
61  
60  
52  
88  
54  
55  
56  
57  
58  
59  
53  
31, 76  
89  
3
11  
12  
13  
15  
16  
17  
18  
19  
10  
9
8
7
6
5
4
3
25  
24  
21  
23  
2
26  
27  
20  
22  
28  
OE  
VCC  
8
5
99  
13  
81  
82  
83  
9, 30  
5
96  
10  
78  
79  
80  
6, 27  
2
PB6  
MD0  
P11  
P12  
P13  
VSS  
AVSS  
PB4  
PB5  
P14  
P15  
P16  
VSS  
14  
97  
98  
84  
85  
86  
94  
95  
81  
82  
83  
Note: Pins not indicated in the figure should be left open.  
Figure 6-2 Socket Adapter Pin Correspondence (with HN27C256)  
119  
Address in MCU mode  
H'0000  
Address in PROM mode  
H'0000  
On-chip PROM  
H'7FFF  
H'7FFF  
Figure 6-3 H8/3834U Memory Map in PROM Mode  
Note: When programming with a PROM programmer, be sure to specify addresses from H'0000 to  
H'7FFF.  
120  
6.3 H8/3834U Programming  
The write, verify, and other modes are selected as shown in table 6-3 in H8/3834U PROM mode.  
Table 6-3 Mode Selection in H8/3834U PROM Mode  
Pin  
Mode  
CE  
L
OE  
H
VPP  
VPP  
VPP  
VPP  
VCC  
VCC  
VCC  
VCC  
EO7 to EO0  
Data input  
EA14 to EA0  
Address input  
Address input  
Address input  
Write  
Verify  
H
L
Data output  
High impedance  
Programming disabled  
H
H
Notation:  
L:  
H:  
Low level  
High level  
V
V
PP: VPP level  
CC: VCC level  
The specifications for writing and reading the on-chip PROM are identical to those for the  
standard HN27C256 EPROM.  
6.3.1 Writing and Verifying  
An efficient, high-performance programming method is available for writing and verifying the  
PROM data. This method achieves high speed without voltage stress on the device and without  
lowering the reliability of written data. H'FF data is written in unused address areas.  
The basic flow of this high-performance programming method is shown in figure 6-4. Table 6-4  
and table 6-5 give the electrical characteristics in programming mode. Figure 6-5 shows a  
write/verify timing diagram.  
121  
Start  
Set write/verify mode  
VCC = 6.0 V ± 0.25 V, VPP = 12.5 V ± 0.3 V  
Address = 0  
n = 0  
n + 1n  
Yes  
n < 25  
No  
Write time tPW = 1 ms ± 5%  
No Go  
Verify  
Go  
Address + 1address  
Write time tOPW = 3n ms  
No  
Last address?  
Yes  
Set read mode  
VCC = 5.0 V ± 0.5 V, VPP = VCC  
No  
All  
Error  
addresses read?  
Yes  
End  
Figure 6-4 High-Performance Programming Flowchart  
122  
Table 6-4 DC Characteristics  
(Conditions: V = 6.0 V ±0.25 V, V = 12.5 V ±0.3 V, V = 0 V, T = 25°C ±5°C)  
CC  
PP  
SS  
a
Test  
Item  
Symbol Min  
Typ  
Max  
Unit Conditions  
Input high-  
level voltage OE, CE  
EO7 to EO0, EA14 to EA0, VIH  
2.4  
–0.3  
2.4  
VCC + 0.3 V  
Input low-  
level voltage OE, CE  
EO7 to EO0, EA14 to EA0, VIL  
0.8  
V
V
V
Output high- EO7 to EO0  
level voltage  
VOH  
VOL  
IOH = –200 µA  
IOL = 0.8 mA  
Output low-  
level voltage  
EO7 to EO0  
0.45  
2
Input leakage EO7 to EO0, EA14 to EA0, |ILI|  
µA VIN  
=
current  
OE, CE  
5.25 V/0.5 V  
VCC current  
VPP current  
ICC  
IPP  
40  
40  
mA  
mA  
Table 6-5 AC Characteristics  
(Conditions: V = 6.0 V ±0.25 V, V = 12.5 V ±0.3 V, T = 25°C ±5°C)  
CC  
PP  
a
Item  
Symbol  
tAS  
Min  
2
Typ  
Max  
Unit  
µs  
Test Conditions  
Address setup time  
OE setup time  
Figure 6-5*1  
tOES  
tDS  
2
µs  
Data setup time  
2
µs  
Address hold time  
Data hold time  
tAH  
0
µs  
tDH  
2
µs  
*2  
Data output disable time  
VPP setup time  
tDF  
0
130  
ns  
tVPS  
tPW  
2
µs  
Programming pulse width  
0.95  
2.85  
1.0  
1.05  
78.7  
ms  
ms  
*3  
CE pulse width for overwrite  
programming  
tOPW  
VCC setup time  
tVCS  
tOE  
2
0
µs  
ns  
Data output delay time  
500  
Notes: 1. Input pulse level: 0.8 V to 2.2 V  
Input rise time/fall time 20 ns  
Timing reference levels Input: 1.0 V, 2.0 V  
Output: 0.8 V, 2.0 V  
2. tDF is defined at the point at which the output is floating and the output level cannot be  
read.  
3. tOPW is defined by the value given in figure 6-4 high-performance programming flow chart.  
123  
Write  
Verify  
Address  
Data  
tAH  
tAS  
Input data  
Output data  
tDS  
tDH  
tDF  
VPP  
VCC  
VPP  
VCC  
CE  
tVPS  
VCC+1  
VCC  
tVCS  
tPW  
tOES  
tOE  
OE  
tOPW  
*
Note: *tOPW is defined by the value given in figure 6-4 high-performance programming flow chart.  
Figure 6-5 PROM Write/Verify Timing  
6.3.2 Programming Precautions  
Use the specified programming voltage and timing.  
The programming voltage in PROM mode (V ) is 12.5 V. Use of a higher voltage can  
PP  
permanently damage the chip. Be especially careful with respect to PROM programmer  
overshoot.  
Setting the PROM programmer to Hitachi specifications for the HN27C256 will result in a  
correct V of 12.5 V.  
PP  
Make sure the index marks on the PROM programmer socket, socket adapter, and chip are  
properly aligned. If they are not, the chip may be destroyed by excessive current flow.  
Before programming, be sure that the chip is properly mounted in the PROM programmer.  
Avoid touching the socket adapter or chip during programming, since this may cause contact  
faults and write errors.  
124  
6.4 H8/3837U PROM Mode  
6.4.1 Setting to PROM Mode  
If the on-chip ROM is PROM, setting the chip to PROM mode stops operation as a  
microcontroller and allows the PROM to be programmed in the same way as the standard  
HN27C101 EPROM. Table 6-6 shows how to set the chip to PROM mode.  
Table 6-6 Setting to PROM Mode  
Pin Name  
TEST  
Setting  
High level  
Low level  
PB4/AN4  
PB5/AN5  
PB6/AN6  
High level  
6.4.2 Socket Adapter Pin Arrangement and Memory Map  
A standard PROM programmer can be used to program the PROM. A socket adapter is required  
for conversion to 32 pins, as listed in table 6-7.  
Figure 6-6 shows the pin-to-pin wiring of the socket adapter. Figure 6-7 shows a memory map.  
Table 6-7 Socket Adapter  
Package  
Socket Adapter  
HS3836ESH01H  
HS3836ESF01H  
HS3836ESN01H  
100-pin (FP-100B)  
100-pin (FP-100A)  
100-pin (TFP-100B)  
125  
H8/3837U  
EPROM socket  
HN27C101 (32 pins)  
FP-100A  
12  
47  
48  
49  
50  
51  
52  
53  
54  
70  
69  
68  
67  
66  
65  
64  
63  
55  
91  
57  
58  
59  
60  
61  
84  
85  
62  
56  
83  
34, 79  
92  
6
FP-100B  
9
Pin  
RES  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
P87  
P86  
P85  
P84  
P83  
P82  
P81  
P80  
P70  
P43  
P72  
P73  
P74  
P75  
P76  
P14  
P15  
P77  
P71  
P13  
VCC  
AVCC  
TEST  
X1  
Pin  
VPP  
1
44  
45  
46  
47  
48  
49  
50  
51  
67  
66  
65  
64  
63  
62  
61  
60  
52  
88  
54  
55  
56  
57  
58  
81  
82  
59  
53  
80  
31, 76  
89  
3
EO0  
EO1  
EO2  
EO3  
EO4  
EO5  
EO6  
EO7  
EA0  
EA1  
EA2  
EA3  
EA4  
EA5  
EA6  
EA7  
EA8  
EA9  
EA10  
EA11  
EA12  
EA13  
EA14  
EA15  
EA16  
CE  
13  
14  
15  
17  
18  
19  
20  
21  
12  
11  
10  
9
8
7
6
5
27  
26  
23  
25  
4
28  
29  
3
2
22  
24  
31  
32  
OE  
PGM  
VCC  
8
5
PB6  
MD0  
P11  
P12  
P16  
VSS  
AVSS  
PB4  
PB5  
99  
13  
81  
82  
86  
9, 30  
5
96  
10  
78  
79  
83  
6, 27  
2
16  
VSS  
97  
98  
94  
95  
Note: Pins not indicated in the figure should be left open.  
Figure 6-6 Socket Adapter Pin Correspondence (with HN27C101)  
126  
Address in  
MCU mode  
Address in  
PROM mode  
H'0000  
H'0000  
On-chip PROM  
H'EDFF  
H'EDFF  
Missing area *  
H'1FFFF  
Note: * If read in PROM mode, this address area returns unpredictable output data.  
When programming with a PROM programmer, be sure to specify addresses  
from H'0000 to H'EDFF.  
If address H'EE00 and higher addresses are programmed by mistake, it may  
become impossible to program the PROM or verify the programmed data.  
When programming, assign H'FF data to this address area (H'EE00 to H'1FFFF).  
Figure 6-7 H8/3837U Memory Map in PROM Mode  
127  
6.5 H8/3837U Programming  
The write, verify, and other modes are selected as shown in table 6-8 in H8/3837U PROM mode.  
Table 6-8 Mode Selection in H8/3837U PROM Mode  
Pin  
Mode  
Write  
Verify  
CE  
L
OE  
H
L
PGM  
VPP  
VPP  
VPP  
VPP  
VCC  
VCC  
VCC  
VCC  
EO7 to EO0  
Data input  
EA16 to EA0  
Address input  
Address input  
Address input  
L
L
H
L
Data output  
High impedance  
Programming  
disabled  
L
L
L
H
L
H
L
H
H
H
H
Notation  
L:  
Low level  
H: High level  
VPP: VPP level  
VCC: VCC level  
The specifications for writing and reading the on-chip PROM are identical to those for the  
standard HN27C101 EPROM. Page programming is not supported, however. The PROM writer  
must not be set to page mode. A PROM programmer that provides only page programming mode  
cannot be used. When selecting a PROM programer, check that it supports a byte-by-byte high-  
speed, high-reliability programming method. Be sure to set the address range to H'0000 to  
H'EDFF.  
6.5.1 Writing and Verifying  
An efficient, high-speed, high-reliability method is available for writing and verifying the PROM  
data. This method achieves high speed without voltage stress on the device and without lowering  
the reliability of written data. The basic flow of this high-speed, high-reliability programming  
method is shown in figure 6-8.  
128  
Start  
Set write/verify mode  
VCC = 6.0 V ± 0.25 V, VPP = 12.5 V ± 0.3 V  
Address = 0  
n = 0  
n + 1 n  
Yes  
n<25  
No  
Write time tPW = 0.2 ms ± 5%  
No Go  
Verify  
Address + 1 address  
Go  
Write time tOPW = 0.2n ms  
No  
Last address?  
Yes  
Set read mode  
VCC = 5.0 V ± 0.25 V, VPP = VCC  
No  
All addresses  
Error  
read?  
Yes  
End  
Figure 6-8 High-Speed, High-Reliability Programming Flow Chart  
129  
Table 6-9 and table 6-10 give the electrical characteristics in programming mode.  
Table 6-9 DC Characteristics (preliminary)  
(Conditions: V = 6.0 V ±0.25 V, V = 12.5 V ±0.3 V, V = 0 V, T = 25°C ±5°C)  
CC  
PP  
SS  
a
Test  
Item  
Symbol Min Typ Max  
Unit Conditions  
Input high-  
level voltage OE, CE, PGM  
EO7 to EO0, EA16 to EA0 VIH  
2.4  
–0.3  
2.4  
VCC + 0.3 V  
Input low-  
level voltage OE, CE, PGM  
EO7 to EO0, EA16 to EA0 VIL  
0.8  
V
V
V
Output high- EO7 to EO0  
level voltage  
VOH  
VOL  
IOH = –200 µA  
IOL = 0.8 mA  
Output low-  
level voltage  
EO7 to EO0  
0.45  
2
Input leakage EO7 to EO0, EA16 to EA0 |ILI|  
µA Vin = 5.25 V/  
0.5 V  
current  
OE, CE, PGM  
VCC current  
VPP current  
ICC  
IPP  
40  
40  
mA  
mA  
130  
Table 6-10 AC Characteristics  
(Conditions: V = 6.0 V ±0.25 V, V = 12.5 V ±0.3 V, T = 25°C ±5°C)  
CC  
PP  
a
Test  
Item  
Symbol  
tAS  
Min  
2
Typ  
Max  
Unit  
µs  
Conditions  
Address setup time  
OE setup time  
Figure 6-9*1  
tOES  
tDS  
2
µs  
Data setup time  
2
µs  
Address hold time  
Data hold time  
tAH  
0
µs  
tDH  
2
µs  
*2  
Data output disable time  
VPP setup time  
tDF  
2
130  
ns  
tVPS  
tPW  
µs  
Programming pulse width  
0.19  
0.19  
0.20  
0.21  
5.25  
ms  
ms  
*3  
PGM pulse width for overwrite  
programming  
tOPW  
VCC setup time  
tVCS  
tCES  
tOE  
2
2
0
µs  
µs  
ns  
CE setup time  
Data output delay time  
200  
Notes: 1. Input pulse level: 0.45 V to 2.4 V  
Input rise time/fall time 20 ns  
Timing reference levels Input: 0.8 V, 2.0 V  
Output: 0.8 V, 2.0 V  
2. tDF is defined at the point at which the output is floating and the output level cannot be  
read.  
3. tOPW is defined by the value given in figure 6-8 high-speed, high-reliability programming  
flow chart.  
131  
Figure 6-9 shows a write/verify timing diagram.  
Write  
Verify  
Address  
tAH  
tAS  
Data  
Input data  
Output data  
tDF  
tDS  
tDH  
VPP  
VCC  
VPP  
VCC  
CE  
tVPS  
VCC +1  
VCC  
tVCS  
tCES  
PGM  
OE  
tPW  
tOES  
tOE  
tOPW  
*
Note: * tOPW is defined by the value given in figure 6-8 high-speed, high-reliability  
programming flow chart.  
Figure 6-9 PROM Write/Verify Timing  
132  
6.5.2 Programming Precautions  
• Use the specified programming voltage and timing.  
The programming voltage in PROM mode (V ) is 12.5 V. Use of a higher voltage can  
PP  
permanently damage the chip. Be especially careful with respect to PROM programmer  
overshoot.  
Setting the PROM programmer to Hitachi specifications for the HN27C101 will result in  
correct V of 12.5 V.  
PP  
Make sure the index marks on the PROM programmer socket, socket adapter, and chip are  
properly aligned. If they are not, the chip may be destroyed by excessive current flow. Before  
programming, be sure that the chip is properly mounted in the PROM programmer.  
Avoid touching the socket adapter or chip while programming, since this may cause contact  
faults and write errors.  
Select the programming mode carefully. The chip cannot be programmed in page  
programming mode.  
When programming with a PROM programmer, be sure to specify addresses from H'0000 to  
H'EDFF. If address H'EE00 and higher addresses are programmed by mistake, it may become  
impossible to program the PROM or verify the programmed data. When programming, assign  
H'FF data to the address area from H'EE00 to H'1FFFF.  
133  
6.6 Reliability of Programmed Data  
A highly effective way of assuring data retention characteristics after programming is to screen the  
chips by baking them at a temperature of 150°C. This quickly eliminates PROM memory cells  
prone to initial data retention failure.  
Figure 6-10 shows a flowchart of this screening procedure.  
Write program and verify contents  
Bake at high temperature with power off  
125°C to 150°C, 24 hrs to 48 hrs  
Read and check program  
Install  
Figure 6-10 Recommended Screening Procedure  
If write errors occur repeatedly while the same PROM programmer is being used, stop  
programming and check for problems in the PROM programmer and socket adapter, etc.  
Please notify your Hitachi representative of any problems occurring during programming or in  
screening after high-temperature baking.  
134  
Section 7 RAM  
7.1 Overview  
The H8/3833U and H8/3834U have 1 kbyte of high-speed static RAM on-chip, while the  
H8/3835U, H8/3836U, and H8/3837U each have 2 kbytes. The RAM is connected to the CPU by  
a 16-bit data bus, allowing high-speed 2-state access for both byte data and word data.  
7.1.1 Block Diagram  
Figure 7-1 shows a block diagram of the on-chip RAM.  
Internal data bus (upper 8 bits)  
Internal data bus (lower 8 bits)  
H'FB80  
H'FB82  
H'FB80  
H'FB82  
H'FB81  
H'FB83  
On-chip RAM  
H'FF7E  
H'FF7E  
H'FF7F  
Even-numbered  
address  
Odd-numbered  
address  
Figure 7-1 RAM Block Diagram (H8/3834U)  
135  
Section 8 I/O Ports  
8.1 Overview  
The H8/3834U Series is provided with eight 8-bit I/O ports, one 4-bit I/O port, one 3-bit I/O port,  
one 8-bit input-only port, one 4-bit input-only port, and one 1-bit input-only port. Table 8-1  
indicates the functions of each port.  
Each port has of a port control register (PCR) that controls input and output, and a port data  
register (PDR) for storing output data. Input or output can be assigned to individual bits.  
See 2.9.2, Notes on Bit Manipulation, for information on executing bit-manipulation instructions  
to write data in PCR or PDR.  
Ports 5, 6, 7, 8, 9, and A double as LCD segment pins and common pins. The choice of pin  
functions can be made in 4-bit groupings.  
Block diagrams of each port are given in Appendix C.  
Table 8-1 Port Functions  
Function  
Switching  
Port  
Description  
Pins  
Other Functions  
Register  
Port 1 • 8-bit I/O port  
P17 to P15/  
External interrupts 3 to 1  
Timer event input TMIF, TMIC,  
TMIB  
PMR1  
TCRF,  
TMC,  
TMB  
• Input pull-up MOS IRQ3 to IRQ1/  
option  
TMIF, TMIC,  
TMIB  
P14/PWM  
P13/TMIG  
14-bit PWM output  
PMR1  
PMR1  
PMR1  
Timer G input capture  
Timer F output compare  
P12, P11/  
TMOFH, TMOFL  
P10/TMOW  
P27 to P22  
P21/UD  
Timer A clock output  
None  
PMR1  
Port 2 • 8-bit I/O port  
• Open drain output  
option  
Timer C count-up/down selection  
PMR2  
P20/IRQ4/  
ADTRG  
External interrupt 4 and A/D  
converter external trigger  
PMR2  
AMR  
• High-current port  
137  
Table 8-1 Port Functions (cont)  
Function  
Switching  
Register  
Port  
Description  
Pins  
Other Functions  
Port 3 • 8-bit I/O port  
P37/CS  
SCI2 chip select input (CS),  
strobe output (STRB), data  
output (SO2), data input (SI2),  
clock input/output (SCK2)  
PMR3  
• Input pull-up MOS P36/STRB  
option  
• High-current port  
P35/SO2  
P34/SI2  
P33/SCK2  
P32/SO1  
P31/SI1  
P30/SCK1  
SCI1 data output (SO1), data  
input (SI1), clock input/output  
(SCK1)  
PMR3  
PMR2  
Port 4 • 1-bit input-only port  
• 3-bit I/O port  
P43/IRQ0  
External interrupt 0  
P42/TXD  
P41/RXD  
P40/SCK3  
SCI3 data output (TXD), data  
input (RXD), clock input/output  
(SCK3)  
SCR3  
SMR3  
Port 5 • 8-bit I/O port  
P57 to P50/  
• Wakeup input (WKP7 to WKP0)  
PMR5  
LPCR  
• Input pull-up MOS WKP7 to WKP0/ • Segment output (SEG8 to SEG1)  
option  
SEG8 to SEG1  
Port 6 • 8-bit I/O port  
P67 to P60/  
Segment output (SEG16 to SEG9)  
LPCR  
• Input pull-up MOS SEG16 to SEG9  
option  
Port 7 • 8-bit I/O port  
P77 to P70/  
SEG24 to SEG17  
Segment output (SEG24 to SEG17)  
Segment output (SEG32 to SEG25)  
LPCR  
LPCR  
Port 8 • 8-bit I/O port  
Port 9 • 8-bit I/O port  
P87 to P80/  
SEG32 to SEG25  
P97/SEG40/CL1 • Segment output (SEG40 to SEG37) LPCR  
P96/SEG39/CL2 • Latch clock (CL1), for external  
P95/SEG38/DO  
P94/SEG37/M  
P93 to P90/  
segment expansion, shift clock  
(CL2), display data port (DO),  
and alternating signal (M)  
SEG36 to SEG33 • Segment output (SEG36 to SEG33)  
Port A • 4-bit I/O port  
Port B • 8-bit input port  
Port C • 4-bit input port  
PA3 to PA0/  
COM4 to COM1  
Common output (COM4 to COM1)  
A/D converter analog input  
A/D converter analog input  
LPCR  
AMR  
AMR  
PB7 to PB0/  
AN7 to AN0  
PC3 to PC0/  
AN11 to AN8  
138  
8.2 Port 1  
8.2.1 Overview  
Port 1 is an 8-bit I/O port. Figure 8-1 shows its pin configuration.  
P17/IRQ3/TMIF  
P16/IRQ2/TMIC  
P15/IRQ1/TMIB  
P14/PWM  
Port 1  
P13/TMIG  
P12/TMOFH  
P11/TMOFL  
P10/TMOW  
Figure 8-1 Port 1 Pin Configuration  
8.2.2 Register Configuration and Description  
Table 8-2 shows the port 1 register configuration.  
Table 8-2 Port 1 Registers  
Name  
Abbrev.  
PDR1  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD4  
H'FFE4  
H'FFE0  
H'FFC8  
Port data register 1  
Port control register 1  
Port pull-up control register 1  
Port mode register 1  
PCR1  
H'00  
PUCR1  
PMR1  
R/W  
R/W  
H'00  
H'00  
139  
1. Port data register 1 (PDR1)  
Bit  
7
6
5
P15  
0
4
3
P13  
0
2
P12  
0
1
P11  
0
0
P17  
0
P16  
0
P14  
0
P10  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR1 is an 8-bit register that stores data for pins P1 through P1 . If port 1 is read while PCR1  
7
0
bits are set to 1, the values stored in PDR1 are read, regardless of the actual pin states. If port 1 is  
read while PCR1 bits are cleared to 0, the pin states are read.  
Upon reset, PDR1 is initialized to H'00.  
2. Port control register 1 (PCR1)  
Bit  
7
6
5
4
3
2
1
0
PCR17 PCR16 PCR15 PCR14 PCR13 PCR12  
PCR11 PCR10  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR1 is an 8-bit register for controlling whether each of the port 1 pins P1 to P1 functions as an  
7
0
input pin or output pin. Setting a PCR1 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR1 and in PDR1 are valid only  
when the corresponding pin is designated in PMR1 as a general I/O pin.  
Upon reset, PCR1 is initialized to H'00.  
PCR1 is a write-only register. All bits are read as 1.  
3. Port pull-up control register 1 (PUCR1)  
Bit  
7
6
5
4
3
2
1
0
PUCR17 PUCR16 PUCR15 PUCR14 PUCR13 PUCR12 PUCR11 PUCR10  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR1 controls whether the MOS pull-up of each port 1 pin is on or off. When a PCR1 bit is  
cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS pull-up for the  
corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR1 is initialized to H'00.  
140  
4. Port mode register 1 (PMR1)  
Bit  
7
IRQ3  
0
6
IRQ2  
0
5
IRQ1  
0
4
PWM  
0
3
2
1
0
TMIG TMOFH TMOFL TMOW  
Initial value  
Read/Write  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR1 is an 8-bit read/write register, controlling the selection of pin functions for port 1 pins.  
Upon reset, PMR1 is initialized to H'00.  
Bit 7: P1 /IRQ /TMIF pin function switch (IRQ3)  
7
3
This bit selects whether pin P1 /IRQ /TMIF is used as P1 or as IRQ /TMIF.  
7
3
7
3
Bit 7  
IRQ3  
Description  
0
1
Functions as P17 I/O pin  
(initial value)  
(initial value)  
(initial value)  
Functions as IRQ3/TMIF input pin  
Note: Rising or falling edge sensing can be designated for IRQ3/TMIF.  
For details on TMIF pin settings, see 9.5.2 (3), timer control register F (TCRF).  
Bit 6: P1 /IRQ /TMIC pin function switch (IRQ2)  
6
2
This bit selects whether pin P1 /IRQ /TMIC is used as P1 or as IRQ /TMIC.  
6
2
6
2
Bit 6  
IRQ2  
Description  
0
1
Functions as P16 I/O pin  
Functions as IRQ2/TMIC input pin  
Note: Rising or falling edge sensing can be designated for IRQ2/TMIC.  
For details on TMIC pin settings, see 9.4.2 (1), timer mode register C (TMC).  
Bit 5: P1 /IRQ /TMIB pin function switch (IRQ1)  
5
1
This bit selects whether pin P1 /IRQ /TMIB is used as P1 or as IRQ /TMIB.  
5
1
5
1
Bit 5  
IRQ1  
Description  
0
1
Functions as P15 I/O pin  
Functions as IRQ1/TMIB input pin  
Note: Rising or falling edge sensing can be designated for IRQ1/TMIB.  
For details on TMIB pin settings, see 9.3.2 (1), timer mode register B (TMB).  
141  
Bit 4: P1 /PWM pin function switch (PWM)  
4
This bit selects whether pin P1 /PWM is used as P1 or as PWM.  
4
4
Bit 4  
PWM  
Description  
0
1
Functions as P14 I/O pin  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
Functions as PWM output pin  
Bit 3: P1 /TMIG pin function switch (TMIG)  
3
This bit selects whether pin P1 /TMIG is used as P1 or as TMIG.  
3
3
Bit 3  
TMIG  
Description  
0
1
Functions as P13 I/O pin  
Functions as TMIG input pin  
Bit 2: P1 /TMOFH pin function switch (TMOFH)  
2
This bit selects whether pin P1 /TMOFH is used as P1 or as TMOFH.  
2
2
Bit 2  
TMOFH  
Description  
0
1
Functions as P12 I/O pin  
Functions as TMOFH output pin  
Bit 1: P1 /TMOFL pin function switch (TMOFL)  
1
This bit selects whether pin P1 /TMOFL is used as P1 or as TMOFL.  
1
1
Bit 1  
TMOFL  
Description  
0
1
Functions as P11 I/O pin  
Functions as TMOFL output pin  
142  
Bit 0: P1 /TMOW pin function switch (TMOW)  
0
This bit selects whether pin P1 /TMOW is used as P1 or as TMOW.  
0
0
Bit 0  
TMOW  
Descrition  
0
1
Functions as P10 I/O pin  
(initial value)  
Functions as TMOW output pin  
8.2.3 Pin Functions  
Table 8-3 shows the port 1 pin functions.  
Table 8-3 Port 1 Pin Functions  
Pin  
Pin Functions and Selection Method  
P17/IRQ3/TMIF The pin function depends on bit IRQ3 in PMR1, bits CKSL2 to CKSL0 in TCRF,  
and bit PCR17 in PCR1.  
IRQ3  
PCR17  
0
1
0
1
*
CKSL2 to CKSL0  
Pin function  
*
Not 0**  
0**  
P17 input pin P17 output pin IRQ3 input pin IRQ3/TMIF  
input pin  
Note: When using as TMIF input pin, clear bit IEN3 in IENR1 to 0, disabling  
IRQ3 interrupts.  
P16/IRQ2/TMIC The pin function depends on bit IRQ2 in PMR1, bits TMC2 to TMC0 in TMC, and  
bit PCR16 in PCR1.  
IRQ2  
PCR16  
0
1
0
1
*
TMC2 to TMC0  
Pin function  
*
Not 111  
111  
P16 input pin P16 output pin IRQ2 input pin IRQ2/TMIC  
input pin  
Note: When using as TMIC input pin, clear bit IEN2 in IENR1 to 0, disabling  
IRQ2 interrupts.  
Note: * Don’t care  
143  
Table 8-3 Port 1 Pin Functions (cont)  
Pin  
Pin Functions and Selection Method  
P15/IRQ1/ TMIB The pin function depends on bit IRQ1 in PMR1, bits TMB2 to TMB0 in TMB, and  
bit PCR15 in PCR1.  
IRQ1  
PCR15  
0
1
0
1
*
TMB2 to TMB0  
Pin function  
*
Not 111  
111  
P15 input pin P15 output pin IRQ1 input pin IRQ1/TMIB  
input pin  
Note: When using as TMIB input pin, clear bit IEN1 in IENR1 to 0, disabling  
IRQ1 interrupts.  
P14/PWM  
The pin function depends on bit PWM in PMR1 and bit PCR14 in PCR1.  
PWM  
PCR14  
0
1
0
1
*
Pin function  
P14 input pin P14 output pin  
PWM output pin  
P13/TMIG  
The pin function depends on bit TMIG in PMR1 and bit PCR13 in PCR1.  
TMIG  
PCR13  
0
1
0
1
*
Pin function  
P13 input pin P13 output pin  
TMIG input pin  
P12/TMOFH  
P11/TMOFL  
P10/TMOW  
Note: * Don’t care  
The pin function depends on bit TMOFH in PMR1 and bit PCR12 in PCR1.  
TMOFH  
PCR12  
0
1
0
1
*
Pin function  
P12 input pin P12 output pin  
TMOFH output pin  
The pin function depends on bit TMOFL in PMR1 and bit PCR11 in PCR1.  
TMOFL  
PCR11  
0
1
0
1
*
Pin function  
P11 input pin P11 output pin  
TMOFL output pin  
The pin function depends on bit TMOW in PMR1 and bit PCR10 in PCR1.  
TMOW  
PCR10  
0
1
0
1
*
Pin function  
P10 input pin P10 output pin  
TMOW output pin  
144  
8.2.4 Pin States  
Table 8-4 shows the port 1 pin states in each operating mode.  
Table 8-4 Port 1 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Retains High-  
Watch  
Subactive Active  
P17/IRQ3/TMIF High-  
Retains  
Retains Functional Functional  
P16/IRQ2/TMIC impedance previous previous  
impedance* previous  
P15/IRQ1/TMIB  
P14/PWM  
state  
state  
state  
P13/TMIG  
P12/TMOFH  
P11/TMOFL  
P10/TMOW  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
8.2.5 MOS Input Pull-Up  
Port 1 has a built-in MOS input pull-up function that can be controlled by software. When a  
PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS input pull-up  
for that pin. The MOS input pull-up function is in the off state after a reset.  
PCR1n  
PUCR1n  
0
1
*
0
1
MOS input pull-up  
Off  
On  
Off  
Note: * Don’t care  
n = 7 to 0  
145  
8.3 Port 2  
8.3.1 Overview  
Port 2 is an 8-bit I/O port. Figure 8-2 shows its pin configuration.  
P27  
P26  
P25  
P24  
Port 2  
P23  
P22  
P21/UD  
P20/IRQ4/ADTRG  
Figure 8-2 Port 2 Pin Configuration  
8.3.2 Register Configuration and Description  
Table 8-5 shows the port 2 register configuration.  
Table 8-5 Port 2 Registers  
Name  
Abbrev.  
PDR2  
PCR2  
PMR2  
PMR4  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD5  
H'FFE5  
H'FFC9  
H'FFCB  
Port data register 2  
Port control register 2  
Port mode register 2  
Port mode register 4  
H'00  
R/W  
R/W  
H'C0  
H'00  
146  
1. Port data register 2 (PDR2)  
Bit  
7
P27  
0
6
P26  
0
5
P25  
0
4
P24  
0
3
P23  
0
2
P22  
0
1
P21  
0
0
P20  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR2 is an 8-bit register that stores data for pins P2 through P2 . If port 2 is read while PCR2  
7
0
bits are set to 1, the values stored in PDR2 are read, regardless of the actual pin states. If port 2 is  
read while PCR2 bits are cleared to 0, the pin states are read.  
Upon reset, PDR2 is initialized to H'00.  
2. Port control register 2 (PCR2)  
Bit  
7
6
5
4
3
2
1
0
PCR27 PCR26 PCR25 PCR24 PCR23 PCR22  
PCR21 PCR20  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR2 is an 8-bit register for controlling whether each of the port 2 pins P2 to P2 functions as an  
7
0
input pin or output pin. Setting a PCR2 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR2 and in PDR2 are valid only  
when the corresponding pin is designated in PMR2 as a general I/O pin.  
Upon reset, PCR2 is initialized to H'00.  
PCR2 is a write-only register. All bits are read as 1.  
3. Port mode register 2 (PMR2)  
Bit  
7
1
6
1
5
POF2  
0
4
3
IRQ0  
0
2
POF1  
0
1
UD  
0
0
IRQ4  
0
NCS  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR2 is an 8-bit read/write register, controlling the selection of pin functions for pins P2 ,  
0
P2 ,and P4 , controlling the PMOS on/off option for pins P3 /SO and P3 /SO , and controlling  
1
3
5
2
2
1
the TMIG input noise canceller.  
Upon reset, PMR2 is initialized to H'C0.  
147  
Bits 7 to 6: Reserved bits  
Bits 7 to 6 are reserved; they are always read as 1, and cannot be modified.  
Bit 5: P3 /SO pin PMOS control (POF2)  
5
2
This bit controls the PMOS transistor in the P3 /SO pin output buffer.  
5
2
Bit 5  
POF2  
Description  
0
1
CMOS output  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
NMOS open-drain output  
Bit 4: TMIG noise canceller select (NCS)  
This bit controls the noise canceller circuit for input capture at pin TMIG.  
Bit 4  
NCS  
Description  
0
1
Noise canceller function not selected  
Noise canceller function selected  
Bit 3: P4 /IRQ pin function switch (IRQ0)  
3
0
This bit selects whether pin P4 /IRQ is used as P4 or as IRQ .  
3
0
3
0
Bit 3  
IRQ0  
Description  
0
1
Functions as P43 input pin  
Functions as IRQ0 input pin  
Bit 2: P3 /SO pin PMOS control (POF1)  
2
1
This bit controls the PMOS transistor in the P3 /SO pin output buffer.  
2
1
Bit 2  
POF1  
Description  
0
1
CMOS output  
NMOS open-drain output  
148  
Bit 1: P2 /UD pin function switch (UD)  
1
This bit selects whether pin P2 /UD is used as P2 or as UD.  
1
1
Bit 1  
UD  
Description  
0
1
Functions as P21 I/O pin  
Functions as UD input pin  
(initial value)  
Bit 0: P2 /IRQ /ADTRG pin function switch (IRQ4)  
0
4
This bit selects whether pin P2 /IRQ /ADTRG is used as P2 or as IRQ /ADTRG.  
0
4
0
4
Bit 0  
IRQ4  
Description  
Functions as P20 I/O pin  
Functions as IRQ4/ADTRG input pin  
0
1
(initial value)  
Note: See 12.3.2, Start of A/D Conversion by External Trigger Input, for the ADTRG pin setting.  
4. Port mode register 4 (PMR4)  
Bit  
7
6
5
4
3
2
1
0
NMOD7 NMOD6 NMOD5 NMOD4 NMOD3 NMOD2 NMOD1 NMOD0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR4 is an 8-bit read/write register, used to select CMOS output or NMOS open drain output for  
each port 2 pin.  
Upon reset, PMR4 is initialized to H'00.  
Bit n: NMOS open-drain output select (NMODn)  
This bit selects CMOS output or NMOS open-drain output when pin P2 is used as an output pin.  
n
Bit n  
NMODn  
Description  
0
1
CMOS output  
NMOS open-drain output  
(n = 7 to 0)  
149  
8.3.3 Pin Functions  
Table 8-6 shows the port 2 pin functions.  
Table 8-6 Port 2 Pin Functions  
Pin  
Pin Functions and Selection Method  
Input or output is selected as follows by the bit settings in PCR2.  
P27 to P22  
(n = 2 to 7)  
PCR2n  
0
1
Pin function  
P2n input pin  
P2n output pin  
P21/UD  
The pin function depends on bit UD in PMR2 and bit PCR21 in PCR2.  
UD  
0
1
PCR21  
0
1
*
Pin function  
P21 input pin P21 output pin  
UD input pin  
P20/IRQ4/ADTRG The pin function depends on bit IRQ4 in PMR2, bit TRGE in AMR, and bit  
PCR20 in PCR2.  
IRQ4  
PCR20  
0
1
0
1
*
TRGE  
*
0
1
Pin function  
P20 input pin P20 output pin  
IRQ4  
input pin  
IRQ4/ADTRG  
input pin  
Note: When using as ADTRG input pin, clear bit IEN4 in IENR1 to 0,  
disabling IRQ4 interrupts.  
Note: * Don’t care  
8.3.4 Pin States  
Table 8-7 shows the port 2 pin states in each operating mode.  
Table 8-7 Port 2 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Retains High-  
Watch Subactive Active  
P27 to P22 High-  
Retains  
Retains Functional Functional  
P21/UD  
P20/IRQ4/  
ADTRG  
impedance previous previous  
state state  
impedance previous  
state  
150  
8.4 Port 3  
8.4.1 Overview  
Port 3 is an 8-bit I/O port, configured as shown in figure 8-3.  
P37/CS  
P36/STRB  
P35/SO2  
P34/SI2  
Port 3  
P33/SCK2  
P32/SO1  
P31/SI1  
P30/SCK1  
Figure 8-3 Port 3 Pin Configuration  
8.4.2 Register Configuration and Description  
Table 8-8 shows the port 3 register configuration.  
Table 8-8 Port 3 Registers  
Name  
Abbrev.  
PDR3  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD6  
H'FFE6  
H'FFE1  
H'FFCA  
Port data register 3  
Port control register 3  
Port pull-up control register 3  
Port mode register 3  
PCR3  
H'00  
PUCR3  
PMR3  
R/W  
R/W  
H'00  
H'00  
151  
1. Port data register 3 (PDR3)  
Bit  
7
P37  
0
6
P36  
0
5
P35  
0
4
P34  
0
3
P33  
0
2
P32  
0
1
P31  
0
0
P30  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR3 is an 8-bit register that stores data for port 3 pins P3 to P3 . If port 3 is read while PCR3  
7
0
bits are set to 1, the values stored in PDR3 are read, regardless of the actual pin states. If port 3 is  
read while PCR3 bits are cleared to 0, the pin states are read.  
Upon reset, PDR3 is initialized to H'00.  
2. Port control register 3 (PCR3)  
Bit  
7
6
5
4
3
2
1
0
PCR37 PCR36 PCR35 PCR34 PCR33 PCR32  
PCR31 PCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR3 is an 8-bit register for controlling whether each of the port 3 pins P3 to P3 functions as an  
7
0
input pin or output pin. Setting a PCR3 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR3 and in PDR3 are valid only  
when the corresponding pin is designated in PMR3 as a general I/O pin.  
Upon reset, PCR3 is initialized to H'00.  
PCR3 is a write-only register. All bits are read as 1.  
3. Port pull-up control register 3 (PUCR3)  
Bit  
7
6
5
4
3
2
1
0
PUCR37 PUCR36 PUCR35 PUCR34 PUCR33 PUCR32 PUCR31 PUCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR3 controls whether the MOS pull-up of each port 3 pin is on or off. When a PCR3 bit is  
cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for the  
corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR3 is initialized to H'00.  
152  
4. Port mode register 3 (PMR3)  
Bit  
7
CS  
0
6
STRB  
0
5
4
SI2  
0
3
SCK2  
0
2
1
SI1  
0
0
SCK1  
0
SO2  
0
SO1  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR3 is an 8-bit read/write register, controlling the selection of pin functions for port 3 pins.  
Upon reset, PMR3 is initialized to H'00.  
Bit 7: P3 /CS pin function switch (CS)  
7
This bit selects whether pin P3 /CS is used as P3 or as CS.  
7
7
Bit 7  
CS  
Description  
0
1
Functions as P37 I/O pin  
Functions as CS input pin  
(initial value)  
(initial value)  
(initial value)  
Bit 6: P3 /STRB pin function switch (STRB)  
6
This bit selects whether pin P3 /STRB is used as P3 or as STRB.  
6
6
Bit 6  
STRB  
Description  
0
1
Functions as P36 I/O pin  
Functions as STRB output pin  
Bit 5: P35/SO2 pin function switch (SO2)  
This bit selects whether pin P35/SO is used as P35 or as SO .  
2
2
Bit 5  
SO2  
Description  
0
1
Functions as P35 I/O pin  
Functions as SO2 output pin  
153  
Bit 4: P3 /SI pin function switch (SI2)  
4
2
This bit selects whether pin P3 /SI is used as P3 or as SI .  
4
2
4
2
Bit 4  
SI2  
Description  
0
1
Functions as P34 I/O pin  
Functions as SI2 input pin  
(initial value)  
(initial value)  
(initial value)  
(initial value)  
Bit 3: P3 /SCK pin function switch (SCK2)  
3
2
This bit selects whether pin P3 /SCK is used as P3 or as SCK .  
3
2
3
2
Bit 3  
SCK2  
Description  
Functions as P33 I/O pin  
Functions as SCK2 I/O pin  
0
1
Bit 2: P3 /SO pin function switch (SO1)  
2
1
This bit selects whether pin P3 /SO is used as P3 or as SO .  
2
1
2
1
Bit 2  
SO1  
Description  
0
1
Functions as P32 I/O pin  
Functions as SO1 output pin  
Bit 1: P3 /SI pin function switch (SI1)  
1
1
This bit selects whether pin P3 /SI is used as P3 or as SI .  
1
1
1
1
Bit 1  
SI1  
Description  
0
1
Functions as P31 I/O pin  
Functions as SI1 input pin  
154  
Bit 0: P3 /SCK pin function switch (SCK1)  
0
1
This bit selects whether pin P3 /SCK is used as P3 or as SCK .  
0
1
0
1
Bit 0  
SCK1  
Description  
Functions as P30 I/O pin  
Functions as SCK1 I/O pin  
0
1
(initial value)  
8.4.3 Pin Functions  
Table 8-9 shows the port 3 pin functions.  
Table 8-9 Port 3 Pin Functions  
Pin  
Pin Functions and Selection Method  
The pin function depends on bit CS in PMR3 and bit PCR37 in PCR3.  
P37/CS  
CS  
0
1
PCR37  
0
1
*
Pin function  
P37 input pin P37 output pin  
CS input pin  
P36/STRB  
The pin function depends on bit STRB in PMR3 and bit PCR36 in PCR3.  
STRB  
PCR36  
0
1
0
1
*
Pin function  
P36 input pin P36 output pin  
STRB output pin  
P35/SO2  
The pin function depends on bit SO2 in PMR3 and bit PCR35 in PCR3.  
SO2  
0
1
PCR35  
0
1
*
Pin function  
P35 input pin P35 output pin  
SO2 output pin  
P34/SI2  
The pin function depends on bit SI2 in PMR3 and bit PCR34 in PCR3.  
SI2  
0
1
PCR34  
0
1
*
Pin function  
P34 input pin P34 output pin  
SI2 input pin  
Note: * Don’t care  
155  
Table 8-9 Port 3 Pin Functions (cont)  
Pin  
Pin Functions and Selection Method  
P33/SCK2  
The pin function depends on bit SCK2 in PMR3, bits CKS2 to 0 in SCR2, and  
bit PCR33 in PCR3.  
SCK2  
CKS2 to CKS0  
PCR33  
0
1
*
Not 111  
111  
0
1
*
*
Pin function P33 input pin P33 output pin SCK2 output pin SCK2 input pin  
The pin function depends on bit SO1 in PMR3 and bit PCR32 in PCR3.  
P32/SO1  
SO1  
0
1
PCR32  
0
1
*
Pin function P32 input pin P32 output pin  
SO1 output pin  
P31/SI1  
The pin function depends on bit SI1 in PMR3 and bit PCR31 in PCR3.  
SI1  
0
1
PCR31  
0
1
*
Pin function P31 input pin P31 output pin  
SI1 input pin  
P30/SCK1  
The pin function depends on bit SCK1 in PMR3, bit CKS3 in SCR1, and bit  
PCR30 in PCR3.  
SCK1  
CKS3  
PCR30  
0
1
*
0
1
0
1
*
*
Pin function P30 input pin P30 output pin SCK1 output pin SCK1 input pin  
Note: * Don’t care  
156  
8.4.4 Pin States  
Table 8-10 shows the port 3 pin states in each operating mode.  
Table 8-10 Port 3 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Retains High-  
Watch Subactive Active  
P37/CS  
High-  
Retains  
Retains Functional Functional  
P36/STRB  
P35/SO2  
P34/SI2  
impedance previous previous  
state state  
impedance* previous  
state  
P33/SCK2  
P32/SO1  
P31/SI1  
P30/SCK1  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
8.4.5 MOS Input Pull-Up  
Port 3 has a built-in MOS input pull-up function that can be controlled by software. When a  
PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for  
that pin. The MOS pull-up function is in the off state after a reset.  
PCR3n  
PUCR3n  
0
1
*
0
1
MOS input pull-up  
Note: * Don’t care  
Off  
On  
Off  
(n = 7 to 0)  
157  
8.5 Port 4  
8.5.1 Overview  
Port 4 consists of a 3-bit I/O port and a 1-bit input port, and is configured as shown in figure 8-4.  
P43/IRQ0  
P42/TXD  
Port 4  
P41/RXD  
P40/SCK3  
Figure 8-4 Port 4 Pin Configuration  
8.5.2 Register Configuration and Description  
Table 8-11 shows the port 4 register configuration.  
Table 8-11 Port 4 Registers  
Name  
Abbrev.  
PDR4  
R/W  
R/W  
W
Initial Value  
H'F8  
Address  
H'FFD7  
H'FFE7  
Port data register 4  
Port control register 4  
PCR4  
H'F8  
158  
1. Port data register 4 (PDR4)  
Bit  
7
1
6
1
5
1
4
1
3
P43  
1
2
P42  
0
1
P41  
0
0
P40  
0
Initial value  
Read/Write  
R
R/W  
R/W  
R/W  
PDR4 is an 8-bit register that stores data for port 4 pins P4 to P4 . If port 4 is read while PCR4  
2
0
bits are set to 1, the values stored in PDR4 are read, regardless of the actual pin states. If port 4 is  
read while PCR4 bits are cleared to 0, the pin states are read.  
Upon reset, PDR4 is initialized to H'F8.  
2. Port control register 4 (PCR4)  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
0
PCR42 PCR41 PCR40  
Initial value  
Read/Write  
0
0
0
W
W
W
PCR4 controls whether each of the port 4 pins P4 to P4 functions as an input pin or output pin.  
2
0
Setting a PCR4 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0  
makes the pin an input pin. The settings in PCR4 and in PDR4 are valid only when the  
corresponding pin is designated in SCR3 as a general I/O pin.  
Upon reset, PCR4 is initialized to H'F8.  
PCR4 is a write-only register. All bits are read as 1.  
159  
8.5.3 Pin Functions  
Table 8-12 shows the port 4 pin functions.  
Table 8-12 Port 4 Pin Functions  
Pin  
Pin Functions and Selection Method  
The pin function depends on the IRQ0 bit setting in PMR2.  
P43/IRQ0  
IRQ0  
0
1
Pin function  
P43 input pin  
IRQ0 input pin  
P42/TXD  
P41/RXD  
P40/SCK3  
The pin function depends on bit TE in SCR3 and bit PCR42 in PCR4.  
UD  
0
1
PCR42  
0
1
*
Pin function  
P42 input pin P42 output pin  
TXD output pin  
The pin function depends on bit RE in SCR3 and bit PCR41 in PCR4.  
RE  
0
1
PCR41  
0
1
*
Pin function  
P41 input pin P41 output pin  
RXD input pin  
The pin function depends on bits CKE1 and CKE0 in SCR3, bit COM in SMR,  
and bit PCR40 in PCR4.  
CKE1  
CKE0  
COM  
0
1
*
*
*
0
1
0
1
*
PCR40  
0
1
*
Pin function P40 input pin P40 output pin SCK3 output pin SCK3 input pin  
Note: * Don’t care  
160  
8.5.4 Pin States  
Table 8-13 shows the port 4 pin states in each operating mode.  
Table 8-13 Port 4 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Retains High-  
Watch Subactive Active  
P43/IRQ0  
P42/TXD  
P41/RXD  
P40/SCK3  
High-  
Retains  
Retains Functional Functional  
impedance previous previous  
state state  
impedance previous  
state  
161  
8.6 Port 5  
8.6.1 Overview  
Port 5 is an 8-bit I/O port, configured as shown in figure 8-5.  
P57/WKP7 /SEG8  
P56/WKP6 /SEG7  
P55/WKP5 /SEG6  
P54/WKP4 /SEG5  
P53/WKP3 /SEG4  
P52/WKP2 /SEG3  
P51/WKP1 /SEG2  
P50/WKP0 /SEG1  
Port 5  
Figure 8-5 Port 5 Pin Configuration  
8.6.2 Register Configuration and Description  
Table 8-14 shows the port 5 register configuration.  
Table 8-14 Port 5 Registers  
Name  
Abbrev.  
PDR5  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD8  
H'FFE8  
H'FFE2  
H'FFCC  
Port data register 5  
Port control register 5  
Port pull-up control register 5  
Port mode register 5  
PCR5  
H'00  
PUCR5  
PMR5  
R/W  
R/W  
H'00  
H'00  
162  
1. Port data register 5 (PDR5)  
Bit  
7
P57  
0
6
P56  
0
5
P55  
0
4
P54  
0
3
P53  
0
2
P52  
0
1
P51  
0
0
P50  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR5 is an 8-bit register that stores data for port 5 pins P5 to P5 . If port 5 is read while PCR5  
7
0
bits are set to 1, the values stored in PDR5 are read, regardless of the actual pin states. If port 5 is  
read while PCR5 bits are cleared to 0, the pin states are read.  
Upon reset, PDR5 is initialized to H'00.  
2. Port control register 5 (PCR5)  
Bit  
7
6
5
4
3
2
1
0
PCR57 PCR56 PCR55 PCR54 PCR53 PCR52  
PCR51 PCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR5 is an 8-bit register for controlling whether each of the port 5 pins P5 to P5 functions as an  
7
0
input pin or output pin. Setting a PCR5 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR5 and in PDR5 are valid only  
when the corresponding pin is designated as a general I/O pin in PMR5 and in bits SGS3 to SGS0  
of LPCR.  
Upon reset, PCR5 is initialized to H'00.  
PCR5 is a write-only register. All bits are read as 1.  
3. Port pull-up control register 5 (PUCR5)  
Bit  
7
6
5
4
3
2
1
0
PUCR57 PUCR56 PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR5 controls whether the MOS pull-up of each port 5 pin is on or off. When a PCR5 bit is  
cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for the  
corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR5 is initialized to H'00.  
163  
4. Port mode register 5 (PMR5)  
Bit  
7
WKP7  
0
6
WKP6  
0
5
WKP5  
0
4
WKP4  
0
3
WKP3  
0
2
WKP2  
0
1
WKP1  
0
0
WKP0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PMR5 is an 8-bit read/write register, controlling the selection of pin functions for port 5 pins.  
Upon reset, PMR5 is initialized to H'00.  
Bit n: P5 /WKP /SEG pin function switch (WKPn)  
n+1  
n
n
When pin P5 /WKP /SEG  
is not used as a SEG pin, this bit selects whether it is used as  
n+1  
n
n
n+1  
P5 or as WKP .  
n
n
Bit n  
WKPn  
Description  
0
1
Functions as P5n I/O pin  
(initial value)  
(n = 7 to 0)  
Functions as WKPn input pin  
Note: For information on use as a SEG pin, see 13.2.1, LCD Port Control Register (LPCR).  
n+1  
164  
8.6.3 Pin Functions  
Table 8-15 shows the port 5 pin functions.  
Table 8-15 Port 5 Pin Functions  
Pin  
Pin Functions and Selection Method  
P57/WKP7/  
SEG8to P54/  
WKP4/SEG5  
The pin function depends on bit WKPn in PMR5, bit PCR5n in PCR5, and bits  
SGS3 to SGS0 in LPCR.  
(n = 7 to 4)  
SGS3 to SGS0  
WKPn  
0***  
1***  
0
1
*
*
PCR5n  
0
1
*
Pin function P5n input pin P5n output pin WKPn input pin SEGn+1 output pin  
P53/WKP3/  
The pin function depends on bit WKPn in PMR5, bit PCR5n in PCR5, and bits  
SEG4 to P50/  
WKP0/SEG1  
SGS3 to SGS0 in LPCR.  
(n = 3 to 0)  
SGS3 to SGS0  
WKPn  
0*** or 1**0  
1**1  
0
1
*
*
PCR5n  
0
1
*
Pin function P5n input pin P5n output pin WKPn input pin SEGn+1 output pin  
Note: * Don’t care  
165  
8.6.4 Pin States  
Table 8-16 shows the port 5 pin states in each operating mode.  
Table 8-16 Port 5 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Retains High-  
Watch  
Subactive Active  
P57/WKP7/  
High-  
Retains  
Retains Functional Functional  
SEG8 to P50/ impedance previous previous  
WKP0/SEG1 state state  
impedance* previous  
state  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
8.6.5 MOS Input Pull-Up  
Port 5 has a built-in MOS input pull-up function that can be controlled by software. When a  
PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for  
that pin. The MOS pull-up function is in the off state after a reset.  
PCR5n  
PUCR5n  
0
1
*
0
1
MOS input pull-up  
Note: * Don’t care  
Off  
On  
Off  
(n = 7 to 0)  
166  
8.7 Port 6  
8.7.1 Overview  
Port 6 is an 8-bit I/O port, configured as shown in figure 8-6.  
P67/SEG16  
P66/SEG15  
P65/SEG14  
P64/SEG13  
P63/SEG12  
P62/SEG11  
P61/SEG10  
P60/SEG9  
Port 6  
Figure 8-6 Port 6 Pin Configuration  
8.7.2 Register Configuration and Description  
Table 8-17 shows the port 6 register configuration.  
Table 8-17 Port 6 Registers  
Name  
Abbrev.  
PDR6  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFD9  
H'FFE9  
H'FFE3  
Port data register 6  
Port control register 6  
Port pull-up control register 6  
PCR6  
H'00  
PUCR6  
R/W  
H'00  
167  
1. Port data register 6 (PDR6)  
Bit  
7
P67  
0
6
P66  
0
5
P65  
0
4
P64  
0
3
P63  
0
2
P62  
0
1
P61  
0
0
P60  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR6 is an 8-bit register that stores data for port 6 pins P6 to P6 . If port 6 is read while PCR6  
7
0
bits are set to 1, the values stored in PDR6 are read, regardless of the actual pin states. If port 6 is  
read while PCR6 bits are cleared to 0, the pin states are read.  
Upon reset, PDR6 is initialized to H'00.  
2. Port control register 6 (PCR6)  
Bit  
7
6
5
4
3
2
1
0
PCR67 PCR66 PCR65 PCR64 PCR63 PCR62  
PCR61 PCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR6 is an 8-bit register for controlling whether each of the port 6 pins P6 to P6 functions as an  
7
0
input pin or output pin. Setting a PCR6 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR6 and in PDR6 are valid only  
when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.  
Upon reset, PCR6 is initialized to H'00.  
PCR6 is a write-only register. All bits are read as 1.  
3. Port pull-up control register 6 (PUCR6)  
Bit  
7
6
5
4
3
2
1
0
PUCR67 PUCR66 PUCR65 PUCR64 PUCR63 PUCR62 PUCR61 PUCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR6 controls whether the MOS pull-up of each port 6 pin is on or off. When a PCR6 bit is  
cleared to 0, setting the corresponding PUCR6 bit to 1 turns on the MOS pull-up for the  
corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.  
Upon reset, PUCR6 is initialized to H'00.  
168  
8.7.3 Pin Functions  
Table 8-18 shows the port 6 pin functions.  
Table 8-18 Port 6 Pin Functions  
Pin  
Pin Functions and Selection Method  
P67/SEG16 to  
P64/SEG13  
The pin function depends on bit PCR6n in PCR6 and bits SGS3 to SGS0 in  
LPCR.  
(n = 7 to 4)  
SGS3 to SGS0  
PCR6n  
00** or 010*  
011* or 1***  
*
0
1
Pin function  
P6n input pin P6n output pin  
SEGn+9 output pin  
P63/SEG12  
to P60/SEG9  
The pin function depends on bit PCR6n in PCR6 and bits SGS3 to SGS0 in  
LPCR.  
(n = 3 to 0)  
SGS3 to SGS0  
PCR6n  
00**, 010* or 0110  
0111 or 1***  
*
0
1
Pin function  
P6n input pin P6n output pin  
SEGn+9 output pin  
Note: * Don’t care  
8.7.4 Pin States  
Table 8-19 shows the port 6 pin states in each operating mode.  
Table 8-19 Port 6 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Retains High-  
Watch  
Subactive Active  
P67/SEG16 to  
P60/SEG9  
High-  
Retains  
Retains Functional Functional  
impedance previous previous  
state state  
impedance* previous  
state  
Note: * A high-level signal is output when the MOS pull-up is in the on state.  
169  
8.7.5 MOS Input Pull-Up  
Port 6 has a built-in MOS input pull-up function that can be controlled by software. When a  
PCR6 bit is cleared to 0, setting the corresponding PUCR6 bit to 1 turns on the MOS pull-up for  
that pin. The MOS pull-up function is in the off state after a reset.  
PCR6n  
PUC6n  
0
1
*
0
1
MOS input pull-up  
Note: * Don’t care  
Off  
On  
Off  
(n = 7 to 0)  
170  
8.8 Port 7  
8.8.1 Overview  
Port 7 is an 8-bit I/O port, configured as shown in figure 8-7.  
P77/SEG24  
P76/SEG23  
P75/SEG22  
P74/SEG21  
P73/SEG20  
P72/SEG19  
P71/SEG18  
P70/SEG17  
Port 7  
Figure 8-7 Port 7 Pin Configuration  
8.8.2 Register Configuration and Description  
Table 8-20 shows the port 7 register configuration.  
Table 8-20 Port 7 Registers  
Name  
Abbrev.  
PDR7  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFDA  
H'FFEA  
Port data register 7  
Port control register 7  
PCR7  
H'00  
171  
1. Port data register 7 (PDR7)  
Bit  
7
P77  
0
6
P76  
0
5
P75  
0
4
P74  
0
3
P73  
0
2
P72  
0
1
P71  
0
0
P70  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR7 is an 8-bit register that stores data for port 7 pins P7 to P7 . If port 7 is read while PCR7  
7
0
bits are set to 1, the values stored in PDR7 are read, regardless of the actual pin states. If port 7 is  
read while PCR7 bits are cleared to 0, the pin states are read.  
Upon reset, PDR7 is initialized to H'00.  
2. Port control register 7 (PCR7)  
Bit  
7
6
5
4
3
2
1
0
PCR77 PCR76 PCR75 PCR74 PCR73 PCR72  
PCR71 PCR70  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR7 is an 8-bit register for controlling whether each of the port 7 pins P7 to P7 functions as an  
7
0
input pin or output pin. Setting a PCR7 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR7 and in PDR7 are valid only  
when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.  
Upon reset, PCR7 is initialized to H'00.  
PCR7 is a write-only register. All bits are read as 1.  
172  
8.8.3 Pin Functions  
Table 8-21 shows the port 7 pin functions.  
Table 8-21 Port 7 Pin Functions  
Pin  
Pin Functions and Selection Method  
P77/SEG24 to  
P74/SEG21  
The pin function depends on bit PCR7n in PCR7 and bits SGS3 to SGS0 in  
LPCR.  
(n = 7 to 4)  
SGS3 to SGS0  
PCR7n  
00**  
01** or 1***  
*
0
1
Pin function  
P7n input pin P7n output pin  
SEGn+17 output pin  
P73/SEG20 to  
P70/SEG17  
The pin function depends on bit PCR7n in PCR7 and bits SGS3 to SGS0 in  
LPCR.  
(n = 3 to 0)  
SGS3 to SGS0  
PCR7n  
00** or 0100  
0101, 011* or 1***  
*
0
1
Pin function  
P7n input pin P7n output pin  
SEGn+17 output pin  
Note: * Don’t care  
8.8.4 Pin States  
Table 8-22 shows the port 7 pin states in each operating mode.  
Table 8-22 Port 7 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Watch  
Subactive Active  
P77/SEG24 to  
P70/SEG17  
High-  
Retains  
Retains  
High-  
impedance  
Retains Functional Functional  
previous  
state  
impedance previous previous  
state state  
173  
8.9 Port 8  
8.9.1 Overview  
Port 8 is an 8-bit I/O port configured as shown in figure 8-9.  
P87/SEG32  
P86/SEG31  
P85/SEG30  
P84/SEG29  
P83/SEG28  
P82/SEG27  
P81/SEG26  
P80/SEG25  
Port 8  
Figure 8-8 Port 8 Pin Configuration  
8.9.2 Register Configuration and Description  
Table 8-23 shows the port 8 register configuration.  
Table 8-23 Port 8 Registers  
Name  
Abbrev.  
PDR8  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFDB  
H'FFEB  
Port data register 8  
Port control register 8  
PCR8  
H'00  
174  
1. Port data register 8 (PDR8)  
Bit  
7
P87  
0
6
P86  
0
5
P85  
0
4
P84  
0
3
P83  
0
2
P82  
0
1
P81  
0
0
P80  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR8 is an 8-bit register that stores data for port 8 pins P8 to P8 . If port 8 is read while PCR8  
7
0
bits are set to 1, the values stored in PDR8 are read, regardless of the actual pin states. If port 8 is  
read while PCR8 bits are cleared to 0, the pin states are read.  
Upon reset, PDR8 is initialized to H'00.  
2. Port control register 8 (PCR8)  
Bit  
7
6
5
4
3
2
1
0
PCR87 PCR86 PCR85 PCR84 PCR83 PCR82  
PCR81 PCR80  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR8 is an 8-bit register for controlling whether each of the port 8 pins P8 to P8 functions as an  
7
0
input or output pin. Setting a PCR8 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR8 and in PDR8 are valid only  
when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.  
Upon reset, PCR8 is initialized to H'00.  
PCR8 is a write-only register. All bits are read as 1.  
175  
8.9.3 Pin Functions  
Table 8-24 shows the port 8 pin functions.  
Table 8-24 Port 8 Pin Functions  
Pin  
Pin Functions and Selection Method  
P87/SEG32 to  
P84/SEG29  
The pin function depends on bit PCR8n in PCR8 and bits SGS3 to SGS0 in  
LPCR.  
(n = 7 to 4)  
SGS3 to SGS0  
PCR8n  
000*  
001*, 01** or 1***  
*
0
1
Pin function  
P8n input pin P8n output pin  
SEGn+25 output pin  
P83/SEG28 to  
P80/SEG25  
The pin function depends on bit PCR8n in PCR8 and bits SGS3 to SGS0 in  
LPCR.  
(n = 3 to 0)  
SGS3 to SGS0  
PCR8n  
000* or 0010  
0011, 01** or 1***  
*
0
1
Pin function  
P8n input pin P8n output pin  
SEGn+25 output pin  
Note: * Don’t care  
8.9.4 Pin States  
Table 8-25 shows the port 8 pin states in each operating mode.  
Table 8-25 Port 8 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Watch  
Subactive Active  
P87/SEG32 to  
P80/SEG25  
High-  
Retains  
Retains  
High-  
impedance  
Retains Functional Functional  
previous  
state  
impedance previous previous  
state state  
176  
8.10 Port 9  
8.10.1 Overview  
Port 9 is an 8-bit I/O port configured as shown in figure 8-9.  
P97/SEG40 /CL1  
P96/SEG39 /CL2  
P95/SEG38 /DO  
P94/SEG37 /M  
P93/SEG36  
Port 9  
P92/SEG35  
P91/SEG34  
P90/SEG33  
Figure 8-9 Port 9 Pin Configuration  
8.10.2 Register Configuration and Description  
Table 8-26 shows the port 9 register configuration.  
Table 8-26 Port 9 Registers  
Name  
Abbrev.  
PDR9  
R/W  
R/W  
W
Initial Value  
H'00  
Address  
H'FFDC  
H'FFEC  
Port data register 9  
Port control register 9  
PCR9  
H'00  
177  
1. Port data register 9 (PDR9)  
Bit  
7
P97  
0
6
P96  
0
5
P95  
0
4
P94  
0
3
P93  
0
2
P92  
0
1
P91  
0
0
P90  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR9 is an 8-bit register that stores data for port 9 pins P9 to P9 . If port 9 is read while PCR9  
7
0
bits are set to 1, the values stored in PDR9 are read, regardless of the actual pin states. If port 9 is  
read while PCR9 bits are cleared to 0, the pin states are read.  
Upon reset, PDR9 is initialized to H'00.  
2. Port control register 9 (PCR9)  
Bit  
7
6
5
4
3
2
1
0
PCR97 PCR96 PCR95 PCR94 PCR93 PCR92  
PCR91 PCR90  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PCR9 is an 8-bit register for controlling whether each of the port 9 pins P9 to P9 functions as an  
7
0
input or output pin. Setting a PCR9 bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCR9 and in PDR9 are valid only  
when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.  
Upon reset, PCR9 is initialized to H'00.  
PCR9 is a write-only register. All bits are read as 1.  
178  
8.10.3 Pin Functions  
Table 8-27 shows the port 9 pin functions.  
Table 8-27 Port 9 Pin Functions  
Pin  
Pin Functions and Selection Method  
P97/SEG40/CL1  
The pin function depends on bit PCR97 in PCR9, and bits SGX and SGS3 to  
SGS0 in LPCR.  
SGS3 to SGS0  
SGX  
0000  
0
Not 0000  
*
1
*
0
PCR97  
0
1
*
Pin function P97 input pin P97 output pin SEG40 output pin CL1 output pin  
P96/SEG39/CL2  
P95/SEG38/DO  
P94/SEG37/M  
The pin function depends on bit PCR96 in PCR9, and bits SGX and SGS3 to  
SGS0 in LPCR.  
SGS3 to SGS0  
SGX  
0000  
0
Not 0000  
*
1
*
0
PCR96  
0
1
*
Pin function P96 input pin P96 output pin SEG39 output pin CL2 output pin  
The pin function depends on bit PCR95 in PCR9, and bits SGX and SGS3 to  
SGS0 in LPCR.  
SGS3 to SGS0  
SGX  
0000  
0
Not 0000  
*
1
*
0
PCR95  
0
1
*
Pin function P95 input pin P95 output pin SEG38 output pin DO output pin  
The pin function depends on bit PCR94 in PCR9, and bits SGX and SGS3 to  
SGS0 in LPCR.  
SGS3 to SGS0  
SGX  
0000  
0
Not 0000  
*
1
*
0
PCR94  
0
1
*
Pin function P94 input pin P94 output pin SEG37 output pin M output pin  
Note: * Don’t care  
179  
Table 8-27 Port 9 Pin Functions (cont)  
Pin  
Pin Functions and Selection Method  
93/SEG36 to  
P90/SEG33  
The pin function depends on bit PCR9n in PCR9 and bits SGS3 to SGS0 in  
LPCR.  
(n = 3 to 0)  
SGS3 to SGS0  
PCR9n  
0000  
Not 0000  
0
1
*
Pin function P9n input pin P9n output pin  
SEGn+33 output pin  
Note: * Don’t care  
8.10.4 Pin States  
Table 8-28 shows the port 9 pin states in each operating mode.  
Table 8-28 Port 9 Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Watch  
Subactive Active  
P97/SEG40/CL1 High-  
Retains  
Retains  
High-  
Retains Functional Functional  
P96/SEG39/CL2 impedance previous previous  
impedance  
previous  
state  
P95/SEG38/DO  
P94/SEG37/M  
P93/SEG36 to  
P90/SEG33  
state  
state  
180  
8.11 Port A  
8.11.1 Overview  
Port A is a 4-bit I/O port, configured as shown in figure 8-10.  
PA3/COM4  
PA2/COM3  
PA1/COM2  
PA0/COM1  
Port A  
Figure 8-10 Port A Pin Configuration  
8.11.2 Register Configuration and Description  
Table 8-29 shows the port A register configuration.  
Table 8-29 Port A Registers  
Name  
Abbrev.  
PDRA  
R/W  
R/W  
W
Initial Value  
H'F0  
Address  
H'FFDD  
H'FFED  
Port data register A  
Port control register A  
PCRA  
H'F0  
181  
1. Port data register A (PDRA)  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
PA3  
0
PA2  
0
PA1  
0
PA0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
PDRA is an 8-bit register that stores data for port A pins PA to PA . If port A is read while  
3
0
PCRA bits are set to 1, the values stored in PDRA are read, regardless of the actual pin states. If  
port A is read while PCRA bits are cleared to 0, the pin states are read.  
Upon reset, PDRA is initialized to H'F0.  
2. Port control register A (PCRA)  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
PCRA3 PCRA2 PCRA1 PCRA0  
Initial value  
Read/Write  
0
0
0
0
W
W
W
W
PCRA is an 8-bit register for controlling whether each of the port A pins PA to PA functions as  
3
0
an input or output pin. Setting a PCRA bit to 1 makes the corresponding pin an output pin, while  
clearing the bit to 0 makes the pin an input pin. The settings in PCRA and in PDRA are valid only  
when the corresponding pin is designated in LPCR as a general I/O pin.  
Upon reset, PCRA is initialized to H'F0.  
PCRA is a write-only register. All bits are read as 1.  
182  
8.11.3 Pin Functions  
Table 8-30 gives the port A pin functions.  
Table 8-30 Port A Pin Functions  
Pin  
Pin Functions and Selection Method  
PA3/COM4  
The pin function depends on bit PCRA3 in PCRA and bits DTS1, DTS0, CMX,  
SGX, and SGS3 to SGS0 in LPCR.  
CMX  
DTS1,DTS0 ** Not 11 ** Not 11  
SGX  
*
0
*
0
1
*
Not 11  
11  
0
1
*
0
1
*
1
*
1
*
SGS3 to SGS0 0000 Not 0000 0000 Not 0000 0000 Not 0000 0000 Not 0000  
PCRA3  
0
1
*
Pin function  
PA3 input pin PA3 output pin  
COM4 output pin  
PA2/COM3  
The pin function depends on bit PCRA2 in PCRA and bits DTS1, DTS0, CMX,  
SGX, and SGS3 to SGS0 in LPCR.  
CMX  
DTS1,DTS0 ** 00 or 01 ** 00 or 01  
SGX  
*
0
*
0
1
*
00 or 01  
Not 00 or 01  
0
1
*
0
1
*
1
*
1
*
SGS3 to SGS0 0000 Not 0000 0000 Not 0000 0000 Not 0000 0000 Not 0000  
PCRA2  
0
1
*
Pin function  
PA2 input pin PA2 output pin  
COM3 output pin  
PA1/COM2  
The pin function depends on bit PCRA1 in PCRA and bits DTS1, DTS0, CMX,  
SGX, and SGS3 to SGS0 in LPCR.  
CMX  
DTS1,DTS0 **  
SGX  
*
0
*
**  
0
0
1
*
00  
00  
00  
Not 00  
0
1
*
1
*
1
*
1
*
SGS3 to SGS0 0000 Not 0000 0000 Not 0000 0000 Not 0000 0000 Not 0000  
PCRA1  
0
1
*
Pin function  
PA1 input pin PA1 output pin  
COM2 output pin  
Note: * Don’t care  
183  
Table 8-30 Port A Pin Functions (cont)  
Pin  
Pin Functions and Selection Method  
PA0/COM1  
The pin function depends on bit PCRA0 in PCRA, and bits SGX and SGS3 to  
SGS0 in LPCR.  
SGS3 to SGS0  
SGX  
0000  
0
0000  
1
Not 0000  
*
PCRA0  
0
1
*
Pin function  
PA0 input pin PA0 output pin  
COM1 output pin  
Note: * Don’t care  
8.11.4 Pin States  
Table 8-31 shows the port A pin states in each operating mode.  
Table 8-31 Port A Pin States  
Pins  
Reset  
Sleep  
Subsleep Standby  
Retains High-  
Watch Subactive Active  
PA3/COM4 High-  
Retains  
Retains Functional Functional  
PA2/COM3 impedance previous previous  
impedance previous  
state  
PA1/COM2  
PA0/COM1  
state  
state  
184  
8.12 Port B  
8.12.1 Overview  
Port B is an 8-bit input-only port, configured as shown in figure 8-11.  
PB7/AN7  
PB6/AN6  
PB5/AN5  
PB4/AN4  
Port B  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
Figure 8-11 Port B Pin Configuration  
8.12.2 Register Configuration and Description  
Table 8-32 shows the port B register configuration.  
Table 8-32 Port B Register  
Name  
Abbrev.  
R/W  
Address  
Port data register B  
PDRB  
R
H'FFDE  
Port Data Register B (PDRB)  
Bit  
7
6
5
4
3
2
1
0
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
Read/Write  
R
R
R
R
R
R
R
R
Reading PDRB always gives the pin states. However, if a port B pin is selected as an analog input  
channel for the A/D converter by AMR bits CH3 to CH0, that pin reads 0 regardless of the input  
voltage.  
185  
8.13 Port C  
8.13.1 Overview  
Port C is a 4-bit input-only port, configured as shown in figure 8-12.  
PC3 /AN11  
PC2 /AN10  
Port C  
PC1 /AN9  
PC0 /AN8  
Figure 8-12 Port C Pin Configuration  
8.13.2 Register Configuration and Description  
Table 8-33 shows the port C register configuration.  
Table 8-33 Port C Register  
Name  
Abbrev.  
R/W  
Address  
Port data register C  
PDRC  
R
H'FFDF  
Port Data Register C (PDRC)  
Bit  
7
6
5
4
3
2
1
0
PC3  
PC2  
PC1  
PC0  
Read/Write  
R
R
R
R
Reading PDRC always gives the pin states. However, if a port C pin is selected as an analog input  
channel for the A/D converter by AMR bits CH3 to CH0, that pin reads 0 regardless of the input  
voltage.  
186  
Section 9 Timers  
9.1 Overview  
The H8/3834U Series provides five timers (timers A, B, C, F, and G) on-chip.  
Table 9-1 outlines the functions of timers A, B, C, F, and G.  
Table 9-1 Timer Functions  
Event  
Waveform  
Name  
Functions  
Internal Clock  
Input Pin Output Pin Remarks  
Timer A • 8-bit timer  
• Interval timer  
ø/8 to ø/8192  
(8 choices)  
• 8-bit timer  
• Time base  
øW/128  
(choice of 4  
overflow periods)  
• 8-bit timer  
• clock output  
ø/4 to ø/32,  
øW/4 to øW/32  
(8 choices)  
TMOW  
Timer B • 8-bit timer  
• Interval timer  
ø/4 to ø/8192  
(7 choices)  
TMIB  
TMIC  
• Event counter  
Timer C • 8-bit timer  
• Interval timer  
ø/4 to ø/8192,  
øW/4 (7 choices)  
Counting  
direction can  
be controlled by  
software or  
hardware  
• Event counter  
• Choice of up- or down-  
counting  
Timer F • 16-bit timer  
• Event counter  
ø/2 to ø/32  
(4 choices)  
TMIF  
TMOFL  
TMOFH  
• Can be used as two  
independent 8-bit timers  
• Output compare  
Timer G • 8-bit timer  
ø/2 to ø/64, øW/2 TMIG  
(4 choices)  
• Counter clear  
designation  
possible  
• Input capture  
• Interval timer  
• Built-in noise  
canceller  
circuit for input  
capture  
187  
9.2 Timer A  
9.2.1 Overview  
Timer A is an 8-bit timer with interval timing and real-time clock time-base functions. The clock  
time-base function is available when a 32.768-kHz crystal oscillator is connected. A clock signal  
divided from 32.768 kHz or from the system clock can be output at the TMOW pin.  
1. Features  
Features of timer A are given below.  
Choice of eight internal clock sources (ø/8192, ø/4096, ø/2048, ø/512, ø/256, ø/128, ø/32,  
ø/8).  
Choice of four overflow periods (1 s, 0.5 s, 0.25 s, 31.25 ms) when timer A is used as a clock  
time base (using a 32.768 kHz crystal oscillator).  
An interrupt is requested when the counter overflows.  
Any of eight clock signals can be output from pin TMOW: 32.768 kHz divided by 32, 16, 8,  
or 4 (1 kHz, 2 kHz, 4 kHz, 8 kHz), or the system clock divided by 32, 16, 8, or 4.  
188  
2. Block diagram  
Figure 9-2-1 shows a block diagram of timer A.  
øW  
TMA  
1/4  
PSW  
øW/4  
øW/32  
øW/16  
øW/8  
øW/4  
øW/128  
TMOW  
TCA  
ø/32  
ø/16  
ø/8  
ø/8192, ø/4096, ø/2048,  
ø/512, ø/256, ø/128,  
ø/32, ø/8  
ø/4  
ø
PSS  
IRRTA  
Notation:  
TMA: Timer mode register A  
TCA: Timer counter A  
IRRTA: Timer A overflow interrupt request flag (interrupt request register 1)  
PSW: Prescaler W  
PSS:  
Prescaler S  
Note: Can be selected only when the prescaler W output (øW/128) is used as the TCA input clock.  
Figure 9-2-1 Block Diagram of Timer A  
3. Pin configuration  
Table 9-2-1 shows the timer A pin configuration.  
Table 9-2-1 Pin Configuration  
Name  
Abbrev. I/O  
Function  
Clock output TMOW  
Output Output of waveform generated by timer A output circuit  
189  
4. Register configuration  
Table 9-2-2 shows the register configuration of timer A.  
Table 9-2-2 Timer A Registers  
Name  
Abbrev.  
TMA  
R/W  
R/W  
R
Initial Value  
H'10  
Address  
H'FFB0  
H'FFB1  
Timer mode register A  
Timer counter A  
TCA  
H'00  
9.2.2 Register Descriptions  
1. Timer mode register A (TMA)  
Bit  
7
TMA7  
0
6
TMA6  
0
5
TMA5  
0
4
1
3
2
1
0
TMA0  
0
TMA3  
0
TMA2  
0
TMA1  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TMA is an 8-bit read/write register for selecting the prescaler, input clock, and output clock.  
Upon reset, TMA is initialized to H'10.  
Bits 7 to 5: Clock output select (TMA7 to TMA5)  
Bits 7 to 5 choose which of eight clock signals is output at the TMOW pin. The system clock  
divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A 32.768 kHz signal  
divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and subactive mode.  
Bit 7  
Bit 6  
Bit 5  
TMA7  
TMA6  
TMA5  
Clock Output  
ø/32  
0
0
1
0
1
0
1
0
1
0
1
0
1
(initial value)  
ø/16  
ø/8  
ø/4  
1
øW/32  
øW/16  
øW/8  
øW/4  
190  
Bit 4: Reserved bit  
Bit 4 is reserved; it is always read as 1, and cannot be modified.  
Bits 3 to 0: Internal clock select (TMA3 to TMA0)  
Bits 3 to 0 select the clock input to TCA. The selection is made as follows.  
Description  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Prescaler and Divider Ratio  
or Overflow Period  
TMA3 TMA2 TMA1 TMA0  
Function  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
PSS, ø/8192  
PSS, ø/4096  
PSS, ø/2048  
PSS, ø/512  
(initial value) Interval timer  
PSS, ø/256  
PSS, ø/128  
PSS, ø/32  
PSS, ø/8  
Clock time  
base  
1
PSW, 1 s  
PSW, 0.5 s  
PSW, 0.25 s  
PSW, 0.03125 s  
PSW and TCA are reset  
191  
2. Timer counter A (TCA)  
Bit  
7
TCA7  
0
6
TCA6  
0
5
TCA5  
0
4
TCA4  
0
3
TCA3  
0
2
TCA2  
0
1
TCA1  
0
0
TCA0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
TCA is an 8-bit read-only up-counter, which is incremented by internal clock input. The clock  
source for input to this counter is selected by bits TMA3 to TMA0 in timer mode register A  
(TMA). TCA values can be read by the CPU in active mode, but cannot be read in subactive  
mode. When TCA overflows, the IRRTA bit in interrupt request register 1 (IRR1) is set to 1.  
TCA is cleared by setting bits TMA3 and TMA2 of TMA to 11.  
Upon reset, TCA is initialized to H'00.  
9.2.3 Timer Operation  
1. Interval timer operation  
When bit TMA3 in timer mode register A (TMA) is cleared to 0, timer A functions as an 8-bit  
interval timer.  
Upon reset, TCA is cleared to H'00 and bit TMA3 is cleared to 0, so up-counting and interval  
timing resume immediately. The clock input to timer A is selected by bits TMA2 to TMA0 in  
TMA; any of eight internal clock signals output by prescaler S can be selected.  
After the count value in TCA reaches H'FF, the next clock signal input causes timer A to overflow,  
setting bit IRRTA to 1 in interrupt request register 1 (IRR1). If IENTA = 1 in interrupt enable  
register 1 (IENR1), a CPU interrupt is requested.*  
At overflow, TCA returns to H'00 and starts counting up again. In this mode timer A functions as  
an interval timer that generates an overflow output at intervals of 256 input clock pulses.  
Note: * For details on interrupts, see 3.3, Interrupts.  
192  
2. Real-time clock time base operation  
When bit TMA3 in TMA is set to 1, timer A functions as a real-time clock time base by counting  
clock signals output by prescaler W.  
The overflow period of timer A is set by bits TMA1 and TMA0 in TMA. A choice of four  
periods is available. In time base operation (TMA3 = 1), setting bit TMA2 to 1 clears both TCA  
and prescaler W to their initial values of H'00.  
3. Clock output  
Setting bit TMOW in port mode register 1 (PMR1) to 1 causes a clock signal to be output at pin  
TMOW. Eight different clock output signals can be selected by means of bits TMA7 to TMA5 in  
TMA. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode.  
A 32.768 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and  
subactive mode.  
9.2.4 Timer A Operation States  
Table 9-2-3 summarizes the timer A operation states.  
Table 9-2-3 Timer A Operation States  
Sub-  
Sub-  
Operation Mode  
Reset Active  
Sleep  
Watch  
active  
sleep  
Standby  
TCA Interval  
Reset Functions Functions Halted  
Halted  
Halted  
Halted  
Clock time base Reset Functions Functions Functions Functions Functions Halted  
Reset Functions Retained Retained Functions Retained Retained  
TMA  
Note: When real-time clock time base function is selected as the internal clock of TCA in active  
mode or sleep mode, the internal clock is not synchronous with the system clock, so it is  
synchronized by a synchronizing circuit. This may result in a maximum error of 1/ø (s) in the  
count cycle.  
193  
9.3 Timer B  
9.3.1 Overview  
Timer B is an 8-bit timer that increments each time a clock pulse is input. This timer has two  
operation modes, interval and auto reload.  
1. Features  
Features of timer B are given below.  
Choice of seven internal clock sources (ø/8192, ø/2048, ø/512, ø/256, ø/64, ø/16, ø/4) or an  
external clock (can be used to count external events).  
An interrupt is requested when the counter overflows.  
2. Block Diagram  
Figure 9-3-1 shows a block diagram of timer B.  
TMB  
TCB  
TLB  
PSS  
ø
TMIB  
IRRTB  
Notation:  
TMB:  
TCB:  
TLB:  
Timer mode register B  
Timer counter B  
Timer load register B  
IRRTB: Timer B overflow interrupt request flag  
PSS: Prescaler S  
Figure 9-3-1 Block Diagram of Timer B  
194  
3. Pin configuration  
Table 9-3-1 shows the timer B pin configuration.  
Table 9-3-1 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
Timer B event input  
TMIB  
Input  
Event input to TCB  
4. Register configuration  
Table 9-3-2 shows the register configuration of timer B.  
Table 9-3-2 Timer B Registers  
Name  
Abbrev.  
TMB  
R/W  
R/W  
R
Initial Value  
H'78  
Address  
H'FFB2  
H'FFB3  
H'FFB3  
Timer mode register B  
Timer counter B  
Timer load register B  
TCB  
H'00  
TLB  
W
H'00  
9.3.2 Register Descriptions  
1. Timer mode register B (TMB)  
Bit  
7
TMB7  
0
6
1
5
1
4
1
3
1
2
TMB2  
0
1
0
TMB0  
0
TMB1  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
TMB is an 8-bit read/write register for selecting the auto-reload function and input clock.  
Upon reset, TMB is initialized to H'78.  
Bit 7: Auto-reload function select (TMB7)  
Bit 7 selects whether timer B is used as an interval timer or auto-reload timer.  
Bit 7  
TMB7  
Description  
0
1
Interval timer function selected  
Auto-reload function selected  
(initial value)  
195  
Bits 6 to 3: Reserved bits  
Bits 6 to 3 are reserved; they always read 1, and cannot be modified.  
Bits 2 to 0: Clock select (TMB2 to TMB0)  
Bits 2 to 0 select the clock input to TCB. For external event counting, either the rising or falling  
edge can be selected.  
Bit 2  
Bit 1  
Bit 0  
TMB2  
TMB1  
TMB0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/256  
Internal clock: ø/64  
(initial value)  
Internal clock: ø/16  
Internal clock: ø/4  
External event (TMIB): rising or falling edge*  
Note: * The edge of the external event signal is selected by bit IEG1 in the IRQ edge select  
register (IEGR). See 3.3.2, Interrupt Control Registers, for details on the IRQ edge select  
register. Be sure to set bit IRQ1 in port mode register 1 (PMR1) to 1 before setting bits  
TMB2 to TMB0 to 111.  
2. Timer counter B (TCB)  
Bit  
7
TCB7  
0
6
TCB6  
0
5
TCB5  
0
4
TCB4  
0
3
TCB3  
0
2
TCB2  
0
1
TCB1  
0
0
TCB0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
TCB is an 8-bit read-only up-counter, which is incremented by internal clock or external event  
input. The clock source for input to this counter is selected by bits TMB2 to TMB0 in timer mode  
register B (TMB). TCB values can be read by the CPU at any time.  
When TCB overflows from H'FF to H'00 or to the value set in TLB, the IRRTB bit in interrupt  
request register 2 (IRR2) is set to 1.  
TCB is allocated to the same address as timer load register B (TLB).  
Upon reset, TCB is initialized to H'00.  
196  
3. Timer load register B (TLB)  
Bit  
7
TLB7  
0
6
TLB6  
0
5
TLB5  
0
4
TLB4  
0
3
TLB3  
0
2
TLB2  
0
1
TLB1  
0
0
TLB0  
0
Initial value  
Read/Write  
W
W
W
W
W
W
W
W
TLB is an 8-bit write-only register for setting the reload value of timer counter B.  
When a reload value is set in TLB, the same value is loaded into timer counter B (TCB) as well,  
and TCB starts counting up from that value. When TCB overflows during operation in auto-  
reload mode, the TLB value is loaded into TCB. Accordingly, overflow periods can be set within  
the range of 1 to 256 input clocks.  
The same address is allocated to TLB as to TCB.  
Upon reset, TLB is initialized to H'00.  
9.3.3 Timer Operation  
1. Interval timer operation  
When bit TMB7 in timer mode register B (TMB) is cleared to 0, timer B functions as an 8-bit  
interval timer.  
Upon reset, TCB is cleared to H'00 and bit TMB7 is cleared to 0, so up-counting and interval  
timing resume immediately. The clock input to timer B is selected from seven internal clock  
signals output by prescaler S, or an external clock input at pin TMIB. The selection is made by  
bits TMB2 to TMB0 of TMB.  
After the count value in TCB reaches H'FF, the next clock signal input causes timer B to overflow,  
setting bit IRRTB to 1 in interrupt request register 2 (IRR2). If IENTB = 1 in interrupt enable  
register 2 (IENR2), a CPU interrupt is requested.*  
At overflow, TCB returns to H'00 and starts counting up again.  
During interval timer operation (TMB7 = 0), when a value is set in timer load register B (TLB),  
the same value is set in TCB.  
Note: * For details on interrupts, see 3.3, Interrupts.  
197  
2. Auto-reload timer operation  
Setting bit TMB7 in TMB to 1 causes timer B to function as an 8-bit auto-reload timer. When a  
reload value is set in TLB, the same value is loaded into TCB, becoming the value from which  
TCB starts its count.  
After the count value in TCB reaches H'FF, the next clock signal input causes timer B to overflow.  
The TLB value is then loaded into TCB, and the count continues from that value. The overflow  
period can be set within a range from 1 to 256 input clocks, depending on the TLB value.  
The clock sources and interrupts in auto-reload mode are the same as in interval mode.  
In auto-reload mode (TMB7 = 1), when a new value is set in TLB, the TLB value is also set in  
TCB.  
3. Event counter operation  
Timer B can operate as an event counter, counting rising or falling edges of an external event  
signal input at pin TMIB. External event counting is selected by setting bits TMB2 to TMB0 in  
timer mode register B to all 1s (111).  
When timer B is used to count external event input, bit IRQ1 in port mode register 1 (PMR1)  
should be set to 1, and bit IEN1 in interrupt enable register 1 (IENR1) should be cleared to 0 to  
disable IRQ interrupt requests.  
1
9.3.4 Timer B Operation States  
Table 9-3-3 summarizes the timer B operation states.  
Table 9-3-3 Timer B Operation States  
Sub-  
Sub-  
Operation Mode  
Reset Active  
Sleep  
Watch  
active  
sleep  
Standby  
Halted  
TCB Interval  
Reset Functions  
Functions Halted  
Functions Halted  
Halted  
Halted  
Halted  
Halted  
Auto reload Reset Functions  
Reset Functions  
Halted  
TMB  
Retained  
Retained Retained Retained Retained  
198  
9.4 Timer C  
9.4.1 Overview  
Timer C is an 8-bit timer that increments or decrements each time a clock pulse is input. This  
timer has two operation modes, interval and auto reload.  
1. Features  
The main features of timer C are given below.  
Choice of seven internal clock sources (ø/8192, ø/2048, ø/512, ø/64, ø/16, ø/4, ø /4) or an  
W
external clock (can be used to count external events).  
An interrupt is requested when the counter overflows.  
Can be switched between up- and down-counting by software or hardware.  
When ø /4 is selected as the internal clock source, or when an external clock is selected,  
W
timer C can function in subactive mode and subsleep mode.  
199  
2. Block diagram  
Figure 9-4-1 shows a block diagram of timer C.  
TMC  
UD  
TCC  
TLC  
PSS  
ø
TMIC  
øW/4  
IRRTC  
Notation:  
TMC: Timer mode register C  
TCC: Timer counter C  
TLC:  
Timer load register C  
IRRTC: Timer C overflow interrupt request flag  
PSS: Prescaler S  
Figure 9-4-1 Block Diagram of Timer C  
3. Pin configuration  
Table 9-4-1 shows the timer C pin configuration.  
Table 9-4-1 Pin Configuration  
Name  
Abbrev.  
TMIC  
UD  
I/O  
Function  
Timer C event input  
Timer C up/down control  
Input  
Input  
Event input to TCC  
Selection of counting direction  
200  
4. Register configuration  
Table 9-4-2 shows the register configuration of timer C.  
Table 9-4-2 Timer C Registers  
Name  
Abbrev.  
TMC  
R/W  
R/W  
R
Initial Value  
H'18  
Address  
H'FFB4  
H'FFB5  
H'FFB5  
Timer mode register C  
Timer counter C  
Timer load register C  
TCC  
H'00  
TLC  
W
H'00  
9.4.2 Register Descriptions  
1. Timer mode register C (TMC)  
Bit  
7
TMC7  
0
6
TMC6  
0
5
TMC5  
0
4
1
3
1
2
TMC2  
0
1
0
TMC0  
0
TMC1  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TMC is an 8-bit read/write register for selecting the auto-reload function, counting direction, and  
input clock.  
Upon reset, TMC is initialized to H'18.  
Bit 7: Auto-reload function select (TMC7)  
Bit 7 selects whether timer C is used as an interval timer or auto-reload timer.  
Bit 7  
TMC7  
Description  
0
1
Interval timer function selected  
Auto-reload function selected  
(initial value)  
201  
Bits 6 and 5: Counter up/down control (TMC6 and TMC5)  
These bits select the counting direction of timer counter C (TCC), or allow hardware to control the  
counting direction using pin UD.  
Bit 6  
Bit 5  
TMC6  
TMC5  
Description  
0
0
1
0
1
*
TCC is an up-counter  
TCC is a down-counter  
(initial value)  
TCC up/down control is determined by input at pin UD. TCC is a down-  
counter if the UD input is high, and an up-counter if the UD input is low.  
Note: * Don’t care  
Bits 4 and 3: Reserved bits  
Bits 4 and 3 are reserved; they are always read as 1, and cannot be modified.  
Bits 2 to 0: Clock select (TMC2 to TMC0)  
Bits 2 to 0 select the clock input to TCC. For external clock counting, either the rising or falling  
edge can be selected.  
Bit 2  
Bit 1  
Bit 0  
TMC2  
TMC1  
TMC0  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/64  
(initial value)  
Internal clock: ø/16  
Internal clock: ø/4  
Internal clock: øW/4  
External event (TMIC): rising or falling edge*  
Note: * The edge of the external event signal is selected by bit IEG2 in the IRQ edge select  
register (IEGR). See 3.3.2, Interrupt Control Registers, for details on the IRQ edge select  
register. Be sure to set bit IRQ2 in port mode register 1 (PMR1) to 1 before setting bits  
TMC2 to TMC0 to 111.  
202  
2. Timer counter C (TCC)  
Bit  
7
TCC7  
0
6
TCC6  
0
5
TCC5  
0
4
TCC4  
0
3
TCC3  
0
2
TCC2  
0
1
TCC1  
0
0
TCC0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
TCC is an 8-bit read-only up-/down-counter, which is incremented or decremented by internal or  
external clock input. The clock source for input to this counter is selected by bits TMC2 to TMC0  
in timer mode register C (TMC). TCC values can be read by the CPU at any time.  
When TCC overflows (from H'FF to H'00 or to the value set in TLC) or underflows (from H'00 to  
H'FF or to the value set in TLC), the IRRTC bit in interrupt request register 2 (IRR2) is set to 1.  
TCC is allocated to the same address as timer load register C (TLC).  
Upon reset, TCC is initialized to H'00.  
3. Timer load register C (TLC)  
Bit  
7
TLC7  
0
6
TLC6  
0
5
TLC5  
0
4
TLC4  
0
3
TLC3  
0
2
TLC2  
0
1
TLC1  
0
0
TLC0  
0
Initial value  
Read/Write  
W
W
W
W
W
W
W
W
TLC is an 8-bit write-only register for setting the reload value of TCC.  
When a reload value is set in TLC, the same value is loaded into timer counter C (TCC) as well,  
and TCC starts counting up or down from that value. When TCC overflows or underflows during  
operation in auto-reload mode, the TLC value is loaded into TCC. Accordingly, overflow and  
underflow periods can be set within the range of 1 to 256 input clocks.  
The same address is allocated to TLC as to TCC.  
Upon reset, TLC is initialized to H'00.  
203  
9.4.3 Timer Operation  
1. Interval timer operation  
When bit TMC7 in timer mode register C (TMC) is cleared to 0, timer C functions as an 8-bit  
interval timer.  
Upon reset, timer counter C (TCC) is initialized to H'00 and TMC to H'18, so counting and  
interval timing resume immediately. The clock input to timer C is selected from seven internal  
clock signals output by prescalers S and W, or an external clock input at pin TMIC. The selection  
is made by bits TMC2 to TMC0 in TMC.  
Either software or hardware can control whether TCC counts up or down. The selection is made  
by TMC bits TMC6 and TMC5.  
After the count value in TCC reaches H'FF (H'00), the next clock signal input causes timer C to  
overflow (underflow), setting bit IRRTC to 1 in interrupt request register 2 (IRR2). If IENTC = 1  
in interrupt enable register 2 (IENR2), a CPU interrupt is requested.*  
At overflow or underflow, TCC returns to H'00 or H'FF and starts counting up or down again.  
During interval timer operation (TMC7 = 0), when a value is set in timer load register C (TLC),  
the same value is set in TCC.  
Note: * For details on interrupts, see 3.3, Interrupts.  
2. Auto-reload timer operation  
Setting bit TMC7 in TMC to 1 causes timer C to function as an 8-bit auto-reload timer. When a  
reload value is set in TLC, the same value is loaded into TCC, becoming the value from which  
TCC starts its count.  
After the count value in TCC reaches H'FF (H'00), the next clock signal input causes timer C to  
overflow (underflow). The TLC value is then loaded TCC, and the count continues from that  
value. The overflow (underflow) period can be set within a range from 1 to 256 input clocks,  
depending on the TLC value.  
204  
The clock sources, up/down control, and interrupts in auto-reload mode are the same as in interval  
mode.  
In auto-reload mode (TMC7 = 1), when a new value is set in TLC, the TLC value is also set in TCC.  
3. Event counter operation  
Timer C can operate as an event counter, counting an event signal input at pin TMIC. External  
event counting is selected by setting TMC bits TMC2 to TMC0 to all 1s (111). TCC counts up or  
down at the rising or falling edge of the input at pin TMIC.  
When timer C is used to count external event inputs, bit IRQ2 in port mode register 1 (PMR1)  
should be set to 1, and bit IEN2 in interrupt enable register 1 (IENR1) should be cleared to 0 to  
disable IRQ2 interrupt requests.  
4. TCC up/down control by hardware  
The counting direction of timer C can be controlled by input at pin UD. When bit TMC6 in TMC  
is set to 1, high-level input at the UD pin selects down-counting, while low-level input selects up-  
counting.  
When using input at pin UD for this control function, set the UD bit in port mode register 2  
(PMR2) to 1.  
9.4.4 Timer C Operation States  
Table 9-4-3 summarizes the timer C operation states.  
Table 9-4-3 Timer C Operation States  
Sub-  
Sub-  
Operation Mode Reset Active  
Sleep  
Watch  
active  
sleep  
Standby  
TCC Interval Reset Functions Functions Halted  
Functions/ Functions/ Halted  
Halted* Halted*  
TCC Auto reload Reset Functions Functions Halted  
TMC Reset Functions Retained Retained  
Functions/ Functions/ Halted  
Halted* Halted*  
Functions Retained  
Retained  
Note: When øW/4 is selected as the internal clock of TCC in active mode or sleep mode, the  
internal clock is not synchronous with the system clock, so it is synchronized by a  
synchronizing circuit. This may result in a maximum error of 1/ø (s) in the count cycle.  
* When timer C is operated in subactive mode or subsleep mode, either an external clock or  
the øW/4 internal clock must be selected. The counter will not operate in these modes if  
another clock is selected. If the internal øW/4 clock is selected when øW/8 is being used  
as the subclock øSUB, the lower 2 bits of the counter will operate on the same cycle, with  
the least significant bit not being counted.  
205  
9.5 Timer F  
9.5.1 Overview  
Timer F is a 16-bit timer with an output compare function. Compare match signals can be used to  
reset the counter, request an interrupt, or toggle the output. Timer F can also be used for external  
event counting, and can operate as two independent 8-bit timers, timer FH and timer FL.  
1. Features  
Features of timer F are given below.  
Choice of four internal clock sources (ø/32, ø/16, ø/4, ø/2) or an external clock (can be used  
as an external event counter).  
Output from pin TMOFH is toggled by one compare match signal (the initial value of the  
toggle output can be set).  
Counter can be reset by the compare match signal.  
Two interrupt sources: counter overflow and compare match.  
Can operate as two independent 8-bit timers (timer FH and timer FL) in 8-bit mode.  
Timer FH  
— 8-bit timer (clocked by timer FL overflow signals when timer F operates as a 16-bit timer).  
— Choice of four internal clocks (ø/32, ø/16, ø/4, ø/2).  
— Output from pin TMOFH is toggled by one compare match signal (the initial value of the  
toggle output can be set).  
— Counter can be reset by the compare match signal.  
— Two interrupt sources: counter overflow and compare match.  
Timer FL  
— 8-bit timer/event counter  
— Choice of four internal clocks (ø/32, ø/16, ø/4, ø/2) or event input at pin TMIF.  
— Output from pin TMOFL is toggled by one compare match signal (the initial value of the  
toggle output can be set).  
— Counter can be reset by the compare match signal.  
— Two interrupt sources: counter overflow and compare match.  
206  
2. Block diagram  
Figure 9-5-1 shows a block diagram of timer F.  
ø
PSS  
IRRTFL  
TCRF  
TCFL  
TMIF  
Toggle  
TMOFL  
Compare circuit  
OCRFL  
circuit  
TCFH  
Compare circuit  
OCRFH  
Toggle  
circuit  
TMOFH  
Match  
TCSRF  
IRRTFH  
Notation:  
TCRF:  
Timer control register F  
TCSRF: Timer control status register F  
TCFH:  
TCFL:  
8-bit timer counter FH  
8-bit timer counter FL  
OCRFH: Output compare register FH  
OCRFL: Output compare register FL  
IRRTFH: Timer FH interrupt request flag  
IRRTFL: Timer FL interrupt request flag  
PSS:  
Prescaler S  
Figure 9-5-1 Block Diagram of Timer F  
207  
3. Pin configuration  
Table 9-5-1 shows the timer F pin configuration.  
Table 9-5-1 Pin Configuration  
Name  
Abbrev.  
TMIF  
I/O  
Function  
Timer F event input  
Timer FH output  
Timer FL output  
Input  
Output  
Output  
Event input to TCFL  
Timer FH output  
Timer FL output  
TMOFH  
TMOFL  
4. Register configuration  
Table 9-5-2 shows the register configuration of timer F.  
Table 9-5-2 Timer F Registers  
Name  
Abbrev.  
TCRF  
R/W  
W
Initial Value  
H'00  
Address  
H'FFB6  
H'FFB7  
H'FFB8  
H'FFB9  
H'FFBA  
H'FFBB  
Timer control register F  
Timer control/status register F  
8-bit timer counter FH  
8-bit timer counter FL  
Output compare register FH  
Output compare register FL  
TCSRF  
TCFH  
R/W  
R/W  
R/W  
R/W  
R/W  
H'00  
H'00  
TCFL  
H'00  
OCRFH  
OCRFL  
H'FF  
H'FF  
9.5.2 Register Descriptions  
1. 16-bit timer counter (TCF)  
8-bit timer counter (TCFH)  
8-bit timer counter (TCFL)  
TCF  
Bit  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Initial value  
0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
TCFH TCFL  
208  
TCF is a 16-bit read/write up-counter consisting of two cascaded 8-bit timer counters, TCFH and  
TCFL. TCF can be used as a 16-bit counter, with TCFH as the upper 8 bits and TCFL as the  
lower 8 bits of the counter, or TCFH and TCFL can be used as independent 8-bit counters.  
TCFH and TCFL can be read and written by the CPU, but in 16-bit mode, data transfer with the  
CPU takes place via a temporary register (TEMP). For details see 9.5.3, Interface with the CPU.  
Upon reset, TCFH and TCFL are each initialized to H'00.  
16-bit mode (TCF)  
16-bit mode is selected by clearing bit CKSH2 to 0 in timer control register F (TCRF). The TCF  
input clock is selected by TCRF bits CKSL2 to CKSL0.  
Timer control status register F (TCSRF) can be set so that counter TCF will be cleared by  
compare match.  
When TCF overflows from H'FFFF to H'0000, the overflow flag (OVFH) in TCSRF is set to 1. If  
bit OVIEH in TCSRF is set to 1 when an overflow occurs, bit IRRTFH in interrupt request register  
2 (IRR2) will be set to 1; and if bit IENTFH in interrupt enable register 2 (IENR2) is set to 1, a  
CPU interrupt will be requested.  
8-bit mode (TCFH, TCFL)  
When bit CKSH2 in timer control register F (TCRF) is set to 1, timer F functions as two separate  
8-bit counters, TCFH and TCFL. The TCFH (TCFL) input clock is selected by TCRF bits  
CKSH2 to CKSH0 (CKSL2 to CKSL0).  
TCFH (TCFL) can be cleared by a compare match signal. This designation is made in bit  
CCLRH (CCLRL) in TCSRF.  
When TCFH (TCFL) overflows from H'FF to H'00, the overflow flag OVFH (OVFL) in TCSRF is  
set to 1. If bit OVIEH (OVIEL) in TCSRF is set to 1 when an overflow occurs, bit IRRTFH  
(IRRTHL) in interrupt request register 2 (IRR2) will be set to 1; and if bit IENTFH (IENTFL) in  
interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt will be requested.  
209  
2. 16-bit output compare register (OCRF)  
8-bit output compare register (OCRFH)  
8-bit output compare register (OCRFL)  
OCRF  
Bit  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
8
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Initial value  
1
1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
OCRFH OCRFL  
OCRF is a 16-bit read/write output compare register consisting of two 8-bit read/write registers  
OCRFH and OCRFL. It can be used as a 16-bit output compare register, with OCRFH as the  
upper 8 bits and OCRFL as the lower 8 bits of the register, or OCRFH and OCRFL can be used as  
independent 8-bit registers.  
OCRFH and OCRFL can be read and written by the CPU, but in 16-bit mode, data transfer with  
the CPU takes place via a temporary register (TEMP). For details see 9.5.3, Interface with the  
CPU.  
Upon reset, OCRFH and OCRFL are each initialized to H'FF.  
16-bit mode (OCRF)  
16-bit mode is selected by clearing bit CKSH2 to 0 in timer control register F (TCRF). The  
OCRF contents are always compared with the 16-bit timer counter (TCF). When the contents  
match, the compare match flag (CMFH) in TCSRF is set to 1. Also, IRRTFH in interrupt request  
register 2 (IRR2) is set to 1. If bit IENTFH in interrupt enable register 2 (IENR2) is set to 1, a  
CPU interrupt is requested.  
Output for pin TMOFH can be toggled by compare match. The output level can also be set to  
high or low by bit TOLH of timer control register F (TCRF).  
8-bit mode (OCRFH, OCRFL)  
Setting bit CKSH2 in TCRF to 1 results in two independent output compare registers, OCRFH  
and OCRFL.  
The OCRFH contents are always compared with TCFH, and the OCRFL contents are always  
compared with TCFL. When the contents match, the compare match flag (CMFH or CMFL) in  
TCSRF is set to 1. Also, bit IRRTFH (IRRTFL) in interrupt request register 2 (IRR2) set to 1. If  
bit IENTFH (IENTFL) in interrupt enable register 2 (IENR2) is set to 1 at this time, a CPU  
interrupt is requested.  
210  
The output at pin TMOFH (TMOFL) can be toggled by compare match. The output level can also  
be set to high or low by bit TOLH (TOLL) of the timer control register (TCRF).  
3. Timer control register F (TCRF)  
Bit  
7
TOLH  
0
6
5
4
3
2
1
0
CKSH2 CKSH1 CKSH0 TOLL  
CKSL2 CKSL1 CKSL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
TCRF is an 8-bit write-only register. It is used to switch between 16-bit mode and 8-bit mode, to  
select among four internal clocks and an external clock, and to select the output level at pins  
TMOFH and TMOFL.  
Upon reset, TCRF is initialized to H'00.  
Bit 7: Toggle output level H (TOLH)  
Bit 7 sets the output level at pin TMOFH. The setting goes into effect immediately after this bit is  
written.  
Bit 7  
TOLH  
Description  
Low level  
0
1
(initial value)  
High level  
Bits 6 to 4: Clock select H (CKSH2 to CKSH0)  
Bits 6 to 4 select the input to TCFH from four internal clock signals or the overflow of TCFL.  
Bit 6  
Bit 5  
Bit 4  
CKSH2 CKSH1 CKSH0 Description  
0
*
*
16-bit mode selected. TCFL overflow signals are  
counted.  
(initial value)  
1
1
1
1
0
0
1
1
0
1
0
1
Internal clock: ø/32  
Internal clock: ø/16  
Internal clock: ø/4  
Internal clock: ø/2  
Note: * Don’t care  
211  
Bit 3: Toggle output level L (TOLL)  
Bit 3 sets the output level at pin TMOFL. The setting goes into effect immediately after this bit is  
written.  
Bit 3  
TOLL  
Description  
Low level  
0
1
(initial value)  
High level  
Bits 2 to 0: Clock select L (CKSL2 to CKSL0)  
Bits 2 to 0 select the input to TCFL from four internal clock signals or external event input.  
Bit 2  
Bit 1  
Bit 0  
CKSL2 CKSL1 CKSL0 Description  
0
*
*
External event (TMIF). Rising or falling edge is  
counted (see note).  
(initial value)  
1
1
1
1
0
0
1
1
0
1
0
1
Internal clock: ø/32  
Internal clock: ø/16  
Internal clock: ø/4  
Internal clock: ø/2  
* Don’t care  
Note: The edge of the external event signal is selected by bit IEG3 in the IRQ edge select register  
(IEGR). See 3.3.2, Interrupt Control Registers, for details on the IRQ edge select register.  
Note that switching the TMIF pin function by changing bit IRQ3 in port mode register 1  
(PMR1) from 0 to 1 or from 1 to 0 while the TMIF pin is at the low level may cause the timer  
F counter to be incremented.  
4. Timer control/status register F (TCSRF)  
Bit  
7
OVFH  
0
6
5
4
3
2
CMFL  
0
1
0
CMFH OVIEH CCLRH OVFL  
OVIEL CCLRL  
Initial value  
Read/Write  
0
0
0
0
0
0
*
*
*
*
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Only 0 can be written, to clear flag.  
TCSRF is an 8-bit read/write register. It is used for counter clear selection, overflow and compare  
match indication, and enabling of interrupts caused by timer overflow.  
Upon reset, TCSRF is initialized to H'00.  
212  
Bit 7: Timer overflow flag H (OVFH)  
Bit 7 is a status flag indicating TCFH overflow (H'FF to H'00). This flag is set by hardware and  
cleared by software. It cannot be set by software.  
Bit 7  
OVFH  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
Setting conditions:  
Set when the value of TCFH goes from H'FF to H'00  
Bit 6: Compare match flag H (CMFH)  
Bit 6 is a status flag indicating a compare match between TCFH and OCRFH. This flag is set by  
hardware and cleared by software. It cannot be set by software.  
Bit 6  
CMFH  
Description  
0
Clearing conditions:  
(initial value)  
After reading CMFH = 1, cleared by writing 0 to CMFH  
1
Setting conditions:  
Set when the TCFH value matches OCRFH value  
Bit 5: Timer overflow interrupt enable H (OVIEH)  
Bit 5 enables or disables TCFH overflow interrupts.  
Bit 5  
OVIEH  
Description  
0
1
TCFH overflow interrupt disabled  
TCFH overflow interrupt enabled  
(initial value)  
213  
Bit 4: Counter clear H (CCLRH)  
In 16-bit mode, bit 4 selects whether or not TCF is cleared when a compare match occurs between  
TCF and OCRF.  
In 8-bit mode, bit 4 selects whether or not TCFH is cleared when a compare match occurs between  
TCFH and OCRFH.  
Bit 4  
CCLRH  
Description  
0
16-bit mode: TCF clearing by compare match disabled  
8-bit mode: TCFH clearing by compare match disabled  
(initial value)  
1
16-bit mode: TCF clearing by compare match enabled  
8-bit mode: TCFH clearing by compare match enabled  
Bit 3: Timer overflow flag L (OVFL)  
Bit 3 is a status flag indicating TCFL overflow (H'FF to H'00). This flag is set by hardware and  
cleared by software. It cannot be set by software.  
Bit 3  
OVFL  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFL = 1, cleared by writing 0 to OVFL  
1
Setting conditions:  
Set when the value of TCFL goes from H'FF to H'00  
Bit 2: Compare match flag L (CMFL)  
Bit 2 is a status flag indicating a compare match between TCFL and OCRFL. This flag is set by  
hardware and cleared by software. It cannot be set by software.  
Bit 2  
CMFL  
Description  
0
Clearing conditions:  
(initial value)  
After reading CMFL = 1, cleared by writing 0 to CMFL  
1
Setting conditions:  
Set when the TCFL value matches the OCRFL value  
214  
Bit 1: Timer overflow interrupt enable L (OVIEL)  
Bit 1 enables or disables TCFL overflow interrupts.  
Bit 1  
OVIEL  
Description  
0
1
TCFL overflow interrupt disabled  
TCFL overflow interrupt enabled  
(initial value)  
Bit 0: Counter clear L (CCLRL)  
Bit 0 selects whether or not TCFL is cleared when a compare match occurs between TCFL and  
OCRFL.  
Bit 0  
CCLRL  
Description  
0
1
TCFL clearing by compare match disabled  
TCFL clearing by compare match enabled  
(initial value)  
9.5.3 Interface with the CPU  
TCF and OCRF are 16-bit read/write registers, whereas the data bus between the CPU and on-chip  
peripheral modules has an 8-bit width. For this reason, when the CPU accesses TCF or OCRF, it  
makes use of an 8-bit temporary register (TEMP).  
In 16-bit mode, when reading or writing TCF or writing OCRF, always use two consecutive byte  
size MOV instructions, and always access the upper byte first. Data will not be transferred  
properly if only the upper byte or only the lower byte is accessed. In 8-bit mode there is no such  
restriction on the order of access.  
Write access  
When the upper byte is written, the upper-byte data is loaded into the TEMP register. Next when  
the lower byte is written, the data in TEMP goes to the upper byte of the register, and the lower-  
byte data goes directly to the lower byte of the register. Figure 9-5-2 shows a TCF write operation  
when H'AA55 is written to TCF.  
215  
Read access  
When the upper byte of TCF is read, the upper-byte data is sent directly to the CPU, and the lower  
byte is loaded into TEMP. Next when the lower byte is read, the lower byte in TEMP is sent to the  
CPU.  
When the upper byte of OCRF is read, the upper-byte data is sent directly to the CPU. Next when  
the lower byte is read, the lower-byte data is sent directly to the CPU.  
Figure 9-5-3 shows a TCF read operation when H'AAFF is read from TCF.  
216  
Upper byte write  
Internal data bus  
CPU  
(H'AA)  
TEMP  
(H'AA)  
TCFH  
TCFL  
(
)
(
)
Lower byte write  
Internal data bus  
CPU  
(H'55)  
TEMP  
(H'AA)  
TCFH  
(H'AA)  
TCFL  
(H'55)  
Figure 9-5-2 TCF Write Operation (CPU TCF)  
217  
Upper byte read  
Internal data bus  
CPU  
(H'AA)  
TEMP  
(H'FF)  
TCFH  
(H'AA)  
TCFL  
(H'FF)  
Lower byte read  
Internal data bus  
CPU  
(H'FF)  
TEMP  
(H'FF)  
TCFH  
TCFL  
(AB)*  
(00) *  
Note: *Becomes H'AB00 if counter is incremented once.  
Figure 9-5-3 TCF Read Operation (TCF CPU)  
218  
9.5.4 Timer Operation  
Timer F is a 16-bit timer/counter that increments with each input clock. When the value set in  
output compare register F matches the count in timer F, the timer can be cleared, an interrupt can  
be requested, and the port output can be toggled. Timer F can also be used as two independent  
8-bit timers.  
1. Timer F operation  
Timer F can operate in either 16-bit timer mode or 8-bit timer mode. These modes are described  
below.  
16-bit timer mode  
Timer F operates in 16-bit timer mode when the CKSH2 bit in timer control register F (TCRF) is  
cleared to 0.  
A reset initializes timer counter F (TCF) to H'0000, output compare register F (OCRF) to H'FFFF,  
and timer control register F (TCRF) and timer control status register F (TCSRF) to H'00. Timer F  
begins counting external event input signals (TMIF). The edge of the external event signal is  
selected by the IEG3 bit in the IRQ edge select register (IEGR).  
Instead of counting external events, timer F can be switched by bits CKSL2 to CKSL0 in TCRF to  
count one of four internal clocks output by prescaler S.  
TCF is continuously compared with the contents of OCRF. When these two values match, the  
CMFH bit in TCSRF is set to 1. At this time if IENTFH of IENR2 is 1, a CPU interrupt is  
requested and the output at pin TMOFH is toggled. If the CCLRH bit in TCSRF is 1, timer F is  
cleared. The output at pin TMOFH can also be set by the TOLH bit in TCRF.  
If timer F overflows (from H'FFFF to H'0000), the OVFH bit in TCSRF is set to 1. At this time, if  
the OVIEH bit in TCSRF and the IENTFH bit in IENR2 are both 1, a CPU interrupt is requested.  
219  
8-bit timer mode  
When the CKSH2 bit in TCRF is set to 1, timer F operates as two independent 8-bit timers, TCFH  
and TCFL. The input clock of TCFH/TCFL is selected by bits CKSH2 to CKSH0/CKSL2 to  
CKSL0 in TCRF.  
When TCFH/TCFL and the contents of OCRFH/OCRFL match, the CMFH/CMFL bit in TCSRF  
is set to 1. If the IENTFH/IENTFL bit in IENR2 is 1, a CPU interrupt is requested and the output  
at pin TMOFH/TMOFL is toggled. If the CCLRH/CCLRL bit in TCRF is 1, TCFH/TCFL is  
cleared. The output at pin TMOFH/TMOFL can also be set by the TOLH/TOLL bit in TCRF.  
When TCFH/TCFL overflows from H'FF to H'00, the OVFH/OVFL bit in TCSRF is set to 1. At  
this time, if the OVIEH/OVIEL bit in TCSRF and the IENTFH/IENTFL bit in IENR2 are both 1,  
a CPU interrupt is requested.  
2. TCF count timing  
TCF is incremented by each pulse of the input clock (internal or external clock).  
Internal clock  
The settings of bits CKSH2 to CKSH0 or bits CKSL2 to CKSL0 in TCRF select one of four  
internal clock signals divided from the system clock (ø), namely, ø/32, ø/16, ø/4, or ø/2.  
External clock  
External clock input is selected by clearing bit CKSL2 to 0 in TCRF. Either rising or falling edges  
of the clock input can be counted. The edge is selected by bit IEG3 in IEGR. An external clock  
pulse width of at least two system clock cycles (ø) is necessary; otherwise the counter will not  
operate properly.  
220  
3. TMOFH and TMOFL output timing  
The outputs at pins TMOFH and TMOFL are the values set in bits TOLH and TOLL in TCRF.  
When a compare match occurs, the output value is inverted. Figure 9-5-4 shows the output  
timing.  
ø
TMIF  
(when IEG3 = 1)  
Count input  
clock  
TCF  
N
N + 1  
N
N + 1  
OCRF  
N
N
Compare match  
signal  
TMOFH, TMOFL  
Figure 9-5-4 TMOFH, TMOFL Output Timing  
4. TCF clear timing  
TCF can be cleared at compare match with OCRF.  
5. Timer overflow flag (OVF) set timing  
OVF is set to 1 when TCF overflows (goes from H'FFFF to H'0000).  
6. Compare match flag set timing  
The compare match flags (CMFH or CMFL) are set to 1 when a compare match occurs between  
TCF and OCRF. A compare match signal is generated in the final state in which the values match  
(when TCF changes from the matching count value to the next value). When TCF and OCRF  
match, a compare match signal is not generated until the next counter clock pulse.  
221  
7. Timer F operation states  
Table 9-5-3 summarizes the timer F operation states.  
Table 9-5-3 Timer F Operation States  
Sub-  
Sub-  
Operation Mode Reset Active  
Sleep  
Watch  
active  
sleep  
Standby  
TCF  
Reset Functions  
Reset Functions  
Reset Functions  
Reset Functions  
Functions Halted  
Halted  
Halted  
Halted  
OCRF  
TCRF  
TCSRF  
Retained  
Retained  
Retained  
Retained Retained Retained Retained  
Retained Retained Retained Retained  
Retained Retained Retained Retained  
9.5.5 Application Notes  
The following conflicts can arise in timer F operation.  
1. 16-bit timer mode  
The output at pin TMOFH toggles when all 16 bits match and a compare match signal is  
generated. If the compare match signal occurs at the same time as new data is written in TCRF by  
a MOV instruction, however, the new value written in bit TOLH will be output at pin TMOFH.  
The TMOFL output in 16-bit mode is indeterminate, so this output should not be used. Use the  
pin as a general input or output port.  
If an OCRFL write occurs at the same time as a compare match signal, the compare match signal  
is inhibited. If a compare match occurs between the written data and the counter value, however, a  
compare match signal will be generated at that point. The compare match signal is output in  
synchronization with the TCFL clock, so if this clock is stopped no compare match signal will be  
generated, even if a compare match occurs.  
Compare match flag CMFH is set when all 16 bits match and a compare match signal is  
generated; bit CMFL is set when the setting conditions are met for the lower 8 bits.  
The overflow flag (OVFH) is set when TCF overflows; bit OVFL is set if the setting conditions  
are met when the lower 8 bits overflow. If a write to TCFL occurs at the same time as an overflow  
signal, the overflow signal is not output.  
222  
2. 8-bit timer mode  
TCFH and OCRFH  
The output at pin TMOFH toggles when there is a compare match. If the compare match signal  
occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new  
value written in bit TOLH will be output at pin TMOFH.  
If an OCRFH write occurs at the same time as a compare match signal, the compare match signal  
is inhibited. If a compare match occurs between the written data and the counter value, however, a  
compare match signal will be generated at that point. The compare match signal is output in  
synchronization with the TCFH clock.  
If a TCFH write occurs at the same time as an overflow signal, the overflow signal is not output.  
TCFL and OCRFL  
The output at pin TMOFL toggles when there is a compare match. If the compare match signal  
occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new  
value written in bit TOLL will be output at pin TMOFL.  
If an OCRFL write occurs at the same time as a compare match signal, the compare match signal  
is inhibited. If a compare match occurs between the written data and the counter value, however,  
a compare match signal will be generated at that point. The compare match signal is output in  
synchronization with the TCFL clock, so if this clock is stopped no compare match signal will be  
generated, even if a compare match occurs.  
If a TCFL write occurs at the same time as an overflow signal, the overflow signal is not output.  
223  
9.6 Timer G  
9.6.1 Overview  
Timer G is an 8-bit timer, with input capture functions for separately capturing the rising edge and  
falling edge of pulses input at the input capture pin (input capture input signal). Timer G has a  
built-in noise canceller circuit that can eliminate high-frequency noise from the input capture  
signal, enabling accurate measurement of its duty cycle. When timer G is not used for input  
capture, it functions as an 8-bit interval timer.  
1. Features  
Features of timer G are given below.  
Choice of four internal clock sources (ø/64, ø/32, ø/2, ø /2)  
W
Input capture function  
Separate input capture registers are provided for the rising and falling edges.  
Counter overflow detection  
Can detect whether overflow occurred when the input capture signal was high or low.  
Choice of counter clear triggers  
The counter can be cleared at the rising edge, falling edge, or both edges of the input capture  
signal.  
Two interrupt sources  
Interrupts can be requested by input capture and by overflow. For input capture, the rising or  
falling edge can be selected.  
Built-in noise-canceller circuit  
The noise canceller circuit can eliminate high-frequency noise in the input capture signal.  
Operates in subactive and subsleep modes  
When ø /2 is selected as the internal clock source, timer G can operate in the subactive and  
W
subsleep modes.  
224  
2. Block diagram  
Figure 9-6-1 shows a block diagram of timer G.  
PSS  
ø
TMG  
ICRGF  
TCG  
Level  
sense  
circuit  
øW/2  
Edge  
sense  
circuit  
Noise  
canceller  
circuit  
TMIG  
NCS  
ICRGR  
IRRTG  
Notation:  
TMG:  
TCG:  
Timer mode register G  
Timer counter G  
ICRGF: Input capture register GF  
ICRGR: Input capture register GR  
IRRTG: Timer G interrupt request flag  
NCS:  
PSS:  
Noise canceller select  
Prescaler S  
Figure 9-6-1 Block Diagram of Timer G  
3. Pin configuration  
Table 9-6-1 shows the timer G pin configuration.  
Table 9-6-1 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
Timer G capture input  
Timer G capture input  
TMIG  
Input  
225  
4. Register configuration  
Table 9-6-2 shows the register configuration of timer G.  
Table 9-6-2 Timer G Registers  
Name  
Abbrev.  
TMG  
R/W  
R/W  
Initial Value  
H'00  
Address  
H'FFBC  
Timer mode register G  
Timer counter G  
TCG  
H'00  
Input capture register GF  
Input capture register GR  
ICRGF  
ICRGR  
R
H'00  
H'FFBD  
H'FFBE  
R
H'00  
9.6.2 Register Descriptions  
1. Timer counter G (TCG)  
Bit  
7
TCG7  
0
6
TCG6  
0
5
TCG5  
0
4
TCG4  
0
3
2
1
0
TCG0  
0
TCG3  
0
TCG2  
0
TCG1  
0
Initial value  
Read/Write  
Timer counter G (TCG) is an 8-bit up-counter which is incremented by an input clock. The input  
clock signal is selected by bits CKS1 and CKS0 in timer mode register G (TMG).  
To use TCG as an input capture timer, set bit TMIG to 1 in PMR1; to use TCG as an interval  
timer, clear bit TMIG to 0.* When TCG is used as an input capture timer, the TCG value can be  
cleared at the rising edge, falling edge, or both edges of the input capture signal, depending on  
settings in TMG.  
When TCG overflows (goes from H'FF to H'00), if the timer overflow interrupt enable bit (OVIE)  
is set to 1 in TMG, bit IRRTG in interrupt request register 2 (IRR2) is set to 1. If in addition bit  
IENTG in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt is requested. Details on  
interrupts are given in 3.3, Interrupts.  
TCG cannot be read or written by the CPU.  
Upon reset, TCG is initialized to H'00.  
Note: * An input capture signal may be generated when TMIG is rewritten.  
226  
2. Input capture register GF (ICRGF)  
Bit  
7
6
5
4
3
2
1
0
ICRGF7 ICRGF6 ICRGF5 ICRGF4 ICRGF3 ICRGF2 ICRGF1 ICRGF0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ICRGF is an 8-bit read-only register. When the falling edge of the input capture signal is  
detected, the TCG value at that time is transferred to ICRGF. If the input capture interrupt select  
bit (IIEGS) is set to 1 in TMG, bit IRRTG in interrupt request register 2 (IRR2) is set to 1. If in  
addition bit IENTG in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt is requested.  
Details on interrupts are given in 3.3, Interrupts.  
To ensure proper input capture when the noise canceller is not used, the pulse width of the input  
capture signal should be at least 2ø or 2ø  
Upon reset, ICRGF is initialized to H'00.  
3. Input capture register GR (ICRGR)  
.
SUB  
Bit  
7
6
5
4
3
2
1
0
ICRGR7 ICRGR6 ICRGR5 ICRGR4 ICRGR3 ICRGR2 ICRGR1 ICRGR0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ICRGR is an 8-bit read-only register. When the rising edge of the input capture signal is detected,  
the TCG value at that time is sent to ICRGR. If the IIEGS bit is cleared to 0 in TMG, bit IRRTG  
in interrupt request register 2 (IRR2) is set to 1. If in addition bit IENTG in interrupt enable  
register 2 (IENR2) is set to 1, a CPU interrupt is requested. Details on interrupts are given in 3.3,  
Interrupts.  
To ensure proper input capture when the noise canceller is not used, the pulse width of the input  
capture signal should be at least 2ø or 2ø  
.
SUB  
Upon reset, ICRGR is initialized to H'00.  
227  
4. Timer mode register G (TMG)  
Bit  
7
6
5
OVIE  
0
4
3
2
1
CKS1  
0
0
CKS0  
0
OVFH  
0
OVFL  
0
IIEGS CCLR1 CCLR0  
Initial value  
Read/Write  
0
0
0
R/W*  
R/W*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Note: * Only 0 can be written, to clear flag.  
TMG is an 8-bit read/write register. It controls the choice of four input clocks, counter clear  
selection, and edge selection for input capture interrupt requests. It also indicates overflow status  
and enables or disables overflow interrupt requests.  
Upon reset, TMG is initialized to H'00.  
Bit 7: Timer overflow flag H (OVFH)  
Bit 7 is a status flag indicating that TCG overflowed (from H'FF to H'00) when the input capture  
signal was high. This flag is set by hardware and cleared by software. It cannot be set by  
software.  
Bit 7  
OVFH  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
Setting conditions:  
Set when the value of TCG overflows from H'FF to H'00  
Bit 6: Timer overflow flag L (OVFL)  
Bit 6 is a status flag indicating that TCG overflowed (from H'FF to H'00) when the input capture  
signal was low, or in interval timer operation. This flag is set by hardware and cleared by  
software. It cannot be set by software.  
Bit 6  
OVFL  
Description  
0
Clearing conditions:  
(initial value)  
After reading OVFL = 1, cleared by writing 0 to OVFL  
1
Setting conditions:  
Set when the value of TCG overflows from H'FF to H'00  
228  
Bit 5: Timer overflow interrupt enable (OVIE)  
Bit 5 enables or disables TCG overflow interrupts.  
Bit 5  
OVIE  
Description  
0
1
TCG overflow interrupt disabled  
TCG overflow interrupt enabled  
(initial value)  
Bit 4: Input capture interrupt edge select (IIEGS)  
Bit 4 selects the input signal edge at which input capture interrupts are requested.  
Bit 4  
IIEGS  
Description  
0
1
Interrupts are requested at the rising edge of the input capture signal  
Interrupts are requested at the falling edge of the input capture signal  
(initial value)  
Bits 3, 2: Counter clear 1, 0 (CCLR1, CCLR0)  
Bits 3 and 2 designate whether TCG is cleared at the rising, falling, or both edges of the input  
capture signal, or is not cleared.  
Bit 3  
Bit 2  
CCLR1 CCLR0 Description  
0
0
1
1
0
1
0
1
TCG is not cleared  
(initial value)  
TCG is cleared at the falling edge of the input capture signal  
TCG is cleared at the rising edge of the input capture signal  
TCG is cleared at both edges of the input capture signal  
Bits 1, 0: Clock select (CKS1, CKS0)  
Bits 1 and 0 select the clock input to TCG from four internal clock signals.  
Bit 1  
Bit 0  
CKS1  
CKS0  
Description  
0
0
1
1
0
1
0
1
Internal clock: ø/64  
Internal clock: ø/32  
Internal clock: ø/2  
Internal clock: øW/2  
(initial value)  
229  
9.6.3 Noise Canceller Circuit  
The noise canceller circuit built into the H8/3834U Series is a digital low-pass filter that rejects  
high-frequency pulse noise in the input at the input capture pin. The noise canceller circuit is  
enabled by the noise canceller select (NCS) bit in port mode register 2 (PMR2)*.  
Figure 9-6-2 shows a block diagram of the noise canceller circuit.  
Sampling clock  
C
C
C
C
C
Input capture  
signal  
D
Q
D
Q
D
Q
D
Q
D
Q
Match  
detection  
circuit  
Noise  
canceller  
output  
latch  
latch  
latch  
latch  
latch  
t  
Sampling clock  
t: Selected by bits CKS1, CKS0.  
Figure 9-6-2 Block Diagram of Noise Canceller Circuit  
The noise canceller consists of five latch circuits connected in series, and a match detection  
circuit. When the noise canceller function is disabled (NCS = 0), the system clock is selected as  
the sampling clock. When the noise canceller is enabled (NCS = 1), the internal clock selected by  
bits CKS1 and CKS0 in TMG becomes the sampling clock. The input signal is sampled at the  
rising edge of this clock pulse. Data is considered correct when the outputs of all five latch  
circuits match. If they do not match, the previous value is retained. Upon reset, the noise  
canceller output is initialized after the falling edge of the input capture signal has been sampled  
five times. Accordingly, after the noise canceller function is enabled, pulses that have a pulse  
width five times greater than the sampling clock will be recognized as input capture signals.  
If the noise canceller circuit is not used, the input capture signal pulse width must be at least 2ø or  
2ø  
in order to ensure proper input capture operation.  
SUB  
230  
Note: * Rewriting the NCS bit may cause an internal input capture signal to be generated.  
Figure 9-6-3 shows a typical timing diagram for the noise canceller circuit. In this example, a  
high-level input at the input capture pin is rejected as noise because its pulse width is less than five  
sampling clock ø cycles.  
Input capture  
input signal  
Sampling  
clock  
Noise canceller  
output  
Rejected as noise  
Figure 9-6-3 Noise Canceller Circuit Timing (Example)  
9.6.4 Timer Operation  
Timer G is an 8-bit timer with input capture and interval timer functions.  
1. Timer G functions  
Timer G is an 8-bit timer/counter that functions as an input capture timer or an interval timer.  
These two functions are described below.  
Input capture timer operation  
Timer G functions as an input capture timer when bit TMIG of port mode register 1 (PMR1) is  
set to 1.*  
At reset, timer mode register G (TMG), timer counter G (TCG), input capture register GF  
(ICRGF), and input capture register GR (ICRGR) are all initialized to H'00.  
Immediately after reset, TCG begins counting an internal clock with a frequency of ø divided by  
64 (ø/64). Three other internal clocks can be selected using bits CKS1 and CKS0 of TMG.  
At the rising edge/falling edge of the input capture signal input to pin TMIG, the value of TCG is  
copied into ICRGR/ICRGF. If the input edge is the same as the edge selected by the IIEGS bit of  
TMG, then bit IRRTG is set to 1 in IRR2. If bit IENTG is also set to 1 in IENR2, a CPU interrupt  
is requested. For details on interrupts, see section 3.3, Interrupts.  
231  
TCG can be cleared to 0 at the rising edge, falling edge, or both edges of the input capture signal  
as determined with bits CCLR1 and CCLR0 of TMG. If TCG overflows while the input capture  
signal is high, bit OVFH of TMG is set. If TCG overflows while the input capture signal is low,  
bit OVFL of TMG is set. When either of these bits is set, if bit OVIE of TMG is currently set to 1,  
then bit IRRTG is set to 1 in IRR2. If bit IENTG is also set to 1 in IENR2, then timer G requests a  
CPU interrupt. For further details see 3.3, Interrupts.  
Timer G has a noise canceller circuit that rejects high-frequency pulse noise in the input to pin  
TMIG. See 9.6.3, Noise Canceller Circuit, for details.  
Note: * Rewriting the TMIG bit may cause an internal input capture signal to be generated.  
Interval timer operation  
Timer G functions as an interval timer when bit TMIG is cleared to 0 in PMR1. Following a reset,  
TCG starts counting cycles of the ø/64 internal clock. This is one of four internal clock sources  
that can be selected by bits CKS1 and CKS0 of TMG. TCG counts up according to the selected  
clock source. When it overflows from H'FF to H'00, bit OVFL of TMG is set to 1. If bit OVIE of  
TMG is currently set to 1, then bit IRRTG is set to 1 in IRR2. If bit IENTG is also set to 1 in  
IENR2, then timer G requests a CPU interrupt. For further details see 3.3, Interrupts.  
2. Count timing  
TCG is incremented by input pulses from an internal clock. TMG bits CKS1 and CKS0 select  
one of four internal clocks (ø/64, ø/32, ø/2, ø /2) derived by dividing the system clock (ø) or the  
W
watch clock (ø ).  
W
232  
3. Timing of internal input capture signals  
Timing with noise canceller function disabled  
Separate internal input capture signals are generated from the rising and falling edges of the  
external input signal.  
Figure 9-6-4 shows the timing of these signals.  
External input  
capture signal  
Internal input  
capture signal F  
Internal input  
capture signal R  
Figure 9-6-4 Input Capture Signal Timing (Noise Canceller Function Disabled)  
Timing with noise canceller function enabled  
When input capture noise cancelling is enabled, the external input capture signal is routed via the  
noise canceller circuit, so the internal signals are delayed from the input edge by five sampling  
clock cycles. Figure 9-6-5 shows the timing.  
External input  
capture signal  
Sampling clock  
Noise canceller  
circuit output  
Internal input  
capture signal R  
Figure 9-6-5 Input Capture Signal Timing (Noise Canceller Function Enabled)  
233  
4. Timing of input capture  
Figure 9-6-6 shows the input capture timing in relation to the internal input capture signal.  
Internal input  
capture signal  
TCG  
N –1  
N
N +1  
Input capture  
register  
H'XX  
N
Figure 9-6-6 Input Capture Timing  
5. TCG clear timing  
TCG can be cleared at the rising edge, falling edge, or both edges of the external input capture  
signal. Figure 9-6-7 shows the timing for clearing at both edges.  
External input  
capture signal  
Internal input  
capture signal F  
Internal input  
capture signal R  
TCG  
N
H'00  
N
H'00  
Figure 9-6-7 TCG Clear Timing  
234  
6. Timer G operation states  
Table 9-6-3 summarizes the timer G operation states.  
Table 9-6-3 Timer G Operation States  
Sub-  
Sub-  
Operation Mode Reset Active  
Sleep  
Watch  
active  
sleep  
Standby  
TCG  
Input  
capture  
Reset Functions* Functions* Halted  
Functions/ Functions/ Halted  
Halted* Halted*  
Interval Reset Functions* Functions* Retained Functions/ Functions/ Halted  
Halted* Halted*  
ICRGF  
ICRGR  
TMG  
Reset Functions* Functions* Retained Functions/ Functions/ Retained  
Halted* Halted*  
Reset Functions* Functions* Retained Functions/ Functions/ Retained  
Halted* Halted*  
Reset Functions Retained  
Retained Functions Retained  
Retained  
Note: * In active mode and sleep mode, if ø /2 is selected as the TCG internal clock, since the  
W
system clock and internal clock are not synchronized with each other, a synchronization  
circuit is used. This may result in a count cycle error of up to 1/ø (s). In subactive mode  
and subsleep mode, if ø /2 is selected as the TCG internal clock, regardless of the  
W
subclock ø/SUB (ø /2, ø /4, ø /8) TCG and the noise canceller circuit run on an internal  
W
W
W
clock of ø /2. If any other internal clock is chosen, TCG and the noise canceller circuit  
W
will not run, and the input capture function will not operate.  
9.6.5 Application Notes  
1. Input clock switching and TCG operation  
Depending on when the input clock is switched, there will be cases in which TCG is incremented  
in the process. Table 9-6-4 shows the relation between internal clock switchover timing (selected  
in bits CKS1 and CKS0) and TCG operation. If an internal clock (derived from the system clock  
ø or subclock ø  
) is used, an increment pulse is generated when a falling edge of the internal  
SUB  
clock is detected. For this reason, in a case like No. 3 in table 9-6-4, where the clock is switched  
at a time such that the clock signal goes from high level before switching to low level after  
switching, the switchover is seen as a falling edge of the clock pulse, causing TCG to be  
incremented.  
235  
Table 9-6-4 Internal Clock Switching and TCG Operation  
Clock Level Before  
and After Modifying  
No. Bits CKS1 and CKS0  
TCG Operation  
1
2
3
Goes from low level to  
low level  
Clock before  
switching  
Clock after  
switching  
Count clock  
TCG  
N +1  
N
CKS bits modified  
Goes from low level to  
high level  
Clock before  
switching  
Clock after  
switching  
Count clock  
N
N +1  
N +2  
TCG  
CKS bits modified  
Goes from high level to  
low level  
Clock before  
switching  
Clock after  
switching  
*
Count clock  
TCG  
N
N +1  
N +2  
CKS bits modified  
4
Goes from high level to  
high level  
Clock before  
switching  
Clock after  
switching  
Count clock  
TCG  
N
N +1  
N +2  
CKS bits modified  
Note: * The switchover is seen as a falling edge of the clock pulse, and TCG is incremented.  
236  
2. Note on rewriting port mode registers  
When a port mode register setting is modified to enable or disable the input capture function or  
input capture noise canceling function, note the following points.  
Switching the function of the input capture pin  
When the function of the input capture pin is switched by modifying the TMIG bit in port mode  
register 1 (PMR1) an input capture edge may be recognized even though no valid signal edge has  
been input. This occurs under the conditions listed in table 9-6-5.  
Table 9-6-5 False Input Capture Edges Generating by Switching of Input Capture Pin Function  
Input Capture Edge Conditions  
Rising edge  
recognized  
TMIG pin level is high, and TMIG bit is changed from 0 to 1  
TMIG pin level is high and NCS bit is changed from 0 to 1, then TMIG bit is  
changed from 0 to 1 before noise canceller circuit completes five samples  
Falling edge  
recognized  
TMIG pin level is high, and TMIG bit is changed from 1 to 0  
TMIG pin level is low and NCS bit is changed from 0 to 1, then TMIG bit is  
changed from 0 to 1 before noise canceller circuit completes five samples  
TMIG pin level is high and NCS bit is changed from 0 to 1, then TMIG bit is  
changed from 1 to 0 before noise canceller circuit completes five samples  
Note: When pin P13 is not used for input capture, the input capture signal input to timer G is low.  
Switching the input capture noise canceling function  
When modifying the NCS bit in port mode register 2 (PMR2) to enable or disable the input  
capture noise canceling function, first clear the TMIG bit to 0. Otherwise an input capture edge  
may be recognized even though no valid signal edge has been input. This occurs under the  
conditions listed in table 9-6-6.  
Table 9-6-6 False Input Capture Edges Generating by Switching of Noise Canceling Function  
Input Capture Edge Conditions  
Rising edge  
recognized  
TMIG bit is set to 1 and TMIG pin level changes from low to high, then NCS  
bit is changed from 1 to 0 before noise canceller circuit completes five  
samples  
Falling edge  
recognized  
TMIG bit is set to 1 and TMIG pin level changes from high to low, then NCS  
bit is changed from 1 to 0 before noise canceller circuit completes five  
samples  
237  
If switching of the pin function generates a false input capture edge matching the edge selected by  
the input capture interrupt edge select bit (IIEGS), the interrupt request flag will be set to 1,  
making it necessary to clear this flag to 0 before using the interrupt function. Figure 9-6-8 shows  
the procedure for modifying port mode register settings and clearing the interrupt request flag. The  
first step is to mask interrupts before modifying the port mode register. After modifying the port  
mode register setting, wait long enough for an input capture edge to be recognized (at least two  
system clocks when noise canceling is disabled; at least five sampling clocks when noise  
canceling is enabled), then clear the interrupt request flag to 0 (assuming it has been set to 1). An  
alternative procedure is to avoid having the interrupt request flag set when the pin function is  
switched, either by controlling the level of the input capture pin so that it does not satisfy the  
conditions in tables 9-6-5 and 9-6-6, or by setting the IIEGS bit of TMG to select the edge  
opposite to the falsely generated edge.  
Disable interrupts (or disable by clearing interrupt  
Set I bit to 1 in CCR  
enable bit in interrupt enable register 2)  
Modify port mode register  
Modify port mode register setting, wait for input  
capture edge to be recognized (at least two  
system clocks when noise canceling is disabled;  
at least five sampling clocks when noise canceling  
Wait for TMIG to be recognized  
is enabled), then clear interrupt request flag to 0  
Clear interrupt request flag to 0  
Clear I bit to 0 in CCR  
Enable interrupts  
Figure 9-6-8 Procedure for Modifying Port Mode Register and Clearing Interrupt  
Request Flag  
238  
9.6.6 Sample Timer G Application  
The absolute values of the high and low widths of the input capture signal can be measured by  
using timer G. The CCLR1 and CCLR0 bits of TMG should be set to 1. Figure 9-6-9 shows an  
example of this operation.  
Input capture  
signal  
H'FF  
Input capture  
register GF  
Input capture  
register GR  
H'00  
TCG  
Counter cleared  
Figure 9-6-9 Sample Timer G Application  
239  
Section 10 Serial Communication Interface  
10.1 Overview  
The H8/3834U Series is provided with a three-channel serial communication interface (SCI).  
Table 10-1-1 summarizes the functions and features of the three SCI channels.  
Table 10-1-1 Serial Communication Interface Functions  
Channel  
Functions  
Features  
• Choice of 8 internal clocks (ø/1024 to ø/2) or  
external clock  
SCI1  
Synchronous serial transfer  
• Choice of 8-bit or 16-bit data length  
• Continuous clock output  
• Open drain output possible  
• Interrupt requested at completion of transfer  
• Choice of 7 internal clocks (ø/256 to ø/2) or  
external clock  
SCI2  
SCI3  
Synchronous serial transfer  
• Automatic transfer of up to 32 bytes  
of data (send, receive, or simultaneous  
send/receive)  
• Open drain output possible  
• Interrupt requested at completion of  
transfer or error  
• Chip select input  
• Strobe pulse output  
Synchronous serial transfer  
• 8-bit data transfer  
• Built-in baud rate generator  
• Receive error detection  
• Break detection  
• Send, receive, or simultaneous  
send/receive  
• Interrupt requested at completion of transfer  
or error  
Asynchronous serial transfer  
• Multiprocessor communication function  
• Choice of 7-bit or 8-bit data length  
• Choice of 1-bit or 2-bit stop bit length  
• Odd or even parity  
241  
10.2 SCI1  
10.2.1 Overview  
Serial communication interface 1 (SCI1) performs synchronous serial transfer of 8-bit or 16-bit  
data.  
1. Features  
Choice of 8-bit or 16-bit data length  
Choice of eight internal clock sources (ø/1024, ø/256, ø/64, ø/32, ø/16, ø/8, ø/4, ø/2) or an  
external clock  
Interrupt requested at completion of transfer  
242  
2. Block diagram  
Figure 10-2-1 shows a block diagram of SCI1.  
PSS  
ø
SCR1  
SCK1  
Transmit/receive  
control circuit  
SCSR1  
Transfer bit counter  
SDRU  
SI1  
SDRL  
SO1  
IRRS1  
Notation:  
SCR1: Serial control register 1  
SCSR1: Serial control/status register 1  
SDRU: Serial data register U  
SDRL: Serial data register L  
IRRS1: SCI1 interrupt request flag  
PSS:  
Prescaler S  
Figure 10-2-1 SCI1 Block Diagram  
243  
3. Pin configuration  
Table 10-2-1 shows the SCI1 pin configuration.  
Table 10-2-1 Pin Configuration  
Name  
Abbrev.  
SCK1  
SI1  
I/O  
Function  
SCI1 clock pin  
SCI1 data input pin  
SCI1 data output pin  
I/O  
SCI1 clock input or output  
SCI1 receive data input  
SCI1 transmit data output  
Input  
Output  
SO1  
4. Register configuration  
Table 10-2-2 shows the SCI1 register configuration.  
Table 10-2-2 SCI1 Registers  
Name  
Abbrev.  
SCR1  
R/W  
R/W  
R/W  
R/W  
R/W  
Initial Value  
H'00  
Address  
H'FFA0  
H'FFA1  
H'FFA2  
H'FFA3  
Serial control register 1  
Serial control status register 1  
Serial data register U  
Serial data register L  
SCSR1  
SDRU  
SDRL  
H'80  
Not fixed  
Not fixed  
10.2.2 Register Descriptions  
1. Serial control register 1 (SCR1)  
Bit  
7
SNC1  
0
6
SNC0  
0
5
4
3
2
1
0
CKS0  
0
CKS3  
0
CKS2  
0
CKS1  
0
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SCR1 is an 8-bit read/write register for selecting the operation mode, the transfer clock source,  
and the prescaler division ratio.  
Upon reset, SCR1 is initialized to H'00. Writing to this register during a transfer stops the  
transfer.  
244  
Bits 7 and 6: Operation mode select 1, 0 (SNC1, SNC0)  
Bits 7 and 6 select the operation mode.  
Bit 7  
Bit 6  
SNC1  
SNC0  
Description  
0
0
1
1
0
1
0
1
8-bit synchronous transfer mode  
16-bit synchronous transfer mode  
Continuous clock output mode*1  
Reserved*2  
(initial value)  
Notes: 1. Pins SI1 and SO1 should be used as general input or output ports.  
2. Don’t set bits SNC1 and SNC0 to 11.  
Bits 5 and 4: Reserved bits  
Bits 5 and 4 are reserved, but they can be written and read.  
Bit 3: Clock source select (CKS3)  
Bit 3 selects the clock source and sets pin SCK as an input or output pin.  
1
Bit 3  
CKS3  
Description  
0
1
Clock source is prescaler S, and pin SCK1 is output pin  
Clock source is external clock, and pin SCK1 is input pin  
(initial value)  
245  
Bits 2 to 0: Clock select (CKS2 to CKS 0)  
When CKS3 = 0, bits 2 to 0 select the prescaler division ratio and the serial clock cycle.  
Serial Clock Cycle  
Bit 2  
Bit 1  
Bit 0  
CKS2  
CKS1  
CKS0  
Prescaler Division  
ø = 5 MHz  
204.8 µs  
51.2 µs  
12.8 µs  
6.4 µs  
3.2 µs  
1.6 µs  
0.8 µs  
ø = 2.5 MHz  
409.6 µs  
102.4 µs  
25.6 µs  
12.8 µs  
6.4 µs  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ø/1024 (initial value)  
ø/256  
ø/64  
ø/32  
ø/16  
ø/8  
3.2 µs  
ø/4  
1.6 µs  
ø/2  
0.8 µs  
2. Serial control/status register 1 (SCSR1)  
Bit  
7
1
6
5
4
0
3
0
2
0
1
0
SOL  
0
ORER  
0
0
STF  
0
Initial value  
Read/Write  
R/W  
R/(W)*  
R/W  
R/W  
Note: * Only a write of 0 for flag clearing is possible.  
SCSR1 is an 8-bit read/write register indicating operation status and error status.  
Upon reset, SCSR1 is initialized to H'80.  
Bit 7: Reserved bit  
Bit 7 is reserved; it is always read as 1, and cannot be modified.  
246  
Bit 6: Extended data bit (SOL)  
Bit 6 sets the SO output level. When read, SOL returns the output level at the SO pin. After  
1
1
completion of a transmission, SO continues to output the value of the last bit of transmitted data.  
1
The SO output can be changed by writing to SOL before or after a transmission. The SOL bit  
1
setting remains valid only until the start of the next transmission. To control the level of the SO  
1
pin after transmission ends, it is necessary to write to the SOL bit at the end of each transmission.  
Do not write to this register while transmission is in progress, because that may cause a  
malfunction.  
Bit 6  
SOL  
Description  
0
Read  
Write  
Read  
Write  
SO1 pin output level is low  
(initial value)  
SO1 pin output level changes to low  
SO1 pin output level is high  
1
SO1 pin output level changes to high  
Bit 5: Overrun error flag (ORER)  
When an external clock is used, bit 5 indicates the occurrence of an overrun error. If a clock pulse  
is input after transfer completion, this bit is set to 1 indicating an overrun. If noise occurs during a  
transfer, causing an extraneous pulse to be superimposed on the normal serial clock, incorrect data  
may be transferred.  
Bit 5  
ORER  
Description  
0
Clearing conditions:  
(initial value)  
After reading ORER = 1, cleared by writing 0 to ORER  
1
Setting conditions:  
Set if a clock pulse is input after transfer is complete, when an external clock is used  
Bits 4 to 2: Reserved bits  
Bits 4 to 2 are reserved; they are always read as 0, and cannot be modified.  
Bit 1: Reserved bit  
Bit 1 is reserved; it should always be cleared to 0.  
247  
Bit 0: Start flag (STF)  
Bit 0 controls the start of a transfer. Setting this bit to 1 causes SCI1 to start transferring data.  
During the transfer or while waiting for the first clock pulse, this bit remains set to 1. It is cleared  
to 0 upon completion of the transfer. It can therefore be used as a busy flag.  
Bit 0  
STF  
Description  
0
Read: Indicates that transfer is stopped  
Write: Invalid  
(initial value)  
1
Read: Indicates transfer in progress  
Write: Starts a transfer operation  
3. Serial data register U (SDRU)  
Bit  
7
6
5
4
3
2
1
0
SDRU7 SDRU6 SDRU5 SDRU4 SDRU3 SDRU2 SDRU1 SDRU0  
Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed  
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SDRU is an 8-bit read/write register. It is used as the data register for the upper 8 bits in 16-bit  
transfer (SDRL is used for the lower 8 bits).  
Data written to SDRU is output to SDRL starting from the least significant bit (LSB). This data is  
then replaced by LSB-first data input at pin SI1, which is shifted in the direction from the most  
significant bit (MSB) toward the LSB.  
SDRU must be written or read only after data transmission or reception is complete. If this  
register is written or read while a data transfer is in progress, the data contents are not guaranteed.  
The SDRU value upon reset is not fixed.  
248  
4. Serial data register L (SDRL)  
Bit  
7
6
5
4
3
2
1
0
SDRL7 SDRL6 SDRL5 SDRL4 SDRL3 SDRL2 SDRL1 SDRL0  
Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed  
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SDRL is an 8-bit read/write register. It is used as the data register in 8-bit transfer, and as the data  
register for the lower 8 bits in 16-bit transfer (SDRU is used for the upper 8 bits).  
In 8-bit transfer, data written to SDRL is output from pin SO starting from the least significant  
1
bit (LSB). This data is than replaced by LSB-first data input at pin SI , which is shifted in the  
1
direction from the most significant bit (MSB) toward the LSB.  
In 16-bit transfer, operation is the same as for 8-bit transfer, except that input data is fed in via  
SDRU.  
SDRL must be written or read only after data transmission or reception is complete. If this  
register is read or written while a data transfer is in progress, the data contents are not guaranteed.  
The SDRL value upon reset is not fixed.  
10.2.3 Operation  
Data can be sent and received in an 8-bit or 16-bit format, synchronized to an internal or external  
serial clock. Overrun errors can be detected when an external clock is used.  
1. Clock  
The serial clock can be selected from a choice of eight internal clocks and an external clock.  
When an internal clock source is selected, pin SCK becomes the clock output pin. When  
1
continuous clock output mode is selected (SCR1 bits SNC1 and SNC0 are set to 10), the clock  
signal (ø/1024 to ø/2) selected in bits CKS2 to CKS0 is output continuously from pin SCK .  
1
When an external clock is used, pin SCK is the clock input pin.  
1
2. Data transfer format  
Figure 10-2-2 shows the data transfer format. Data is sent and received starting from the least  
significant bit, in LSB-first format. Transmit data is output from one falling edge of the serial  
clock until the next falling edge. Receive data is latched at the rising edge of the serial clock.  
249  
SCK1  
SO1/SI1  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 10-2-2 Transfer Format  
3. Data transfer operations  
Transmitting  
A transmit operation is carried out as follows.  
— Set bit SO in port mode register 3 (PMR3) to 1, making pin P3 /SO the SO output pin.  
1
2
1
1
Also set bit SCK1 in PMR3 to 1, making pin P3 /SCK the SCK I/O pin. If necessary, set  
0
1
1
bit POF1 in port mode register 2 (PMR2) for NMOS open drain output at pin SO .  
1
— Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit  
synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to  
SCR1 initializes the internal state of SCI1.  
— Write transmit data in SDRL and SDRU, as follows.  
8-bit transfer mode: SDRL  
16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL  
— Set the SCSR1 start flag (STF) to 1. SCI1 starts operating and outputs transmit data at pin  
SO .  
1
— After data transmission is complete, bit IRRS1 in interrupt request register 1 (IRR1) is  
set to 1.  
When an internal clock is used, a serial clock is output from pin SCK in synchronization with the  
1
transmit data. After data transmission is complete, the serial clock is not output until the next time  
the start flag is set to 1. During this time, pin SO continues to output the value of the last bit  
1
transmitted.  
250  
When an external clock is used, data is transmitted in synchronization with the serial clock input  
at pin SCK . After data transmission is complete, an overrun occurs if the serial clock continues  
1
to be input; no data is transmitted and the SCSR1 overrun error flag (bit ORER) is set to 1.  
While transmission is stopped, the output value of pin SO can be changed by rewriting bit SOL  
1
in SCSR1.  
Receiving  
A receive operation is carried out as follows.  
— Set bit SI1 in port mode register 3 (PMR3) to 1, making pin P3 /SI the SI input pin. Also  
1
1
1
set bit SCK1 in PMR3 to 1, making pin P3 /SCK the SCK I/O pin.  
0
1
1
— Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit  
synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to  
SCR1 initializes the internal state of SCI1.  
— Set the SCSR1 start flag (STF) to 1. SCI1 starts operating and receives data at pin SI .  
1
— After data reception is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1.  
— Read the received data from SDRL and SDRU, as follows.  
8-bit transfer mode: SDRL  
16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL  
— After data reception is complete, an overrun occurs if the serial clock continues to be input;  
no data is received and the SCSR1 overrun error flag (bit ORER) is set to 1.  
251  
Simultaneous transmit/receive  
A simultaneous transmit/receive operation is carried out as follows.  
— Set bits SO , SI , and SCK1 in PMR3 to 1, making pin P3 /SO the SO output pin, pin  
1
1
2
1
1
P3 /SI the SI input pin, and pin P3 /SCK the SCK I/O pin. If necessary, set bit POF1 in  
1
1
1
0
1
1
port mode register 2 (PMR2) for NMOS open drain output at pin SO .  
1
— Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit  
synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to  
SCR1 initializes the internal state of SCI1.  
— Write transmit data in SDRL and SDRU, as follows.  
8-bit transfer mode: SDRL  
16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL  
— Set the SCSR1 start flag (STF) to 1. SCI1 starts operating. Transmit data is output at pin  
SO . Receive data is input at pin SI .  
1
1
— After data transmission and reception are complete, bit IRRS1 in IRR1 is set to 1.  
— Read the received data from SDRL and SDRU, as follows.  
8-bit transfer mode: SDRL  
16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL  
When an internal clock is used, a serial clock is output from pin SCK in synchronization with the  
1
transmit data. After data transmission is complete, the serial clock is not output until the next time  
the start flag is set to 1. During this time, pin SO continues to output the value of the last bit  
1
transmitted.  
When an external clock is used, data is transmitted and received in synchronization with the serial  
clock input at pin SCK . After data transmission and reception are complete, an overrun occurs if  
1
the serial clock continues to be input; no data is transmitted or received and the SCSR1 overrun  
error flag (bit ORER) is set to 1.  
While transmission is stopped, the output value of pin SO can be changed by rewriting bit SOL  
1
in SCSR1.  
252  
10.2.4 Interrupts  
SCI1 can generate an interrupt at the end of a data transfer.  
When an SCI1 transfer is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1.  
SCI1 interrupt requests can be enabled or disabled by bit IENS1 of interrupt enable register 1  
(IENR1).  
For further details, see 3.3, Interrupts.  
10.2.5 Application Notes  
When an external clock is input at pin SCK , bit STF in SCSR1 must first be set to 1 to start data  
1
transfer before inputting the external clock.  
253  
10.3 SCI2  
10.3.1 Overview  
Serial communication interface 2 (SCI2) has a 32-bit data buffer for synchronous serial transfer of  
up to 32 bytes of data in one operation.  
1. Features  
Features of SCI are listed below.  
Automatic transfer of up to 32 bytes of data  
Choice of seven internal clock sources (ø/256, ø/64, ø/32, ø/16, ø/8, ø/4, ø/2) or an external  
clock  
Interrupts requested at completion of transfer or when an error occurs  
Gaps of 56, 24, or 8 internal clock cycles can be inserted between successive bytes of  
transferred data.  
Transfer can be started by chip select input.  
A strobe pulse can be output for each byte transferred.  
254  
2. Block diagram  
Figure 10-3-1 shows a block diagram of SCI2.  
PSS  
SCK2  
STAR  
EDAR  
SCR2  
STRB  
Transmit/receive  
control circuit  
CS  
SCSR2  
SO2  
Serial data buffer  
SI2  
IRRS2  
Notation:  
STAR: Start address register  
EDAR: End address register  
IRRS2: SCI2 interrupt request flag (IRR2)  
PSS:  
Prescaler S  
Figure 10-3-1 SCI2 Block Diagram  
255  
3. Pin configuration  
Table 10-3-1 shows the SCI2 pin configuration.  
Table 10-3-1 Pin Configuration  
Name  
Abbrev.  
SCK2  
SI2  
I/O  
Function  
SCI2 clock pin  
I/O  
SCI2 clock input/output  
SCI2 receive data input  
SCI2 transmit data output  
SCI2 strobe signal output  
SCI2 chip select input  
SCI2 data input pin  
SCI2 data output pin  
SCI2 strobe pin  
SCI2 chip select pin  
Input  
Output  
Output  
Input  
SO2  
STRB  
CS  
4. Register configuration  
Table 10-3-2 shows the SCI2 register configuration.  
Table 10-3-2 SCI2 Registers  
Name  
Abbrev.  
STAR  
EDAR  
SCR2  
SCSR2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Initial Value  
H'E0  
Address  
Start address register  
End address register  
Serial control register 2  
Serial control/status register 2  
Serial data buffer (32 bytes)  
H'FFA4  
H'E0  
H'FFA5  
H'E0  
H'FFA6  
H'E0  
H'FFA7  
Not fixed  
H'FF80 to H'FF9F  
10.3.2 Register Descriptions  
1. Start address register (STAR)  
Bit  
7
1
6
1
5
1
4
STA4  
0
3
2
STA2  
0
1
STA1  
0
0
STA0  
0
STA3  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
STAR is an 8-bit read/write register, for designating a transfer start address in the address space  
(H'FF80 to H'FF9F) allocated to the 32-byte data buffer. The lower 5 bits of STAR correspond to  
the lower 5 bits of the address. The extent of continuous data transfer is defined in STAR and in  
the end address register (EDAR). If the same value is designated by STAR and EDAR, only 1  
byte of data is transferred.  
Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.  
Upon reset, STAR is initialized to H'E0.  
256  
2. End address register (EDAR)  
Bit  
7
1
6
1
5
1
4
EDA4  
0
3
EDA3  
0
2
EDA2  
0
1
EDA1  
0
0
EDA0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
EDAR is an 8-bit read/write register, for designating a transfer end address in the address space  
(H'FF80 to H'FF9F) allocated to the 32-byte data buffer. The lower 5 bits of EDAR correspond to  
the lower 5 bits of the address. The extent of continuous data transfer is defined in STAR and in  
EDAR. If the same value is designated by STAR and EDAR, only 1 byte of data is transferred.  
Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.  
Upon reset, EDAR is initialized to H'E0.  
3. Serial control register 2 (SCR2)  
Bit  
7
1
6
1
5
1
4
GAP1  
0
3
GAP0  
0
2
CKS2  
0
1
CKS1  
0
0
CKS0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
SCR2 is an 8-bit read/write register for selecting the serial clock, and for setting the gap inserted  
between data during continuous transfer when SCI2 uses an internal clock.  
Upon reset, SCR2 is initialized to H'E0.  
Bits 7 to 5: Reserved bits  
Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.  
257  
Bits 4 and 3: Gap select (GAP1 to GAP0)  
When SCI2 uses an internal clock, gaps can be inserted between successive data bytes. Bits 4 and  
3 designate the length of these gaps. During a gap, pin SCK remains at the high level. When no  
2
gap is inserted, the STRB signal stays at the low level.  
Bit 4  
Bit 3  
GAP1  
GAP0  
Description  
0
0
1
1
0
1
0
1
No gaps between bytes  
(initial value)  
A gap of 8 clock cycles is inserted between bytes  
A gap of 24 clock cycles is inserted between bytes  
A gap of 56 clock cycles is inserted between bytes  
Bits 2 to 0: Clock select (CKS2 to CKS0)  
Bits 2 to 0 select one of seven internal clock sources or an external clock.  
Serial Clock Cycle  
Prescaler Division ø = 5 MHz ø= 2.5 MHz  
Bit 2 Bit 1 Bit 0  
CKS2 CKS1 CKS0  
Clock  
Source  
Pin SCK2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SCK2 output Prescaler S  
ø/256 (initial value) 51.2 µs  
102.4 µs  
25.6 µs  
12.8 µs  
6.4 µs  
3.2 µs  
1.6 µs  
0.8 µs  
ø/64  
ø/32  
ø/16  
ø/8  
12.8 µs  
6.4 µs  
3.2 µs  
1.6 µs  
0.8 µs  
ø/4  
ø/2  
SCK2 input External clock  
258  
4. Serial control/status register 2 (SCSR2)  
Bit  
7
1
6
1
5
1
4
3
ORER  
0
2
WT  
0
1
ABT  
0
0
SOL  
0
STF  
0
Initial value  
Read/Write  
R/W  
R/(W)* R/(W)* R/(W)*  
R/W  
Note: * Only a write of 0 for flag clearing is possible.  
SCSR2 is an 8-bit register indicating SCI2 operation status and error status.  
Upon reset, SCSR2 is initialized to H'E0.  
Bits 7 to 5: Reserved bits  
Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.  
Bit 4: Extended data bit (SOL)  
Bit 4 sets the SO output level. When read, SOL returns the transmitted data output at the SO  
2
2
pin. After completion of a transmission, SO continues to output the value of the last bit of  
2
transmitted data. The SO output can be changed by writing to SOL before or after a  
2
transmission. The SOL bit setting remains valid only until the start of the next transmission. To  
control the level of the SO pin after transmission ends, it is necessary to write to the SOL bit at  
2
the end of each transmission. Note that if the STF bit is cleared to 0 to terminate a transmission in  
progress, the transmitted data will be modified when the bit is cleared.  
Bit 4  
SOL  
Description  
0
Read  
Write  
Read  
Write  
SO2 pin output level is low  
(initial value)  
SO2 pin output level changes to low  
SO2 pin output level is high  
1
SO2 pin output level changes to high  
259  
Bit 3: Overrun error flag (ORER)  
When an external clock is used, bit 3 indicates the occurrence of an overrun error. If a clock pulse  
is input after transfer completion, this bit is set to 1 indicating an overrun. If noise occurs during a  
transfer, causing an extraneous pulse to be superimposed on the normal serial clock, incorrect data  
may be transferred. Overrun errors are not detected while pin CS is at the high level.  
Bit 3  
ORER  
Description  
0
Clearing conditions:  
(initial value)  
After reading ORER = 1, cleared by writing 0 to ORER  
1
Setting conditions:  
Set if a clock pulse is input after transfer is complete, when an external clock is used  
Bit 2: Wait flag (WT)  
Bit 2 indicates that an attempt was made to read or write the 32-byte serial data buffer while a  
transfer was in progress, or while waiting for CS input. The read or write access is not carried out,  
and this bit is set to 1.  
Bit 2  
WT  
Description  
0
Clearing conditions:  
(initial value)  
After reading WT = 1, cleared by writing 0 to WT  
1
Setting conditions:  
An attempt was made to read or write the (32-byte) serial data buffer during a  
transfer operation or while waiting for CS input  
260  
Bit 1: Abort flag (ABT)  
Bit 1 indicates that CS went to high during data transfer. When the CS input function is selected,  
if a high-level signal is detected at pin CS during a transfer, the transfer is immediately aborted  
and this bit is set to 1. At the same time bit IRRS2 in interrupt request register 2 (IRR2) is set  
to 1, and pins SCK and SO go to the high-impedance state. Data in the (32-byte) serial data  
2
2
buffer and values in the internal registers other than SCSR2 remain unchanged.  
Transfer cannot take place while this bit is set to 1. It must be cleared to 0 before resuming the  
transfer.  
Bit 1  
ABT  
Description  
0
Clearing conditions:  
(initial value)  
After reading ABT = 1, cleared by writing 0 to ABT  
1
Setting conditions:  
When pin CS goes high during a transfer  
Bit 0: Start/busy flag (STF)  
Bit 0 controls the start of a transfer. If bit CS = 0 in PMR2, setting bit STF to 1 causes SCI2 to  
start transferring data. If bit CS = 1 in PMR2, then after STF is set to 1, SCI2 starts transferring  
data when CS goes low. This bit stays at 1 during the transfer or while waiting for CS input; it is  
cleared to 0 after the transfer is completed or when the transfer is aborted by CS. It can therefore  
be used as a busy flag.  
Clearing this bit to 0 during a transfer aborts the transfer. The contents of the (32-byte) serial data  
buffer and of internal registers other than SCSR2 remain unchanged.  
Bit 0  
STF  
Explanation  
0
Read: Indicates that transfer is stopped  
Write: Stops a transfer operation  
Read: Indicates transfer in progress or waiting for CS input  
Write: Starts a transfer operation  
(initial value)  
1
261  
10.3.3 Operation  
SCI2 has a 32-byte serial data buffer, making possible continuous transfer of up to 32 bytes of data  
with one operation. SCI2 transmits and receives data in synchronization with clock pulses.  
Depending on register settings, it can transmit, receive, or transmit and receive simultaneously.  
When it transmits but does not receive, the serial data buffer values are retained after the  
transmission is completed.  
Either an internal clock or external clock may be selected as the serial clock. When an internal  
clock is selected, gaps may be inserted between the data bytes. It is also possible to output a  
strobe signal at pin STRB. When an external clock is selected, the overrun flag allows detection  
of erroneous operation due to unwanted clock input.  
Transfers can be started or aborted by input at pin CS. Abort is indicated by means of an abort  
flag.  
1. Clock  
The serial clock can be selected from a choice of six internal clock sources or an external clock.  
When an internal clock source is selected, pin SCK becomes the clock output pin.  
2
2. Data transfer format  
Figure 10-3-2 and figure 10-3-3 show the SCI2 data transfer format. Data is sent and received  
starting from the least significant bit, in LSB-first format. Transmit data is output from one falling  
edge of the serial clock until the next falling edge. Receive data is latched at the rising edge of the  
serial clock.  
When SCI2 operates on an internal clock, a gap can be inserted between each byte of transferred  
data and the next, as shown in figure 10-3-3. During this gap, pin SCK outputs a high-level  
2
signal. Also, a strobe pulse can be output at pin STRB.  
The length of the gap is designated in bits GAP1 and GAP0 in serial control register 2 (SCR2).  
262  
Figure 10-3-2 Data Transfer Format (No Gaps between Data)  
263  
Figure 10-3-3 Data Transfer Format (Gap Inserted between Data)  
264  
3. Data transfer operations  
SCI2 initialization  
Data transfer on SCI2 first of all requires that SCI2 be initialized by software as follows.  
— With bit STF cleared to 0 in SCSR2, select pin functions and the transfer mode in registers  
PMR2, PMR3, STAR, EDAR, and SCR2.  
— The SCI2 pins double as general input/output ports. Switching between port and SCI2  
functions is controlled in PMR3. CMOS output or NMOS open drain output can be selected  
in PMR2. The serial clock and gaps between transferred bytes are set in SCR2.  
— The start and end addresses of the transfer data area are set in STAR and EDAR. If the end  
address is set smaller than the start address, as shown in figure 10-3-4, the transfer wraps  
around from H'FF9F to H'FF80 and continues to the end address. If the start address and end  
address are the same, only one byte of data will be transferred.  
H'FF80  
End  
End address  
Start  
Start address  
H'FF9F  
Figure 10-3-4 Operation When End Address is Smaller than Start Address  
265  
Transmitting  
A transmit operation is carried out as follows.  
— Set bit SO2 in port mode register 3 (PMR3) to 1, making pin P3 /SO the SO output pin.  
5
2
2
Also set bit SCK2 in PMR3 to 1, making pin P3 /SCK the SCK I/O pin. If necessary, set  
3
2
2
bit POF2 in port mode register 2 (PMR2) for NMOS open-drain output at pin SO , and set  
2
bits CS and STRB in PMR3 to designate use of the CS and STRB pin functions.  
— Select the serial clock and, in the case of internal clock operation, the data gap in SCR2.  
— Write transmit data in the serial data buffer. This data will remain in the data buffer after  
completion of the transfer. It is not necessary to rewrite the buffer when the same data is  
retransmitted.  
— Set the start address in the lower 5 bits of STAR, and the end address in the lower 5 bits of  
EDAR.  
— Set the start/busy flag (STF) to 1. If bit CS = 0 in PMR3, transmission starts as soon as STF  
is set to 1. If CS = 1 in PMR3, transmission starts when CS goes low.  
— After data transmission is complete, bit IRRS2 in interrupt request register 2 (IRR2) is  
set to 1, and bit STF is cleared to 0.  
When an internal clock is used, a serial clock is output from pin SCK in synchronization with the  
2
transmit data. After data transmission is completed, the serial clock is not output until bit STF is  
set again. During this time, pin SO continues to output the value of the last bit transmitted.  
2
266  
When an external clock is used, data is transmitted in synchronization with the serial clock input  
at pin SCK . After data transmission is completed, an overrun occurs if the serial clock continues  
2
to be input; no data is transmitted and the SCSR2 overrun error flag (bit ORER) is set to 1. Pin  
SO continues to output the value of the last preceding bit. Overrun errors are not detected when  
2
both pin CS is at the high level and PMR3 bit CS = 1.  
While transmission is stopped, the output value of pin SO can be changed by rewriting bit SOL  
2
in SCSR2.  
During a transmission or while waiting for CS input, the CPU cannot read or write the data buffer.  
If a read instruction is executed, H'FF will be read; if a write instruction is executed, the buffer  
contents will not change. In either case the wait flag (bit WT) in SCSR2 will be set to 1.  
If bit CS = 1 in PMR3 and during transmission a high-level signal is detected at pin CS, the  
transmit operation will immediately be aborted, setting the abort flag (bit ABT) to 1. At the same  
time bit IRRS2 in interrupt request register 2 (IRR2) will be set to 1, and bit STF will be cleared  
to 0. Pins SCK and SO will go to the high-impedance state. Data transfer is not possible while  
2
2
bit ABT is set to 1. It must be cleared before resuming the transfer.  
Receiving  
A receive operation is carried out as follows.  
— Set bits SI and SCK in port mode register 3 (PMR3) to 1, designating use of the SI and  
2
2
2
SCK pin functions. If necessary, set bit CS in PMR3 to select the CS pin function.  
2
— Select the serial clock and, in the case of internal clock operation, the data gap in SCR2.  
— Allocate an area to hold the received data in the serial data buffer by designating the receive  
start address in the lower 5 bits of the start address register (STAR) and the receive end  
address in the lower 5 bits of the end address register (EDAR).  
— Set the start/busy flag (bit STF) to 1. If bit CS = 0 in PMR3, receiving starts as soon as STF  
is set. If CS = 1 in PMR3, receiving starts when CS goes low.  
— After receiving is completed, bit IRRS2 in interrupt request register 2 (IRR2) is set to 1, and  
bit STF is cleared to 0.  
— Read the received data from the serial data buffer.  
267  
If an internal clock is used, a serial clock is output from pin SCK when the receive operation  
2
starts. After receiving is completed, the serial clock is not output until bit STF is set again. When  
an external clock source is used, data is received in synchronization with the clock input at pin  
SCK . After receiving is completed, an overrun occurs if the serial clock continues to be input; no  
2
further data is received and the SCSR2 overrun error flag (bit ORER) is set to 1. Overrun errors  
are not detected when both pin CS is high and bit CS = 1 in PMR3.  
While receiving or while waiting for CS input, the CPU cannot read or write the data buffer. If a  
read instruction is executed, H'FF will be read; if a write instruction is executed the buffer contents  
will not change. In either case the wait flag (bit WT) in SCSR2 will be set to 1.  
If bit CS = 1 in PMR3 and a high-level signal is detected at pin CS during receiving, the receive  
operation will immediately be aborted, setting the abort flag (bit ABT) to 1. At the same time bit  
IRRS2 in interrupt request register 2 (IRR2) will be set to 1, and bit STF will be cleared to 0. Pins  
SCK and SO will go to the high-impedance state. Data transfer is not possible while bit ABT is  
2
2
set to 1. It must be cleared before resuming the transfer.  
Simultaneous transmit/receive  
A simultaneous transmit/receive operation is carried out as follows.  
— Set bits SO , SI , and SCK in PMR3 to 1, designating use of the SO , SI , and SCK pin  
2
2
2
2
2
2
functions. If necessary, set bit POF2 in port mode register 2 (PMR2) for NMOS open-drain  
output at pin SO , and set bits CS and STRB to designate use of the CS and STRB pin  
2
functions.  
— Select the transfer clock and, in the case of internal clock operation, the data gap in SCR2.  
— Write transmit data in the serial data buffer. In simultaneous transmit/receive, received data  
replaces transmitted data at the same buffer addresses.  
— Set the transfer start address in the lower 5 bits of STAR, and the transfer end address in the  
lower 5 bits of EDAR.  
— Set the start/busy flag (bit STF) to 1. If bit CS = 0 in PMR3, the transmit/receive transfer  
starts as soon as STF is set to 1. If CS = 1 in PMR3, transfer operations start when CS goes  
low.  
268  
— After data transfer is completed, bit IRRS2 in interrupt request register 2 (IRR2) is set to 1,  
and bit STF is cleared to 0.  
— Read the received data from the serial data buffer.  
If an internal clock is used, a serial clock is output from pin SCK when the transfer begins. After  
2
the transfer is completed, the serial clock is not output until bit STF is set again. During this time,  
pin SO continues to output the value of the last bit transmitted.  
2
When an external clock is used, data is transferred in synchronization with the serial clock input at  
pin SCK . After the transfer is completed, an overrun occurs if the serial clock continues to be  
2
input; no transfer operation takes place and the SCSR2 overrun error flag (bit ORER) is set to 1.  
Pin SO continues to output the value of the last transmitted bit. Overrun errors are not detected  
2
when both pin CS is high and bit CS = 1 in PMR3.  
While data transfer is stopped, the output value of pin SO can be changed by rewriting bit SOL in  
2
SCSR2.  
During a transfer or while waiting for CS input, the CPU cannot read or write the data buffer. If a  
read instruction is executed, H'FF will be read; if a write instruction is executed the buffer contents  
will not change. In either case the wait flag (bit WT) in SCSR2 will be set to 1.  
If bit CS = 1 in PMR3 and during the transfer a high-level signal is detected at pin CS, the transfer  
will immediately be aborted, setting the abort flag (bit ABT) to 1. At the same time bit IRRS2 in  
interrupt request register 2 (IRR2) will be set to 1, and bit STF will be cleared to 0. Pins SCK  
2
and SO will go to the high-impedance state. Data transfer is not possible while bit ABT is set to  
2
1. It must be cleared before resuming the transfer.  
10.3.4 Interrupts  
SCI2 can generate interrupts when a transfer is completed or when a transfer is aborted by CS.  
These interrupts have the same vector address.  
When the above conditions occur, bit IRRS2 in interrupt request register 2 (IRR2) is set to 1.  
SCI2 interrupt requests can be enabled or disabled in bit IENS2 of interrupt enable register 2  
(IENR2). For further details, see 3.3, Interrupts.  
When a transfer is aborted by CS, an overrun error occurs, or a read or write of the serial data  
buffer is attempted during a transfer or while waiting for CS input, the ABT, ORER, or WT bit in  
SCSR2 is set to 1. These bits can be used to determine the cause of the error.  
10.3.5 Application Notes  
When an external clock is input at pin SCK , bit STF in SCSR2 must first be set to 1 to start data  
2
transfer before inputting the external clock.  
269  
10.4 SCI3  
10.4.1 Overview  
Serial communication interface 3 (SCI3) has both synchronous and asynchronous serial data  
communication capabilities. It also has a multiprocessor communication function for serial data  
communication among two or more processors.  
1. Features  
SCI3 features are listed below.  
Selection of asynchronous or synchronous mode  
a. Asynchronous mode  
SCI3 can communicate with a UART (universal asynchronous receiver/transmitter), ACIA  
(asynchronous communication interface adapter), or other chip that employs standard  
asynchronous serial communication. It can also communicate with two or more other  
processors using the multiprocessor communication function. There are twelve selectable  
serial data communication formats.  
— Data length: seven or eight bits  
— Stop bit length: one or two bits  
— Parity: even, odd, or none  
— Multiprocessor bit: one or none  
— Receive error detection: parity, overrun, and framing errors  
— Break detection: by reading the RXD level directly when a framing error occurs  
b. Synchronous mode  
Serial data communication is synchronized with a clock signal. SCI3 can communicate with  
other chips having a clocked synchronous communication function.  
— Data length: eight bits  
— Receive error detection: overrun errors  
Full duplex communication  
The transmitting and receiving sections are independent, so SCI3 can transmit and receive  
simultaneously. Both sections use double buffering, so continuous data transfer is possible in  
both the transmit and receive directions.  
270  
Built-in baud rate generator with selectable bit rates.  
Internal or external clock may be selected as the transfer clock source.  
There are six interrupt sources: transmit end, transmit data empty, receive data full, overrun  
error, framing error, and parity error.  
2. Block diagram  
Figure 10-4-1 shows a block diagram of SCI3.  
External  
clock  
Internal clock  
(ø/64, ø/16, ø/4, ø)  
SCK3  
Baud rate  
generator  
BRC  
BRR  
Clock  
SMR  
SCR3  
SSR  
Transmit/receive  
control  
TXD  
RXD  
TSR  
RSR  
TDR  
RDR  
Interrupt  
requests  
(TEI, TXI,  
RXI, ERI)  
Notation: RSR: Receive shift register  
RDR: Receive data register  
TSR: Transmit shift register  
TDR: Transmit data register  
SMR: Serial mode register  
SCR3: Serial control register 3  
SSR: Serial status register  
BRR: Bit rate register  
BRC: Bit rate counter  
Figure 10-4-1 SCI3 Block Diagram  
271  
3. Pin configuration  
Table 10-4-1 shows the SCI3 pin configuration.  
Table 10-4-1 Pin Configuration  
Name  
Abbrev.  
SCK3  
RXD  
I/O  
Function  
SCI3 clock  
I/O  
SCI3 clock input/output  
SCI3 receive data input  
SCI3 transmit data output  
SCI3 receive data input  
SCI3 transmit data output  
Input  
Output  
TXD  
4. Register configuration  
Table 10-4-2 shows the SCI3 internal register configuration.  
Table 10-4-2 SCI3 Registers  
Name  
Abbrev.  
SMR  
BRR  
SCR3  
TDR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Initial Value  
H'00  
H'FF  
H'00  
H'FF  
H'84  
H'00  
Address  
H'FFA8  
H'FFA9  
H'FFAA  
H'FFAB  
H'FFAC  
H'FFAD  
Serial mode register  
Bit rate register  
Serial control register 3  
Transmit data register  
Serial status register  
Receive data register  
Transmit shift register  
Receive shift register  
Bit rate counter  
SSR  
RDR  
TSR  
RSR  
BRC  
272  
10.4.2 Register Descriptions  
1. Receive shift register (RSR)  
Bit  
7
6
5
4
3
2
1
0
Read/Write  
The receive shift register (RSR) is for receiving serial data.  
Serial data is input in LSB-first order into RSR from pin RXD, converting it to parallel data.  
After each byte of data has been received, the byte is automatically transferred to the receive data  
register (RDR).  
RSR cannot be read or written directly by the CPU.  
2. Receive data register (RDR)  
Bit  
7
RDR7  
0
6
RDR6  
0
5
RDR5  
0
4
RDR4  
0
3
RDR3  
0
2
RDR2  
0
1
RDR1  
0
0
RDR0  
0
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
The receive data register (RDR) is an 8-bit register for storing received serial data.  
Each time a byte of data is received, the received data is transferred from the receive shift register  
(RSR) to RDR, completing a receive operation. Thereafter RSR again becomes ready to receive  
new data. RSR and RDR form a double buffer mechanism that allows data to be received  
continuously.  
RDR is exclusively for receiving data and cannot be written by the CPU.  
RDR is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or  
subsleep mode.  
273  
3. Transmit shift register (TSR)  
Bit  
7
6
5
4
3
2
1
0
Read/Write  
The transmit shift register (TSR) is for transmitting serial data.  
Transmit data is first transferred from the transmit data register (TDR) to TSR, then is transmitted  
from pin TXD, starting from the LSB (bit 0).  
After one byte of data has been sent, the next byte is automatically transferred from TDR to TSR,  
and the next transmission begins. If no data has been written to TDR (1 is set in TDRE), there is  
no data transfer from TDR to TSR.  
TSR cannot be read or written directly by the CPU.  
4. Transmit data register (TDR)  
Bit  
7
TDR7  
1
6
TDR6  
1
5
TDR5  
1
4
TDR4  
1
3
TDR3  
1
2
TDR2  
1
1
TDR1  
1
0
TDR0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The transmit data register (TDR) is an 8-bit register for holding transmit data.  
When SCI3 detects that the transmit shift register (TSR) is empty, it shifts transmit data written in  
TDR to TSR and starts serial data transmission. While TSR is transmitting serial data, the next  
byte to be transmitted can be written to TDR, realizing continuous transmission.  
TDR can be read or written by the CPU at all times.  
TDR is initialized to H'FF upon reset or in standby mode, watch mode, subactive mode, or  
subsleep mode.  
274  
5. Serial mode register (SMR)  
Bit  
7
COM  
0
6
5
PE  
0
4
PM  
0
3
STOP  
0
2
MP  
0
1
CKS1  
0
0
CKS0  
0
CHR  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The serial mode register (SMR) is an 8-bit register for setting the serial data communication  
format and for selecting the clock source of the baud rate generator. SMR can be read and written  
by the CPU at any time.  
SMR is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or  
subsleep mode.  
Bit 7: Communication mode (COM)  
Bit 7 selects asynchronous mode or synchronous mode as the serial data communication mode.  
Bit 7  
COM  
Description  
0
1
Asynchronous mode  
Synchronous mode  
(initial value)  
Bit 6: Character length (CHR)  
Bit 6 selects either 7 bits or 8 bits as the data length in asynchronous mode. In synchronous mode  
the data length is always 8 bits regardless of the setting here.  
Bit 6  
CHR  
Description  
8-bit data  
0
1
(initial value)  
7-bit data*  
Note: * When 7-bit data is selected as the character length in asynchronous mode, the MSB (bit 7)  
in the transmit data register is not transmitted.  
275  
Bit 5: Parity enable (PE)  
In asynchronous mode, bit 5 selects whether or not a parity bit is to be added to transmitted data  
and checked in received data. In synchronous mode there is no adding or checking of parity  
regardless of the setting here.  
Bit 5  
PE  
Description  
0
Parity bit adding and checking disabled  
Parity bit adding and checking enabled*  
(initial value)  
1
Note: * When PE is set to 1, then either odd or even parity is added to transmit data, depending on  
the setting of the parity mode bit (PM). When data is received, it is checked for odd or  
even parity as designated in bit PM.  
Bit 4: Parity mode (PM)  
In asynchronous mode, bit 4 selects whether odd or even parity is to be added to transmitted data  
and checked in received data. The setting here is valid only if parity adding/checking is enabled in  
bit PE. In synchronous mode, or if parity adding/checking is disabled in bit PE, bit PM is ignored.  
Bit 4  
PM  
Description  
Even parity*1  
Odd parity*2  
0
(initial value)  
1
Notes: 1. When even parity is designated, a parity bit is added to the transmitted data so that the  
sum of 1s in the resulting data is an even number. When data is received, the sum of 1s  
in the data plus parity bit is checked to see if the result is an even number.  
2. When odd parity is designated, a parity bit is added to the transmitted data so that the  
sum of 1s in the resulting data is an odd number. When data is received, the sum of 1s  
in the data plus parity bit is checked to see if the result is an odd number.  
276  
Bit 3: Stop bit length (STOP)  
Bit 3 selects 1 bit or 2 bits as the stop bit length in asynchronous mode. This setting is valid only  
in asynchronous mode. In synchronous mode a stop bit is not added, so this bit is ignored.  
Bit 3  
STOP  
Description  
1 stop bit*1  
2 stop bits*2  
0
1
(initial value)  
Notes: 1. When data is transmitted, one 1 bit is added at the end of each transmitted character as  
the stop bit.  
2. When data is transmitted, two 1 bits are added at the end of each transmitted character  
as the stop bits.  
When data is received, only the first stop bit is checked regardless of the stop bit length. If the  
second stop bit value is 1 it is treated as a stop bit; if it is 0, it is treated as the start bit of the next  
character.  
Bit 2: Multiprocessor mode (MP)  
Bit 2 enables or disables the multiprocessor communication function. When the multiprocessor  
communication function is enabled, the parity enable (PE) and parity mode (PM) settings are  
ignored. The MP bit is valid only in asynchronous mode; it should be cleared to 0 in synchronous  
mode.  
See 10.4.6, for details on the multiprocessor communication function.  
Bit 2  
MP  
Description  
0
Multiprocessor communication function disabled  
Multiprocessor communication function enabled  
(initial value)  
1
277  
Bits 1 and 0: Clock select 1, 0 (CKS1, CKS0)  
Bits 1 and 0 select the clock source for the built-in baud rate generator. A choice of ø/64, ø/16,  
ø/4, or ø is made in these bits.  
See 8, Bit rate register, below for information on the clock source and bit rate register settings, and  
their relation to the baud rate.  
Bit 1  
Bit 0  
CKS1  
CKS0  
Description  
ø clock  
0
0
1
1
0
1
0
1
(initial value)  
ø/4 clock  
ø/16 clock  
ø/64 clock  
6. Serial control register 3 (SCR3)  
Bit  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
MPIE  
0
2
TEIE  
0
1
CKE1  
0
0
CKE0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Serial control register 3 (SCR3) is an 8-bit register that controls SCI3 transmit and receive  
operations, enables or disables serial clock output in asynchronous mode, enables or disables  
interrupts, and selects the serial clock source. SCR3 can be read and written by the CPU at any  
time.  
SCR3 is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or  
subsleep mode.  
278  
Bit 7: Transmit interrupt enable (TIE)  
Bit 7 enables or disables the transmit data empty interrupt (TXI) request when data is transferred  
from TDR to TSR and the transmit data register empty bit (TDRE) in the serial status register  
(SSR) is set to 1. The TXI interrupt can be cleared by clearing bit TDRE to 0, or by clearing bit  
TIE to 0.  
Bit 7  
TIE  
Description  
0
Transmit data empty interrupt request (TXI) disabled  
Transmit data empty interrupt request (TXI) enabled  
(initial value)  
1
Bit 6: Receive interrupt enable (RIE)  
Bit 6 enables or disables the receive error interrupt (ERI), and the receive data full interrupt (RXI)  
requested when data is transferred from RSR to RDR and the receive data register full bit (RDRF)  
in the serial status register (SSR) is set to 1. RXI and ERI interrupts can be cleared by clearing  
SSR flag RDRF, or flags FER, PER, and OER to 0, or by clearing bit RIE to 0.  
Bit 6  
RIE  
Description  
0
Receive data full interrupt request (RXI) and receive error interrupt  
request (ERI) disabled  
(initial value)  
1
Receive data full interrupt request (RXI) and receive error interrupt request (ERI)  
enabled  
Bit 5: Transmit enable (TE)  
Bit 5 enables or disables the start of a transmit operation.  
Bit 5  
TE  
Description  
0
Transmit operation disabled*1 (TXD is a general I/O port)  
Transmit operation enabled*2 (TXD is the transmit data pin)  
(initial value)  
1
Notes: 1. The transmit data register empty bit (TDRE) in the serial status register (SSR) is fixed  
at 1.  
2. In this state, writing transmit data in TDR clears bit TDRE in SSR to 0 and starts serial  
data transmission.  
Before setting TE to 1 it is necessary to set the transmit format in SMR.  
279  
Bit 4: Receive enable (RE)  
Bit 4 enables or disables the start of a receive operation.  
Bit 4  
RE  
Description  
0
Receive operation disabled*1 (RXD is a general I/O port)  
Receive operation enabled*2 (RXD is the receive data pin)  
(initial value)  
1
Notes: 1. When RE is cleared to 0, this has no effect on the SSR flags RDRF, FER, PER, and  
OER, which retain their states.  
2. Serial data receiving begins when, in this state, a start bit is detected in asynchronous  
mode, or serial clock input is detected in synchronous mode.  
Before setting RE to 1 it is necessary to set the receive format in SMR.  
Bit 3: Multiprocessor interrupt enable (MPIE)  
Bit 3 enables or disables multiprocessor interrupt requests. This setting is valid only in  
asynchronous mode, and only when the multiprocessor mode bit (MP) in the serial mode register  
(SMR) is set to 1. It applies only to data receiving. This bit is ignored when COM is set to 1 or  
when bit MP is cleared to 0.  
Bit 3  
MPIE  
Description  
0
Multiprocessor interrupt request disabled (ordinary receive operation)  
(initial value)  
Clearing condition:  
Multiprocessor bit receives a data value of 1  
1
Multiprocessor interrupt request enabled*  
Note: * SCI3 does not transfer receive data from RSR to RDR, does not detect receive errors, and  
does not set status flags RDRF, FER, and OER in SSR. Until a multiprocessor bit value of  
1 is received, the receive data full interrupt (RXI) and receive error interrupt (ERI) are  
disabled and serial status register (SSR) flags RDRF, FER, and OER are not set. When  
the multiprocessor bit receives a 1, the MPBR bit of SSR is set to 1, MPIE is automatically  
cleared to 0, RXI and ERI interrupts are enabled (provided bits TIE and RIE in SCR3 are  
set to 1), and setting of the RDRF, FER, and OER flags is enabled.  
280  
Bit 2: Transmit end interrupt enable (TEIE)  
Bit 2 enables or disables the transmit end interrupt (TEI) requested if there is no valid transmit  
data in TDR when the MSB is transmitted.  
Bit 2  
TEIE  
Description  
0
1
Transmit end interrupt (TEI) disabled  
Transmit end interrupt (TEI) enabled*  
(initial value)  
Note: * A TEI interrupt can be cleared by clearing the SSR bit TDRE to 0 and clearing the transmit  
end bit (TEND) to 0, or by clearing bit TEIE to 0.  
Bits 1 and 0: Clock enable 1, 0 (CKE1, CKE0)  
Bits 1 and 0 select the clock source and enable or disable clock output at pin SCK . The  
3
combination of bits CKE1 and CKE0 determines whether pin SCK is a general I/O port, a clock  
3
output pin, or a clock input pin.  
Note that the CKE0 setting is valid only when operation is in asynchronous mode using an internal  
clock. This bit is invalid in synchronous mode or when using an external clock  
(CKE1 = 1). In synchronous mode and in external clock mode, clear CKE0 to 0. After setting  
bits CKE1 and CKE0, the operation mode must first be set in the serial mode register (SMR).  
See table 10-4-9 in 10.4.3, Operation, for details on clock source selection.  
Bit 1  
Bit 0  
CKE1  
CKE0  
Communication Mode Clock Source  
SCK3 Pin Function  
I/O port*1  
0
0
1
1
0
1
0
1
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
Synchronous  
Internal clock  
Internal clock  
Internal clock  
Reserved  
Serial clock output*1  
Clock output*2  
Reserved  
External clock  
External clock  
Reserved  
Clock input*3  
Serial clock input  
Reserved  
Reserved  
Reserved  
Notes: 1. Initial value  
2. A clock is output with the same frequency as the bit rate.  
3. Input a clock with a frequency 16 times the bit rate.  
281  
7. Serial status register (SSR)  
Bit  
7
TDRE  
1
6
RDRF  
0
5
OER  
0
4
FER  
0
3
PER  
0
2
TEND  
1
1
MPBR  
0
0
MPBT  
0
Initial value  
Read/Write R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*  
R
R
R/W  
Note: *Only 0 can be written for flag clearing.  
The serial status register (SSR) is an 8-bit register containing status flags for indicating SCI3  
states, and containing the multiprocessor bits.  
SSR can be read and written by the CPU at any time, but the CPU cannot write a 1 to the status  
flags TDRE, RDRF, OER, PER, and FER. To clear these flags to 0 it is first necessary to read a 1.  
Bit 2 (TEND) and bit 1 (MPBR) are read-only bits and cannot be modified.  
SSR is initialized to H'84 upon reset or in standby mode, watch mode, subactive mode, or  
subsleep mode.  
Bit 7: Transmit data register empty (TDRE)  
Bit 7 is a status flag indicating that data has been transferred from TDR to TSR.  
Bit 7  
TDRE  
Description  
0
Indicates that transmit data written to TDR has not been transferred to TSR  
Clearing conditions:  
After reading TDRE = 1, cleared by writing 0 to TDRE.  
When data is written to TDR by an instruction.  
1
Indicates that no transmit data has been written to TDR,  
(initial value)  
or the transmit data written to TDR has been transferred to TSR  
Setting conditions:  
When bit TE in SCR3 is cleared to 0.  
When data is transferred from TDR to TSR.  
282  
Bit 6: Receive data register full (RDRF)  
Bit 6 is a status flag indicating whether there is receive data in RDR.  
Bit 6  
RDRF  
Description  
0
Indicates there is no receive data in RDR  
(initial value)  
Clearing conditions:  
After reading RDRF = 1, cleared by writing 0 to RDRF.  
When data is read from RDR by an instruction.  
1
Indicates that there is receive data in RDR  
Setting condition:  
When receiving ends normally, with receive data transferred from RSR to RDR  
Note: If a receive error is detected at the end of receiving, or if bit RE in serial control register 3  
(SCR3) is cleared to 0, RDR and RDRF are unaffected and keep their previous states. An  
overrun error (OER) occurs if receiving of data is completed while bit RDRF remains set  
to 1. If this happens, receive data will be lost.  
Bit 5: Overrun error (OER)  
Bit 5 is a status flag indicating that an overrun error has occurred during data receiving.  
Bit 5  
OER  
Description  
0
Indicates that data receiving is in progress or has been completed*1  
(initial value)  
Clearing condition:  
After reading OER = 1, cleared by writing 0 to OER  
1
Indicates that an overrun error occurred in data receiving*2  
Setting condition:  
When data receiving is completed while RDRF is set to 1  
Notes: 1. When bit RE in serial control register 3 (SCR3) is cleared to 0, OER is unaffected and  
keeps its previous state.  
2. RDR keeps the data received prior to the overrun; data received after that is lost. While  
OER is set to 1, data receiving cannot be continued. In synchronous mode, data  
transmitting cannot be continued either.  
283  
Bit 4: Framing error (FER)  
Bit 4 is a status flag indicating that a framing error has occurred during asynchronous receiving.  
Bit 4  
FER  
Description  
0
Indicates that data receiving is in progress or has been completed*1  
(initial value)  
Clearing condition:  
After reading FER = 1, cleared by writing 0 to FER  
1
Indicates that a framing error occurred in data receiving  
Setting condition:  
The stop bit at the end of receive data is checked and found to be 0*2  
Notes: 1. When bit RE in serial control register 3 (SCR3) is cleared to 0, FER is unaffected and  
keeps its previous state.  
2. When two stop bits are used only the first stop bit is checked, not the second. When a  
framing error occurs, receive data is transferred to RDR but RDRF is not set. While  
FER is set to 1, data receiving cannot be continued. In synchronous mode, data  
transmitting cannot be continued either.  
Bit 3: Parity error (PER)  
Bit 3 is a status flag indicating that a parity error has occurred during asynchronous receiving.  
Bit 3  
PER  
Description  
0
Indicates that data receiving is in progress or has been completed*1  
(initial value)  
Clearing condition:  
After reading PER = 1, cleared by writing 0 to PER  
1
Indicates that a parity error occurred in data receiving*2  
Setting condition:  
When the sum of 1s in received data plus the parity bit does not match the parity  
mode bit (PM) setting in the serial mode register (SMR)  
Notes: 1. When bit RE in serial control register 3 (SCR3) is cleared to 0, PER is unaffected and  
keeps its previous state.  
2. When a parity error occurs, receive data is transferred to RDR but RDRF is not set.  
While PER is set to 1, data receiving cannot be continued. In synchronous mode, data  
transmitting cannot be continued either.  
284  
Bit 2: Transmit end (TEND)  
Bit 2 is a status flag indicating that TDRE was set to 1 when the last bit of a transmitted character  
was sent. TEND is a read-only bit and cannot be modified directly.  
Bit 2  
TEND  
Description  
0
Indicates that transmission is in progress  
Clearing conditions:  
After reading TDRE = 1, cleared by writing 0 to TDRE.  
When data is written to TDR by an instruction.  
1
Indicates that a transmission has ended  
(initial value)  
Setting conditions:  
When bit TE in SCR3 is cleared to 0.  
If TDRE is set to 1 when the last bit of a transmitted character is sent.  
Bit 1: Multiprocessor bit receive (MPBR)  
Bit 1 holds the multiprocessor bit in data received in asynchronous mode using a multiprocessor  
format. MPBR is a read-only bit and cannot be modified.  
Bit 1  
MPBR  
Description  
0
1
Indicates reception of data in which the multiprocessor bit is 0*  
Indicates reception of data in which the multiprocessor bit is 1  
(initial value)  
Note: *If bit RE is cleared to 0 while a multiprocessor format is in use, MPBR retains its previous  
state.  
285  
Bit 0: Multiprocessor bit transmit (MPBT)  
Bit 0 holds the multiprocessor bit to be added to transmitted data when a multiprocessor format is  
used in asynchronous mode. Bit MPBT is ignored when synchronous mode is chosen, when the  
multiprocessor communication function is disabled, or when data transmission is disabled.  
Bit 0  
MPBT  
Description  
0
1
The multiprocessor bit in transmit data is 0  
The multiprocessor bit in transmit data is 1  
(initial value)  
8. Bit rate register (BRR)  
Bit  
7
BRR7  
1
6
BRR6  
1
5
BRR5  
1
4
BRR4  
1
3
BRR3  
1
2
BRR2  
1
1
BRR1  
1
0
BRR0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The bit rate register (BRR) is an 8-bit register which, together with the baud rate generator clock  
selected by bits CKS1 and CKS0 in the serial mode register (SMR), sets the transmit/receive bit  
rate.  
BRR can be read or written by the CPU at any time.  
BRR is initialized to H'FF upon reset or in standby mode, watch mode, subactive mode, or  
subsleep mode.  
Table 10-4-3 gives examples of how BRR is set in asynchronous mode. The values in  
table 10-4-3 are for active (high-speed) mode.  
286  
Table 10-4-3 BRR Settings and Bit Rates in Asynchronous Mode (1)  
OSC (MHz)  
2
2.4576  
Error  
4
4.194304  
Error  
(%)  
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
n
N
n
1
0
0
0
0
0
0
0
0
0
N
(%)  
n
1
N
n
1
N
110  
1
70  
+0.03  
86  
255  
127  
63  
31  
15  
7
+0.31  
141 +0.03  
103 +0.16  
207 +0.16  
103 +0.16  
148 –0.04  
108 +0.21  
217 +0.21  
108 +0.21  
150  
0
207 +0.16  
103 +0.16  
0
0
0
0
0
0
0
0
0
1
1
300  
0
0
0
600  
0
51  
25  
12  
0
+0.16  
+0.16  
+0.16  
0
0
1200  
2400  
4800  
9600  
19200  
31250  
38400  
0
0
51  
25  
12  
1
+0.16  
+0.16  
+0.16  
0
54  
26  
13  
6
–0.70  
+1.14  
–2.48  
–2.48  
0
0
0
0
0
0
3
0
0
1
0
0
0
Table 10-4-3 BRR Settings and Bit Rates in Asynchronous Mode (2)  
OSC (MHz)  
4.9152  
Error  
(%)  
174 –0.26  
6
7.3728  
Error  
8
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
n
1
1
0
0
0
0
0
0
0
0
N
n
1
1
1
0
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
N
(%)  
n
2
N
110  
212 +0.03  
155 +0.16  
64  
191  
95  
191  
95  
47  
23  
11  
5
+0.70  
70  
+0.03  
150  
127  
255  
127  
63  
31  
15  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
207 +0.16  
103 +0.16  
207 +0.16  
103 +0.16  
300  
77  
+0.16  
1
600  
155 +0.16  
0
1200  
2400  
4800  
9600  
19200  
31250  
38400  
77  
38  
19  
9
+0.16  
+0.16  
–2.34  
–2.34  
–2.34  
0
0
0
51  
25  
12  
3
+0.16  
+0.16  
+0.16  
0
0
3
4
0
2
2
0
1
287  
Table 10-4-3 BRR Settings and Bit Rates in Asynchronous Mode (3)  
OSC (MHz)  
9.8304  
Error  
10  
Bit Rate  
(bits/s)  
Error  
(%)  
n
2
1
1
0
0
0
0
0
0
0
0
N
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
N
110  
86  
255  
127  
255  
127  
63  
31  
15  
7
+0.31  
88  
64  
–0.25  
+0.16  
150  
0
300  
0
129 +0.16  
64 +0.16  
129 +0.16  
600  
0
1200  
2400  
4800  
9600  
19200  
31250  
38400  
0
0
64  
32  
15  
7
+0.16  
–1.36  
+1.73  
+1.73  
0
0
0
0
4
–1.70  
0
4
3
3
+1.73  
Notes: 1. Settings should be made so that error is  
within 1%.  
2. BRR setting values are derived by the  
following equation.  
OSC  
6
N =  
× 10 – 1  
64 × 22n × B  
B:  
N:  
Bit rate (bits/s)  
BRR baud rate generator setting (0 N 255)  
OSC: Value of øOSC (MHz)  
n:  
Baud rate generator input clock number (n = 0, 1, 2, 3)  
3. The error values in table 10-4-3 were  
derived by performing the following  
calculation and rounding off to two  
decimal places.  
B – R  
Error (%) =  
× 100  
R
B: Bit rate found from n, N, and OSC  
R: Bit rate listed in left column of table 10-4-3  
288  
The meaning of n is shown in table 10-4-4.  
Table 10-4-4 Relation between n and Clock  
SMR Setting  
n
0
1
2
3
Clock  
ø
CKS1  
CKS0  
0
0
1
1
0
1
0
1
ø/4  
ø/16  
ø/64  
Table 10-4-5 shows the maximum bit rate for selected frequencies in asynchronous mode.  
Values in table 10-4-5 are for active (high-speed) mode.  
Table 10-4-5 Maximum Bit Rate at Selected Frequencies (Asynchronous Mode)  
Setting  
OSC (MHz)  
Maximum Bit Rate (bits/s)  
n
0
0
0
0
0
0
0
0
0
0
N
0
0
0
0
0
0
0
0
0
0
2
31250  
38400  
62500  
65536  
76800  
93750  
115200  
125000  
153600  
156250  
2.4576  
4
4.194304  
4.9152  
6
7.3728  
8
9.8304  
10  
289  
Table 10-4-6 shows typical BRR settings in synchronous mode. Values in table 10-4-6 are for  
active (high-speed) mode.  
Table 10-4-6 Typical BRR Settings and Bit Rates (Synchronous Mode)  
OSC (MHz)  
2
4
8
10  
Bit Rate  
(bits/s)  
n
1
N
n
2
1
1
0
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
0
N
n
N
110  
250  
500  
1K  
1
249  
124  
249  
99  
49  
24  
9
124  
249  
124  
199  
99  
49  
19  
9
249  
124  
249  
99  
199  
99  
39  
19  
9
1
0
2.5K  
5K  
0
124  
249  
124  
49  
24  
0
0
10K  
25K  
50K  
100K  
250K  
500K  
1M  
0
0
0
0
0
4
0
0
4
0
0*  
1
3
4
0*  
1
0*  
2.5M  
Notes: Blank: Cannot be set  
—:  
*:  
Can be set, but error will result  
Continuous transfer not possible at this setting  
BRR setting values are derived by the following equation.  
OSC  
8 × 22n × B  
N =  
× 106 – 1  
B:  
N:  
Bit rate (bits/s)  
BRR baud rate generator setting (0 N 255)  
OSC: Value of øOSC (MHz)  
n: Baud rate generator input clock number (n = 0, 1, 2, 3)  
290  
The meaning of n is shown in table 10-4-7.  
Table 10-4-7 Relation between n and Clock  
SMR Setting  
n
0
1
2
3
Clock  
ø
CKS1  
CKS0  
0
0
1
1
0
1
0
1
ø/4  
ø/16  
ø/64  
10.4.3 Operation  
SCI3 supports serial data communication in both asynchronous mode, where each character  
transferred is synchronized separately, and synchronous mode, where transfer is synchronized by  
clock pulses.  
The choice of asynchronous mode or synchronous mode, and the communication format, is made  
in the serial mode register (SMR), as shown in table 10-4-8. The SCI3 clock source is determined  
by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3), as shown in  
table 10-4-9.  
1. Asynchronous mode  
— Data length: choice of 7 bits or 8 bits  
— Transmit/receive format options include addition of parity bit, multiprocessor bit, and one  
or two stop bits (character length depends on this combination of options).  
— Framing error (FER), parity error (PER), overrun error (OER), and line breaks can be  
detected when data is received.  
— Clock source: Choice of internal clocks or an external clock  
When an internal clock is selected: Operates on baud rate generator clock. A clock can  
be output with the same frequency as the bit rate.  
When an external clock is selected: A clock input with a frequency 16 times the bit rate  
is required (internal baud rate generator is not used).  
291  
2. Synchronous mode  
— Transfer format: 8 bits  
— Overrun error can be detected when data is received.  
— Clock source: Choice of internal clocks or an external clock  
When an internal clock is selected: Operates on baud rate generator clock, and outputs  
a serial clock.  
When an external clock is selected: The internal baud rate generator is not used.  
Operation is synchronous with the input clock.  
Table 10-4-8 SMR Settings and SCI3 Communication Format  
SMR Setting  
Communication Format  
Bit7 Bit6 Bit2 Bit5 Bit3  
Multipro-  
Parity Stop Bit  
COM CHR MP PE STOP Mode  
Data Length cessor Bit Bit  
Length  
Asynchronous  
mode  
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
*
8-bit data  
7-bit data  
No  
No  
Yes  
No  
Yes  
No  
1 bit  
2 bits  
1 bit  
2 bits  
1 bit  
1
2 bits  
1 bit  
2 bits  
1 bit  
Asynchronous  
mode  
(multiprocessor  
format)  
0
1
*
1
0
*
*
*
*
*
8-bit data  
7-bit data  
8-bit data  
Yes  
No  
2 bits  
1 bit  
2 bits  
None  
1
Synchronous  
mode  
Note: * Don’t care  
292  
Table 10-4-9 SMR and SCR3 Settings and Clock Source Selection  
SMR  
SCR3  
Transmit/Receive Clock  
Bit7 Bit1 Bit0  
Clock  
COM CKE1 CKE0 Mode  
Source  
Pin SCK3 Function  
Asynchronous  
mode  
0
0
1
0
1
0
Internal  
External  
I/O port (SCK3 function not used)  
Outputs clock with same frequency as bit rate  
Clock should be input with frequency 16 times  
the desired bit rate  
Synchronous  
mode  
1
0
1
1
0
1
0
0
1
1
1
Internal  
External  
Outputs a serial clock  
Inputs a serial clock  
0
1
1
Reserved  
(illegal settings)  
3. Continuous transmit/receive operation using interrupts  
Continuous transmit and receive operations are possible with SCI3, using the RXI or TXI  
interrupts. Table 10-4-10 explains this use of these interrupts.  
Table 10-4-10 Transmit/Receive Interrupts  
Interrupt Flag  
Interrupt Conditions  
Remarks  
RXI  
RDRF RIE  
When serial data is received  
normally and receive data  
is transferred from RSR to RDR,  
RDRF is set to 1. If RIE is 1 at  
this time, RXI is enabled and an  
interrupt occurs.  
The RXI interrupt handler routine  
should read the receive data from  
RDR and clear RDRF to 0.  
Continuous receiving is possible  
if these operations are completed  
before the next data has been  
completely received in RSR.  
(See figure 10-4-2 (a).)  
TXI  
TDRE TIE  
When TSR empty (previous trans- The TXI interrupt handler routine  
mission complete) is detected and should write the next transmit data  
the transmit data set in TDR is  
transferred to TSR, TDRE is  
set to 1. If TIE is 1 at this time,  
TXI is enabled and an interrupt  
occurs. (See figure 10-4-2 (b).)  
to TDR and clear TDRE to 0.  
Continuous transmission is  
possible if these operations are  
completed before the data  
transferred to TSR has been  
completely transmitted.  
TEI  
TEND TEIE When the last bit of the TSR  
TEI indicates that, when the last  
transmit character has been sent, bit of the TSR transmit character  
if TDRE is 1, then 1 is set in TEND. was sent, the next transmit data  
If TEIE is 1 at this time, TEI is  
enabled and an interrupt occurs.  
(See figure 10-4-2 (c).)  
had not been written to TDR.  
293  
RDR  
RDR  
RSR (receiving)  
RDRF = 0  
RSR (received and transferred)  
RXD  
pin  
RXD  
pin  
RDRF  
1
(RXI requested if RIE = 1)  
Figure 10-4-2 (a) RDRF Setting and RXI Interrupt  
TDR (next transmit data)  
TDR  
TSR (transmission complete,  
next data transferred)  
TSR (transmitting)  
TDRE = 0  
TXD  
pin  
TXD  
pin  
TDRE  
1
(TXI requested if TIE = 1)  
Figure 10-4-2 (b) TDRE Setting and TXI Interrupt  
TDR  
TDR  
TSR (transmitting)  
TEND = 0  
TSR (transmission end)  
TXD  
pin  
TXD  
pin  
TEND  
1
(TEI requested if TEIE = 1)  
Figure 10-4-2 (c) TEND Setting and TEI Interrupt  
294  
10.4.4 Operation in Asynchronous Mode  
In asynchronous communication mode, a start bit indicating the start of communication and a stop  
bit (1 or 2 bits) indicating the end of communication are added to each character that is sent. In  
this way synchronization is achieved for each character as a self-contained unit.  
SCI3 consists of independent transmit and receive modules, giving it the capability of full duplex  
communication. Both the transmit and receive modules have a double-buffer configuration,  
allowing data to be read or written during communication operations so that data can be  
transmitted and received continuously.  
1. Transmit/receive formats  
Figure 10-4-3 shows the general format for asynchronous serial communication.  
The communication line in asynchronous communication mode normally stays at the high level,  
in the “mark” state. SCI3 monitors the communication line, and begins serial data communication  
when it detects a “space” (low-level signal), which is regarded as a start bit.  
One character consists of a start bit (low level), transmit/receive data (in LSB-first order), a parity  
bit (high or low level), and finally a stop bit (high level), in this order.  
In asynchronous data receiving, synchronization is with the falling edge of the start bit. SCI3  
samples data on the 8th pulse of a clock that has 16 times the frequency of the bit rate, so each bit  
of data is latched at its center.  
(LSB)  
(MSB)  
1
Start  
bit  
Parity  
bit  
Stop bit  
Mark  
state  
Serial  
data  
Transmit or receive data  
7 or 8 bits  
1 bit  
or  
none  
1 or 2  
bits  
1 bit  
One unit of data (character or frame)  
Figure 10-4-3 Data Format in Asynchronous Serial Communication Mode  
295  
Table 10-4-11 shows the 12 formats that can be selected in asynchronous mode. The format is  
selected in the serial mode register (SMR).  
Table 10-4-11 Serial Communication Formats in Asynchronous Mode  
SMR Setting  
Serial Communication Format and Frame Length  
CHR PE MP STOP  
1
2
3
4
5
6
7
8
9
10  
11  
12  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
*
*
*
*
0
0
0
0
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
S
8-bit data  
8-bit data  
8-bit data  
8-bit data  
7-bit data  
7-bit data  
7-bit data  
7-bit data  
8-bit data  
8-bit data  
7-bit data  
7-bit data  
STOP  
S
S
S
S
S
S
S
S
S
S
S
STOP STOP  
P
P
STOP  
STOP STOP  
STOP  
STOP STOP  
P
P
STOP  
STOP STOP  
MPB STOP  
MPB STOP STOP  
MPB STOP  
1
MPB STOP STOP  
Notation: S:  
Start bit  
STOP: Stop bit  
P: Parity bit  
MPB: Multiprocessor bit  
Note: * Don’t care  
296  
2. Clock  
The clock source is determined by bit COM in SMR and bits CKE1 and CKE0 in serial control  
register 3 (SCR3). See table 10-4-9 for the settings. Either an internal clock source can be used to  
run the built-in baud rate generator, or an external clock source can be input at pin SCK .  
3
When an external clock source is input, it should have a frequency 16 times the desired bit rate.  
When an internal clock source is used, SCK is used as the clock output pin. The clock output has  
3
the same frequency as the serial bit rate, and is synchronized as in figure 10-4-4 so that the rising  
edge of the clock occurs in the center of each bit of transmit/receive data.  
Clock  
0
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
0/1  
1
1
Serial  
data  
1 character (1 frame)  
Figure 10-4-4 Phase Relation of Output Clock and Communication Data in Asynchronous  
Mode (8-Bit Data, Parity Bit Added, and 2 Stop Bits)  
3. Data transmit/receive operations  
SCI3 initialization  
Before data is sent or received, bits TE and RE in serial control register 3 (SCR3) must be cleared  
to 0, after which initialization can be performed using the procedure shown in figure 10-4-5.  
Note:  
When modifying the operation mode, transfer format or other settings, always be sure to clear bits  
TE and RE first. When TE is cleared to 0, bit TDRE will be set to 1. Clearing RE does not clear  
the status flags RDRF, PER, FER, or OER, or alter the contents of the receive data register (RDR).  
When an external clock is used in asynchronous mode, do not stop the clock during operation,  
including during initialization. When an external clock is used in synchronous mode, do not  
supply the clock during initialization.  
297  
Figure 10-4-5 shows a typical flow chart for SCI3 initialization.  
Start  
Clear TE and RE to 0 in SCR3  
1. Select the clock in serial control register 3  
1
2
3
Set bits CKE1 and CKE0  
(SCR3). If clock output is selected in asyn-  
chronous mode, a clock signal will be output  
as soon as CKE1 and CKE2 have been set.  
During reception in synchronous mode, if  
clock output is selected by bits CKE1 and  
CKE0, a clock signal will be output as soon  
as RE is set to 1.  
Select communication format in SMR  
Set BRR value  
2. Set the transmit/receive format in the serial  
mode register (SMR).  
Wait  
3. Set the bit rate register (BRR) to the value  
giving the desired bit rate.  
This step is not required when an external  
clock source is used.  
No  
Has a 1-bit  
interval elapsed?  
4. Wait for at least a 1-bit interval, then set  
bits RIE, TIE, TEIE, and MPIE, and set bit  
TE or RE in SCR3 to 1. Setting TE or RE  
enables SCI3 to use the TXD or RXD pin.  
The initial states in asynchronous mode  
are the mark transmit state and the idle  
receive state (waiting for a start bit).  
Yes  
Set bits RIE, TIE, TEIE, and MPIE  
in SCR3, and set TE or RE to 1  
4
End  
Figure 10-4-5 Typical Flow Chart when SCI3 Is Initialized  
298  
Transmitting  
Figure 10-4-6 shows a typical flow chart for data transmission. After SCI3 initialization, follow  
the procedure below.  
Start  
1
Read bit TDRE in SSR  
1. Read the serial status register (SRR),  
and after confirming that bit TDRE = 1,  
write transmit data in the transmit data  
register (TDR). When data is written to  
TDR, TDRE is automatically cleared to 0.  
No  
TDRE = 1?  
Yes  
Write transmit data in TDR  
Continue  
data transmission?  
Yes  
2
2. To continue transmitting data, read bit TDRE  
to make sure it is set to 1, then write the  
next data to TDR. When data is written to  
TDR, TDRE is automatically cleared to 0.  
No  
Read bit TEND in SSR  
No  
No  
TEND = 1?  
Yes  
3
Break output?  
Yes  
3. To output a break signal when transmission  
ends, first set the port values PCR = 1 and  
PDR = 0, then clear bit TE in SCR3 to 0.  
Set PDR = 0 and PCR = 1  
Clear bit TE in SCR3 to 0  
End  
Figure 10-4-6 Typical Data Transmission Flow Chart (Asynchronous Mode)  
299  
SCI3 operates as follows during data transmission in asynchronous mode.  
SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data  
written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR).  
Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is  
requested.  
Serial data is transmitted from pin TXD using the communication format outlined in  
table 10-4-11. Next, TDRE is checked as the stop bit is being transmitted.  
If TDRE is 0, data is transferred from TDR to TSR, and after the stop bit is sent, transmission of  
the next frame starts. If TDRE is 1, the TEND bit in SSR is set to 1, and after the stop bit is sent  
the output remains at 1 (mark state). A TEI interrupt is requested in this state if bit TEIE in SCR3  
is set to 1.  
Figure 10-4-7 shows a typical operation in asynchronous transmission mode.  
Start  
bit  
Transmit  
data  
Parity Stop Start  
bit bit bit  
Transmit  
data  
Parity Stop Mark  
bit  
bit  
state  
Serial  
data  
1
0
D0  
D1  
D7  
1 frame  
0/1  
1
0
D0  
D1  
D7  
1 frame  
0/1  
1
1
TDRE  
TEND  
SCI3  
operation  
TXI request TDRE cleared to 0  
Write data in TDR  
TXI request  
TEI request  
User  
processing  
Figure 10-4-7 Typical Transmit Operation in Asynchronous Mode  
(8-Bit Data, Parity Bit Added, and 1 Stop Bit)  
300  
Receiving  
Figure 10-4-8 shows a typical flow chart for receiving serial data. After SCI3 initialization,  
follow the procedure below.  
Start  
1. Read bits OER, PER, and  
FER in the serial status  
register (SSR) to  
Read bits OER, PER, and  
1
2
FER in SSR  
determine if a receive  
error has occurred.  
If a receive error has  
occurred, receive error  
processing is executed.  
Yes  
OER + PER +  
FER = 1  
No  
2. Read the serial status register  
(SSR), and after confirming  
that bit RDRF = 1, read  
Read bit RDRF in SSR  
No  
received data from the receive  
data register (RDR).  
When RDR data is read, RDRF  
is automatically cleared to 0.  
RDRF = 1?  
Yes  
Read received data in RDR  
3. To continue receiving data,  
read bit RDRF and finish  
reading RDR before the stop  
bit of the present frame is  
received.  
When data is read from RDR,  
RDRF is automatically cleared  
to 0.  
4
Receive error processing  
Yes  
3
Continue receiving?  
No  
A
Clear bit RE in SCR3 to 0  
End  
4. When a receive error occurs,  
read bits OER, PER, and FER  
in SSR to determine which  
error (s) occurred.  
After the necessary error  
processing, be sure to clear  
the above bits all to 0.  
Data receiving cannot be resumed  
while any of bits OER, PER, or  
FER is set to 1.  
When a framing error occurs,  
a break can be detected by  
reading the RXD pin value.  
Start receive  
error processing  
4
Overrun error  
processing  
Yes  
OER = 1?  
No  
Yes  
Yes  
FER = 1?  
No  
Break?  
No  
Framing error  
processing  
Yes  
PER = 1?  
No  
Clear bits OER, PER, and  
FER in SSR to 0  
Parity error  
processing  
End receive error  
processing  
A
Figure 10-4-8 Typical Serial Data Receiving Flow Chart in Asynchronous Mode  
301  
SCI3 operates as follows when receiving serial data in asynchronous mode.  
SCI3 monitors the communication line, and when a start bit (0) is detected it performs internal  
synchronization and starts receiving. The communication format for data receiving is as outlined  
in table 10-4-11. Received data is set in RSR from LSB to MSB, then the parity bit and stop bit(s)  
are received. After receiving the data, SCI3 performs the following checks:  
Parity check: The number of 1s received is checked to see if it matches the odd or even parity  
selected in bit PM of SMR.  
Stop bit check: The stop bit is checked for a value of 1. If there are two stop bits, only the  
first bit is checked.  
Status check: The RDRF bit is checked for a value of 0 to make sure received data can be  
transferred from RSR to RDR.  
If no receive error is detected by the above checks, bit RDRF is set to 1 and the received data is  
stored in RDR. At that time, if bit RIE in SCR3 is set to 1, an RXI interrupt is requested. If the  
error check detects a receive error, the appropriate error flag (OER, PER, or FER) is set to 1.  
RDRF retains the same value as before the data was received. If at this time bit RIE in SCR3 is  
set to 1, an ERI interrupt is requested.  
Table 10-4-12 gives the receive error detection conditions and the processing of received data in  
each case.  
Note: Data receiving cannot be continued while a receive error flag is set. Before continuing the  
receive operation it is necessary to clear the OER, FER, PER, and RDRF flags to 0.  
Table 10-4-12 Receive Error Conditions and Received Data Processing  
Receive Error Abbrev. Detection Conditions  
Received Data Processing  
Overrun error  
Framing error  
Parity error  
OER  
FER  
PER  
Receiving of the next data ends while Received data is not  
bit RDRF in SSR is still set to 1  
Stop bit is 0  
transferred from RSR to RDR  
Received data is transferred  
from RSR to RDR  
Received data does not match the  
parity (odd/even) set in SMR  
Received data is not  
transferred from RSR to RDR  
302  
Figure 10-4-9 shows a typical SCI3 data receive operation in asynchronous mode.  
Start  
bit  
Receive  
data  
Parity Stop Start  
bit bit bit  
Receive  
data  
Parity Stop Mark  
bit  
bit  
(idle state)  
Serial  
data  
1
0
D0  
D1  
D7  
0/1  
1
0
D0  
D1  
1 frame  
D7  
0/1  
0
1
1 frame  
RDRF  
FER  
SCI3 operation  
User processing  
RXI request  
RDRF cleared  
to 0  
Detects stop bit = 0  
ERI request due  
to framing error  
Read RDR data  
Framing error  
handling  
Figure 10-4-9 Typical Receive Operation in Asynchronous Mode  
(8-Bit Data, Parity Bit Added, and 1 Stop Bit)  
10.4.5 Operation in Synchronous Mode  
In synchronous mode, data is sent or received in synchronization with clock pulses. This mode is  
suited to high-speed serial communication.  
SCI3 consists of independent transmit and receive modules, so full duplex communication is  
possible, sharing the same clock between both modules. Both the transmit and receive modules  
have a double-buffer configuration. This allows data to be written during a transmit operation so  
that data can be transmitted continuously, and enables data to be read during a receive operation  
so that data can be received continuously.  
1. Transmit/receive format  
Figure 10-4-10 shows the general communication data format for synchronous communication.  
303  
*
*
Serial clock  
Serial data  
LSB  
Bit 0  
MSB  
Bit 7  
Don't  
care  
Don't  
care  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
8 bits  
One unit of communication data (character or frame)  
Note: *At high level except during continuous transmit/receive.  
Figure 10-4-10 Data Format in Synchronous Communication Mode  
In synchronous communication, data on the communication line is output from one falling edge of  
the serial clock until the next falling edge. Data is guaranteed valid at the rising edge of the serial  
clock.  
One character of data starts from the LSB and ends with the MSB. The communication line  
retains the MSB state after the MSB is output.  
In synchronous receive mode, SCI3 latches receive data in synchronization with the rising edge of  
the serial clock.  
The transmit/receive format is fixed at 8-bit data. No parity bit or multiprocessor bit is added in  
this mode.  
2. Clock  
Either an internal clock from the built-in baud rate generator is used, or an external clock is input  
at pin SCK . The choice of clock sources is designated by bit COM in SMR and bits CKE1 and  
3
CKE0 in serial control register 3 (SCR3). See table 10-4-9 for details on selecting the clock  
source.  
When operation is based on an internal clock, a serial clock is output at pin SCK . Eight clock  
3
pulses are output per character of transmit/receive data. When no transmit or receive operation is  
being performed, the pin is held at the high level.  
304  
3. Data transmit/receive operations  
SCI3 initialization  
Before transmitting or receiving data, follow the SCI3 initialization procedure explained under  
10.4.4, SCI3 Initialization, and illustrated in figure 10-4-5.  
Transmitting  
Figure 10-4-11 shows a typical flow chart for data transmission. After SCI3 initialization, follow  
the procedure below.  
Start  
1. Read the serial status register (SSR),  
and after confirming that bit TDRE = 1,  
write transmit data in the transmit  
data register (TDR).  
1
Read bit TDRE in SSR  
No  
Yes  
No  
When data is written to TDR, TDRE is  
automatically cleared to 0 and data  
transmission begins.  
If clock output has been selected, after  
data is written to TDR, the clock is  
output and data transmission begins.  
TDRE = 1?  
Yes  
Write transmit data in TDR  
Continue data transmission?  
No  
2
2. To continue transmitting data, read  
bit TDRE to make sure it is set to 1,  
then write the next data to TDR.  
When data is written to TDR, TDRE  
is automatically cleared to 0.  
Read bit TEND in SSR  
TEND = 1?  
Yes  
Write 0 to bit TE in SCR3  
End  
Figure 10-4-11 Typical Data Transmission Flow Chart in Synchronous Mode  
305  
SCI3 operates as follows during data transmission in synchronous mode.  
SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data  
written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR).  
Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is  
requested.  
If clock output is selected, SCI3 outputs eight serial clock pulses. If an external clock is used,  
data is output in synchronization with the clock input.  
Serial data is transmitted from pin TXD in order from LSB (bit 0) to MSB (bit 7).  
Then TDRE is checked as the MSB (bit 7) is being transmitted. If TDRE is 0, data is transferred  
from TDR to TSR, and after the MSB (bit 7) is sent, transmission of the next frame starts. If  
TDRE is 1, the TEND bit in SSR is set to 1, and after the MSB (bit 7) has been sent, the MSB  
state is maintained. A TEI interrupt is requested in this state if bit TEIE in SCR3 is set to 1.  
After data transmission ends, pin SCK is held at the high level.  
3
Note: Data transmission cannot take place while any of the receive error flags (OER, FER, PER)  
is set to 1. Be sure to confirm that these error flags are cleared to 0 before starting transmission.  
Figure 10-4-12 shows a typical SCI3 transmit operation in synchronous mode.  
Serial  
clock  
Serial data  
Bit 0  
Bit 1  
1 frame  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
TDRE  
TEND  
SCI3  
operation  
TXI  
request  
TDRE cleared to 0 TXI  
request  
TEI request  
User  
Write data in TDR  
processing  
Figure 10-4-12 Typical SCI3 Transmit Operation in Synchronous Mode  
306  
Receiving  
Figure 10-4-13 shows a typical flow chart for receiving data. After SCI3 initialization, follow the  
procedure below.  
Start  
1. Read bit OER in the serial status register (SSR)  
to determine if an error has occurred. If an  
overrun error has occurred, overrun error  
processing is executed.  
1
2
Read bit OER in SSR  
Yes  
OER = 1?  
No  
2. Read the serial status register (SSR), and after  
confirming that bit RDRF = 1, read received  
data from the receive data register (RDR).  
When data is read from RDR, RDRF is  
automatically cleared to 0.  
Read bit RDRF in SSR  
No  
RDRF = 1?  
Yes  
Read received data in RDR  
3. To continue receiving data, read bit RDRF and  
read the received data in RDR before the MSB  
(bit 7) of the present frame is received.  
When data is read from RDR, RDRF is  
automatically cleared to 0.  
4 Overrun error processing  
Yes  
Continue  
3
receiving?  
No  
4. When an overrun error occurs, read bit OER in  
SSR. After the necessary error processing,  
be sure to clear OER to 0.  
Clear bit RE in SCR3 to 0  
Data receiving cannot be resumed while bit  
OER is set to 1.  
End  
Start overrun  
processing  
4
Overrun error  
processing  
Clear bit OER in  
SSR to 0  
End overrun  
error processing  
Figure 10-4-13 Typical Data Receiving Flow Chart in Synchronous Mode  
307  
SCI3 operates as follows when receiving serial data in synchronous mode.  
SCI3 synchronizes internally with the input or output of the serial clock and starts receiving.  
Received data is set in RSR from LSB to MSB.  
After data has been received, SCI3 checks to confirm that the value of bit RDRF is 0 indicating  
that received data can be transferred from RSR to RDR. If this check passes, RDRF is set to 1 and  
the received data is stored in RDR. At this time, if bit RIE in SCR3 is set to 1, an RXI interrupt is  
requested. If an overrun error is detected, OER is set to 1 and RDRF remains set to 1. Then if bit  
RIE in SCR3 is set to 1, an ERI interrupt is requested.  
For the overrun error detection conditions and receive data processing, see table 10-4-12.  
Note: Data receiving cannot be continued while a receive error flag is set. Before continuing the  
receive operation it is necessary to clear the OER, FER, PER, and RDRF flags to 0.  
Figure 10-4-14 shows a typical receive operation in synchronous mode.  
Serial  
clock  
Serial  
data  
Bit 7  
Bit 0  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
RDRF  
OER  
SCI3  
operation  
RXI request RDRF cleared  
to 0  
RXI request  
ERI request due  
to overrun error  
User  
processing  
Read data  
from RDR  
RDR data  
not read  
Overrun error  
handling  
(RDRF = 1)  
Figure 10-4-14 Typical Receive Operation in Synchronous Mode  
308  
Simultaneous transmit/receive  
Figure 10-4-15 shows a typical flow chart for transmitting and receiving simultaneously. After  
SCI3 synchronization, follow the procedure below.  
1. Read the serial status register (SSR),  
and after confirming that bit TDRE = 1,  
write transmit data in the transmit data  
register (TDR). When data is written to  
TDR, TDRE is automatically cleared to 0.  
Start  
1
2
Read bit TDRE in SSR  
No  
2. Read the serial status register (SSR),  
and after confirming that bit RDRF = 1,  
read the received data from the receive  
data register (RDR). When data is read  
from RDR, RDRF is automatically cleared  
to 0.  
TDRE = 1?  
Yes  
Write transmit data in TDR  
3. To continue transmitting and receiving  
serial data, read bit RDRF and finish  
reading RDR before the MSB (bit 7) of the  
present frame is received. Also read bit  
TDRE, check that it is set to 1, and write  
the next data in TDR before the MSB of  
the current frame has been transmitted.  
When data is written to TDR, TDRE is  
automatically cleared to 0; and when data  
is read from RDR, RDRF is automatically  
cleared to 0.  
Read bit OER in SSR  
Yes  
OER = 1?  
No  
Read RDRF in SSR  
4. When an overrun error occurs, read bit  
OER in SSR. After the necessary error  
processing, be sure to clear OER to 0.  
Data transmission and reception cannot  
take place while bit OER is set to 1. See  
figure 10-4-13 for overrun error processing.  
No  
RDRF = 1?  
Yes  
Read received data in RDR  
4
Overrun error processing  
Yes  
Continue  
transmitting and  
receiving?  
3
No  
Clear bits TE and  
RE in SCR3 to 0  
End  
Figure 10-4-15 Simultaneous Transmit/Receive Flow Chart in Synchronous Mode  
309  
Notes: 1. To switch from transmitting to simultaneous transmitting and receiving, use the  
following procedure.  
First confirm that TDRE and TEND are both set to 1 and that SCI3 has finished  
transmitting. Next clear TE to 0. Then set both TE and RE to 1.  
2. To switch from receiving to simultaneous transmitting and rceiving, use the following  
procedure.  
After confirming that SCI3 has finished receiving, clear RE to 0. Next, after  
confirming that RDRF and the error flags (OER FER, PER) are all 0, set both TE  
and RE to 1.  
10.4.6 Multiprocessor Communication Function  
The multiprocessor communication function enables several processors to share a single serial  
communication line. The processors communicate in asynchronous mode using a format with an  
additional multiprocessor bit (multiprocessor format).  
In multiprocessor communication, each receiving processor is addressed by an ID code. A serial  
communication cycle consists of two cycles: an ID-sending cycle that identifies the receiving  
processor, and a data-sending cycle. The multiprocessor bit is 1 in an ID-sending cycle, and 0 in a  
data-sending cycle.  
The transmitting processor starts by sending the ID of the receiving processor with which it wants  
to communicate as data with the multiprocessor bit set to 1. Next the transmitting processor sends  
transmit data with the multiprocessor bit cleared to 0. When a receiving processor receives data  
with the multiprocessor bit set to 1, it compares the data with its own ID. If the data matches its  
ID, the receiving processor continues to receive incoming data. If the data does not match its ID,  
the receiving processor skips further incoming data until it again receives data with the  
multiprocessor bit set to 1. Multiple processors can send and receive data in this way.  
Figure 10-4-16 shows an example of communication among different processors using a  
multiprocessor format.  
310  
Transmitting  
processor  
Communication line  
Receiving  
processor A  
Receiving  
processor B  
Receiving  
processor C  
Receiving  
processor D  
(ID = 01)  
(ID = 02)  
(ID = 03)  
(ID = 04)  
Serial data  
H'01  
H'AA  
(MPB = 0)  
(MPB = 1)  
ID-sending cycle  
(receiving processor  
address)  
Data-sending cycle  
(data sent to receiving  
processor designated  
by ID)  
MPB: Multiprocessor bit  
Figure 10-4-16 Example of Interprocessor Communication Using Multiprocessor Format  
(Data H'AA Sent to Receiving Processor A)  
Four communication formats are available. Parity-bit settings are ignored when a multiprocessor  
format is selected. For details see table 10-4-11.  
For a description of the clock used in multiprocessor communication, see 10.4.4, Operation in  
Asynchronous Mode.  
311  
Transmitting multiprocessor data  
Figure 10-4-17 shows a typical flow chart for multiprocessor serial data transmission. After SCI3  
initialization, follow the procedure below.  
Start  
1
Read bit TDRE in SSR  
1. Read the serial status register (SSR), and  
after confirming that bit TDRE = 1, set bit  
MPBT (multiprocessor bit transmit) in SSR  
to 0 or 1, then write transmit data in the  
transmit data register (TDR).  
No  
TDRE = 1?  
Yes  
When data is written to TDR, TDRE is  
automatically cleared to 0.  
Set bit MPBT in SSR  
Write transmit data to TDR  
Yes  
Continue  
2
2. To continue transmitting data, read bit  
TDRE to make sure it is set to 1, then  
write the next data to TDR.  
transmitting?  
No  
When data is written to TDR, TDRE  
is automatically cleared to 0.  
Read bit TEND in SSR  
No  
No  
TEND = 1?  
Yes  
3. To output a break signal at the end of data  
transmission, first set the port values  
PCR = 1 and PDR = 0, then clear bit TE  
in SCR3 to 0.  
Break output?  
Yes  
3
Set PDR = 0 and PCR = 1  
Clear bit TE in SCR3 to 0  
End  
Figure 10-4-17 Typical Multiprocessor Data Transmission Flow Chart  
312  
SCI3 operates as follows during data transmission using a multiprocessor format.  
SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data  
written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR).  
Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is  
requested.  
Serial data is transmitted from pin TXD using the communication format outlined in  
table 10-4-11.  
Next, TDRE is checked as the stop bit is being transmitted. If TDRE is 0, data is transferred from  
TDR to TSR, and after the stop bit is sent, transmission of the next frame starts. If TDRE is 1, the  
TEND bit in SSR is set to 1, and after the stop bit is sent the output remains at 1 (mark state). A  
TEI interrupt is requested in this state if bit TEIE (transmit end interrupt enable) in SCR3 is set  
to 1.  
Figure 10-4-18 shows a typical SCI3 operation in multiprocessor communication mode.  
Start  
bit  
Transmit  
data  
Stop Start  
Transmit  
data  
Stop Mark  
MPB  
0/1  
MPB  
0/1  
bit  
bit  
bit  
state  
Serial  
data  
1
0
D0  
D1  
D7  
1
0
D0  
D1  
D7  
1
1
1 frame  
1 frame  
TDRE  
TEND  
TEI  
request  
SCI3  
operation  
TXI request TDRE cleared  
to 0  
TXI  
request  
User  
Write data in  
processing  
TDR  
Figure 10-4-18 Typical Multiprocessor Format Transmit Operation  
(8-Bit Data, Multiprocessor Bit Added, and 1 Stop Bit)  
313  
Receiving multiprocessor data  
Figure 10-4-19 shows a typical flow chart for receiving data using a multiprocessor format. After  
SCI3 initialization, follow the procedure below.  
Start  
1
2
Set bit MPIE in SCR3 to 1  
1. Set bit MPIE in serial control register 3 (SCR3) to 1.  
Read bits OER and FER in SSR  
2. Read bits OER and FER in the serial status register (SSR)  
to determine if an error has occurred. If a receive error has  
occurred, receive error processing is executed.  
Yes  
OER + FER = 1?  
No  
3. Read the serial status register (SSR) and confirm that  
RDRF = 1. If RDRF = 1, read the data in the received data  
register (RDR) and compare it with the processor’s own ID.  
If the received data does not match the ID, set bit MPIE to  
1 again. Bit RDRF is automatically cleared to 0 when data  
in the received data register (RDR) is read.  
3
Read bit RDRF in SSR  
No  
No  
RDRF = 1?  
Yes  
4. Read SSR, check that bit RDRF = 1, then read received  
data from the receive data register (RDR).  
Read received data in RDR  
Own ID?  
Yes  
5. If a receive error occurs, read bits OER and FER in SSR  
to determine which error occurred. After the necessary  
error processing, be sure to clear the error flags to 0.  
Serial data transfer cannot take place while  
bit OER or FER is set to 1.  
Read bits OER and FER in SSR  
When a framing error occurs, a break can be detected by  
reading the RXD pin value.  
Yes  
OER + FER = 1?  
No  
4
Read bit RDRF in SSR  
No  
RDRF = 1?  
Yes  
Read received data in RDR  
5
Error processing  
Yes  
Continue receiving?  
No  
Overrun error  
processing  
A
Start receive error processing  
Clear bit RE in SCR3 to 0  
End  
Yes  
OER = 1?  
No  
Yes  
Break?  
No  
Yes  
FER = 1?  
No  
Framing error  
processing  
Clear bits OER and  
FER in SSR to 0.  
A
End receive error processing  
Figure 10-4-19 Typical Flow Chart for Receiving Serial Data Using Multiprocessor Format  
314  
Figure 10-4-20 gives an example of data reception using a multiprocessor format.  
Start  
bit  
Receive  
data (ID1) MPB bit  
Stop Start  
bit  
Receive  
data (data 1) MPB bit  
Stop  
Mark  
(idle state)  
Serial  
data  
1
0
D0  
D1  
D7  
1
1
0
D0  
D1  
D7  
0
1
1
1 frame  
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
SCI3 operation  
User processing  
RXI request  
MPIE cleared to 0  
RDRF cleared to 0  
No RXI request  
RDR state retained  
Read data from RDR If not own ID,  
set MPIE to 1 again  
(a) Data does not match own ID  
Start  
bit  
Receive  
data (ID2) MPB bit  
Stop Start  
bit  
Receive  
data (data 2) MPB bit  
Stop  
Mark  
(idle state)  
Serial  
data  
1
0
D0  
D1  
D7  
1
1
0
D0  
D1  
D7  
0
1
1
1 frame  
1 frame  
MPIE  
RDRF  
RDR  
value  
Data 2  
ID1  
ID2  
SCI3 operation  
RXI request  
MPIE cleared to 0  
RDRF cleared to 0  
RXI  
request  
RDRF  
cleared  
to 0  
User processing  
Read data from RDR  
If own ID, continue  
receiving  
Read data  
from RDR  
and set  
MPIE to 1  
again  
(b) Data matches own ID  
Figure 10-4-20 Example of Multiprocessor Format Receive Operation  
(8-Bit Data, Multiprocessor Bit Added, and 1 Stop Bit)  
315  
10.4.7 Interrupts  
SCI3 has six interrupt sources: transmit end, transmit data empty, receive data full, and the three  
receive error interrupts (overrun error, framing error, and parity error). All share a common  
interrupt vector. Table 10-4-13 describes each interrupt.  
Table 10-4-13 SCI3 Interrupts  
Interrupt  
RXI  
Description  
Vector Address  
Interrupt request due to receive data register full (RDRF)  
Interrupt request due to transmit data register empty (TDRE)  
Interrupt request due to transmit end (TEND)  
Interrupt request due to receive error (OER, FER, or PER)  
H'0024  
TXI  
TEI  
ERI  
The interrupt requests are enabled and disabled by bits TIE and RIE of SCR3.  
When bit TDRE in SSR is set to 1, TXI is requested. When bit TEND in SSR is set to 1, TEI is  
requested. These two interrupt requests occur during data transmission.  
The initial value of bit TDRE is 1. Accordingly, if the transmit data empty interrupt request (TXI)  
is enabled by setting bit TIE to 1 in SCR3 before placing transmit data in TDR, TXI will be  
requested even though no transmit data has been readied.  
Likewise, the initial value of bit TEND is 1. Accordingly, if the transmit end interrupt request  
(TEI) is enabled by setting bit TEIE to 1 in SCR3 before placing transmit data in TDR, TEI will  
be requested even though no data has been transmitted.  
These interrupt features can be used to advantage by programming the interrupt handler to move  
the transmit data into TDR. When this technique is not used, the interrupt enable bits (TIE and  
TEIE) should not be set to 1 until after TDR has been loaded with transmit data, to avoid  
unwanted TXI and TEI interrupts.  
When bit RDRF in SSR is set to 1, RXI is requested. When any of SSR bits OER, FER, or PER is  
set to 1, ERI is requested. These two interrupt requests occur during the receiving of data.  
Details on interrupts are given in 3.3, Interrupts.  
316  
10.4.8 Application Notes  
When using SCI3, attention should be paid to the following matters.  
1. Relation between bit TDRE and writing data to TDR  
Bit TDRE in the serial status register (SSR) is a status flag indicating that TDR does not contain  
new transmit data. TDRE is automatically cleared to 0 when data is written to TDR. When SCI3  
transfers data from TDR to TSR, bit TDRE is set to 1.  
Data can be written to TDR regardless of the status of bit TDRE. However, if new data is written  
to TDR while TDRE is cleared to 0, assuming the data held in TDR has not yet been shifted to  
TSR, it will be lost. For this reason it is advisable to confirm that bit TDRE is set to 1 before each  
write to TDR and not write to TDR more than once without checking TDRE in between.  
2. Operation when multiple receive errors occur at the same time  
When two or more receive errors occur at the same time, the status flags in SSR are set as shown  
in table 10-4-14. If an overrun error occurs, data is not transferred from RSR to RDR, and receive  
data is lost.  
Table 10-4-14 SSR Status Flag States and Transfer of Receive Data  
SSR Status Flags  
Receive Data Transfer  
(RSR RDR)  
RDRF* OER FER PER  
Receive Error Status  
Overrun error  
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
1
1
×
o
o
×
×
o
×
Framing error  
Parity error  
Overrun error + framing error  
Overrun error + parity error  
Framing error + parity error  
Overrun error + framing error + parity error  
Notation: o: Receive data transferred from RSR to RDR  
×: Receive data not transferred from RSR to RDR  
Note: *RDRF keeps the same state as before the data was received. However, if due to a late  
read of received data in one frame an overrun error occurs in the next frame, RDRF is  
cleared to 0 when RDR is read.  
317  
3. Break detection and processing  
Break signals can be detected by reading the RXD pin directly when a framing error (FER) is  
detected. In the break state the input from the RXD pin consists of all 0s, so FER is set and the  
parity error flag (PER) may also be set. In the break state SCI3 continues to receive, so if the FER  
bit is cleared to 0 it will be set to 1 again.  
4. Sending a mark or break signal  
When TE is cleared to 0 the TXD pin becomes an I/O port, the level and direction (input or  
output) of which are determined by the PDR and PCR bits. This feature can be used to place the  
TXD pin in the mark state or send a break signal.  
To place the serial communication line in the mark (1) state before TE is set to 1, set the PDR and  
PCR bits both to 1. Since TE is cleared to 0, TXD becomes a general output port outputting the  
value 1.  
To send a break signal during data transmission, set the PCR bit to 1 and clear the PDR bit to 0,  
then clear TE to 0. When TE is cleared to 0 the transmitter is initialized, regardless of its current  
state, so the TXD pin becomes an output port outputting the value 0.  
5. Receive error flags and transmit operation (sysnchronous mode only)  
When a receive error flag (ORER, PER, or FER) is set to 1, SCI3 will not start transmitting even if  
TDRE is cleared to 0. Be sure to clear the receive error flags to 0 when starting to transmit. Note  
that clearing RE to 0 does not clear the receive error flags.  
6. Receive data sampling timing and receive margin in asynchronous mode  
In asynchronous mode SCI3 operates on a base clock with 16 times the bit rate frequency. In  
receiving, SCI3 synchronizes internally with the falling edge of the start bit, which it samples on  
the base clock. Receive data is latched at the rising edge of the eighth base clock pulse. See  
figure 10-4-21.  
318  
16 clock cycles  
8 clock cycles  
0
7
15 0  
7
15 0  
Internal base  
clock  
Receive data  
(RXD)  
Start bit  
D0  
D1  
Synchronization  
sampling timing  
Data sampling  
timing  
Figure 10-4-21 Receive Data Sampling Timing in Asynchronous Mode  
The receive margin in asynchronous mode can therefore be derived from the following equation.  
M = {(0.5 – 1/2N) – (D – 0.5) / N – (L – 0.5) F} × 100% ....................................Equation (1)  
M: Receive margin (%)  
N: Ratio of clock frequency to bit rate (N = 16)  
D: Clock duty cycle (D = 0.5 to 1)  
L: Frame length (L = 9 to 12)  
F: Absolute value of clock frequency error  
In equation (1), if F (absolute value of clock frequency error) = 0 and D (clock duty cycle) = 0.5,  
the receive margin is 46.875% as given by equation (2) below.  
When D = 0.5 and F = 0,  
M = {0.5 – 1/(2 × 16)} × 100% = 46.875% ..........................................................Equation (2)  
This value is theoretical. In actual system designs a margin of from 20 to 30 percent should be  
allowed.  
319  
7. Relationship between bit RDRF and reading RDR  
While SCI3 is receiving, it checks the RDRF flag. When a frame of data has been received, if the  
RDRF flag is cleared to 0, data receiving ends normally. If RDRF is set to 1, an overrun error  
occurs.  
RDRF is automatically cleared to 0 when the contents of RDR are read. If RDR is read more than  
once, the second and later reads will be performed with RDRF cleared to 0. While RDRF is 0, if  
RDR is read when reception of the next frame is just ending, data from the next frame may be  
read. This is illustrated in figure 10-4-22.  
Frame 1  
Data 1  
Frame 2  
Data 2  
Frame 3  
Data 3  
Communica-  
tion line  
RDRF  
RDR  
Data 1  
Data 2  
A
B
RDR read  
RDR read  
User processing  
At A , data 1 is read.  
At B , data 2 is read.  
Figure 10-4-22 Relationship between Data and RDR Read Timing  
To avoid the situation described above, after RDRF is confirmed to be 1, RDR should only be read  
once and should not be read twice or more.  
When the same data must be read more than once, the data read the first time should be copied to  
RAM, for example, and the copied data should be used. An alternative is to read RDR but leave a  
safe margin of time before reception of the next frame is completed. In synchronous mode, all  
reads of RDR should be completed before bit 7 is received. In asynchronous mode, all reads of  
RDR should be completed before the stop bit is received.  
320  
8. Switching SCK function  
3
If pin SCK is used as a clock output pin by SCI3 in synchronous mode and is then switched to a  
3
general input/output pin (a pin with a different function), the pin outputs a low level signal for half  
a system clock (φ) cycle immediately after it is switched.  
This can be prevented by either of the following methods according to the situation.  
a. When an SCK function is switched from clock output to non clock-output  
3
When stopping data transfer, issue one instruction to clear bits TE and RE to 0 and to set bits  
CKE1 and CKE0 in SCR3 to 1 and 0, respectively. In this case, bit COM in SMR should be left 1.  
The above prevents SCK from being used as a general input/output pin. To avoid an intermediate  
3
level of voltage from being applied to SCK , the line connected to SCK should be pulled up to  
3
3
the Vcc level via a resistor, or supplied with output from an external device.  
b. When an SCK function is switched from clock output to general input/output  
3
When stopping data transfer,  
(i) Issue one instruction to clear bits TE and RE to 0 and to set bits CKE1 and CKE0 in SCR3 to  
1 and 0, respectively.  
(ii) Clear bit COM in SCR3 to 0  
(iii) Clear bits CKE1 and CKE0 in SCR3 to 0  
Note that special care is also needed here to avoid an intermediate level of voltage from being  
applied to SCK .  
3
9. Switching TXD function  
If pin TXD is used as a data output pin by SCI3 in synchronous mode and is then switched to a  
general input/output pin (a pin with a different function), the pin outputs a high level signal for  
one system clock (φ) cycle immediately after it is switched.  
321  
Section 11 14-Bit PWM  
11.1 Overview  
The H8/3834U Series is provided with a 14-bit PWM (pulse width modulator) on-chip, which can  
be used as a D/A converter by connecting a low-pass filter.  
11.1.1 Features  
Features of the 14-bit PWM are as follows.  
Choice of two conversion periods  
A conversion period of 32,768/ø, with a minimum modulation width of 2/ø (PWCR0 = 1), or a  
conversion period of 16,384/ø, with a minimum modulation width of 1/ø (PWCR0 = 0), can be  
chosen.  
Pulse division method for less ripple  
11.1.2 Block Diagram  
Figure 11-1 shows a block diagram of the 14-bit PWM.  
PWDRL  
PWDRU  
PWM  
waveform  
generator  
ø/2  
ø/4  
PWCR  
PWM  
Notation:  
PWDRL: PWM data register L  
PWDRU: PWM data register U  
PWCR: PWM control register  
Figure 11-1 Block Diagram of the 14 bit PWM  
323  
11.1.3 Pin Configuration  
Table 11-1 shows the output pin assigned to the 14-bit PWM.  
Table 11-1 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
PWM output pin  
PWM  
Output  
Pulse-division PWM waveform output  
11.1.4 Register Configuration  
Table 11-2 shows the register configuration of the 14-bit PWM.  
Table 11-2 Register Configuration  
Name  
Abbrev.  
PWCR  
R/W  
W
Initial Value  
H'FE  
Address  
H'FFD0  
H'FFD1  
H'FFD2  
PWM control register  
PWM data register U  
PWM data register L  
PWDRU  
PWDRL  
W
H'C0  
W
H'00  
324  
11.2 Register Descriptions  
11.2.1 PWM Control Register (PWCR)  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
PWCR0  
Initial value  
Read/Write  
0
W
PWCR is an 8-bit write-only register for input clock selection.  
Upon reset, PWCR is initialized to H'FE.  
Bits 7 to 1: Reserved bits  
Bits 7 to 1 are reserved; they are always read as 1, and cannot be modified.  
Bit 0: Clock select 0 (PWCR0)  
Bit 0 selects the clock supplied to the 14-bit PWM. This bit is a write-only bit; it is always read as 1.  
Bit 0  
PWCR0 Description  
0
The input clock is ø/2 (tø = 2/ø). The conversion period is 16,384/ø,  
with a minimum modulation width of 1/ø.  
(initial value)  
1
The input clock is ø/4 (tø = 4/ø). The conversion period is 32,768/ø, with a minimum  
modulation width of 2/ø.  
Notation:  
tø: Period of PWM input clock  
325  
11.2.2 PWM Data Registers U and L (PWDRU, PWDRL)  
PWDRU  
Bit  
7
1
6
1
5
4
3
2
1
0
PWDRU5PWDRU4PWDRU3PWDRU2 PWDRU1PWDRU0  
Initial value  
Read/Write  
0
0
0
0
0
0
W
W
W
W
W
W
PWDRL  
Bit  
7
6
5
4
3
2
1
0
PWDRL7 PWDRL6 PWDRL5 PWDRL4 PWDRL3 PWDRL2 PWDRL1 PWDRL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
PWDRU and PWDRL form a 14-bit write-only register, with the upper 6 bits assigned to PWDRU  
and the lower 8 bits to PWDRL. The value written to PWDRU and PWDRL gives the total high-  
level width of one PWM waveform cycle.  
When 14-bit data is written to PWDRU and PWDRL, the register contents are latched in the  
PWM waveform generator, updating the PWM waveform generation data. The 14-bit data should  
always be written in the following sequence, first to PWDRL and then to PWDRU.  
1. Write the lower 8 bits to PWDRL.  
2. Write the upper 6 bits to PWDRU.  
PWDRU and PWDRL are write-only registers. If they are read, all bits are read as 1.  
Upon reset, PWDRU and PWDRL are initialized to H'C000.  
326  
11.3 Operation  
When using the 14-bit PWM, set the registers in the following sequence.  
1. Set bit PWM in port mode register 1 (PMR1) to 1 so that pin P1 /PWM is designated for  
4
PWM output.  
2. Set bit PWCR0 in the PWM control register (PWCR) to select a conversion period of either  
32,768/ø (PWCR0 = 1) or 16,384/ø (PWCR0 = 0).  
3. Set the output waveform data in PWM data registers U and L (PWDRU/L). Be sure to write  
in the correct sequence, first PWDRL then PWDRU. When data is written to PWDRU, the  
data in these registers will be latched in the PWM waveform generator, updating the PWM  
waveform generation in synchronization with internal signals.  
One conversion period consists of 64 pulses, as shown in figure 11-2. The total of the high-  
level pulse widths during this period (T ) corresponds to the data in PWDRU and PWDRL.  
H
This relation can be represented as follows.  
T = (data value in PWDRU and PWDRL + 64) × t /2  
H
ø
where t is the PWM input clock period, either 2/ø (bit PWCR0 = 0) or 4/ø (bit PWCR0 = 1).  
ø
Example: Settings in order to obtain a conversion period of 8,192 µs:  
When bit PWCR0 = 0, the conversion period is 16,384/ø, so ø must be 2 MHz. In  
this case t = 128 µs, with 1/ø (resolution) = 0.5 µs.  
fn  
When bit PWCR0 = 1, the conversion period is 32,768/ø, so ø must be 4 MHz. In  
this case t = 128 µs, with 2/ø (resolution) = 0.5 µs.  
fn  
Accordingly, for a conversion period of 8,192 µs, the system clock frequency (ø)  
must be 2 MHz or 4 MHz.  
327  
1 conversion period  
tf1  
tf2  
tf63  
tf64  
tH1  
tH2  
tH3  
tH63  
tH64  
TH = t H1 + t H2+ tH3  
+ ..... tH64  
t f1 = tf2 = tf3 ..... = tf84  
Figure 11-2 PWM Output Waveform  
328  
Section 12 A/D Converter  
12.1 Overview  
The H8/3834U Series includes on-chip a resistance-ladder-based successive-approximation  
analog-to-digital converter, and can convert up to 12 channels of analog input.  
12.1.1 Features  
The A/D converter has the following features.  
8-bit resolution  
12 input channels  
Conversion time: approx. 12.4 µs per channel (at 5 MHz operation)  
Built-in sample-and-hold function  
Interrupt requested on completion of A/D conversion  
A/D conversion can be started by external trigger input  
12.1.2 Block Diagram  
Figure 12-1 shows a block diagram of the A/D converter.  
ADTRG  
A/D mode  
register  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
A/D start  
register  
Multiplexer  
AN6  
AN7  
AVCC  
AN8  
AN9  
AN10  
AN11  
+
Com-  
parator  
Control logic  
AVCC  
AVSS  
AVSS  
Reference  
voltage  
A/D result register  
IRRAD  
Figure 12-1 Block Diagram of the A/D Converter  
329  
12.1.3 Pin Configuration  
Table 12-1 shows the A/D converter pin configuration.  
Table 12-1 Pin Configuration  
Name  
Abbrev. I/O  
Function  
Analog power supply pin AVCC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Power supply and reference voltage of analog part  
Ground and reference voltage of analog part  
Analog input channel 0  
Analog ground pin  
Analog input pin 0  
Analog input pin 1  
Analog input pin 2  
Analog input pin 3  
Analog input pin 4  
Analog input pin 5  
Analog input pin 6  
Analog input pin 7  
Analog input pin 8  
Analog input pin 9  
Analog input pin 10  
Analog input pin 11  
AVSS  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
Analog input channel 1  
Analog input channel 2  
Analog input channel 3  
Analog input channel 4  
Analog input channel 5  
Analog input channel 6  
Analog input channel 7  
Analog input channel 8  
Analog input channel 9  
Analog input channel 10  
Analog input channel 11  
External trigger input pin ADTRG  
External trigger input for starting A/D conversion  
12.1.4 Register Configuration  
Table 12-2 shows the A/D converter register configuration.  
Table 12-2 Register Configuration  
Name  
Abbrev.  
AMR  
R/W  
R/W  
R/W  
R
Initial Value  
H'30  
Address  
H'FFC4  
H'FFC6  
H'FFC5  
A/D mode register  
A/D start register  
A/D result register  
ADSR  
ADRR  
H'7F  
Not fixed  
330  
12.2 Register Descriptions  
12.2.1 A/D Result Register (ADRR)  
Bit  
7
ADR7  
6
ADR6  
5
ADR5  
4
ADR4  
3
ADR3  
2
ADR2  
1
ADR1  
0
ADR0  
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
The A/D result register (ADRR) is an 8-bit read-only register for holding the results of analog-to-  
digital conversion.  
ADRR can be read by the CPU at any time, but the ADRR values during A/D conversion are not  
fixed.  
After A/D conversion is complete, the conversion result is stored in ADRR as 8-bit data; this data  
is held in ADRR until the next conversion operation starts.  
ADRR is not cleared on reset.  
12.2.2 A/D Mode Register (AMR)  
Bit  
7
6
TRGE  
0
5
1
4
1
3
2
1
0
CKS  
0
CH3  
0
CH2  
0
CH1  
0
CH0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AMR is an 8-bit read/write register for specifying the A/D conversion speed, external trigger  
option, and the analog input pins.  
Upon reset, AMR is initialized to H'30.  
Bit 7: Clock select (CKS)  
Bit 7 sets the A/D conversion speed.  
Conversion Time  
Bit 7  
CKS  
Conversion Period  
62/ø (initial value)  
31/ø  
ø = 2 MHz  
31 µs  
ø = 5 MHz  
12.4 µs  
*
0
1
15.5 µs  
Note: * Operation is not guaranteed if the conversion time is less than 12.4 µs. Set bit 7 for a  
value of at least 12.4 µs.  
331  
Bit 6: External trigger select (TRGE)  
Bit 6 enables or disables the start of A/D conversion by external trigger input.  
Bit 6  
TRGE  
Description  
0
1
Disables start of A/D conversion by external trigger  
(initial value)  
Enables start of A/D conversion by rising or falling edge of external trigger at pin  
ADTRG*  
Note: * The external trigger (ADTRG) edge is selected by bit IEG4 of the IRQ edge select register  
(IEGR). See 3.3.2 for details.  
Bits 5 and 4: Reserved bits  
Bits 5 and 4 are reserved; they are always read as 1, and cannot be modified.  
Bits 3 to 0: Channel select (CH3 to CH0)  
Bits 3 to 0 select the analog input channel.  
The channel selection should be made while bit ADSF is cleared to 0.  
Bit 3  
CH3  
Bit 2  
CH2  
Bit 1  
CH1  
Bit 0  
CH0  
Analog Input Channel  
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
*
*
No channel selected  
(initial value)  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
Note: * Don’t care  
332  
12.2.3 A/D Start Register (ADSR)  
Bit  
7
ADSF  
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Initial value  
Read/Write  
R/W  
The A/D start register (ADSR) is an 8-bit read/write register for starting and stopping A/D  
conversion.  
A/D conversion is started by writing 1 to the A/D start flag (ADSF) or by input of the designated  
edge of the external trigger signal, which also sets ADSF to 1. When conversion is complete, the  
converted data is set in the A/D result register (ADRR), and at the same time ADSF is cleared  
to 0.  
Bit 7: A/D start flag (ADSF)  
Bit 7 controls and indicates the start and end of A/D conversion.  
Bit 7  
ADSF  
Description  
0
Read  
Write  
Read  
Write  
Indicates the completion of A/D conversion  
(initial value)  
Stops A/D conversion  
1
Indicates A/D conversion in progress  
Starts A/D conversion  
Bits 6 to 0: Reserved bits  
Bits 6 to 0 are reserved; they are always read as 1, and cannot be modified.  
333  
12.3 Operation  
12.3.1 A/D Conversion Operation  
The A/D converter operates by successive approximations, and yields its conversion result as 8-bit  
data.  
A/D conversion begins when software sets the A/D start flag (bit ADSF) to 1. Bit ADSF keeps a  
value of 1 during A/D conversion, and is cleared to 0 automatically when conversion is complete.  
The completion of conversion also sets bit IRRAD in interrupt request register 2 (IRR2) to 1. An  
A/D conversion end interrupt is requested if bit IENAD in interrupt enable register 2 (IENR2) is  
set to 1.  
If the conversion time or input channel needs to be changed in the A/D mode register (AMR)  
during A/D conversion, bit ADSF should first be cleared to 0, stopping the conversion operation,  
in order to avoid malfunction.  
12.3.2 Start of A/D Conversion by External Trigger Input  
The A/D converter can be made to start A/D conversion by input of an external trigger signal.  
External trigger input is enabled at pin ADTRG when bit IRQ4 in port mode register 2 (PMR2) is  
set to 1, and bit TRGE in AMR is set to 1. Then when the input signal edge designated in bit  
IEG4 of the IRQ edge select register (IEGR) is detected at pin ADTRG, bit ADSF in ADSR will  
be set to 1, starting A/D conversion.  
Figure 12-2 shows the timing.  
ø
Pin ADTRG  
(when bit  
IEG4 = 0)  
ADSF  
A/D conversion  
Figure 12-2 External Trigger Input Timing  
334  
12.4 Interrupts  
When A/D conversion ends (ADSF changes from 1 to 0), bit IRRAD in interrupt request  
register 2 (IRR2) is set to 1.  
A/D conversion end interrupts can be enabled or disabled by means of bit IENAD in interrupt  
enable register 2 (IENR2).  
For further details see 3.3, Interrupts.  
12.5 Typical Use  
An example of how the A/D converter can be used is given below, using channel 1 (pin AN ) as  
1
the analog input channel. Figure 12-3 shows the operation timing.  
Bits CH3 to CH0 of the A/D mode register (AMR) are set to 0101, making pin AN the  
1
analog input channel. A/D interrupts are enabled by setting bit IENAD to 1, and A/D  
conversion is started by setting bit ADSF to 1.  
When A/D conversion is complete, bit IRRAD is set to 1, and the A/D conversion result is  
stored in the A/D result register (ADRR). At the same time ADSF is cleared to 0, and the  
A/D converter goes to the idle state.  
Bit IENAD = 1, so an A/D conversion end interrupt is requested.  
The A/D interrupt handling routine starts.  
The A/D conversion result is read and processed.  
The A/D interrupt handling routine ends.  
If ADSF is set to 1 again afterward, A/D conversion starts and steps 2 through 6 take place.  
Figures 12-4 and 12-5 show flow charts of procedures for using the A/D converter.  
335  
Figure 12-3 Typical A/D Converter Operation Timing  
336  
Start  
Set A/D conversion speed  
and input channel  
Disable A/D conversion  
end interrupt  
Start A/D conversion  
Read ADSR  
No  
ADSF = 0?  
Yes  
Read ADRR data  
Yes  
Perform A/D  
conversion?  
No  
End  
Figure 12-4 Flow Chart of Procedure for Using A/D Converter (1) (Polling by Software)  
337  
Start  
Set A/D conversion speed  
and input channels  
Enable A/D conversion  
end interrupt  
Start A/D conversion  
Yes  
A/D conversion  
end interrupt?  
No  
Clear bit IRRAD to  
0 in IRR2  
Read ADRR data  
Yes  
Perform A/D  
conversion?  
No  
End  
Figure 12-5 Flow Chart of Procedure for Using A/D Converter (2) (Interrupts Used)  
12.6 Application Notes  
Data in the A/D result register (ADRR) should be read only when the A/D start flag (ADSF)  
in the A/D start register (ADSR) is cleared to 0.  
Changing the digital input signal at an adjacent pin during A/D conversion may adversely  
affect conversion accuracy.  
338  
Section 13 LCD Controller/Driver  
13.1 Overview  
The H8/3834U Series has an on-chip segment-type LCD controller circuit, LCD driver, and power  
supply circuit, for direct driving of an LCD panel.  
13.1.1 Features  
Features of the LCD controller/driver are as follows.  
Display capacity  
External Segment  
Expansion Driver  
Duty  
Internal Driver  
40 segments  
36 segments  
36 segments  
36 segments  
36 segments  
On-chip driver only  
0
Use with external segment  
expansion driver  
Static  
1/2  
476 segments  
220 segments  
92 segments  
92 segments  
1/3  
1/4  
The HD66100 can be used for external expansion of the number of segments.  
LCD RAM capacity  
8 bits × 64 bytes (512 bits)  
Word access to LCD RAM  
Segment output pins can be switched to general-purpose ports in groups of 4  
Unused common output pins can be used either for boosting common output (by parallel  
connection) or as ports.  
Displays in all operation modes except standby mode.  
Choice of 11 frame frequencies  
Internal voltage divider for liquid crystal driver power supply  
339  
13.1.2 Block Diagram  
Figure 13-1 shows a block diagram of the LCD controller/driver.  
VCC  
V1  
V2  
LCD driver  
power supply  
V3  
M
VSS  
CL2  
ø/2 to ø/256  
øW  
COM1  
Common  
data latch  
Common  
driver  
COM4  
SEG40 /CL1  
SEG39 /CL2  
SEG38 /DO  
SEG37 /M  
SEG36  
LPCR  
LCR  
40-bit  
shift  
register  
Segment  
driver  
Display timing generator  
CL1  
LCD RAM  
64 bytes  
SEG1  
SEGn, DO  
Notation:  
LPCR: LCD port control register  
LCR: LCD control register  
Figure 13-1 LCD Controller/Driver Block Diagram  
340  
13.1.3 Pin Configuration  
Table 13-1 shows the output pins assigned to the LCD controller/driver.  
Table 13-1 Pin Configuration  
Name  
Abbrev.  
I/O  
Function  
LCD segment output  
SEG40 to Output Liquid crystal segment driver pins. All pins can be  
SEG1  
programmed also as ports.  
LCD common output  
COM4 to  
COM1  
Output Liquid crystal common driver pins. Parallel  
connection is possible at static and 1/2 duty.  
External segment  
expansion signal  
CL1  
CL2  
M
Output Display data latch clock; doubles as SEG40  
Output Display data shift clock; doubles as SEG39  
Output LCD alternating signal; doubles as SEG37  
Output Serial display data; doubles as SEG38  
DO  
LCD power supply  
V1, V2, V3 Input  
For external connection to bypass capacitor or for  
use of external power supply circuit  
13.1.4 Register Configuration  
Table 13-2 shows the register configuration of the LCD controller/driver.  
Table 13-2 Register Configuration  
Name  
Abbrev.  
LPCR  
LCR  
R/W  
R/W  
R/W  
R/W  
Initial Value  
H'00  
Address  
LCD port control register  
LCD control register  
LCD RAM  
H'FFC0  
H'80  
H'FFC1  
Not fixed  
H'F740 to H'F77F*  
Note: * Value after reset.  
341  
13.2 Register Descriptions  
13.2.1 LCD Port Control Register (LPCR)  
Bit  
7
DTS1  
0
6
DTS0  
0
5
CMX  
0
4
3
SGS3  
0
2
SGS2  
0
1
SGS1  
0
0
SGS0  
0
SGX  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The LCD port control register is an 8-bit read/write register, used for selecting the duty cycle and  
the LCD driver and pin functions, etc. Upon reset, LPCR is initialized to H'00.  
Bits 7 to 5: Duty and common function select (DTS1, DTS0, CMX)  
Bits 7 to 6 select a driver duty of static, 1/2, 1/3, or 1/4. Bit 5 determines whether the common  
pins not used at a given duty are to be used as ports or, in order to increase the common driving  
capacity, as multiple pins outputting the same waveform.  
Bit 7 Bit 6 Bit 5  
DTS1 DTS0 CMX Duty  
Common Driver*1 Other Uses  
0
0
0
1
Static  
COM1 (initial value) COM4, COM3 and COM2 usable as ports  
COM4 to COM1  
COM4, COM3 and COM2 output the same  
waveform as COM1  
0
1
0
1
1/2 duty COM2 to COM1  
COM4 to COM1  
COM4 and COM3 usable as ports  
COM4 outputs the same waveform as  
COM3, and COM2 the same waveform as  
COM1  
1
1
0
1
0
1
0
1
1/3 duty COM3 to COM1  
COM4 to COM1  
COM4 usable as port  
COM4 outputs a non-select waveform*2  
1/4 duty COM4 to COM1  
Notes: 1. Pins COM4 to COM1 become ports when bit SGX = 0 and bits SGS3 to SGS0 = 0000.  
Otherwise the common drivers are as indicated in the table above.  
2. A non-select waveform is always output at pin COM4, which therefore should not be  
used.  
342  
Bit 4: Expansion signal select (SGX)  
Bit 4 selects whether pins SEG /CL , SEG /CL , SEG /DO, and SEG /M are used as segment  
40  
1
39  
2
38  
37  
pins (SEG to SEG ) or as external segment expansion pins (CL , CL , DO, M).  
40  
37  
1
2
Bit 4  
SGX  
Description  
0
1
Pins SEG40 to SEG37  
*
(initial value)  
Pins CL1, CL2, DO, M  
Note: * Selected as ports when bits SGS3 to SGS0 = 0000.  
Bits 3 to 0: Segment driver select (SGS3 to SGS0)  
Bits 3 to 0 select the pins to be used as segment drivers.  
Functions of Pins SEG to SEG  
40  
1
Bit4 Bit 3 Bit 2 Bit 1 Bit 0 SEG to SEG to SEG to SEG to SEG to SEG to SEG to SEG to SEG to SEG to  
40  
37  
36  
33  
32  
29  
28  
25  
24  
21  
20  
17  
16  
13  
12  
9
8
5
4
1
SGX SGS3 SGS2 SGS1 SGS0 SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Remarks  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
1
*
*
0
0
0
1
1
0
0
1
1
*
*
0
0
1
0
1
0
1
0
1
0
1
0
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
Port  
(initial value)  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
1
External Port  
segment  
expansion  
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
*
0
1
1
0
0
1
1
*
1
0
1
0
1
0
1
0
External SEG  
segment  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
expansion  
External SEG  
segment  
expansion  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
External SEG  
segment  
expansion  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
External SEG  
segment  
expansion  
SEG  
SEG  
SEG  
SEG  
SEG  
External SEG  
segment  
expansion  
External SEG  
segment  
expansion  
External SEG  
segment  
expansion  
External SEG  
segment  
expansion  
1
*
*
1
External SEG  
segment  
expansion  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Note: * Don’t care  
343  
13.2.2 LCD Control Register (LCR)  
Bit  
7
1
6
PSW  
0
5
4
DISP  
0
3
CKS3  
0
2
CKS2  
0
1
CKS1  
0
0
CKS0  
0
ACT  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The LCD control register is an 8-bit read/write register for on/off control of the resistive voltage  
divider used as the LCD driver power supply, for display data control, and for frame frequency  
selection. Upon reset, LCR is initialized to H'80.  
Bit 7: Reserved bit  
Bit 7 is reserved; it is always read as 1, and cannot be modified.  
Bit 6: Power switch (PSW)  
Bit 6 switches the resistive voltage divider provided to power the LCD driver on/off. In low-  
power modes when the LCD display is not used, or when an external power supply is used for the  
LCD, the resistive voltage divider can be switched off. When bit ACT = 0, or in standby mode,  
the resistive voltage divider is in the off state regardless of the bit 6 setting.  
Bit 6  
PSW  
Description  
0
1
LCD power supply resistive voltage divider off  
LCD power supply resistive voltage divider on  
(initial value)  
Bit 5: Display active (ACT)  
Bit 5 selects whether the LCD controller/driver is used or not. When this bit is cleared to 0, the  
LCD controller/driver module halts operation, and the resistive voltage divider provided for the  
LCD driver power supply goes to the off state regardless of the PSW setting. However, register  
contents are retained.  
Bit 5  
ACT  
Description  
0
1
LCD controller/driver operation stopped  
LCD controller/driver operational  
(initial value)  
344  
Bit 4: Display data control (DISP)  
Bit 4 selects whether the LCD RAM contents are displayed or blank data is displayed regardless  
of the LCD RAM contents. This bit is valid also when the HD66100 is used for external segment  
expansion.  
Bit 4  
DISP  
Description  
0
1
Blank data displayed  
LCD RAM data displayed  
(initial value)  
Bits 3 to 0: Frame frequency select (CKS3 to CKS0)  
Bits 3 to 0 select the clock used by the LCD controller/driver, and the frame frequency. In  
subactive, watch, and subsleep modes the system clock (ø) is stopped, so there will be no display  
in these modes if ø/2 to ø/256 is chosen as the clock source. For display in these modes, clock ø  
W
or ø /2 must be selected.  
W
Frame Frequency*3  
ø = 625 kHz*1  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CKS3 CKS2 CKS1 CKS0  
Clock  
øW  
ø = 5 MHz  
128 Hz*2  
64 Hz  
32 Hz  
0
0
0
1
1
1
1
1
1
1
1
*
*
*
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
1
*
(initial value)  
øW  
øW/2  
ø/2  
0
1
0
1
0
1
0
1
610 Hz  
305 Hz  
153 Hz  
76.3 Hz  
38.1 Hz  
ø/4  
ø/8  
ø/16  
ø/32  
ø/64  
ø/128  
ø/256  
610 Hz  
305 Hz  
153 Hz  
76.3 Hz  
38.1 Hz  
Notes: * Don’t care  
1. Frame frequency in active (medium-speed) mode  
2. Only the upper 32 bytes of the display RAM are used.  
3. When a duty cycle of 1/3 is chosen, the frame frequency will be 4/3 times the  
frequencies shown in the above table.  
345  
13.3 Operation  
13.3.1 Settings Prior to LCD Display  
Various decisions related to hardware and software must be made before using the LCD  
controller/driver with an LCD display. The settings are described below.  
1. Hardware settings  
Use at 1/2 duty  
To use at 1/2 duty, connect pins V and V as shown in figure 13-2.  
2
3
VCC  
V1  
V2  
V3  
VSS  
Figure 13-2 LCD Driver Power Supply Processing at 1/2 Duty  
Large-panel display  
Because of the large impedance of the built-in resistive voltage divider, the H8/3834U Series LCD  
controller/driver is not well suited to driving large-panel displays. If use of a large panel leads to  
an unclear display, refer to 13.3.5 on boosting the LCD driver power supply. At static and 1/2  
duty it is possible to boost the common output driving capacity. Set bit CMX to 1 when selecting  
the duty cycle. In this mode, at static duty pins COM to COM output the same waveform, while  
4
1
at 1/2 duty pins COM and COM output the COM waveform and pins COM and COM output  
2
1
1
4
3
the COM waveform.  
2
346  
Segment expansion  
The HD66100 can be connected externally to expand the number of segments. See 13.3.3,  
Connection to HD66100.  
2. Software settings  
Duty cycle selection  
The duty cycle is selected in bits DTS1 and DTS0, with a choice of static, 1/2, 1/3, or 1/4 duty.  
Segment driver selection  
The segment drivers to be used are selected in bits SGS3 to SGS0.  
Frame frequency selection  
The frame frequency is selected in bits CKS3 to CKS0. The frame frequency should be selected  
depending on the specification of the LCD panel to be used. Refer to 13.3.4, Operation in Power-  
Down Modes, for information on clock selection in watch mode, subactive mode, and subsleep  
mode.  
13.3.2 Relation of LCD RAM to Display  
The relation of the LCD RAM to segments depends on the duty cycle. LCD RAM memory maps  
for each duty cycle when segments are not expanded externally are shown in figures 13-3 to 13-6.  
When segments are expanded externally, the LCD RAM memory maps for each duty cycle are as  
shown in figures 13-7 to 13-10. It is also possible to use only external segments and not use the  
segment pins on this chip, in which case the LCD RAM memory map is as shown in figure 13-11.  
After setting the registers that control the LCD display, write data to the area corresponding to the  
duty cycle selected, using the same instructions as for the ordinary RAM. If the display is  
switched on, the data will be displayed automatically. Both word and byte access instructions can  
be used for writing to the LCD RAM.  
347  
13.3.3 Connection to HD66100  
To expand the number of segments externally, connect the H8/3834U Series to the HD66100  
segment chip. The HD66100 chip provides an additional 80 segments. When external segments  
are used, set bit SGX in LPCR for use of pins SEG to SEG as external segment expansion  
40  
37  
signal pins. Data will be output starting from LCD RAM pin SEG . When bits SGS3 to SGS0  
37  
in LPCR are set to 0000, data will be output starting from LCD RAM pin SEG .  
1
Figure 13-12 shows typical connections to the HD66100. The output level is determined by the  
combination of data pins and pin M; but that combination differs between the H8/3834U Series  
and the HD66100. Table 13-3 shows the output level of the LCD driver power supply.  
Figure 13-13 shows the common and segment waveforms at each duty.  
If bit ACT = 0, then if CL = 0, CL = 0 and M = 0, DO stops with the data output at that moment  
2
1
(1 or 0). In standby mode the expansion pins are in the high-impedance (floating) state.  
External expansion increases the load on the LCD panel, as a result of which the internal power  
supply may not have sufficient capacity. In that case refer to 13.3.5 on boosting the LCD driver  
power supply.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
H'F753*  
SEG2 SEG2 SEG2 SEG2 SEG1 SEG1 SEG1 SEG1  
Internal driver  
display area  
SEG40 SEG40 SEG40 SEG40 SEG39 SEG39 SEG39 SEG39  
Area not used  
for display  
H'F77F*  
COM4 COM3 COM2 COM1 COM4 COM3 COM2 COM1  
Note: * Values immediately after reset.  
Figure 13-3 LCD RAM Map 1: No External Segment Expansion (1/4 Duty)  
348  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
H'F753*  
SEG2 SEG2 SEG2  
SEG1 SEG1 SEG1  
Internal driver  
display area  
SEG40 SEG40 SEG40  
SEG39 SEG39 SEG39  
Area not used  
for display  
H'F77F*  
COM3 COM2 COM1  
COM3 COM2 COM1  
Note: * Values immediately after reset.  
Figure 13-4 LCD RAM Map 2: No External Segment Expansion (1/3 Duty)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
H'F749*  
SEG4 SEG4 SEG3 SEG3 SEG2 SEG2 SEG1 SEG1  
Internal driver  
display area  
SEG40 SEG40 SEG39 SEG39 SEG38 SEG38 SEG37 SEG37  
Area not used  
for display  
H'F77F*  
COM2 COM1 COM2 COM1 COM2 COM1 COM2 COM1  
Note: * Values immediately after reset.  
Figure 13-5 LCD RAM Map 3: No External Segment Expansion (1/2 Duty)  
349  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
H'F744*  
SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1  
SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33  
Internal driver  
display area  
Area not used  
for display  
H'F77F*  
COM1 COM1 COM1 COM1 COM1 COM1 COM1 COM1  
Note: * Values immediately after reset.  
Figure 13-6 LCD RAM Map 4: No External Segment Expansion (Static Duty)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
SEG2  
SEG2 SEG2 SEG2 SEG1 SEG1 SEG1 SEG1  
Internal driver  
display area  
H'F751*  
H'F75F*  
SEG36 SEG36 SEG36 SEG36 SEG35 SEG35 SEG35 SEG35  
SEG38 SEG38 SEG38 SEG38 SEG37 SEG37 SEG37 SEG37  
SEG64 SEG64 SEG64 SEG64 SEG63 SEG63 SEG63 SEG63  
External driver  
display area  
(when CKS3 = CKS1 = CKS0 = 0)  
External driver  
display area  
H'F77F* SEG128 SEG128 SEG128 SEG128 SEG127 SEG127 SEG127 SEG127  
COM4 COM3 COM2 COM1 COM4 COM3 COM2 COM1  
Note: * Values immediately after reset.  
Figure 13-7 LCD RAM Map 1: External Segment Expansion (1/4 Duty)  
350  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
SEG2 SEG2 SEG2  
SEG1 SEG1 SEG1  
Internal driver  
display area  
H'F751*  
H'F75F*  
SEG36 SEG36 SEG36  
SEG38 SEG38 SEG38  
SEG64 SEG64 SEG64  
SEG35 SEG35 SEG35  
SEG37 SEG37 SEG37  
SEG63 SEG63 SEG63  
External driver  
display area  
(when CKS3 = CKS1 = CKS0 = 0)  
External driver  
display area  
H'F77F*  
SEG128 SEG128 SEG128  
COM3 COM 2 COM 1  
SEG127 SEG127 SEG127  
COM 3 COM 2 COM 1  
Note: * Values immediately after reset.  
Figure 13-8 LCD RAM Map 2: External Segment Expansion (1/3 Duty)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
H'F748*  
SEG4  
SEG4  
SEG3  
SEG3  
SEG2  
SEG2 SEG1 SEG1  
Internal driver  
display area  
SEG36 SEG36 SEG35 SEG35 SEG34 SEG34 SEG33 SEG33  
SEG40 SEG40 SEG39 SEG39 SEG38 SEG38 SEG37 SEG37  
External driver  
display area  
(when CKS3 = CKS1 = CKS0 = 0)  
H'F75F* SEG128 SEG128 SEG127 SEG127 SEG126 SEG126 SEG125 SEG125  
External driver  
display area  
H'F77F* SEG256 SEG256 SEG255 SEG255 SEG254 SEG254 SEG253 SEG253  
COM 2 COM1 COM2 COM1 COM2 COM 1 COM 2 COM 1  
Note: * Values immediately after reset.  
Figure 13-9 LCD RAM Map 3: External Segment Expansion (1/2 Duty)  
351  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1  
SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33  
Internal driver  
display area  
H'F740*  
H'F744*  
External driver  
display area  
(when CKS3 = CKS1 = CKS0 = 0)  
H'F75F* SEG256 SEG255 SEG254 SEG253 SEG252 SEG251 SEG250 SEG249  
External driver  
display area  
H'F77F* SEG512 SEG511 SEG510 SEG509 SEG508 SEG507 SEG506 SEG505  
COM 1 COM 1 COM 1 COM 1 COM 1 COM 1 COM 1 COM 1  
Note: * Values immediately after reset.  
Figure 13-10 LCD RAM Map 4: External Segment Expansion (Static Duty)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H'F740*  
SEG2 SEG2  
SEG2 SEG2  
SEG1  
SEG1 SEG1 SEG1  
External driver  
display area  
(when CKS3 = CKS1 = CKS0 = 0)  
H'F75F*  
SEG64 SEG64 SEG64 SEG64 SEG63 SEG63 SEG63 SEG63  
External driver  
display area  
H'F77F* SEG128 SEG128 SEG128 SEG128 SEG127 SEG127 SEG127 SEG127  
COM 4 COM3 COM 2 COM 1 COM4 COM 3 COM 2 COM 1  
Note: * Values immediately after reset.  
Figure 13-11 LCD RAM Map When All External Segments are Used  
(Example: SGX = 1, SGS3 to SGS0 = 0000, 1/4 Duty)  
352  
1/3 bias; 1/4 duty or 1/3 duty  
VCC  
VCC  
V1  
V4  
V1  
V2  
V3  
V3  
V2  
VSS  
GND  
VEE  
SHL  
CL1  
CL2  
DI  
This LSI  
This LSI  
This LSI  
HD66100  
HD66100  
HD66100  
SEG40 /CL1  
SEG39 /CL2  
SEG38 /DO  
SEG37 /M  
M
1/2 duty  
VCC  
V1  
V2  
VCC  
V1  
V4  
V3  
V2  
GND  
VEE  
SHL  
CL1  
CL2  
DI  
V3  
VSS  
SEG40 /CL1  
SEG39 /CL2  
SEG38 /DO  
SEG37 /M  
M
Static  
VCC  
V1  
V2  
VCC  
V1  
V4  
V3  
V2  
GND  
VEE  
SHL  
CL1  
CL2  
DI  
V3  
VSS  
SEG40 /CL1  
SEG39 /CL2  
SEG38 /DO  
SEG37 /M  
M
Figure 13-12 Connection to HD66100  
353  
1 frame  
M
Data  
V1  
V2  
V3  
COM1  
VSS  
V1  
V2  
V3  
VSS  
COM2  
COM3  
COM4  
SEGn  
V1  
V2  
V3  
VSS  
V1  
V2  
V3  
VSS  
V1  
V2  
V3  
VSS  
Figure 13-13 (a) Waveforms at 1/4 Duty  
1 frame  
M
Data  
V1  
V2  
V3  
COM1  
VSS  
V1  
V2  
V3  
VSS  
COM2  
COM3  
V1  
V2  
V3  
VSS  
V1  
V2  
V3  
SEGn  
VSS  
Figure 13-13 (b) Waveforms at 1/3 Duty  
354  
1 frame  
M
Data  
V1  
V2 , V3  
VSS  
COM1  
V1  
V2 , V3  
VSS  
COM2  
SEGn  
Figure 13-13 (c) Waveforms at 1/2 Duty  
1 frame  
M
Data  
V1  
COM1  
VSS  
V1  
SEGn  
VSS  
Figure 13-13 (d) Waveforms at Static Duty  
355  
Table 13-3 Output Levels  
Data  
M
0
0
1
1
0
1
0
1
Static  
Common output  
Segment output  
Common output  
Segment output  
Common output  
Segment output  
Common output  
Segment output  
V1  
V1  
V2, V3  
V1  
V3  
V2  
V3  
V2  
VSS  
VSS  
V2, V3  
VSS  
V2  
V1  
VSS  
V1  
VSS  
V1  
1/2 duty  
1/3 duty  
1/4 duty  
VSS  
V1  
VSS  
V1  
VSS  
V1  
V3  
VSS  
V1  
V2  
VSS  
V1  
V3  
VSS  
13.3.4 Operation in Power-Down Modes  
The LCD controller/driver can be operated in the low-power modes, as shown in table 13-4.  
In the subactive, watch, and subsleep modes, the system clock pulse generator stops running, so  
no clock signal will be supplied and the display will be stopped, unless ø or ø /2 was selected  
W
W
when setting bits CKS3 to CKS0 in LCR. Since this may result in a direct current being applied  
to the LCD panel, be sure to select ø or ø /2 as the clock if these modes are used. In active  
W
W
(medium-speed) mode the system clock is changed, making it necessary to adjust the frame  
frequency setting (in bits CKS3 to CKS0) to avoid a change in frame frequency.  
Table 13-4 LCD Controller/Driver Operation in Power-Down Modes  
Mode  
Reset  
Active Sleep  
Watch  
Subactive Subsleep Standby  
Clock  
ø
Running Running Running Stopped Stopped  
Running Running Running Running Running  
Stopped  
Running  
Stopped  
On*3  
Stopped  
øW  
Stopped*1  
Stopped*2  
Stopped*2  
Display ACT = 0 Stopped Stopped Stopped Stopped Stopped  
ACT = 1 Stopped On On  
On*3 On*3  
Notes: 1. The subclock pulse generator does not stop, but clock supply is stopped.  
2. The LCD driver power supply resistive voltage divider is off regardless of bit PSW.  
3. The display will not function unless øW or øW/2 is selected as the clock.  
356  
13.3.5 Boosting the LCD Driver Power Supply  
When a large LCD panel is driven, or if segments are expanded externally, the built-in power  
supply capacity may be insufficient, making it necessary to lower the power supply impedance.  
One method, shown in figure 13-12, is to connect a bypass capacitor of around 0.1 µF to 0.3 µF to  
pins V , V , and V . Another approach, shown in figure 13-14 below, is to connect a resistive  
1
2
3
voltage divider externally.  
VCC  
R
R
R
R
V1  
V2  
V3  
R = several k  
This LSI  
VSS  
C = 0.1 µF to 0.3 µF  
Figure 13-14 Connecting an External Resistive Voltage Divider  
357  
Section 14 Electrical Characteristics  
14.1 H8/3834U Series Absolute Maximum Ratings  
Table 14-1 lists the absolute maximum ratings.  
Table 14-1 Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Value  
Unit  
V
Power supply voltage  
Analog power supply voltage  
Programming voltage  
–0.3 to +7.0  
–0.3 to +7.0  
–0.3 to +13.0  
–0.3 to VCC + 0.3  
–0.3 to AVCC + 0.3  
–20 to +75  
AVCC  
VPP  
V
V
Input voltage  
Ports other than ports B and C  
Ports B and C  
Vin  
V
AVin  
Topr  
V
Operating temperature  
Storage temperature  
°C  
°C  
Tstg  
–55 to +125  
Note: Permanent damage may occur to the chip if maximum ratings are exceeded. Normal  
operation should be under the conditions specified in Electrical Characteristics. Exceeding  
these values can result in incorrect operation and reduced reliability.  
359  
14.2 H8/3833U and H8/3834U Electrical Characteristics  
14.2.1 Power Supply Voltage and Operating Range  
The power supply voltage and operating range of the H8/3833U and H8/3834U are indicated by  
the shaded region in the figures below.  
1. Power supply voltage vs. oscillator frequency range of H8/3833U and H8/3834U  
10.0  
32.768  
5.0  
2.0  
2.7  
4.0  
5.5  
2.7  
4.0  
5.5  
VCC (V)  
VCC (V)  
• Active mode (high speed)  
• Sleep mode  
• All operating modes  
360  
2. Power supply voltage vs. clock frequency range of H8/3833U and H8/3834U  
5.0  
16.384  
2.5  
8.192  
4.096  
0.5  
2.7  
4.0  
5.5  
2.7  
4.0  
5.5  
VCC (V)  
VCC (V)  
• Active mode (high speed)  
• Sleep mode (except CPU)  
• Subactive mode  
• Subsleep mode (except CPU)  
• Watch mode (except CPU)  
625.0  
500.0  
312.5  
62.5  
2.7  
4.0  
5.5  
VCC (V)  
• Active mode (medium speed)  
3. Analog power supply voltage vs. A/D converter operating range of H8/3833U and H8/3834U  
5.0  
625.0  
500.0  
2.5  
0.5  
312.5  
62.5  
2.7  
4.0  
5.5  
2.7  
4.0  
5.5  
AVCC (V)  
AVCC (V)  
• Active (high speed) mode  
• Sleep mode  
• Active (medium speed) mode  
361  
14.2.2 DC Characteristics  
Table 14-2 lists the DC characteristics of the H8/3833U and H8/3834U.  
Table 14-2 DC Characteristics of H8/3833U and H8/3834U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Item  
Symbol Applicable Pins  
Min  
Typ Max  
Unit Test Condition  
Note  
Input high VIH  
voltage  
RES, MD0,  
0.8 VCC  
VCC + 0.3  
V
VCC = 4.0 V to 5.5 V  
WKP0 to WKP7,  
IRQ0 to IRQ4,  
TMIB, TMIC, TMIF  
CS, TMIG,  
0.9 VCC  
VCC + 0.3  
SCK1, SCK2,  
SCK3, ADTRG  
UD, SI1, SI2, RXD 0.7 VCC  
0.8 VCC  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
V
V
V
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
OSC1  
VCC – 0.5  
VCC – 0.3  
0.7 VCC  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P43  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
0.8 VCC  
VCC + 0.3  
PB0 to PB7  
PC0 to PC3  
0.7 VCC  
0.8 VCC  
–0.3  
AVCC + 0.3  
AVCC + 0.3  
0.2 VCC  
V
V
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
Input low  
voltage  
VIL  
RES, MD0,  
WKP0 to WKP7,  
IRQ0 to IRQ4,  
TMIB, TMIC, TMIF,  
CS, TMIG,  
–0.3  
0.1 VCC  
SCK1, SCK2,  
SCK3, ADTRG  
UD, SI1, SI2, RXD –0.3  
–0.3  
0.3 VCC  
0.2 VCC  
0.5  
V
V
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
OSC1  
–0.3  
–0.3  
0.3  
Note: Connect pin TEST to VSS  
.
362  
Table 14-2 DC Characteristics of H8/3833U and H8/3834U (cont)  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Item  
Symbol Applicable Pins  
Min  
Typ Max  
Unit Test Condition  
Note  
Input low  
voltage  
VIL  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P43  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
PB0 to PB7  
PC0 to PC3  
–0.3  
0.3 VCC  
V
VCC = 4.0 V to 5.5 V  
–0.3  
0.2 VCC  
Output  
high voltage  
VOH  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P42  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
VCC – 1.0  
VCC – 0.5  
VCC – 0.5  
V
VCC = 4.0 V to 5.5 V  
–IOH = 1.0 mA  
VCC = 4.0 V to 5.5 V  
–IOH = 0.5 mA  
–IOH = 0.1 mA  
Output  
low voltage  
VOL  
P10 to P17  
P40 to P42  
0.6  
V
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.5  
0.5  
IOL = 0.4 mA  
IOL = 0.4 mA  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
P20 to P27  
P30 to P37  
1.5  
0.6  
0.5  
VCC = 4.0 V to 5.5 V  
IOL = 10 mA  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
IOL = 0.4 mA  
Note: Connect pin TEST to VSS  
.
363  
Table 14-2 DC Characteristics of H8/3833U and H8/3834U (cont)  
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
V
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Item  
Symbol Applicable Pins  
Min Typ Max Unit  
Test Condition  
Note  
Input  
leakage  
current  
|IIL|  
RES, P43  
20  
1
µA  
VIN = 0.5 V to  
VCC – 0.5 V  
2
1
OSC1, MD0  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P42  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
1
µA  
VIN = 0.5 V to  
VCC – 0.5 V  
PB0 to PB7  
PC0 to PC3  
50  
35  
1
VIN = 0.5 V to  
AVCC – 0.5 V  
Pull-up  
MOS  
–IP  
P10 to P17  
P30 to P37  
P50 to P57  
P60 to P67  
300 µA  
VCC = 5 V,  
VIN = 0 V  
current  
µA  
pF  
VCC = 2.7 V,  
VIN = 0 V  
Reference  
value  
Input  
CIN  
All input pins except  
power supply, RES,  
P43 pin  
15  
f = 1 MHz,  
VIN = 0 V  
Ta = 25°C  
capacitance  
RES  
60  
15  
30  
15  
2
1
2
1
P43  
Notes: 1. Applies to HD6433833U and HD6433834U.  
2. Applies to HD6473834U.  
364  
Table 14-2 DC Characteristics of H8/3833U and H8/3834U (cont)  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise indicated.  
Applicable  
Item  
Symbol Pins  
Min Typ Max Unit Test Condition  
Note  
Active mode  
current  
dissipation  
IOPE1  
IOPE2  
ISLEEP  
VCC  
VCC  
VCC  
12  
2.5  
5
24  
mA Active mode (high speed),  
VCC = 5 V, fosc = 10 MHz  
1, 2  
5
mA Active mode (medium speed), 1, 2  
VCC = 5 V, fosc = 10 MHz  
Sleep mode  
current  
10  
mA VCC = 5 V, fosc = 10 MHz  
1, 2  
dissipation  
Subactive mode ISUB  
current  
dissipation  
VCC  
2
50  
40  
40  
130 µA  
VCC = 2.7 V, LCD on,  
32-kHz crystal oscillator  
SUB = øw/2)  
1, 2  
90  
6
µA  
µA  
µA  
µA  
V
VCC = 2.7 V, LCD on,  
32-kHz crystal oscillator  
SUB = øw/8)  
Reference  
value  
1, 2  
Subsleep mode ISUBSP  
current  
dissipation  
VCC  
VCC  
VCC  
VCC  
VCC = 2.7 V, LCD on,  
32-kHz crystal oscillator  
SUB = øw/2)  
1, 2  
1, 2  
1, 2  
1, 2  
Watch mode  
current  
IWATCH  
VCC = 2.7 V, LCD not used,  
32-kHz crystal oscillator  
SUB = øw/8)  
dissipation  
Standby mode  
current  
ISTBY  
5
32-kHz crystal oscillator  
not used  
dissipation  
RAM data  
VRAM  
retaining voltage  
Notes: 1. Pin states during current measurement  
LCD  
RES  
Other Power  
Mode  
Pin  
Internal State  
Pins  
Supply Oscillator Pins  
Active mode  
(high and medium  
speed)  
VCC Operates  
VCC  
Open  
System clock oscillator: Crystal  
Subclock oscillator: Pin X1 = VCC  
Sleep mode  
VCC Only timer operates  
VCC  
VCC  
VCC  
Open  
Open  
Open  
Subactive mode VCC Operates  
System clock oscillator: Crystal  
Subclock oscillator: Crystal  
Subsleep mode VCC Only timer operates,  
CPU stops  
Watch mode  
VCC Only time-base clock VCC  
operates, CPU stops  
Open  
Open  
Standby mode  
VCC CPU and timers all  
stop  
VCC  
System clock oscillator: Crystal  
Subclock oscillator: Pin X1 = VCC  
2. Excludes current in pull-up MOS transistors and output buffers.  
365  
Table 14-2 DC Characteristics of H8/3833U and H8/3834U (cont)  
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
V
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Applicable  
Item  
Symbol Pins  
Min Typ Max Unit Test Condition  
Allowable output  
low current (per pin)  
IOL  
Output pins except in  
2
mA  
mA  
VCC = 4.0 V to 5.5 V  
ports 2 and 3  
Ports 2 and 3  
All output pins  
10  
0.5  
40  
VCC = 4.0 V to 5.5 V  
Allowable output  
low current (total)  
ΣIOL  
Output pins except in  
ports 2 and 3  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
Ports 2 and 3  
All output pins  
All output pins  
80  
20  
2
Allowable output  
high current (per pin)  
–IOH  
mA  
mA  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
0.2  
15  
10  
Allowable output  
high current (total)  
Σ–IOH  
All output pins  
366  
14.2.3 AC Characteristics  
Table 14-3 lists the control signal timing, and tables 14-4 and 14-5 list the serial interface timing  
of the H8/3833U and H8/3834U.  
Table 14-3 Control Signal Timing of H8/3833U and H8/3834U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ  
Max Unit Test Condition  
System clock  
oscillation frequency  
fOSC  
tOSC  
tcyc  
OSC1, OSC2  
2
10  
5
MHz VCC = 4.0 V to 5.5 V  
2
OSC clock (øOSC  
cycle time  
)
OSC1, OSC2 100  
1000 ns  
1000  
VCC = 4.0 V to 5.5 V 1  
200  
2
Figure 14-1  
1
System clock (ø)  
cycle time  
16  
tOSC  
2000 ns  
Subclock oscillation  
frequency  
fW  
X1, X2  
X1, X2  
32.768 —  
kHz  
Watch clock cycle time tW  
2
30.5  
8
µs  
tW  
Subclock (øSUB  
)
tsubcyc  
2
cycle time  
Instruction cycle time  
2
tcyc  
tsubcyc  
Oscillation stabilization trc  
time (crystal oscillator)  
OSC1, OSC2  
40  
60  
2
ms  
VCC = 4.0 V to 5.5 V  
Oscillation stabilization trc  
time  
X1, X2  
OSC1  
s
External clock high  
width  
tCPH  
40  
80  
40  
80  
10  
15  
20  
15  
20  
ns  
VCC = 4.0 V to 5.5 V Figure 14-1  
VCC = 4.0 V to 5.5 V Figure 14-1  
VCC = 4.0 V to 5.5 V Figure 14-1  
VCC = 4.0 V to 5.5 V Figure 14-1  
Figure 14-2  
External clock low  
width  
tCPL  
OSC1  
ns  
External clock rise time tCPr  
ns  
External clock fall time tCPf  
ns  
Pin RES low width  
tREL  
RES  
tcyc  
Notes: 1. A frequency between 1 MHz to 10 MHz is required when an external clock is input.  
2. Selected with SA1 and SA0 of system clock control register 2 (SYSCR2).  
367  
Table 14-3 Control Signal Timing of H8/3833U and H8/3834U (cont)  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ  
Max Unit Test Condition  
Input pin high width  
tIH IRQ0 to IRQ4  
2
2
4
tcyc  
tsubcyc  
Figure 14-3  
Figure 14-3  
Figure 14-4  
WKP0 to WKP7  
ADTRG  
TMIB, TMIC  
TMIF, TMIG  
Input pin low width  
tIL  
IRQ0 to IRQ4  
WKP0 to WKP7  
ADTRG  
tcyc  
tsubcyc  
TMIB, TMIC  
TMIF, TMIG  
Pin UD minimum  
modulation width  
tUDH  
tUDL  
UD  
tcyc  
tsubcyc  
Table 14-4 Serial Interface (SCI1, SCI2) Timing of H8/3833U and H8/3834U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C, unless  
CC SS SS a  
CC  
otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ  
Max Unit Test Condition  
Input serial clock  
cycle time  
tscyc  
SCK1, SCK2  
2
SCK1, SCK2 0.4  
SCK1, SCK2 0.4  
tcyc  
tscyc  
tscyc  
ns  
Figure 14-5  
Input serial clock  
high width  
tSCKH  
tSCKL  
Figure 14-5  
Input serial clock  
low width  
Figure 14-5  
Input serial clock rise tSCKr  
time  
SCK1, SCK2  
SCK1, SCK2  
SO1, SO2  
SI1, SI2  
60  
80  
60  
80  
VCC = 4.0 V to 5.5 V Figure 14-5  
Input serial clock fall tSCKf  
time  
ns  
VCC = 4.0 V to 5.5 V Figure 14-5  
VCC = 4.0 V to 5.5 V Figure 14-5  
VCC = 4.0 V to 5.5 V Figure 14-5  
VCC = 4.0 V to 5.5 V Figure 14-5  
Serial output data  
delay time  
tSOD  
200 ns  
350  
Serial input data  
setup time  
tSIS  
200  
400  
200  
400  
2
ns  
Serial input data  
hold time  
tSIH  
SI1, SI2  
ns  
CS setup time  
CS hold time  
tCSS  
tCSH  
CS  
CS  
tcyc  
tcyc  
Figure 14-6  
Figure 14-6  
2
368  
Table 14-5 Serial Interface (SCI3) Timing of H8/3833U and H8/3834U  
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C, unless  
V
CC  
CC  
SS  
SS  
a
otherwise specified.  
Reference  
Figure  
Item  
Symbol Min Typ Max Unit Test Condition  
Input clock cycle Asynchronous  
Synchronous  
tscyc  
4
0.6  
1
tcyc  
Figure 14-7  
6
Input clock pulse width  
tSCKW  
tTXD  
0.4  
tscyc  
tcyc  
Figure 14-7  
Transmit data delay time  
(synchronous mode)  
VCC = 4.0 V to 5.5 V Figure 14-8  
1
Receive data setup time  
(synchronous mode)  
tRXS  
200  
400  
200  
400  
ns  
ns  
VCC = 4.0 V to 5.5 V Figure 14-8  
VCC = 4.0 V to 5.5 V Figure 14-8  
Receive data hold time  
(synchronous mode)  
tRXH  
369  
14.2.4 A/D Converter Characteristics  
Table 14-6 shows the A/D converter characteristics of the H8/3833U and H8/3834U.  
Table 14-6 A/D Converter Characteristics of H8/3833U and H8/3834U  
V
= 2.7 V to 5.5 V, AV = V = 0.0 V, T = 20°C to +75°C, unless otherwise specified.  
SS SS a  
CC  
Applicable  
Symbol Pins  
Item  
Min  
Typ Max  
Unit Test Condition  
Note  
Analog power  
supply voltage  
AVCC  
AVCC  
2.7  
5.5  
V
1
Analog input  
voltage  
AVIN  
AN0 to AN11 –0.3  
AVCC + 0.3  
V
AIOPE  
AVCC  
1.5  
mA AVCC = 5.0 V  
µA  
Analog power  
supply current  
AISTOP1 AVCC  
150  
2
Refere-  
nce value  
AISTOP2 AVCC  
CAIN AN0 to AN11  
5
µA  
pF  
3
Analog input  
capacitance  
30  
Allowable signal RAIN  
source  
10  
k  
impedance  
Resolution  
(data length)  
8
bit  
Non-linearity  
error  
±2.0  
±0.5  
±2.5  
LSB  
LSB  
LSB  
Quantization  
error  
Absolute  
accuracy  
Conversion time  
12.4  
24.8  
124  
124  
µs  
AVCC = 4.5 V to 5.5 V  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D  
converter is idle.  
370  
14.2.5 LCD Characteristics  
Table 14-7 lists the LCD characteristics, and table 14-8 lists the AC characteristics for external  
segment expansion of the H8/3833U and H8/3834U.  
Table 14-7 LCD Characteristics of H8/3833U and H8/3834U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Item  
Symbol Pins  
Min Typ Max Unit Test Condition  
Note  
Segment driver  
voltage drop  
VDS  
SEG1 to  
SEG40  
50  
0.6  
V
ID = 2 µA  
1
Common driver  
voltage drop  
VDC  
RLCD  
COM1 to  
COM4  
0.3  
V
ID = 2 µA  
1
LCD power supply  
voltage divider  
resistance  
300 900 kΩ  
Between V1 and  
VSS  
LCD power supply  
voltage  
VLCD  
V1  
2.7  
VCC  
V
2
Notes: 1. These are the voltage drops between the voltage supply pins V1, V2, V3 , and Vss, and the segment  
pins or common pins.  
2. When VLCD is supplied from an external source, the following relation must hold: VCC V1 V2 ≥  
V3 VSS  
Table 14-8 AC Characteristics for External Segment Expansion of H8/3833U and H8/3834U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ Max Unit Test Condition  
Clock high width  
Clock low width  
Clock setup time  
Data setup time  
Data hold time  
M delay time  
tCWH  
tCWL  
tCSU  
tSU  
CL1, CL2  
800  
800  
500  
300  
300  
ns  
ns  
ns  
ns  
ns  
*
*
*
*
*
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
CL2  
CL1, CL2  
DO  
tDH  
DO  
tDM  
M
–1000 —  
1000 ns  
100 ns  
Clock rise and fall  
times  
tCT  
CL1, CL2  
Note: * Value when the frame frequency is set to between 30.5 Hz and 488 Hz.  
371  
14.3 H8/3835U, H8/3836U, and H8/3837U Electrical Characteristics  
14.3.1 Power Supply Voltage and Operating Range  
The power supply voltage and operating range of the H8/3835U, H8/3836U, and H8/3837U are  
indicated by the shaded region in the figures below.  
1. Power supply voltage vs. oscillator frequency range of H8/3835U, H8/3836U, and H8/3837U  
10.0  
32.768  
5.0  
2.0  
2.7  
4.0  
5.5  
2.7  
4.0  
5.5  
VCC (V)  
VCC (V)  
• Active mode (high speeds)  
• Sleep mode  
• All operating modes  
372  
2. Power supply voltage vs. clock frequency range of H8/3835U, H8/3836U, and H8/3837U  
5.0  
16.384  
2.5  
8.192  
4.096  
0.5  
2.7  
4.0  
5.5  
2.7  
4.0  
5.5  
VCC (V)  
VCC (V)  
• Active mode (high speed)  
• Sleep mode (except CPU)  
• Subactive mode  
• Subsleep mode (except CPU)  
• Watch mode (except CPU)  
625.0  
500.0  
312.5  
62.5  
2.7  
4.0  
5.5  
VCC (V)  
• Active mode (medium speed)  
3. Analog power supply voltage vs. A/D converter operating range of H8/3835U, H8/3836U,  
and H8/3837U  
5.0  
625.0  
500.0  
2.5  
0.5  
312.5  
62.5  
2.7  
4.0  
5.5  
2.7  
4.0  
5.5  
AVCC (V)  
AVCC (V)  
• Active (high speed) mode  
• Sleep mode  
• Active (medium speed) mode  
373  
14.3.2 DC Characteristics  
Table 14-9 lists the DC characteristics of the H8/3835U, H8/3836U, and H8/3837U.  
Table 14-9 DC Characteristics of H8/3835U, H8/3836U, and H8/3837U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Item  
Symbol Applicable Pins  
Min  
Typ Max  
Unit Test Condition  
Note  
Input high VIH  
voltage  
RES, MD0,  
0.8 VCC  
VCC + 0.3  
V
VCC = 4.0 V to 5.5 V  
WKP0 to WKP7,  
IRQ0 to IRQ4,  
TMIB, TMIC, TMIF  
CS, TMIG,  
0.9 VCC  
VCC + 0.3  
SCK1, SCK2,  
SCK3, ADTRG  
UD, SI1, SI2, RXD 0.7 VCC  
0.8 VCC  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
V
V
V
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
OSC1  
VCC – 0.5 —  
VCC – 0.3 —  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P43  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
0.7 VCC  
0.8 VCC  
VCC + 0.3  
PB0 to PB7  
PC0 to PC3  
0.7 VCC  
0.8 VCC  
–0.3  
AVCC + 0.3 V  
AVCC + 0.3  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
Input low  
voltage  
VIL  
RES, MD0,  
0.2 VCC  
V
WKP0 to WKP7,  
IRQ0 to IRQ4,  
TMIB, TMIC, TMIF,  
CS, TMIG,  
–0.3  
0.1 VCC  
SCK1, SCK2,  
SCK3, ADTRG  
UD, SI1, SI2, RXD –0.3  
–0.3  
0.3 VCC  
0.2 VCC  
0.5  
V
V
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
OSC1  
–0.3  
–0.3  
0.3  
Note: Connect pin TEST to VSS  
.
374  
Table 14-9 DC Characteristics of H8/3835U, H8/3836U, and H8/3837U (cont)  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Item  
Symbol Applicable Pins  
Min  
Typ Max  
Unit Test Condition  
Note  
Input low  
voltage  
VIL  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P43  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
PB0 to PB7  
PC0 to PC3  
–0.3  
0.3 VCC  
V
VCC = 4.0 V to 5.5 V  
–0.3  
0.2 VCC  
Output  
high voltage  
VOH  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P42  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
VCC – 1.0 —  
VCC – 0.5 —  
VCC – 0.5 —  
V
VCC = 4.0 V to 5.5 V  
–IOH = 1.0 mA  
VCC = 4.0 V to 5.5 V  
–IOH = 0.5 mA  
–IOH = 0.1 mA  
Output  
low voltage  
VOL  
P10 to P17  
P40 to P42  
0.6  
V
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.5  
0.5  
IOL = 0.4 mA  
IOL = 0.4 mA  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
P20 to P27  
P30 to P37  
1.5  
0.6  
0.5  
VCC = 4.0 V to 5.5 V  
IOL = 10 mA  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
IOL = 0.4 mA  
Note: Connect pin TEST to VSS  
.
375  
Table 14-9 DC Characteristics of H8/3835U, H8/3836U, and H8/3837U (cont)  
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
V
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Item  
Symbol Applicable Pins  
Min Typ Max Unit  
Test Condition  
Note  
Input  
leakage  
current  
|IIL|  
RES, P43  
20  
1
µA  
VIN = 0.5 V to  
VCC – 0.5 V  
2
1
OSC1, MD0  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P42  
P50 to P57  
P60 to P67  
P70 to P77  
P80 to P87  
P90 to P97  
PA0 to PA3  
1
µA  
VIN = 0.5 V to  
VCC – 0.5 V  
PB0 to PB7  
PC0 to PC3  
50  
35  
1
VIN = 0.5 V to  
AVCC – 0.5 V  
Pull-up  
MOS  
–IP  
P10 to P17  
P30 to P37  
P50 to P57  
P60 to P67  
300 µA  
VCC = 5 V,  
VIN = 0 V  
current  
µA  
pF  
VCC = 2.7 V,  
VIN = 0 V  
Reference  
value  
Input  
CIN  
All input pins except  
power supply, RES  
P43 pin  
15  
f = 1 MHz,  
VIN = 0 V  
Ta = 25°C  
capacitance  
RES  
60  
15  
30  
15  
2
1
2
1
P43  
Notes: 1. Applies to HD6433835U, HD6433836U, and HD6433837U.  
2. Applies to HD6473837U.  
376  
Table 14-9 DC Characteristics of H8/3835U, H8/3836U, and H8/3837U (cont)  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise indicated.  
Applicable  
Item  
Symbol Pins  
Min Typ Max Unit Test Condition  
Note  
Active mode  
current  
dissipation  
IOPE1  
IOPE2  
ISLEEP  
VCC  
VCC  
VCC  
13.5 24.0 mA Active mode (high speed),  
VCC = 5 V, fosc = 10 MHz  
1, 2  
2.5 5.0  
mA Active mode (medium speed), 1, 2  
VCC = 5 V, fosc = 10 MHz  
Sleep mode  
current  
5.0 10.0 mA VCC = 5 V, fosc = 10 MHz  
1, 2  
dissipation  
Subactive mode ISUB  
current  
dissipation  
VCC  
2
50.0 130.0 µA VCC = 2.7 V, LCD on,  
32-kHz crystal oscillator  
SUB = øw/2)  
1, 2  
40.0 —  
µA VCC = 2.7 V, LCD on,  
32-kHz crystal oscillator  
SUB = øw/8)  
Reference  
value  
1, 2  
Subsleep mode ISUBSP  
current  
dissipation  
VCC  
VCC  
VCC  
VCC  
40.0 90.0 µA VCC = 2.7 V, LCD on,  
32-kHz crystal oscillator  
SUB = øw/2)  
1, 2  
1, 2  
1, 2  
1, 2  
Watch mode  
current  
IWATCH  
6
µA VCC = 2.7 V, LCD not used,  
32-kHz crystal oscillator  
SUB = øw/8)  
dissipation  
Standby mode  
current  
ISTBY  
5
µA 32-kHz crystal oscillator  
not used  
dissipation  
RAM data  
VRAM  
V
retaining voltage  
Notes: 1. Pin states during current measurement  
LCD  
RES  
Other Power  
Mode  
Pin  
Internal State  
Pins  
Supply Oscillator Pins  
Active mode  
(high and medium  
speed)  
VCC Operates  
VCC  
Open  
System clock oscillator: Crystal  
Subclock oscillator: Pin X1 = VCC  
Sleep mode  
VCC Only timer operates  
VCC  
VCC  
VCC  
Open  
Open  
Open  
Subactive mode VCC Operates  
System clock oscillator: Crystal  
Subclock oscillator: Crystal  
Subsleep mode VCC Only timer operates,  
CPU stops  
Watch mode  
VCC Only time-base clock VCC  
operates, CPU stops  
Open  
Open  
Standby mode  
VCC CPU and timers all  
stop  
VCC  
System clock oscillator: Crystal  
Subclock oscillator: Pin X1 = VCC  
2. Excludes current in pull-up MOS transistors and output buffers.  
377  
Table 14-9 DC Characteristics of H8/3835U, H8/3836U, and H8/3837U (cont)  
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
V
CC  
CC  
SS  
SS  
a
including subactive mode, unless otherwise indicated.  
Applicable  
Item  
Symbol Pins  
Min Typ Max Unit Test Condition  
Allowable output  
low current (per pin)  
IOL  
Output pins except in  
2
mA  
mA  
VCC = 4.0 V to 5.5 V  
ports 2 and 3  
Ports 2 and 3  
All output pins  
10  
0.5  
40  
VCC = 4.0 V to 5.5 V  
Allowable output  
low current (total)  
ΣIOL  
Output pins except in  
ports 2 and 3  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
Ports 2 and 3  
All output pins  
All output pins  
80  
20  
2
Allowable output  
high current (per pin)  
–IOH  
mA  
mA  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
0.2  
15  
10  
Allowable output  
high current (total)  
Σ–IOH  
All output pins  
378  
14.3.3 AC Characteristics  
Table 14-10 lists the control signal timing, and tables 14-11 and 14-12 list the serial interface  
timing of the H8/3835U, H8/3836U, and H8/3837U.  
Table 14-10 Control Signal Timing of H8/3835U, H8/3836U, and H8/3837U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ  
Max Unit Test Condition  
System clock  
oscillation frequency  
fOSC  
tOSC  
tcyc  
OSC1, OSC2  
2
10  
5
MHz VCC = 4.0 V to 5.5 V  
2
OSC clock (øOSC  
cycle time  
)
OSC1, OSC2 100  
1000 ns  
1000  
VCC = 4.0 V to 5.5 V 1  
200  
2
Figure 14-1  
1
System clock (ø)  
cycle time  
16  
tOSC  
2000 ns  
Subclock oscillation  
frequency  
fW  
X1, X2  
X1, X2  
2
32.768 —  
kHz  
Watch clock (øW)  
cycle time  
tW  
30.5  
8
µs  
Subclock (øSUB  
)
tsubcyc  
tW  
2
cycle time  
Instruction cycle time  
2
tcyc  
tsubcyc  
Oscillation stabilization  
time (crystal oscillator)  
trc  
OSC1, OSC2  
40  
60  
2
ms  
VCC = 4.0 V to 5.5 V  
Oscillation stabilization trc  
time  
X1, X2  
OSC1  
s
External clock high  
width  
tCPH  
40  
80  
40  
80  
10  
15  
20  
15  
20  
ns  
VCC = 4.0 V to 5.5 V Figure 14-1  
VCC = 4.0 V to 5.5 V Figure 14-1  
VCC = 4.0 V to 5.5 V Figure 14-1  
VCC = 4.0 V to 5.5 V Figure 14-1  
Figure 14-2  
External clock low  
width  
tCPL  
OSC1  
ns  
External clock rise time tCPr  
External clock fall time tCPf  
ns  
ns  
Pin RES low width  
tREL  
RES  
tcyc  
Notes: 1. A frequency between 1 MHz to 10 MHz is required when an external clock is input.  
2. Selected with SA1 and SA0 of system clock control register 2 (SYSCR2).  
379  
Table 14-10 Control Signal Timing of H8/3835U, H8/3836U, and H8/3837U (cont)  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ  
Max Unit Test Condition  
Input pin high width  
tIH IRQ0 to IRQ4  
2
2
4
tcyc  
tsubcyc  
Figure 14-3  
Figure 14-3  
Figure 14-4  
WKP0 to WKP7  
ADTRG  
TMIB, TMIC  
TMIF, TMIG  
Input pin low width  
tIL  
IRQ0 to IRQ4  
WKP0 to WKP7  
ADTRG  
tcyc  
tsubcyc  
TMIB, TMIC  
TMIF, TMIG  
Pin UD minimum  
modulation width  
tUDH  
tUDL  
UD  
tcyc  
tsubcyc  
Table 14-11 Serial Interface (SCI1, SCI2) Timing of H8/3835U, H8/3836U, and H8/3837U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C, unless  
CC SS SS a  
CC  
otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ  
Max Unit Test Condition  
Input serial clock  
cycle time  
tscyc  
SCK1, SCK2  
2
SCK1, SCK2 0.4  
SCK1, SCK2 0.4  
tcyc  
tscyc  
tscyc  
ns  
Figure 14-5  
Input serial clock  
high width  
tSCKH  
tSCKL  
Figure 14-5  
Input serial clock  
low width  
Figure 14-5  
Input serial clock rise tSCKr  
time  
SCK1, SCK2  
SCK1, SCK2  
SO1, SO2  
SI1, SI2  
60  
80  
60  
80  
VCC = 4.0 V to 5.5 V Figure 14-5  
Input serial clock fall tSCKf  
time  
ns  
VCC = 4.0 V to 5.5 V Figure 14-5  
VCC = 4.0 V to 5.5 V Figure 14-5  
VCC = 4.0 V to 5.5 V Figure 14-5  
VCC = 4.0 V to 5.5 V Figure 14-5  
Serial output data  
delay time  
tSOD  
200 ns  
350  
Serial input data  
setup time  
tSIS  
200  
400  
200  
400  
2
ns  
Serial input data  
hold time  
tSIH  
SI1, SI2  
ns  
CS setup time  
CS hold time  
tCSS  
tCSH  
CS  
CS  
tcyc  
tcyc  
Figure 14-6  
Figure 14-6  
2
380  
Table 14-12 Serial Interface (SCI3) Timing of H8/3835U, H8/3836U, and H8/3837U  
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C, unless  
V
CC  
CC  
SS  
SS  
a
otherwise specified.  
Reference  
Figure  
Item  
Symbol Min Typ Max Unit Test Condition  
Input clock cycle Asynchronous  
Synchronous  
tscyc  
4
0.6  
1
tcyc  
Figure 14-7  
6
Input clock pulse width  
tSCKW  
tTXD  
0.4  
tscyc  
tcyc  
Figure 14-7  
Transmit data delay time  
(synchronous mode)  
VCC = 4.0 V to 5.5 V Figure 14-8  
1
Receive data setup time  
(synchronous mode)  
tRXS  
200  
400  
200  
400  
ns  
ns  
VCC = 4.0 V to 5.5 V Figure 14-8  
VCC = 4.0 V to 5.5 V Figure 14-8  
Receive data hold time  
(synchronous mode)  
tRXH  
381  
14.3.4 A/D Converter Characteristics  
Table 14-13 shows the A/D converter characteristics of the H8/3835U, H8/3836U, and H8/3837U.  
Table 14-13 A/D Converter Characteristics of H8/3835U, H8/3836U, and H8/3837U  
V
= 2.7 V to 5.5 V, AV = V = 0.0 V, T = 20°C to +75°C, unless otherwise specified.  
SS SS a  
CC  
Applicable  
Symbol Pins  
Item  
Min  
Typ Max  
Unit Test Condition  
Note  
Analog power  
supply voltage  
AVCC  
AVCC  
2.7  
5.5  
V
1
Analog input  
voltage  
AVIN  
AN0 to AN11 AVSS – 0.3 —  
AVCC + 0.3  
V
Analog power  
supply current  
AIOPE  
AVCC  
1.5  
mA AVCC = 5.0 V  
µA  
AISTOP1 AVCC  
150  
2
Refere-  
nce value  
AISTOP2 AVCC  
CAIN AN0 to AN11  
5
µA  
pF  
3
Analog input  
capacitance  
30  
Allowable signal RAIN  
source  
10  
k  
impedance  
Resolution  
(data length)  
8
bit  
Non-linearity  
error  
±2.0  
±0.5  
±2.5  
LSB  
LSB  
LSB  
Quantization  
error  
Absolute  
accuracy  
Conversion time  
12.4  
24.8  
124  
124  
µs  
AVCC = 4.5 V to 5.5 V  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D  
converter is idle.  
382  
14.3.5 LCD Characteristics  
Table 14-14 lists the LCD characteristics, and table 14-15 lists the AC characteristics for external  
segment expansion of the H8/3835U, H8/3836U, and H8/3837U.  
Table 14-14 LCD Characteristics of H8/3835U, H8/3836U, and H8/3837U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Item  
Symbol Pins  
Min Typ Max Unit Test Condition  
Note  
Segment driver  
voltage drop  
VDS  
SEG1 to  
SEG40  
50  
0.6  
V
ID = 2 µA  
1
Common driver  
voltage drop  
VDC  
RLCD  
COM1 to  
COM4  
0.3  
V
ID = 2 µA  
1
LCD power supply  
voltage divider  
resistance  
300 900 kΩ  
Between V1 and  
VSS  
LCD power supply  
voltage  
VLCD  
V1  
2.7  
VCC  
V
2
Notes: 1. These are the voltage drops between the voltage supply pins V1, V2, V3 , and Vss, and the segment  
pins or common pins.  
2. When VLCD is supplied from an external source, the following relation must hold: VCC V1 V2 ≥  
V3 VSS  
Table 14-15 AC Characteristics for External Segment Expansion of H8/3835U, H8/3836U,  
and H8/3837U  
V
= 2.7 V to 5.5 V, AV = 2.7 V to 5.5 V, V = AV = 0.0 V, T = 20°C to +75°C,  
CC SS SS a  
CC  
including subactive mode, unless otherwise specified.  
Applicable  
Symbol Pins  
Reference  
Figure  
Item  
Min Typ Max Unit Test Condition  
Clock high width  
Clock low width  
Clock setup time  
Data setup time  
Data hold time  
M delay time  
tCWH  
tCWL  
tCSU  
tSU  
CL1, CL2  
800  
800  
500  
300  
300  
ns  
ns  
ns  
ns  
ns  
*
*
*
*
*
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
Figure 14-9  
CL2  
CL1, CL2  
DO  
tDH  
DO  
tDM  
M
–1000 —  
1000 ns  
100 ns  
Clock rise and fall  
times  
tCT  
CL1, CL2  
Note: * Value when the frame frequency is set to between 30.5 Hz and 488 Hz.  
383  
14.4 Operation Timing  
Figures 14-1 to 14-10 show timing diagrams.  
tOSC  
V
IH  
OSC1  
V
IL  
tCPH  
tCPr  
tCPL  
tCPf  
Figure 14-1 System Clock Input Timing  
RES  
V
IL  
tREL  
Figure 14-2 RES Low Width  
IRQ0 to IRQ4  
WKP0 to WKP7  
ADTRG  
V
IH  
TMIB, TMIC  
TMIF, TMIG  
V
IL  
tIL  
tIH  
Figure 14-3 Input Timing  
384  
V
IH  
UD  
V
IL  
tUDL  
tUDH  
Figure 14-4 Minimum UD High and Low Width  
385  
tscyc  
VIH or VOH  
*
SCK1  
SCK2  
VIL or VOL  
*
tSCKL  
tSCKH  
tSCKr  
tSCKf  
tSOD  
VOH  
*
SO1  
SO2  
VOL  
*
tSIS  
tSIH  
SI1  
SI2  
Notes: * Output timing reference levels  
Output high: VOH = 2.0 V  
Output low: VOL = 0.8 V  
Load conditions are shown in figure 14-10.  
Figure 14-5 Serial Interface 1 and 2 Input/Output Timing  
386  
VIH  
CS  
VIL  
tCSS  
tCSH  
VIH  
SCK2  
VIL  
Figure 14-6 Serial Interface 2 Chip Select Timing  
tSCKW  
SCK3  
tscyc  
Figure 14-7 SCK Input Clock Timing  
3
387  
tscyc  
VIH or VOH  
*
SCK3  
TXD  
VIL or VOL  
*
tTXD  
VOH  
VOL  
*
*
(transmit data)  
tRXS tRXH  
TXD  
(receive data)  
Notes: * Output timing reference levels  
Output high: VOH= 2.0 V  
Output low: VOL = 0.8 V  
Load conditions are shown in figure 14-10.  
Figure 14-8 Input/Output Timing of Serial Interface 3 in Synchronous Mode  
tCT  
VCC – 0.5 V  
CL  
1
2
0.4 V  
tCWH  
tCWH  
tCSU  
VCC– 0.5 V  
CL  
DO  
M
0.4 V  
tCSU  
tCWL  
tCT  
VCC – 0.5 V  
0.4 V  
tSU  
tDH  
0.4 V  
tDM  
Figure 14-9 Segment Expansion Signal Timing  
388  
14.5 Output Load Circuit  
VCC  
2.4 k  
Output pin  
30 pF  
12 kΩ  
Figure 14-10 Output Load Condition  
389  
Appendix A CPU Instruction Set  
A.1 Instructions  
Operation Notation  
Rd8/16  
General register (destination) (8 or 16 bits)  
General register (source) (8 or 16 bits)  
General register (8 or 16 bits)  
Condition code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
V (overflow) flag in CCR  
C (carry) flag in CCR  
Program counter  
Rs8/16  
Rn8/16  
CCR  
N
Z
V
C
PC  
SP  
Stack pointer  
#xx: 3/8/16  
Immediate data (3, 8, or 16 bits)  
Displacement (8 or 16 bits)  
Absolute address (8 or 16 bits)  
Addition  
d: 8/16  
@aa: 8/16  
+
×
÷
Subtraction  
Multiplication  
Division  
Logical AND  
Logical OR  
Exclusive logical OR  
Move  
Logical complement  
Condition Code Notation  
Symbol  
*
Modified according to the instruction result  
Not fixed (value not guaranteed)  
Always cleared to 0  
0
Not affected by the instruction execution result  
391  
Table A-1 lists the H8/300L CPU instruction set.  
Table A-1 Instruction Set  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
H N Z V C  
Mnemonic  
Operation  
I
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
B
B
B
B
B
#xx:8 Rd8  
2
2
2
4
2
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 4  
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 6  
Rs8 Rd8  
MOV.B @Rs, Rd  
MOV.B @(d:16, Rs), Rd  
MOV.B @Rs+, Rd  
@Rs16 Rd8  
@(d:16, Rs16)Rd8  
@Rs16 Rd8  
Rs16+1 Rs16  
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B Rs, @Rd  
B
B
B
B
B
@aa:8 Rd8  
2
— — ↕ ↕ 0 — 4  
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 4  
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 6  
@aa:16 Rd8  
Rs8 @Rd16  
4
2
4
2
MOV.B Rs, @(d:16, Rd)  
MOV.B Rs, @–Rd  
Rs8 @(d:16, Rd16)  
Rd16–1 Rd16  
Rs8 @Rd16  
MOV.B Rs, @aa:8  
MOV.B Rs, @aa:16  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
B
B
Rs8 @aa:8  
2
— — ↕ ↕ 0 — 4  
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 4  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 4  
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 6  
Rs8 @aa:16  
#xx:16 Rd  
4
W
W
W
W
W
4
2
2
4
2
Rs16 Rd16  
MOV.W @Rs, Rd  
MOV.W @(d:16, Rs), Rd  
MOV.W @Rs+, Rd  
@Rs16 Rd16  
@(d:16, Rs16) Rd16  
@Rs16 Rd16  
Rs16+2 Rs16  
MOV.W @aa:16, Rd  
MOV.W Rs, @Rd  
W
W
W
W
@aa:16 Rd16  
4
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 4  
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 6  
Rs16 @Rd16  
2
4
2
MOV.W Rs, @(d:16, Rd)  
MOV.W Rs, @–Rd  
Rs16 @(d:16, Rd16)  
Rd16–2 Rd16  
Rs16 @Rd16  
MOV.W Rs, @aa:16  
POP Rd  
W
W
Rs16 @aa:16  
4
2
— — ↕ ↕ 0 — 6  
— — ↕ ↕ 0 — 6  
@SP Rd16  
SP+2 SP  
PUSH Rs  
W
SP–2 SP  
2
— — ↕ ↕ 0 — 6  
Rs16 @SP  
392  
Table A-1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
H N  
4 — — — — — — ➃  
Mnemonic  
Operation  
I
Z V C  
EEPMOV  
— if R4L0 then  
Repeat @R5 @R6  
R5+1 R5  
R6+1 R6  
R4L–1 R4L  
Until R4L=0  
else next;  
ADD.B #xx:8, Rd  
ADD.B Rs, Rd  
ADD.W Rs, Rd  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
ADDS.W #1, Rd  
ADDS.W #2, Rd  
INC.B Rd  
B
B
Rd8+#xx:8 Rd8  
Rd8+Rs8 Rd8  
Rd16+Rs16 Rd16  
Rd8+#xx:8 +C Rd8  
Rd8+Rs8 +C Rd8  
Rd16+1 Rd16  
Rd16+2 Rd16  
Rd8+1 Rd8  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ 2  
W
B
➀ ↕ ↕ ↕ ↕ 2  
↕ ↕ ➁ ↕ ↕ 2  
↕ ↕ ➁ ↕ ↕ 2  
B
W
W
B
— — — — — — 2  
— — — — — — 2  
— — ↕ ↕ ↕ — 2  
DAA.B Rd  
B
Rd8 decimal adjust Rd8  
Rd8–Rs8 Rd8  
Rd16–Rs16 Rd16  
Rd8–#xx:8 –C Rd8  
Rd8–Rs8 –C Rd8  
Rd16–1 Rd16  
Rd16–2 Rd16  
Rd8–1 Rd8  
*
↕ ↕ * 2  
SUB.B Rs, Rd  
SUB.W Rs, Rd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
SUBS.W #1, Rd  
SUBS.W #2, Rd  
DEC.B Rd  
B
↕ ↕ ↕ ↕ ↕ 2  
W
B
➀ ↕ ↕ ↕ ↕ 2  
↕ ↕ ➁ ↕ ↕ 2  
↕ ↕ ➁ ↕ ↕ 2  
B
W
W
B
— — — — — — 2  
— — — — — — 2  
— — ↕ ↕ ↕ — 2  
DAS.B Rd  
B
Rd8 decimal adjust Rd8  
0–Rd Rd  
*
↕ ↕ * — 2  
NEG.B Rd  
B
↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ 2  
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
CMP.W Rs, Rd  
B
Rd8–#xx:8  
B
Rd8–Rs8  
W
Rd16–Rs16  
➀ ↕ ↕ ↕ ↕ 2  
393  
Table A-1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
H N Z V C  
Mnemonic  
Operation  
I
MULXU.B Rs, Rd  
DIVXU.B Rs, Rd  
B
B
Rd8 × Rs8 Rd16  
2
2
— — — — — — 14  
Rd16÷Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
— — ➄ ➅ — — 14  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
NOT.B Rd  
B
B
B
B
B
B
B
B
Rd8 #xx:8 Rd8  
Rd8 Rs8 Rd8  
Rd8 #xx:8 Rd8  
Rd8 Rs8 Rd8  
Rd8 #xx:8 Rd8  
Rd8 Rs8 Rd8  
Rd Rd  
2
2
2
2
2
2
2
2
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ 0 — 2  
— — ↕ ↕ ↕ ↕ 2  
SHAL.B Rd  
C
0
b7  
b0  
SHAR.B Rd  
SHLL.B Rd  
SHLR.B Rd  
ROTXL.B Rd  
ROTXR.B Rd  
B
B
B
B
B
2
2
2
2
2
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
— — 0 0 2  
— — ↕ ↕ 0 2  
— — ↕ ↕ 0 2  
C
b7  
b0  
C
0
b7  
b0  
0
C
b7  
b0  
C
b7  
b0  
b7  
b0  
C
394  
Table A-1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
H N Z V C  
Mnemonic  
Operation  
I
ROTL.B Rd  
B
B
2
2
— — ↕ ↕ 0 2  
C
b7  
b0  
ROTR.B Rd  
— — ↕ ↕ 0 2  
C
b7  
b0  
BSET #xx:3, Rd  
BSET #xx:3, @Rd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
(#xx:3 of Rd8) 1  
2
4
4
2
4
4
2
4
4
2
4
4
2
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
(#xx:3 of @Rd16) 1  
(#xx:3 of @aa:8) 1  
(Rn8 of Rd8) 1  
BSET Rn, @Rd  
BSET Rn, @aa:8  
BCLR #xx:3, Rd  
BCLR #xx:3, @Rd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
(Rn8 of @Rd16) 1  
(Rn8 of @aa:8) 1  
(#xx:3 of Rd8) 0  
(#xx:3 of @Rd16) 0  
(#xx:3 of @aa:8) 0  
(Rn8 of Rd8) 0  
BCLR Rn, @Rd  
BCLR Rn, @aa:8  
BNOT #xx:3, Rd  
(Rn8 of @Rd16) 0  
(Rn8 of @aa:8) 0  
(#xx:3 of Rd8) ←  
(#xx:3 of Rd8)  
BNOT #xx:3, @Rd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
B
B
B
B
B
(#xx:3 of @Rd16) ←  
(#xx:3 of @Rd16)  
4
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
(#xx:3 of @aa:8) ←  
(#xx:3 of @aa:8)  
4
(Rn8 of Rd8) ←  
(Rn8 of Rd8)  
2
4
4
BNOT Rn, @Rd  
BNOT Rn, @aa:8  
(Rn8 of @Rd16) ←  
(Rn8 of @Rd16)  
(Rn8 of @aa:8) ←  
(Rn8 of @aa:8)  
395  
Table A-1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
H N Z V C  
Mnemonic  
Operation  
I
BTST #xx:3, Rd  
BTST #xx:3, @Rd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
(#xx:3 of Rd8) Z  
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — — 2  
— — — — — — 8  
— — — — — — 8  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
(#xx:3 of @Rd16) Z  
(#xx:3 of @aa:8) Z  
(Rn8 of Rd8) Z  
BTST Rn, @Rd  
BTST Rn, @aa:8  
BLD #xx:3, Rd  
(Rn8 of @Rd16) Z  
(Rn8 of @aa:8) Z  
(#xx:3 of Rd8) C  
BLD #xx:3, @Rd  
BLD #xx:3, @aa:8  
BILD #xx:3, Rd  
(#xx:3 of @Rd16) C  
(#xx:3 of @aa:8) C  
(#xx:3 of Rd8) C  
BILD #xx:3, @Rd  
BILD #xx:3, @aa:8  
BST #xx:3, Rd  
(#xx:3 of @Rd16) C  
(#xx:3 of @aa:8) C  
C (#xx:3 of Rd8)  
BST #xx:3, @Rd  
BST #xx:3, @aa:8  
BIST #xx:3, Rd  
C (#xx:3 of @Rd16)  
C (#xx:3 of @aa:8)  
C (#xx:3 of Rd8)  
BIST #xx:3, @Rd  
BIST #xx:3, @aa:8  
BAND #xx:3, Rd  
BAND #xx:3, @Rd  
BAND #xx:3, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @Rd  
BIAND #xx:3, @aa:8  
BOR #xx:3, Rd  
C (#xx:3 of @Rd16)  
C (#xx:3 of @aa:8)  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
BOR #xx:3, @Rd  
BOR #xx:3, @aa:8  
BIOR #xx:3, Rd  
BIOR #xx:3, @Rd  
396  
Table A-1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
H N Z V C  
Branching  
Condition  
Mnemonic  
Operation  
I
BIOR #xx:3, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @Rd  
BXOR #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @Rd  
BIXOR #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
B
B
B
B
B
B
B
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @Rd16) C  
C (#xx:3 of @aa:8) C  
4
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — 2  
— — — — — 6  
— — — — — 6  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 4  
— — — — — — 6  
— — — — — — 8  
— — — — — — 6  
2
4
4
2
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
2
2
— PC PC+d:8  
— PC PC+2  
If  
C
C
Z = 0  
Z = 1  
condition  
is true  
then  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
C = 0  
PC ←  
PC+d:8  
else next;  
C = 1  
Z = 0  
BEQ d:8  
Z = 1  
BVC d:8  
V = 0  
BVS d:8  
V = 1  
BPL d:8  
N = 0  
BMI d:8  
N = 1  
BGE d:8  
N V = 0  
N V = 1  
BLT d:8  
BGT d:8  
Z
Z
(N V) = 0  
(N V) = 1  
BLE d:8  
JMP @Rn  
— PC Rn16  
— PC aa:16  
JMP @aa:16  
JMP @@aa:8  
BSR d:8  
— PC @aa:8  
— SP–2 SP  
PC @SP  
PC PC+d:8  
397  
Table A-1 Instruction Set (cont)  
Addressing Mode/  
Instruction Length (bytes)  
Condition Code  
H N Z V C  
Mnemonic  
Operation  
I
JSR @Rn  
— SP–2 SP  
PC @SP  
2
4
2
— — — — — — 6  
— — — — — — 8  
— — — — — — 8  
2 — — — — — — 8  
PC Rn16  
JSR @aa:16  
JSR @@aa:8  
— SP–2 SP  
PC @SP  
PC aa:16  
SP–2 SP  
PC @SP  
PC @aa:8  
RTS  
RTE  
— PC @SP  
SP+2 SP  
— CCR @SP  
SP+2 SP  
2 ↕ ↕ ↕ ↕ ↕ ↕ 10  
PC @SP  
SP+2 SP  
SLEEP  
Transit to sleep mode.  
2 — — — — — — 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
— — — — — — 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
↕ ↕ ↕ ↕ ↕ ↕ 2  
2 — — — — — — 2  
LDC #xx:8, CCR  
LDC Rs, CCR  
STC CCR, Rd  
ANDC #xx:8, CCR  
ORC #xx:8, CCR  
XORC #xx:8, CCR  
NOP  
B
B
B
B
B
B
#xx:8 CCR  
2
2
2
2
2
2
Rs8 CCR  
CCR Rd8  
CCR #xx:8 CCR  
CCR #xx:8 CCR  
CCR #xx:8 CCR  
— PC PC+2  
Notes: * The number of execution states given here assumes the opcode and operand data are in on-chip  
memory. For other cases see Appendix A.3 below.  
Set to 1 when there is a carry or borrow from bit 11; otherwise cleared to 0.  
If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to 0.  
Set to 1 if decimal adjustment produces a carry; otherwise retains value prior to arithmetic operation.  
The number of states required for execution is 4n + 9 (n = value of R4L).  
Set to 1 if the divisor is negative; otherwise cleared to 0.  
Set to 1 if the divisor is zero; otherwise cleared to 0.  
398  
A.2 Operation Code Map  
Table A-2 is an operation code map. It shows the operation codes contained in the first byte of the  
instruction code (bits 15 to 8 of the first instruction word).  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is 0.  
Instruction when first bit of byte 2 (bit 7 of first instruction word) is 1.  
399  
400  
A.3 Number of Execution States  
The tables here can be used to calculate the number of states required for instruction execution.  
Table A-3 indicates the number of states required for each cycle (instruction fetch, branch address  
read, stack operation, byte data access, word data access, internal operation).  
Table A-4 indicates the number of cycles of each type occurring in each instruction. The total  
number of states required for execution of an instruction can be calculated from these two tables  
as follows:  
Execution states = I × S + J × S + K × S + L × S + M × S + N × S  
N
I
J
K
L
M
Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.  
BSET #0, @FF00  
From table A-4:  
I = L = 2, J = K = M = N= 0  
From table A-3:  
S = 2, S = 2  
I
L
Number of states required for execution = 2 × 2 + 2 × 2 = 8  
When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and  
on-chip RAM is used for stack area.  
JSR @@ 30  
From table A-4:  
I = 2, J = K = 1, L = M = N = 0  
From table A-3:  
S = S = S = 2  
I
J
K
Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8  
401  
Table A-3 Number of Cycles in Each Instruction  
Access Location  
On-Chip Peripheral Module  
Execution Status  
(instruction cycle)  
On-Chip Memory  
Instruction fetch  
SI  
2
Branch address read  
Stack operation  
SJ  
SK  
SL  
SM  
SN  
Byte data access  
Word data access  
Internal operation  
2 or 3*  
1
Note: * Depends on which on-chip module is accessed. See 2.9.1, Notes on Data Access for  
details.  
402  
Table A-4 Number of Cycles in Each Instruction  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ADD  
ADD.B #xx:8, Rd  
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
ADD.B Rs, Rd  
ADD.W Rs, Rd  
ADDS.W #1, Rd  
ADDS.W #2, Rd  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
ANDC #xx:8, CCR  
BAND #xx:3, Rd  
BAND #xx:3, @Rd  
BAND #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
ADDS  
ADDX  
AND  
ANDC  
BAND  
1
1
Bcc  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
BEQ d:8  
BVC d:8  
BVS d:8  
BPL d:8  
BMI d:8  
BGE d:8  
BLT d:8  
BGT d:8  
BLE d:8  
BCLR  
BCLR #xx:3, Rd  
BCLR #xx:3, @Rd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
2
2
403  
Table A-4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
2
2
BCLR  
BCLR Rn, @Rd  
2
2
1
2
BCLR Rn, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @Rd  
BIAND  
1
1
BIAND #xx:3, @aa:8 2  
BILD  
BILD #xx:3, Rd  
1
2
2
1
2
2
1
2
2
1
2
BILD #xx:3, @Rd  
BILD #xx:3, @aa:8  
BIOR #xx:3, Rd  
1
1
BIOR  
BIST  
BIOR #xx:3, @Rd  
BIOR #xx:3, @aa:8  
BIST #xx:3, Rd  
1
1
BIST #xx:3, @Rd  
BIST #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @Rd  
2
2
BIXOR  
BLD  
1
1
BIXOR #xx:3, @aa:8 2  
BLD #xx:3, Rd  
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
BLD #xx:3, @Rd  
BLD #xx:3, @aa:8  
BNOT #xx:3, Rd  
BNOT #xx:3, @Rd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
1
1
BNOT  
2
2
BNOT Rn, @Rd  
BNOT Rn, @aa:8  
BOR #xx:3, Rd  
2
2
BOR  
BOR #xx:3, @Rd  
BOR #xx:3, @aa:8  
BSET #xx:3, Rd  
BSET #xx:3, @Rd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
1
1
BSET  
2
2
BSET Rn, @Rd  
2
404  
Table A-4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BSET  
BSR  
BST  
BSET Rn, @aa:8  
2
2
1
2
2
1
2
2
1
2
2
1
2
2
BSR d:8  
1
BST #xx:3, Rd  
BST #xx:3, @Rd  
BST #xx:3, @aa:8  
BTST #xx:3, Rd  
BTST #xx:3, @Rd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
2
2
BTST  
1
1
BTST Rn, @Rd  
BTST Rn, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @Rd  
1
1
BXOR  
CMP  
1
1
BXOR #xx:3, @aa:8 2  
CMP. B #xx:8, Rd  
CMP. B Rs, Rd  
CMP.W Rs, Rd  
DAA.B Rd  
1
1
1
1
1
1
1
2
1
2
2
2
2
2
2
1
1
1
1
1
DAA  
DAS  
DAS.B Rd  
DEC  
DEC.B Rd  
DIVXU  
EEPMOV  
INC  
DIVXU.B Rs, Rd  
EEPMOV  
12  
1
2n+2*  
INC.B Rd  
JMP  
JMP @Rn  
JMP @aa:16  
JMP @@aa:8  
JSR @Rn  
2
2
1
1
JSR  
1
1
1
JSR @aa:16  
JSR @@aa:8  
LDC #xx:8, CCR  
LDC Rs, CCR  
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
MOV.B @Rs, Rd  
2
LDC  
MOV  
1
Note: n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.  
405  
Table A-4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
1
1
1
1
1
1
1
1
1
MOV  
MOV.B @(d:16, Rs), Rd  
2
1
1
2
1
2
1
1
2
2
1
1
2
1
2
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
MOV.B @Rs+, Rd  
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B Rs, @Rd  
MOV.B Rs, @(d:16, Rd)  
MOV.B Rs, @–Rd  
MOV.B Rs, @aa:8  
MOV.B Rs, @aa:16  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
MOV.W @Rs, Rd  
MOV.W @(d:16, Rs), Rd  
MOV.W @Rs+, Rd  
MOV.W @aa:16, Rd  
MOV.W Rs, @Rd  
MOV.W Rs, @(d:16, Rd)  
MOV.W Rs, @–Rd  
MOV.W Rs, @aa:16  
MULXU.B Rs, Rd  
NEG.B Rd  
2
2
1
1
1
1
1
1
1
1
2
2
MULXU  
NEG  
NOP  
NOT  
12  
NOP  
NOT.B Rd  
OR  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
ORC  
ORC #xx:8, CCR  
POP Rd  
POP  
1
1
2
2
PUSH  
ROTL  
ROTR  
ROTXL  
ROTXR  
RTE  
PUSH Rs  
ROTL.B Rd  
ROTR.B Rd  
ROTXL.B Rd  
ROTXR.B Rd  
RTE  
2
1
2
2
RTS  
RTS  
406  
Table A-4 Number of Cycles in Each Instruction (cont)  
Instruction Branch  
Stack  
Byte Data Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
SHLL  
SHAL  
SHAR  
SHLR  
SLEEP  
STC  
SHLL.B Rd  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SHAL.B Rd  
SHAR.B Rd  
SHLR.B Rd  
SLEEP  
STC CCR, Rd  
SUB.B Rs, Rd  
SUB.W Rs, Rd  
SUBS.W #1, Rd  
SUBS.W #2, Rd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
XORC #xx:8, CCR  
SUB  
SUBS  
SUBX  
XOR  
XORC  
407  
Appendix B On-Chip Registers  
B.1 I/O Registers (1)  
Bit Names  
Address Register  
Module  
Name  
(low)  
H'A0  
H'A1  
H'A2  
H'A3  
H'A4  
H'A5  
H'A6  
H'A7  
H'A8  
H'A9  
H'AA  
H'AB  
H'AC  
H'AD  
H'AE  
H'AF  
Name  
SCR1  
SCSR1  
SDRU  
SDRL  
STAR  
EDAR  
SCR2  
SCSR2  
SMR  
Bit 7  
SNC1  
Bit 6  
SNC0  
SOL  
Bit 5  
Bit 4  
Bit 3  
CKS3  
Bit 2  
CKS2  
Bit 1  
CKS1  
Bit 0  
CKS0  
STF  
SCI1  
SCI2  
SCI3  
ORER  
SDRU7 SDRU6 SDRU5 SDRU4 SDRU3 SDRU2 SDRU1 SDRU0  
SDRL7 SDRL6 SDRL5 SDRL4 SDRL3 SDRL2 SDRL1 SDRL0  
STA4  
EDA4  
GAP1  
SOL  
STA3  
EDA3  
GAP0  
ORER  
STOP  
BRR3  
MPIE  
TDR3  
PER  
STA2  
EDA2  
CKS2  
WT  
STA1  
EDA1  
CKS1  
ABT  
STA0  
EDA0  
CKS0  
STF  
COM  
BRR7  
TIE  
CHR  
BRR6  
RIE  
PE  
PM  
MP  
CKS1  
BRR1  
CKE1  
TDR1  
MPBR  
RDR1  
CKS0  
BRR0  
CKE0  
TDR0  
MPBT  
RDR0  
BRR  
BRR5  
TE  
BRR4  
RE  
BRR2  
TEIE  
TDR2  
TEND  
RDR2  
SCR3  
TDR  
TDR7  
TDRE  
RDR7  
TDR6  
RDRF  
RDR6  
TDR5  
OER  
RDR5  
TDR4  
FER  
SSR  
RDR  
RDR4  
RDR3  
H'B0  
H'B1  
H'B2  
H'B3  
TMA  
TCA  
TMB  
TMA7  
TCA7  
TMB7  
TMA6  
TCA6  
TMA5  
TCA5  
TMA3  
TCA3  
TMA2  
TCA2  
TMB2  
TMA1  
TCA1  
TMB1  
TMA0  
TCA0  
TMB0  
Timer A  
Timer B  
TCA4  
TCB/TLB TCB7/  
TLB7  
TCB6/  
TLB6  
TCB5/  
TLB5  
TCB4/  
TLB4  
TCB3/  
TLB3  
TCB2/  
TLB2  
TCB1/  
TLB1  
TCB0/  
TLB0  
H'B4  
H'B5  
TMC  
TMC7  
TMC6  
TMC5  
TMC2  
TMC1  
TMC0  
Timer C  
TCC/TLC TCC7/  
TLC7  
TCC6/  
TLC6  
TCC5/  
TLC5  
TCC4/  
TLC4  
TCC3/  
TLC3  
TCC2/  
TLC2  
TCC1/  
TLC1  
TCC0/  
TLC0  
H'B6  
TCRF  
TOLH  
CKSH2 CKSH1 CKSH0 TOLL  
CMFH OVIEH CCLRH OVFL  
TCFH7 TCFH6 TCFH5 TCFH4 TCFH3 TCFH2 TCFH1 TCFH0  
TCFL7 TCFL6 TCFL5 TCFL4 TCFL3 TCFL2 TCFL1 TCFL0  
CKSL2 CKSL1 CKSL0 Timer F  
H'B7  
TCSRF OVFH  
CMFL OVIEL CCLRL  
H'B8  
TCFH  
TCFL  
H'B9  
H'BA  
Notation:  
OCRFH OCRFH7 OCRFH6 OCRFH5 OCRFH4 OCRFH3 OCRFH2 OCRFH1 OCRFH0  
SCI1: Serial communication interface 1  
SCI2: Serial communication interface 2  
SCI3: Serial communication interface 3  
408  
Bit Names  
Bit 4 Bit 3  
Address Register  
Module  
Name  
(low)  
H'BB  
H'BC  
H'BD  
H'BE  
H'BF  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
OCRFL OCRFL7 OCRFL6 OCRFL5 OCRFL4 OCRFL3 OCRFL2 OCRFL1 OCRFL0 Timer F  
TMG  
OVFH  
OVFL  
OVIE  
IIEGS  
CCLR1 CCLR0 CKS1  
CKS0  
Timer G  
ICRGF  
ICRGF7 ICRGF6 ICRGF5 ICRGF4 ICRGF3 ICRGF2 ICRGF1 ICRGF0  
ICRGR ICRGR7 ICRGR6 ICRGR5 ICRGR4 ICRGR3 ICRGR2 ICRGR1 ICRGR0  
H'C0  
LPCR  
LCR  
DTS1  
DTS0  
PSW  
CMX  
ACT  
SGX  
SGS3  
CKS3  
SGS2  
CKS2  
SGS1  
CKS1  
SGS0  
CKS0  
LCD  
con-  
troller/  
driver  
H'C1  
DISP  
H'C2  
H'C3  
H'C4  
H'C5  
H'C6  
H'C7  
H'C8  
H'C9  
H'CA  
H'CB  
H'CC  
H'CD  
H'CE  
H'CF  
AMR  
CKS  
TRGE  
ADR6  
CH3  
ADR3  
CH2  
ADR2  
CH1  
ADR1  
CH0  
ADR0  
A/D  
convert-  
er  
ADRR  
ADSR  
ADR7  
ADSF  
ADR5  
ADR4  
PMR1  
PMR2  
PMR3  
PMR4  
PMR5  
IRQ3  
IRQ2  
IRQ1  
POF2  
SO2  
PWM  
NCS  
SI2  
TMIG  
IRQ0  
SCK2  
TMOFH TMOFL TMOW  
I/O  
ports  
POF1  
SO1  
UD  
SI1  
IRQ4  
CS  
STRB  
SCK1  
NMOD7 NMOD6 NMOD5 NMOD4 NMOD3 NMOD2 NMOD1 NMOD0  
WKP7  
WKP6  
WKP5  
WKP4  
WKP3  
WKP2  
WKP1  
WKP0  
RLCTR  
RLCT1 RLCT0  
— PWCR0 14-bit  
H'D0  
H'D1  
H'D2  
H'D3  
H'D4  
H'D5  
H'D6  
H'D7  
H'D8  
H'D9  
H'DA  
H'DB  
H'DC  
H'DD  
PWCR  
PWM  
PWDRU  
PWDRU5 PWDRU4 PWDRU3 PWDRU2 PWDRU1 PWDRU0  
PWDRL PWDRL7 PWDRL6 PWDRL5 PWDRL4 PWDRL3 PWDRL2 PWDRL1 PWDRL0  
PDR1  
PDR2  
PDR3  
PDR4  
PDR5  
PDR6  
PDR7  
PDR8  
PDR9  
PDRA  
P17  
P27  
P37  
P16  
P26  
P36  
P15  
P25  
P35  
P14  
P24  
P34  
P13  
P23  
P33  
P43  
P53  
P63  
P73  
P83  
P93  
PA3  
P12  
P22  
P32  
P42  
P52  
P62  
P72  
P82  
P92  
PA2  
P11  
P21  
P31  
P41  
P51  
P61  
P71  
P81  
P91  
PA1  
P10  
P20  
P30  
P40  
P50  
P60  
P70  
P80  
P90  
PA0  
I/O  
ports  
P57  
P67  
P77  
P87  
P97  
P56  
P66  
P76  
P86  
P96  
P55  
P65  
P75  
P85  
P95  
P54  
P64  
P74  
P84  
P94  
409  
Bit Names  
Bit 4 Bit 3  
Address Register  
Module  
Name  
(low)  
H'DE  
H'DF  
H'E0  
H'E1  
H'E2  
H'E3  
H'E4  
H'E5  
H'E6  
H'E7  
H'E8  
H'E9  
H'EA  
H'EB  
H'EC  
H'ED  
H'EE  
H'EF  
Name  
PDRB  
PDRC  
Bit 7  
PB7  
Bit 6  
PB6  
Bit 5  
PB5  
Bit 2  
PB2  
PC2  
Bit 1  
PB1  
PC1  
Bit 0  
PB0  
PC0  
PB4  
PB3  
PC3  
I/O  
ports  
PUCR1 PUCR17 PUCR16 PUCR15 PUCR14 PUCR13 PUCR12 PUCR11 PUCR10  
PUCR3 PUCR37 PUCR36 PUCR35 PUCR34 PUCR33 PUCR32 PUCR31 PUCR30  
PUCR5 PUCR57 PUCR56 PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
PUCR6 PUCR67 PUCR66 PUCR65 PUCR64 PUCR63 PUCR62 PUCR61 PUCR60  
PCR1  
PCR2  
PCR3  
PCR4  
PCR5  
PCR6  
PCR7  
PCR8  
PCR9  
PCRA  
PCR17  
PCR27  
PCR37  
PCR16  
PCR26  
PCR36  
PCR15  
PCR25  
PCR35  
PCR14  
PCR24  
PCR34  
PCR13  
PCR23  
PCR33  
PCR12  
PCR22  
PCR32  
PCR42  
PCR52  
PCR62  
PCR72  
PCR82  
PCR92  
PCR11  
PCR21  
PCR31  
PCR41  
PCR51  
PCR61  
PCR71  
PCR81  
PCR91  
PCR10  
PCR20  
PCR30  
PCR40  
PCR50  
PCR60  
PCR70  
PCR80  
PCR90  
PCR57  
PCR67  
PCR77  
PCR87  
PCR97  
PCR56  
PCR66  
PCR76  
PCR86  
PCR96  
PCR55  
PCR65  
PCR75  
PCR85  
PCR95  
PCR54  
PCR64  
PCR74  
PCR84  
PCR94  
PCR53  
PCR63  
PCR73  
PCR83  
PCR93  
PCRA3 PCRA2 PCRA1 PCRA0  
H'F0  
H'F1  
H'F2  
H'F3  
H'F4  
H'F5  
H'F6  
H'F7  
H'F8  
H'F9  
SYSCR1 SSBY  
SYSCR2 —  
STS2  
STS1  
STS0  
LSON  
System  
control  
NESEL DTON  
MSON  
IEG2  
IEN2  
SA1  
IEG1  
IEN1  
SA0  
IEG0  
IEN0  
IENTB  
IEGR  
IEG4  
IEG3  
IEN3  
IENR1  
IENR2  
IENTA  
IENDT  
IENS1  
IENAD  
IENWP IEN4  
IENS2  
IENTG  
IENTFH IENTFL IENTC  
IRR1  
IRR2  
IRRTA  
IRRDT  
IRRS1  
IRRAD  
IRRI4  
IRRI3  
IRRI2  
IRRI1  
IRRI0  
System  
control  
IRRS2  
IRRTG  
IRRTFH IRRTFL IRRTC  
IRRTB  
IWPR  
IWPF7  
IWPF6  
IWPF5  
IWPF4  
IWPF3  
IWPF2  
IWPF1  
IWPF0  
System  
control  
H'FA  
H'FB  
H'FC  
H'FD  
H'FE  
H'FF  
H'FF  
410  
B.2 I/O Registers (2)  
Register  
acronym  
Register  
name  
Address to which the  
register is mapped  
Name of  
on-chip  
supporting  
module  
TMC—Timer mode register C  
H'B4  
Timer C  
Bit  
numbers  
Bit  
7
TMC7  
0
6
5
4
1
3
1
2
TMC2  
0
1
TMC1  
0
0
TMC0  
0
Initial bit  
values  
TMC6  
0
TMC5  
0
Initial value  
Read/Write  
Names of the  
bits. Dashes  
(—) indicate  
reserved bits.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
0
1
0
1
0
1
0
1
0
1
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/64  
Internal clock: ø/16  
Internal clock: ø/4  
Possible types of access  
Full name  
of bit  
R
Read only  
Write only  
W
1
R/W Read and write  
Descriptions  
of bit settings  
Internal clock: øW/4  
External event (TMIC): Rising or falling edge  
Counter up/down control  
0
0
1
*
TCC is an up-counter  
TCC is a down-counter  
1
TCC up/down control is determined by input at pin  
UD. TCC is a down-counter if the UD input is high,  
and an up-counter if the UD input is low.  
411  
SCR1—Serial control register 1  
H'A0  
SCI1  
Bit  
7
SNC1  
0
6
SNC0  
0
5
4
3
CKS3  
0
2
1
CKS1  
0
0
CKS2  
0
CKS0  
0
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select (CKS2 to CKS0)  
Serial Clock Cycle  
Synchronous  
Bit 2 Bit 1 Bit 0  
Prescaler  
CKS2 CKS1 CKS0 Division  
ø = 5 MHz  
ø = 2.5 MHz  
0
0
1
0
1
0
1
0
1
0
1
0
1
ø/1024  
ø/256  
ø/64  
ø/32  
ø/16  
ø/8  
204.8 µs  
51.2 µs  
12.8 µs  
6.4 µs  
3.2 µs  
1.6 µs  
0.8 µs  
409.6 µs  
102.4 µs  
25.6 µs  
12.8 µs  
6.4 µs  
1
3.2 µs  
ø/4  
1.6 µs  
ø/2  
0.8 µs  
Clock source select  
0
1
Clock source is prescaler S, and pin SCK1 is output pin  
Clock source is external clock, and pin SCK1 is input pin  
Operation mode select  
0
0
1
0
1
8-bit synchronous transfer mode  
16-bit synchronous transfer mode  
Continuous clock output mode  
Reserved  
1
412  
SCSR1—Serial control/status register 1  
H'A1  
SCI1  
Bit  
7
1
6
5
4
0
3
0
2
1
0
0
SOL  
0
ORER  
0
0
STF  
0
Initial value  
Read/Write  
R/W  
R/(W)*  
R/W  
Start flag  
0
Read Indicates that transfer is stopped  
Write Invalid  
1
Read Indicates transfer in progress  
Write Starts a transfer operation  
Overrun error flag  
0
[Clearing condition]  
After reading 1, cleared by writing 0  
1
[Setting condition]  
Set if a clock pulse is input after transfer  
is complete, when an external clock is used  
Extended data bit  
0
Read SO1 pin output level is low  
Write SO1 pin output level changes to low  
Read SO1 pin output level is high  
1
Write SO1 pin output level changes to high  
Note: * Only a write of 0 for flag clearing is possible.  
413  
SDRU—Serial data register U  
H'A2  
SCI1  
Bit  
7
6
5
4
3
2
1
0
SDRU7 SDRU6 SDRU5 SDRU4 SDRU3 SDRU2 SDRU1 SDRU0  
Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed  
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Stores transmit and receive data  
8-bit transfer mode: Not used  
16-bit transfer mode: Upper 8 bits of data  
SDRL—Serial data register L  
H'A3  
SCI1  
Bit  
7
6
5
4
3
2
1
0
SDRL7 SDRL6 SDRL5 SDRL4 SDRL3 SDRL2 SDRL1 SDRL0  
Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed  
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Stores transmit and receive data  
8-bit transfer mode: 8-bit data  
16-bit transfer mode: Lower 8 bits of data  
STAR—Start address register  
H'A4  
SCI2  
Bit  
7
1
6
1
5
1
4
STA4  
0
3
STA3  
0
2
STA2  
0
1
STA1  
0
0
STA0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Transfer start address in range from  
H'FF80 to H'FF9F  
414  
EDAR—End address register  
H'A5  
SCI2  
Bit  
7
1
6
1
5
1
4
EDA4  
0
3
EDA3  
0
2
1
EDA1  
0
0
EDA2  
0
EDA0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Transfer end address in range from  
H'FF80 to H'FF9F  
SCR2—Serial control register 2  
H'A6  
SCI2  
Bit  
7
1
6
1
5
1
4
GAP1  
0
3
GAP0  
0
2
CKS2  
0
1
CKS1  
0
0
CKS0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Select (CKS2 to CKS0)  
Bit 2 Bit 1 Bit 0  
Serial Clock Cycle  
ø = 5 MHz ø = 2.5 MHz  
51.2 µs  
Prescaler  
Clock Source Division  
CKS2 CKS1 CKS0  
Pin SCK2  
0
0
1
0
1
0
1
0
1
0
1
0
1
SCK2 output Prescaler S  
ø/256  
ø/64  
ø/32  
ø/16  
ø/8  
102.4 µs  
25.6 µs  
12.8 µs  
6.4 µs  
3.2 µs  
1.6 µs  
0.8 µs  
12.8 µs  
6.4 µs  
3.2 µs  
1.6 µs  
0.8 µs  
1
ø/4  
ø/2  
SCK2 input  
External clock —  
Gap select  
0
0
1
0
1
No gaps between bytes  
A gap of 8 clock cycles is inserted between bytes  
A gap of 24 clock cycles is inserted between bytes  
A gap of 56 clock cycles is inserted between bytes  
1
415  
SCSR2—Serial control/status register 2  
H'A7  
SCI2  
Bit  
7
1
6
1
5
1
4
3
ORER  
0
2
1
ABT  
0
0
SOL  
0
WT  
0
STF  
0
Initial value  
Read/Write  
R/W  
R/(W)* R/(W)* R/(W)*  
R/W  
Start flag  
0
Read Indicates that transfer is stopped  
Write Stops a transfer operation  
1
Read Indicates transfer in progress or waiting for CS input  
Write Starts a transfer operation  
Abort flag  
0
[Clearing condition]  
After reading 1, cleared by writing 0  
1
[Setting condition]  
When CS goes high during a transfer  
Wait flag  
0
[Clearing condition]  
After reading 1, cleared by writing 0  
[Setting condition]  
1
An attempt was made to read or write the (32-byte) serial data buffer  
during a transfer or while waiting for CS input  
Overrun error flag  
0
[Clearing condition]  
After reading 1, cleared by writing 0  
1
[Setting condition]  
Set if a clock pulse is input after transfer is complete, when an  
external clock is used  
Extended data bit  
0
Read SO2 pin output level is low  
Write SO2 pin output level changes to low  
Read SO2 pin output level is high  
1
Write SO2 pin output level changes to high  
*
Note: Only a write of 0 for flag clearing is possible.  
416  
SMR—Serial mode register  
H'A8  
SCI3  
Bit  
7
COM  
0
6
5
PE  
0
4
PM  
0
3
2
MP  
0
1
CKS1  
0
0
CHR  
0
STOP  
0
CKS0  
Initial value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select 0, 1  
0
0
1
0
1
ø clock  
Multiprocessor mode  
ø/4 clock  
ø/16 clock  
ø/64 clock  
0
1
Multiprocessor communication function disabled  
Multiprocessor communication function enabled  
1
Stop bit length  
0
1
1 stop bit  
2 stop bits  
Parity mode  
0
1
Even parity  
Odd parity  
Parity enable  
0
1
Parity bit adding and checking disabled  
Parity bit adding and checking enabled  
Character length  
0
1
8-bit data  
7-bit data  
Communication mode  
0
1
Asynchronous mode  
Synchronous mode  
BRR—Bit rate register  
H'A9  
SCI3  
Bit  
7
BRR7  
1
6
BRR6  
1
5
BRR5  
1
4
BRR4  
1
3
BRR3  
1
2
1
0
BRR0  
1
BRR2  
1
BRR1  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
417  
SCR3—Serial control register 3  
H'AA  
SCI3  
Bit  
7
TIE  
0
6
RIE  
0
5
TE  
0
4
RE  
0
3
MPIE  
0
2
1
CKE1  
0
0
TEIE  
0
CKE0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock enable  
Description  
Bit 1  
CKE1  
0
Bit 0  
CKE0  
0
Communication Mode  
Asynchronous  
Synchronous  
Clock Source  
Internal clock  
Internal clock  
Internal clock  
Reserved  
SCK3 Pin Function  
I/O port  
Serial clock output  
Clock output  
Reserved  
1
0
1
Asynchronous  
Synchronous  
1
Asynchronous  
Synchronous  
External clock  
External clock  
Reserved  
Clock input  
Serial clock input  
Reserved  
Asynchronous  
Synchronous  
Reserved  
Reserved  
Transmit end interrupt enable  
0
1
Transmit end interrupt (TEI) disabled  
Transmit end interrupt (TEI) enabled  
Multiprocessor interrupt enable  
0
Multiprocessor interrupt request disabled (ordinary receive operation)  
[Clearing condition]  
Multiprocessor bit receives a data value of 1  
1
Multiprocessor interrupt request enabled  
Until a multiprocessor bit value of 1 is received, the receive data full interrupt (RXI) and receive  
error interrupt (ERI) are disabled, and serial status register (SSR) flags RDRF, FER, and  
OER are not set.  
Receive enable  
0
1
Receive operation disabled (RXD is a general I/O port)  
Receive operation enabled (RXD is the receive data pin)  
Transmit enable  
0
1
Transmit operation disabled (TXD is a general I/O port)  
Transmit operation enabled (TXD is the transmit data pin)  
Receive interrupt enable  
0
1
Receive data full interrupt request (RXI) and receive error interrupt request (ERI) disabled  
Receive data full interrupt request (RXI) and receive error interrupt request (ERI) enabled  
Transmit interrupt enable (TIE)  
0
1
Transmit data empty interrupt request (TXI) disabled  
Transmit data empty interrupt request (TXI) enabled  
418  
TDR—Transmit data register  
H'AB  
SCI3  
Bit  
7
TDR7  
1
6
TDR6  
1
5
TDR5  
1
4
TDR4  
1
3
TDR3  
1
2
1
TDR1  
1
0
TDR2  
1
TDR0  
1
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Data to be transferred to TSR  
419  
SSR—Serial status register  
H'AC  
SCI3  
Bit  
7
TDRE  
1
6
RDRF  
0
5
OER  
0
4
FER  
0
3
PER  
0
2
1
MPBR  
0
0
TEND  
MPBT  
0
Initial value  
Read/Write  
1
R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*  
R
R
R/W  
Multiprocessor bit receive  
Multiprocessor bit transmit  
0 Indicates reception of data in which the multiprocessor bit is 0  
1 Indicates reception of data in which the multiprocessor bit is 1  
0 The multiprocessor bit in transmit data is 0  
1 The multiprocessor bit in transmit data is 1  
Transmit end  
0 Indicates that transmission is in progress  
[Clearing conditions] After reading TDRE = 1, cleared by writing 0 to TDRE.  
When data is written to TDR by an instruction.  
1 Indicates that a transmission has ended  
[Setting conditions]  
When bit TE in serial control register 3 (SCR3) is 0.  
If TDRE is set to 1 when the last bit of a transmitted character is sent.  
Parity error  
0 Indicates that data receiving is in progress or has been completed  
[Clearing conditions] After reading PER = 1, cleared by writing 0  
1 Indicates that a parity error occurred in data receiving  
[Setting conditions]  
When the sum of 1s in received data plus the parity bit does not match  
the parity mode bit (PM) setting in the serial mode register (SMR)  
Framing error  
0 Indicates that data receiving is in progress or has been completed  
[Clearing conditions] After reading FER = 1, cleared by writing 0  
1 Indicates that a framing error occurred in data receiving  
[Setting conditions]  
The stop bit at the end of receive data is checked and found to be 0  
Overrun error  
0 Indicates that data receiving is in progress or has been completed  
[Clearing conditions] After reading OER = 1, cleared by writing 0  
1 Indicates that an overrun error occurred in data receiving  
[Setting conditions]  
When data receiving is completed while RDRF is set to 1  
Receive data register full  
0 Indicates there is no receive data in RDR  
[Clearing conditions] After reading RDRF = 1, cleared by writing 0.  
When data is read from RDR by an instruction.  
1 Indicates that there is receive data in RDR  
[Setting conditions]  
When receiving ends normally, with receive data transferred from RSR to RDR  
Transmit data register empty  
0 Indicates that transmit data written to TDR has not been transferred to TSR  
[Clearing conditions] After reading TDRE = 1, cleared by writing 0.  
When data is written to TDR by an instruction.  
1 Indicates that no transmit data has been written to TDR, or the transmit data written to TDR has been transferred to TSR  
[Setting conditions]  
When bit TE in serial control register 3 (SCR3) is 0.  
When data is transferred from TDR to TSR.  
Note: *Only a write of 0 for flag clearing is possible.  
420  
RDR—Receive data register  
H'AD  
SCI3  
Bit  
7
RDR7  
0
6
RDR6  
0
5
RDR5  
0
4
RDR4  
0
3
RDR3  
0
2
1
RDR1  
0
0
RDR2  
RDR0  
Initial value  
Read/Write  
0
0
R
R
R
R
R
R
R
R
TMA—Timer mode register A  
H'B0  
Timer A  
Bit  
7
TMA7  
0
6
TMA6  
0
5
TMA5  
0
4
1
3
TMA3  
0
2
TMA2  
0
1
TMA1  
0
0
TMA0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock output select Internal clock select  
0
0
1
0
1
0
1
0
1
0
1
0
1
ø/32  
ø/16  
ø/8  
Prescaler and Divider Ratio  
TMA3 TMA2 TMA1 TMA0 or Overflow Period  
Function  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSS  
PSW  
PSW  
PSW  
PSW  
ø/8192  
ø/4096  
ø/2048  
ø/512  
ø/256  
ø/128  
ø/32  
Interval  
timer  
ø/4  
1
øW/32  
øW/16  
øW/8  
øW/4  
ø/8  
1
1 s  
Time  
base  
0.5 s  
0.25 s  
0.03125 s  
PSW and TCA are reset  
421  
TCA—Timer counter A  
H'B1  
Timer A  
Bit  
7
TCA7  
0
6
TCA6  
0
5
TCA5  
0
4
TCA4  
0
3
TCA3  
0
2
1
TCA1  
0
0
TCA0  
0
TCA2  
Initial value  
Read/Write  
0
R
R
R
R
R
R
R
R
Count value  
TMB—Timer mode register B  
H'B2  
Timer B  
Bit  
7
TMB7  
0
6
1
5
1
4
1
3
1
2
TMB2  
0
1
TMB1  
0
0
TMB0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
Auto-reload function select  
Clock select  
0
1
Interval timer function selected  
Auto-reload function selected  
0
0
1
0
1
0
1
0
1
0
1
0
1
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/256  
Internal clock: ø/64  
Internal clock: ø/16  
Internal clock: ø/4  
1
External event (TMIB): Rising or falling edge  
422  
TCB—Timer counter B  
H'B3  
Timer B  
Bit  
7
TCB7  
0
6
TCB6  
0
5
TCB5  
0
4
TCB4  
0
3
TCB3  
0
2
1
TCB1  
0
0
TCB0  
0
TCB2  
Initial value  
Read/Write  
0
R
R
R
R
R
R
R
R
Count value  
TLB—Timer load register B  
H'B3  
Timer B  
Bit  
7
TLB7  
0
6
TLB6  
0
5
TLB5  
0
4
TLB4  
0
3
TLB3  
0
2
TLB2  
0
1
TLB1  
0
0
TLB0  
0
Initial value  
Read/Write  
W
W
W
W
W
W
W
W
Reload value  
423  
TMC—Timer mode register C  
H'B4  
Timer C  
Bit  
7
TMC7  
0
6
TMC6  
0
5
TMC5  
0
4
1
3
1
2
1
TMC1  
0
0
TMC0  
0
TMC2  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
0
1
0
1
0
1
0
1
0
1
Internal clock: ø/8192  
Internal clock: ø/2048  
Internal clock: ø/512  
Internal clock: ø/64  
Internal clock: ø/16  
Internal clock: ø/4  
Auto-reload function select  
0
1
Interval timer function selected  
Auto-reload function selected  
1
Internal clock: øW/4  
External event (TMIC): Rising or falling edge  
Counter up/down control  
0
0
1
*
TCC is an up-counter  
TCC is a down-counter  
1
TCC up/down control is determined by input at pin  
UD. TCC is a down-counter if the UD input is high,  
and an up-counter if the UD input is low.  
Note: *Don’t care  
TCC—Timer counter C  
H'B5  
Timer C  
Bit  
7
TCC7  
0
6
TCC6  
0
5
4
TCC4  
0
3
TCC3  
0
2
1
TCC1  
0
0
TCC0  
0
TCC5  
TCC2  
Initial value  
Read/Write  
0
0
R
R
R
R
R
R
R
R
Count value  
424  
TLC—Timer load register C  
H'B5  
Timer C  
Bit  
7
TLC7  
0
6
TLC6  
0
5
TLC5  
0
4
TLC4  
0
3
TLC3  
0
2
1
TLC1  
0
0
TLC0  
0
TLC2  
0
Initial value  
Read/Write  
W
W
W
W
W
W
W
W
Reload value  
TCRF—Timer control register F  
H'B6  
Timer F  
Bit  
7
6
5
4
3
2
1
0
TOLH CKSH2 CKSH1 CKSH0 TOLL  
CKSL2 CKSL1 CKSL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Toggle output level H  
Clock select L  
0
1
Low level  
High level  
0
1
External event (TMIF): Rising or falling edge  
Internal clock: ø/32  
*
0
*
0
1
0
1
Internal clock: ø/16  
1
Internal clock: ø/4  
Internal clock: ø/2  
Toggle output level L  
0
1
Low level  
High level  
Clock select H  
0
1
16-bit mode selected. TCFL overflow signals are counted.  
Internal clock: ø/32  
*
0
*
0
1
0
1
Internal clock: ø/16  
1
Internal clock: ø/4  
Internal clock: ø/2  
Note: *Don’t care  
425  
TCSRF—Timer control/status register F  
H'B7  
Timer F  
Bit  
7
OVFH  
0
6
CMFH  
0
5
4
3
2
1
0
OVIEH CCLRH OVFL  
CMFL  
OVIEL CCLRL  
Initial value  
Read/Write  
0
0
0
0
0
0
R/(W)* R/(W)*  
R/W  
R/W  
R/(W)* R/(W)*  
R/W  
R/W  
Timer overflow interrupt enable L  
0
1
TCFL overflow interrupt disabled  
TCFL overflow interrupt enabled  
Compare match flag L  
0
[Clearing condition]  
After reading CMFL = 1, cleared by writing 0 to CMFL  
1
[Setting condition]  
When the TCFL value matches the OCRFL value  
Timer overflow flag L  
0
[Clearing condition]  
After reading OVFL = 1, cleared by writing 0 to OVFL  
1
[Setting condition]  
When the value of TCFL goes from H'FF to H'00  
Counter clear H  
0
16-bit mode: TCF clearing by compare match disabled  
8-bit mode: TCFH clearing by compare match disabled  
1
16-bit mode: TCF clearing by compare match enabled  
8-bit mode: TCFH clearing by compare match enabled  
Timer overflow interrupt enable H  
Counter clear L  
0
1
TCFH overflow interrupt disabled  
TCFH overflow interrupt enabled  
0
1
TCFL clearing by compare match disabled  
TCFL clearing by compare match enabled  
Compare match flag H  
0
[Clearing condition]  
After reading CMFH = 1, cleared by writing 0 to CMFH  
1
[Setting condition]  
When the TCFH value matches the OCRFH value  
Timer overflow flag H  
0
[Clearing condition]  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
[Setting condition]  
When the value of TCFH goes from H'FF to H'00  
Note: * Only a write of 0 for flag clearing is possible.  
426  
TCFH—8-bit timer counter FH  
H'B8  
Timer F  
Bit  
7
6
5
4
3
2
1
0
TCFH7 TCFH6 TCFH5 TCFH4 TCFH3 TCFH2 TCFH1 TCFH0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
TCFL—8-bit timer counter FL  
H'B9  
Timer F  
Bit  
7
6
5
4
3
2
1
0
TCFL7 TCFL6 TCFL5 TCFL4 TCFL3 TCFL2 TCFL1 TCFL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Count value  
OCRFH—Output compare register FH  
H'BA  
Timer F  
Bit  
7
6
5
4
3
2
1
0
OCRFH7 OCRFH6 OCRFH5 OCRFH4 OCRFH3 OCRFH2 OCRFH1 OCRFH0  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OCRFL—Output compare register FL  
H'BB  
Timer F  
Bit  
7
6
5
4
3
2
1
0
OCRFL7 OCRFL6 OCRFL5 OCRFL4 OCRFL3 OCRFL2 OCRFL1 OCRFL0  
Initial value  
Read/Write  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
427  
TMG—Timer mode register G  
H'BC  
Timer G  
Bit  
7
OVFH  
0
6
OVFL  
0
5
OVIE  
0
4
3
2
1
CKS1  
0
0
CKS0  
0
IIEGS CCLR1 CCLR0  
Initial value  
Read/Write  
0
0
0
R/(W)* R/(W)*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock select  
0
0
1
0
1
Internal clock: ø/64  
Internal clock: ø/32  
Internal clock: ø/2  
Internal clock: øW/2  
1
Counter clear  
0
0
1
0
1
TCG is not cleared  
TCG is cleared at the falling edge of the input capture signal  
TCG is cleared at the rising edge of the input capture signal  
TCG is cleared at both edges of the input capture signal  
1
Input capture interrupt edge select  
0
1
Interrupts are requested at the rising edge of the input capture signal  
Interrupts are requested at the falling edge of the input capture signal  
Timer overflow interrupt enable  
0
1
TCG overflow interrupt disabled  
TCG overflow interrupt enabled  
Timer overflow flag L  
0
[Clearing condition]  
After reading OVFL = 1, cleared by writing 0 to OVFL  
1
[Setting condition]  
When the value of TCG goes from H'FF to H'00  
Timer overflow flag H  
0
[Clearing condition]  
After reading OVFH = 1, cleared by writing 0 to OVFH  
1
[Setting condition]  
When the value of TCG goes from H'FF to H'00  
Note: * Only a write of 0 for flag clearing is possible.  
428  
ICRGF—Input capture register GF  
H'BD  
Timer G  
Bit  
7
6
5
4
3
2
1
0
ICRGF7 ICRGF6 ICRGF5 ICRGF4 ICRGF3 ICRGF2 ICRGF1 ICRGF0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ICRGR—Input capture register GR  
H'BE  
Timer G  
Bit  
7
6
5
4
3
2
1
0
ICRGR7 ICRGR6 ICRGR5 ICRGR4 ICRGR3 ICRGR2 ICRGR1 ICRGR0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
429  
LPCR—LCD port control register  
H'C0 LCD controller/driver  
Bit  
7
DTS1  
0
6
DTS0  
0
5
CMX  
0
4
3
SGS3  
0
2
SGS2  
0
1
SGS1  
0
0
SGS0  
0
SGX  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Segment driver select  
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Functions of Pins SEG to SEG  
40 1  
SEG to  
SEG to SEG to SEG to SEG to SEG to SEG to SEG to SEG to SEG to  
40  
36  
32  
28  
24  
20  
16  
12  
8
4
SGX SGS3 SGS2 SGS1 SGS0 SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
SEG  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
Port  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
Port  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
Port  
Remarks  
37  
33  
29  
25  
21  
17  
13  
9
5
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Port  
Port  
Port  
Port  
(initial value)  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
1
1
0
*
*
1
0
0
External segment Port  
expansion  
1
0
1
0
1
0
1
0
1
External segment SEG  
expansion  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
SEG  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
Port  
SEG  
External segment  
expansion  
1
0
1
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
Port  
External segment SEG  
expansion  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
Port  
External segment  
expansion  
1
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
External segment SEG  
expansion  
External segment SEG  
expansion  
External segment SEG  
expansion  
1
External segment SEG  
expansion  
*
*
External segment SEG  
expansion  
Expansion signal select  
0
Pins SEG to SEG  
40 37  
1
Pins CL , CL , DO, and M  
1
2
Duty and common function select  
Bit 7 Bit 6 Bit 5  
DTS1 DTS0 CMX Duty  
Common Driver Other Uses  
COM COM , COM , and COM usable as ports  
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Static  
1
3
2
1
COM to COM  
COM , COM , and COM output the same waveform as COM  
4 3 2 1  
4
1
1/2 duty COM , COM  
COM and COM usable as ports  
4 3  
2
1
COM to COM  
COM outputs the same waveform as COM , and COM the same waveform as COM  
4 3 2 1  
4
1
1
1
1
1/3 duty COM to COM  
COM usable as port  
4
3
COM to COM  
COM outputs a non-select waveform  
4
4
1/4 duty COM to COM  
4
430  
LCR—LCD control register  
H'C1 LCD controller/driver  
Bit  
7
1
6
PSW  
0
5
4
DISP  
0
3
CKS3  
0
2
CKS2  
0
1
CKS1  
0
0
CKS0  
0
ACT  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Frame frequency select  
Bit 3 Bit 2 Bit 1 Bit 0  
CKS3 CKS2 CKS1 CKS0 Clock ø = 5 MHz ø = 625 Hz  
Frame Frequency  
0
0
0
1
øW  
128 Hz (initial value)  
64 Hz  
*
øW  
1
0
øW/2  
ø/2  
32 Hz  
*
0
1
0
1
0
1
0
1
1
0
610 Hz  
305 Hz  
153 Hz  
76.3 Hz  
38.1 Hz  
ø/4  
1
0
1
ø/8  
ø/16  
ø/32  
ø/64  
610 Hz  
305 Hz  
153 Hz  
1
ø/128 76.3 Hz  
ø/256 38.1 Hz  
Display data control  
0
1
Blank data displayed  
LCD RAM data displayed  
Display active  
0
1
LCD controller/driver operation stopped  
LCD controller/driver operational  
Power switch  
0
1
LCD power supply resistive voltage divider off  
LCD power supply resistive voltage divider on  
Note: *Don’t care  
431  
AMR—A/D mode register  
H'C4  
A/D converter  
Bit  
7
6
TRGE  
0
5
1
4
1
3
2
1
0
CKS  
0
CH3  
0
CH2  
0
CH1  
0
CH0  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Channel select  
Bit 3 Bit 2 Bit 1 Bit 0  
CH3 CH2 CH1 CH0 Analog input channel  
0
0
1
No channel selected  
*
0
*
0
1
0
1
0
1
0
1
0
1
0
1
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
1
0
1
0
1
1
0
1
External trigger select  
0
1
Disables start of A/D conversion by external trigger  
Enables start of A/D conversion by rising or falling edge  
of external trigger at pin ADTRG  
Clock select  
Bit 7  
Conversion Time  
CKS Conversion Period ø = 2 MHz ø = 5 MHz  
0
1
62/ø  
31/ø  
31 µs  
15.5 µs  
12.4 µs  
*1  
Notes: * Don’t care  
1. Operation is not guaranteed if the conversion time is less than 12.4 µs.  
Set bit 7 for a value of at least 12.4 µs.  
432  
ADRR—A/D result register  
H'C5  
A/D converter  
Bit  
7
6
5
4
3
2
1
0
ADR7  
ADR6  
ADR5  
ADR4  
ADR3  
ADR2  
ADR1  
ADR0  
Initial value  
Read/Write  
Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed Not fixed  
R
R
R
R
R
R
R
R
A/D conversion result  
ADSR—A/D start register  
H'C6  
A/D converter  
Bit  
7
ADSF  
0
6
5
4
1
3
1
2
1
0
1
1
1
1
1
Initial value  
Read/Write  
R/W  
A/D status flag  
0
Read Indicates the completion of A/D conversion  
Write Stops A/D conversion  
1
Read Indicates A/D conversion in progress  
Write Starts A/D conversion  
433  
PMR1—Port mode register 1  
H'C8  
I/O ports  
Bit  
7
IRQ3  
0
6
IRQ2  
0
5
IRQ1  
0
4
PWM  
0
3
2
1
0
TMIG TMOFH TMOFL TMOW  
Initial value  
Read/Write  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P10/TMOW pin function switch  
0
1
Functions as P10 I/O pin  
Functions as TMOW output pin  
P11/TMOFL pin function switch  
0
1
Functions as P11 I/O pin  
Functions as TMOFL output pin  
P12/TMOFH pin function switch  
0
1
Functions as P12 I/O pin  
Functions as TMOFH output pin  
P13/TMIG pin function switch  
0
1
Functions as P13 I/O pin  
Functions as TMIG input pin  
P14/PWM pin function switch  
0
1
Functions as P14 I/O pin  
Functions as PWM output pin  
P15/IRQ1/TMIB pin function switch  
0
1
Functions as P15 I/O pin  
Functions as IRQ1/TMIB input pin  
P16/IRQ2/TMIC pin function switch  
0
1
Functions as P16 I/O pin  
Functions as IRQ2/TMIC input pin  
P17/IRQ3/TMIF pin function switch  
0
1
Functions as P17 I/O pin  
Functions as IRQ3/TMIF input pin  
434  
PMR2—Port mode register 2  
H'C9  
I/O ports  
Bit  
7
1
6
1
5
POF2  
0
4
3
IRQ0  
0
2
1
UD  
0
0
IRQ4  
0
NCS  
0
POF1  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P20/IRQ4/ADTRG pin function switch  
0
1
Functions as P20 I/O pin  
Functions as IRQ4/ADTRG input pin  
P21/UD pin function switch  
0
1
Functions as P21 I/O pin  
Functions as UD input pin  
P32/SO1 pin PMOS control  
0
1
CMOS output  
NMOS open-drain output  
P43/IRQ0 pin function switch  
0
1
Functions as P43 I/O pin  
Functions as IRQ0 input pin  
TMIG noise canceller select  
0
1
Noise canceller function not selected  
Noise canceller function selected  
P35/SO2 pin PMOS control  
0
1
CMOS output  
NMOS open-drain output  
435  
PMR3—Port mode register 3  
H'CA  
I/O ports  
Bit  
7
CS  
0
6
STRB  
0
5
4
SI2  
0
3
2
1
SI1  
0
0
SO2  
0
SCK2  
0
SO12  
0
SCK1  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P30/SCK1 pin function switch  
0
1
Functions as P30 I/O pin  
Functions as SCK1 I/O pin  
P31/SI1 pin function switch  
0
1
Functions as P31 I/O pin  
Functions as SI1 input pin  
P32/SO1 pin function switch  
0
1
Functions as P32 I/O pin  
Functions as SO1 output pin  
P33/SCK2 pin function switch  
0
1
Functions as P33 I/O pin  
Functions as SCK2 I/O pin  
P34/SI2 pin function switch  
0
1
Functions as P34 I/O pin  
Functions as SI2 input pin  
P35/SO2 pin function switch  
0
1
Functions as P35 I/O pin  
Functions as SO2 output pin  
P36/STRB pin function switch  
0
1
Functions as P36 I/O pin  
Functions as STRB output pin  
P37/CS pin function switch  
0
1
Functions as P37 I/O pin  
Functions as CS input pin  
436  
PMR4—Port mode register 4  
H'CB  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
NMOD7 NMOD6 NMOD5 NMOD4 NMOD3 NMOD2 NMOD1 NMOD0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
P2n has CMOS output  
P2n has NMOS open-drain output  
PMR5—Port mode register 5  
H'CC  
I/O ports  
6
WKP6  
0
5
Bit  
7
WKP7  
0
4
WKP4  
0
3
WKP3  
0
2
WKP2  
0
1
WKP1  
0
0
WKP0  
0
WKP5  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P5n/WKPn /SEGn + 1 pin function switch  
0
1
Functions as P5n I/O pin  
Functions as WKPn input pin  
RLCTR—LCD RAM relocation register  
H'CF  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
0
RLCT1 RLCT0  
Initial value  
Read/Write  
0
0
R/W  
R/W  
437  
PWCR—PWM control register  
H'D0  
14-bit PWM  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
0
1
PWCR0  
Initial value  
Read/Write  
0
W
Clock select  
0
The input clock is ø/2 (tø* = 2/ø). The conversion period is 16,384/ø,  
with a minimum modulation width of 1/ø  
1
The input clock is ø/4 (tø* = 4/ø). The conversion period is 32,768/ø,  
with a minimum modulation width of 2/ø  
Note: *tø: Period of PWM input clock  
PWDRU—PWM data register U  
H'D1  
14-bit PWM  
Bit  
7
1
6
1
5
4
3
2
1
0
PWDRU5 PWDRU4 PWDRU3 PWDRU2 PWDUR1 PWDRU0  
Initial value  
Read/Write  
0
0
0
0
0
0
W
W
W
W
W
W
Upper 6 bits of data for generating PWM waveform  
PWDRL—PWM data register L  
H'D2  
14-bit PWM  
Bit  
7
6
5
4
3
2
1
0
PWDRL7 PWDRL6 PWDRL5 PWDRL4 PWDRL3 PWDRL2 PWDRL1 PWDRL0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Lower 8 bits of data for generating PWM waveform  
438  
PDR1—Port data register 1  
H'D4  
I/O ports  
Bit  
7
P17  
0
6
P16  
0
5
P15  
0
4
P14  
0
3
P13  
0
2
1
P11  
0
0
P10  
0
P12  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR2—Port data register 2  
H'D5  
I/O ports  
Bit  
7
P27  
0
6
P26  
0
5
P25  
0
4
P24  
0
3
P23  
0
2
P22  
0
1
P21  
0
0
P20  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR3—Port data register 3  
H'D6  
I/O ports  
Bit  
7
P37  
0
6
P36  
0
5
P35  
0
4
P34  
0
3
P33  
0
2
P32  
0
1
P31  
0
0
P30  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR4—Port data register 4  
H'D7  
I/O ports  
Bit  
7
1
6
1
5
1
4
1
3
P43  
1
2
P42  
0
1
P41  
0
0
P40  
0
Initial value  
Read/Write  
R
R/W  
R/W  
R/W  
PDR5—Port data register 5  
H'D8  
I/O ports  
Bit  
7
P57  
0
6
P56  
0
5
P55  
0
4
P54  
0
3
P53  
0
2
P52  
0
1
P51  
0
0
P50  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
439  
PDR6—Port data register 6  
H'D9  
I/O ports  
Bit  
7
P67  
0
6
P66  
0
5
P65  
0
4
P64  
0
3
P63  
0
2
1
P61  
0
0
P60  
0
P62  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR7—Port data register 7  
H'DA  
I/O ports  
Bit  
7
P77  
0
6
P76  
0
5
P75  
0
4
P74  
0
3
P73  
0
2
P72  
0
1
P71  
0
0
P70  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR8—Port data register 8  
H'DB  
I/O ports  
Bit  
7
P87  
0
6
P86  
0
5
P85  
0
4
P84  
0
3
P83  
0
2
P82  
0
1
P81  
0
0
P80  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR9—Port data register 9  
H'DC  
I/O ports  
Bit  
7
P97  
0
6
P96  
0
5
P95  
0
4
P94  
0
3
P93  
0
2
P92  
0
1
P91  
0
0
P90  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDRA—Port data register A  
H'DD  
I/O ports  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
PA3  
0
PA2  
0
PA1  
0
PA0  
0
Initial value  
Read/Write  
_
R/W  
R/W  
R/W  
R/W  
440  
PDRB—Port data register B  
H'DE  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
Initial value  
Read/Write  
R
R
R
R
R
R
R
R
PDRC—Port data register C  
H'DF  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PC3  
PC2  
PC1  
PC0  
Initial value  
Read/Write  
R
R
R
R
PUCR1—Port pull-up control register 1  
H'E0  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR17 PUCR1 PUCR15 PUCR1 PUCR13 PUCR12 PUCR11 PUCR10  
6
4
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR3—Port pull-up control register 3  
H'E1  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR37 PUCR36 PUCR35 PUCR34 PUCR33 PUCR32 PUCR31 PUCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PUCR5—Port pull-up control register 5  
H'E2  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR57 PUCR56 PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
441  
PUCR6—Port pull-up control register 6  
H'E3  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PUCR67 PUCR66 PUCR65 PUCR64 PUCR63 PUCR62 PUCR61 PUCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PCR1—Port control register 1  
H'E4  
I/O ports  
Bit  
7
PCR17  
0
6
5
4
3
2
1
0
PCR16 PCR15 PCR14 PCR13 PCR12 PCR11 PCR10  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 1 input/output select  
0
1
Input pin  
Output pin  
PCR2—Port control register 2  
H'E5  
I/O ports  
Bit  
7
PCR27  
0
6
5
4
3
2
1
0
PCR26 PCR25 PCR24 PCR23 PCR22 PCR21 PCR20  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 2 input/output select  
0
1
Input pin  
Output pin  
442  
PCR3—Port control register 3  
H'E6  
I/O ports  
Bit  
7
PCR37  
0
6
5
4
3
2
1
0
PCR36 PCR35 PCR34 PCR33 PCR32 PCR31 PCR30  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 3 input/output select  
0
1
Input pin  
Output pin  
PCR4—Port control register 4  
H'E7  
I/O ports  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
1
PCR42 PCR41 PCR40  
Initial value  
Read/Write  
0
0
0
W
W
W
Port 4 input/output select  
0
1
Input pin  
Output pin  
PCR5—Port control register 5  
H'E8  
I/O ports  
Bit  
7
PCR57  
0
6
5
4
3
2
1
0
PCR56 PCR55 PCR54 PCR53 PCR52 PCR51 PCR50  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 5 input/output select  
0
1
Input pin  
Output pin  
443  
PCR6—Port control register 6  
H'E9  
I/O ports  
Bit  
7
6
5
4
3
2
1
0
PCR67 PCR66 PCR65 PCR64 PCR63 PCR62 PCR61 PCR60  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 6 input/output select  
0
1
Input pin  
Output pin  
PCR7—Port control register 7  
H'EA  
I/O ports  
Bit  
7
PCR77  
0
6
5
4
3
2
1
0
PCR76 PCR75 PCR74 PCR73 PCR72 PCR71 PCR70  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 7 input/output select  
0
1
Input pin  
Output pin  
PCR8—Port control register 8  
H'EB  
I/O ports  
Bit  
7
PCR87  
0
6
5
4
3
2
1
0
PCR86 PCR85 PCR84 PCR83 PCR82 PCR81 PCR80  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 8 input/output select  
0
1
Input pin  
Output pin  
444  
PCR9—Port control register 9  
H'EC  
I/O ports  
Bit  
7
PCR97  
0
6
5
4
3
2
1
0
PCR96 PCR95 PCR94 PCR93 PCR92 PCR91 PCR90  
Initial value  
Read/Write  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Port 9 input/output select  
0
1
Input pin  
Output pin  
PCRA—Port control register A  
H'ED  
I/O ports  
Bit  
7
1
6
1
5
1
4
1
3
2
1
0
PCRA3 PCRA2 PCRA1 PCRA0  
Initial value  
Read/Write  
0
0
0
0
W
W
W
W
Port A input/output select  
0
1
Input pin  
Output pin  
445  
SYSCR1—System control register 1  
H'F0  
System control  
Bit  
7
SSBY  
0
6
STS2  
0
5
STS1  
0
4
STS0  
0
3
2
1
1
1
0
1
LSON  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Low speed on flag  
0
1
The CPU operates on the system clock (ø)  
The CPU operates on the subclock (øSUB  
)
Standby timer select 2 to 0  
0
0
1
*
0
1
0
1
Wait time = 8,192 states  
Wait time = 16,384 states  
Wait time = 32,768 states  
Wait time = 65,536 states  
Wait time = 131,072 states  
1
*
Software standby  
0
When a SLEEP instruction is executed in active mode, a transition is  
made to sleep mode.  
When a SLEEP instruction is executed in subactive mode, a transition is  
made to subsleep mode.  
1
When a SLEEP instruction is executed in active mode, a transition is  
made to standby mode or watch mode.  
When a SLEEP instruction is executed in subactive mode, a transition is  
made to watch mode.  
Note: *Don’t care  
446  
SYSCR2—System control register 2  
H'F1  
System control  
Bit  
7
1
6
1
5
1
4
3
2
1
0
NESEL DTON MSON  
SA1  
0
SA0  
0
Initial value  
Read/Write  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
Medium speed on flag  
Subactive mode clock select  
0
1
Operates in active (high-speed) mode  
Operates in active (medium-speed) mode  
0
0
1
øW/8  
øW/4  
øW/2  
1
*
Direct transfer on flag  
0
When a SLEEP instruction is executed in active mode, a transition is  
made to standby mode, watch mode, or sleep mode.  
When a SLEEP instruction is executed in subactive mode, a transition is  
made to watch mode or subsleep mode.  
1
When a SLEEP instruction is executed in active (high-speed) mode, a direct  
transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, and  
LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.  
When a SLEEP instruction is executed in active (medium-speed) mode, a direct  
transition is made to active (high-speed) mode if SSBY = 0, MSON = 0, and  
LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.  
When a SLEEP instruction is executed in subactive mode, a direct  
transition is made to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0,  
and MSON = 0, or to active (medium-speed) mode if SSBY = 1, TMA3 = 1,  
LSON = 0, and MSON = 1.  
Noise elimination sampling frequency select  
0
1
Sampling rate is øOSC/16  
Sampling rate is øOSC/4  
Note: *Don’t care  
447  
IEGR—IRQ edge select register  
H'F2  
System control  
Bit  
7
1
6
1
5
1
4
IEG4  
0
3
IEG3  
0
2
1
IEG1  
0
0
IEG0  
0
IEG2  
0
Initial value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
IRQ0 edge select  
0
1
Falling edge of IRQ0 pin input is detected  
Rising edge of IRQ0 pin input is detected  
IRQ1 edge select  
0
1
Falling edge of IRQ1/TMIB pin input is detected  
Rising edge of IRQ1/TMIB pin input is detected  
IRQ2 edge select  
0
1
Falling edge of IRQ2/TMIC pin input is detected  
Rising edge of IRQ2/TMIC pin input is detected  
IRQ3 edge select  
0
1
Falling edge of IRQ3/TMIF pin input is detected  
Rising edge of IRQ3/TMIF pin input is detected  
IRQ4 edge select  
0
1
Falling edge of IRQ4/ADTRG pin input is detected  
Rising edge of IRQ4/ADTRG pin input is detected  
448  
IENR1—Interrupt enable register 1  
H'F3  
System control  
Bit  
7
IENTA  
0
6
5
4
IEN4  
0
3
IEN3  
0
2
1
IEN1  
0
0
IEN0  
0
IENS1 IENWP  
IEN2  
0
Initial value  
Read/Write  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IRQ4 to IRQ0 interrupt enable  
0
1
Disables interrupt request IRQ n  
Enables interrupt request IRQ n  
(n = 4 to 0)  
Wakeup interrupt enable  
0
1
Disables interrupt requests from WKP7 to WKP0  
Enables interrupt requests from WKP7 to WKP0  
SCI1 interrupt enable  
0
1
Disables SCI1 interrupts  
Enables SCI1 interrupts  
Timer A interrupt enable  
0
1
Disables timer A interrupts  
Enables timer A interrupts  
449  
IENR2—Interrupt enable register 2  
H'F4  
System control  
Bit  
7
IENDT  
0
6
5
4
3
2
1
0
IENAD IENS2 IENTG IENTFH IENTFL IENTC IENTB  
Initial value  
Read/Write  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Timer B interrupt enable  
0
1
Disables timer B interrupts  
Enables timer B interrupts  
Timer C interrupt enable  
0
1
Disables timer C interrupts  
Enables timer C interrupts  
Timer FL interrupt enable  
0
1
Disables timer FL interrupts  
Enables timer FL interrupts  
Timer FH interrupt enable  
0
1
Disables timer FH interrupts  
Enables timer FH interrupts  
Timer G interrupt enable  
0
1
Disables timer G interrupts  
Enables timer G interrupts  
SCI2 interrupt enable  
0
1
Disables SCI2 interrupts  
Enables SCI2 interrupts  
A/D converter interrupt enable  
0
1
Disables A/D converter interrupt requests  
Enables A/D converter interrupt requests  
Direct transfer interrupt enable  
0
1
Disables direct transfer interrupt requests  
Enables direct transfer interrupt requests  
450  
IRR1—Interrupt request register 1  
H'F6  
System control  
Bit  
7
6
5
1
4
3
2
1
0
IRRTA IRRS1  
IRRI4  
0
IRRI3  
0
IRRI2  
0
IRRI1  
0
IRRI0  
0
Initial value  
Read/Write  
0
0
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
IRQ4 to IRQ0 interrupt request flag  
0
[Clearing condition]  
When IRRIn = 1, it is cleared by writing 0  
1
[Setting condition]  
When pin IRQn is set to interrupt input and the designated signal edge is  
detected  
(n = 4 to 0)  
SCI1 interrupt request flag  
0
[Clearing condition]  
When IRRS1 = 1, it is cleared by writing 0  
1
[Setting condition]  
When an SCI1 transfer is completed  
Timer A interrupt request flag  
0
[Clearing condition]  
When IRRTA = 1, it is cleared by writing 0  
1
[Setting condition]  
When the timer A counter overflows from H'FF to H'00  
Note: * Only a write of 0 for flag clearing is possible.  
451  
IRR2—Interrupt request register 2  
H'F7  
System control  
Bit  
7
6
5
4
3
2
1
0
IRRDT IRRAD IRRS2 IRRTG IRRTFH IRRTFL IRRTC IRRTB  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
Timer B interrupt request flag  
0
1
[Clearing condition] When IRRTB = 1, it is cleared by writing 0  
[Setting condition] When the timer B counter overflows from  
H'FF to H'00  
Timer C interrupt request flag  
0
1
[Clearing condition] When IRRTC = 1, it is cleared by writing 0  
[Setting condition] When the timer C counter overflows from H'FF to H'00  
or underflows from H'00 to H'FF  
Timer FL interrupt request flag  
0
1
[Clearing condition] When IRRTFL = 1, it is cleared by writing 0  
[Setting condition] When counter FL matches output compare register FL  
in 8-bit mode  
Timer FH interrupt request flag  
0
1
[Clearing condition] When IRRTFH = 1, it is cleared by writing 0  
[Setting condition] When counter FH matches output compare register FH in  
8-bit mode, or when 16-bit counter F (TCFL, TCFH)  
matches 16-bit output compare register F (OCRFL,  
OCRFH) in 16-bit mode  
Timer G interrupt request flag  
0
1
[Clearing condition] When IRRTG = 1, it is cleared by writing 0  
[Setting condition] When pin TMIG is set to TMIG input and the  
designated signal edge is detected  
SCI2 interrupt request flag  
0
1
[Clearing condition] When IRRS2 = 1, it is cleared by writing 0  
[Setting condition] When an SCI2 transfer is completed or aborted  
A/D converter interrupt request flag  
0
1
[Clearing condition] When IRRAD = 1, it is cleared by writing 0  
[Setting condition] When A/D conversion is completed and ADSF is reset  
Direct transfer interrupt request flag  
0
1
[Clearing condition] When IRRDT = 1, it is cleared by writing 0  
[Setting condition] A SLEEP instruction is executed when DTON = 1 and a direct  
transfer is made  
Note: * Only a write of 0 for flag clearing is possible.  
452  
IWPR—Wakeup interrupt request register  
H'F9  
System control  
Bit  
7
6
5
4
3
2
1
0
IWPF7 IWPF6 IWPF5 IWPF4 IWPF3 IWPF2 IWPF1 IWPF0  
Initial value  
Read/Write  
0
0
0
0
0
0
0
0
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
Wakeup interrupt request flag  
0
[Clearing condition]  
When IWPFn = 1, it is cleared by writing 0  
[Setting condition]  
1
When pin WKPn is set to interrupt input and a falling signal edge is detected  
(n = 7 to 0)  
Note: * Only a write of 0 for flag clearing is possible.  
453  
Appendix C I/O Port Block Diagrams  
C.1 Schematic Diagram of Port 1  
SBY (low level during reset and in standby mode)  
Internal  
data bus  
PUCR1n  
VCC  
VCC  
PMR1n  
PDR1n  
PCR1n  
P1n  
VSS  
IRQn – 4  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
n = 5 to 7  
Figure C-1 (a) Port 1 Block Diagram (Pins P1 to P1 )  
7
5
454  
PWM module  
PWM  
SBY  
Internal  
data bus  
PUCR14  
VCC  
VCC  
PMR14  
PDR14  
PCR14  
P14  
VSS  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
Figure C-1 (b) Port 1 Block Diagram (Pin P1 )  
4
455  
SBY  
Internal  
data bus  
PUCR1  
3
VCC  
VCC  
PMR13  
PDR13  
PCR13  
P13  
VSS  
Timer G module  
TMIG  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
Figure C-1 (c) Port 1 Block Diagram (Pin P1 )  
3
456  
Timer F module  
TMOFH (P12 )  
TMOFL (P11)  
SBY  
Internal  
data bus  
PUCR1n  
PMR1n  
PDR1n  
PCR1n  
VCC  
VCC  
P1n  
VSS  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
n = 2, 1  
Figure C-1 (d) Port 1 Block Diagram (Pins P1 and P1 )  
2
1
457  
Timer A module  
TMOW  
SBY  
Internal  
data bus  
PUCR10  
VCC  
VCC  
PMR10  
PDR10  
PCR10  
P10  
VSS  
PDR1: Port data register 1  
PCR1: Port control register 1  
PMR1: Port mode register 1  
PUCR1: Port pull-up control register 1  
Figure C-1 (e) Port 1 Block Diagram (Pin P1 )  
0
458  
C.2 Schematic Diagram of Port 2  
Internal  
data bus  
SBY  
PMR4n  
VCC  
P2n  
PDR2n  
PCR2n  
VSS  
PDR2: Port data register 2  
PCR2: Port control register 2  
PMR4: Port mode register 4  
n = 2 to 7  
Figure C-2 (a) Port 2 Block Diagram (Pins P2 to P2 )  
7
2
459  
SBY  
Internal  
data bus  
PMR41  
VCC  
PMR21  
PDR21  
PCR21  
P21  
VSS  
Timer C module  
UD  
PDR2: Port data register 2  
PCR2: Port control register 2  
PMR2: Port mode register 2  
PMR4: Port mode register 4  
Figure C-2 (b) Port 2 Block Diagram (Pin P2 )  
1
460  
SBY  
Internal  
data bus  
PMR40  
PMR20  
PDR20  
PCR20  
VCC  
P20  
VSS  
IRQ4  
PDR2: Port data register 2  
PCR2: Port control register 2  
PMR2: Port mode register 2  
PMR4: Port mode register 4  
Figure C-2 (c) Port 2 Block Diagram (Pin P2 )  
0
461  
C.3 Schematic Diagram of Port 3  
SBY  
Internal  
data bus  
PUCR37  
VCC  
VCC  
PMR37  
PDR37  
PCR37  
P37  
VSS  
SCI2 module  
CS  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
Figure C-3 (a) Port 3 Block Diagram (Pin P3 )  
7
462  
SCI2 module  
STRB  
SBY  
Internal  
data bus  
PUCR36  
PMR36  
PDR36  
PCR36  
VCC  
VCC  
P36  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
Figure C-3 (b) Port 3 Block Diagram (Pin P3 )  
6
463  
SCI2 module  
HZS02N  
SO2  
PMR25  
SBY  
Internal  
data bus  
PUCR35  
VCC  
VCC  
PMR35  
PDR35  
PCR35  
P35  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PMR2: Port mode register 2  
PUCR3: Port pull-up control register 3  
Figure C-3 (c) Port 3 Block Diagram (Pin P3 )  
5
464  
SBY  
Internal  
data bus  
PUCR3n  
VCC  
VCC  
PMR3n  
PDR3n  
PCR3n  
P3n  
VSS  
SCI module  
SI  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
n = 1, 4  
Figure C-3 (d) Port 3 Block Diagram (Pins P3 and P3 )  
4
1
465  
SCI module  
EXCK  
SCKO  
SCKI  
SBY  
PUCR3n  
PMR3n  
PDR3n  
PCR3n  
VCC  
VCC  
P3n  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PUCR3: Port pull-up control register 3  
n = 3, 0  
Figure C-3 (e) Port 3 Block Diagram (Pins P3 and P3 )  
3
0
466  
SCI1 module  
SO1  
PMR22  
SBY  
Internal  
data bus  
PUCR32  
VCC  
VCC  
PMR32  
PDR32  
PCR32  
P32  
VSS  
PDR3: Port data register 3  
PCR3: Port control register 3  
PMR3: Port mode register 3  
PMR2: Port mode register 2  
PUCR3: Port pull-up control register 3  
Figure C-3 (f) Port 3 Block Diagram (Pin P3 )  
2
467  
C.4 Schematic Diagram of Port 4  
Internal  
data bus  
PMR23  
P43  
IRQ0  
PMR2: Port mode register 2  
Figure C-4 (a) Port 4 Block Diagram (Pin P4 )  
3
SBY  
SCI3 module  
VCC  
TE  
TXD  
P42  
PDR42  
PCR42  
Internal  
data bus  
VSS  
PDR4: Port data register 4  
PCR4: Port control register 4  
Figure C-4 (b) Port 4 Block Diagram (Pin P4 )  
2
468  
SBY  
SCI3 module  
VCC  
RE  
RXD  
P41  
PDR41  
PCR41  
VSS  
PDR4: Port data register 4  
PCR4: Port control register 4  
Figure C-4 (c) Port 4 Block Diagram (Pin P4 )  
1
469  
SBY  
SCI3 module  
SCKIE  
SCKOE  
SCKO  
SCKI  
VCC  
P40  
PDR40  
PCR40  
VSS  
PDR4: Port data register 4  
PCR4: Port control register 4  
Figure C-4 (d) Port 4 Block Diagram (Pin P4 )  
0
470  
C.5 Schematic Diagram of Port 5  
SBY  
Internal  
data bus  
PUCR5n  
VCC  
VCC  
PMR5n  
PDR5n  
PCR5n  
P5n  
VSS  
WKPn  
PDR5: Port data register 5  
PCR5: Port control register 5  
PMR5: Port mode register 5  
PUCR5: Port pull-up control register 5  
n = 0 to 7  
Figure C-5 Port 5 Block Diagram  
471  
C.6 Schematic Diagram of Port 6  
SBY  
Internal  
data bus  
PUCR6n  
VCC  
VCC  
P6n  
PDR6n  
PCR6n  
VSS  
PDR6: Port data register 6  
PCR6: Port control register 6  
PUCR4: Port pull-up control register 6  
n = 0 to 7  
Figure C-6 Port 6 Block Diagram  
472  
C.7 Schematic Diagram of Port 7  
SBY  
Internal  
data bus  
VCC  
PDR7n  
PCR7n  
P7n  
VSS  
PDR7: Port data register 7  
PCR7: Port control register 7  
n = 0 to 7  
Figure C-7 Port 7 Block Diagram  
473  
C.8 Schematic Diagram of Port 8  
SBY  
Internal  
data bus  
VCC  
PDR8n  
PCR8n  
P8n  
VSS  
PDR8: Port data register 8  
PCR8: Port control register 8  
n = 0 to 7  
Figure C-8 Port 8 Block Diagram  
474  
C.9 Schematic Diagram of Port 9  
SBY  
Internal  
data bus  
VCC  
PDR9n  
PCR9n  
P9n  
VSS  
PDR9: Port data register 9  
PCR9: Port control register 9  
n = 0 to 7  
Figure C-9 Port 9 Block Diagram  
475  
C.10 Schematic Diagram of Port A  
SBY  
Internal  
data bus  
VCC  
PDRAn  
PCRAn  
PAn  
VSS  
PDRA: Port data register A  
PCRA: Port control register A  
n = 0 to 3  
Figure C-10 Port A Block Diagram  
476  
C.11 Schematic Diagram of Port B  
Internal  
data bus  
PBn  
A/D module  
DEC  
AMR0 to AMR3  
VIN  
n = 0 to 7  
Figure C-11 Port B Block Diagram  
C.12 Schematic Diagram of Port C  
Internal  
data bus  
PCn  
A/D module  
DEC  
AMR0 to AMR3  
VIN  
n = 0 to 3  
Figure C-12 Port C Block Diagram  
477  
Appendix D Port States in the Different Processing States  
Table D-1 Port States Overview  
Port  
P17 to P10 High  
impedance  
P27 to P20 High  
impedance  
P37 to P30 High  
impedance  
P43 to P40 High  
impedance  
P57 to P50 High  
impedance  
P67 to P60 High  
impedance  
P77 to P70 High  
impedance  
P87 to P80 High  
impedance  
P97 to P90 High  
impedance  
PA3 to PA0 High  
impedance  
PB7 to PB0 High  
impedance impedance impedance impedance impedance impedance impedance  
PC3 to PC0 High High High High High High High  
Reset  
Sleep  
Subsleep Standby  
Watch  
Subactive Active  
Retained  
Retained High  
Retained  
Functions Functions  
impedance*  
Retained High  
impedance  
Retained High  
impedance*  
Retained High  
impedance  
Retained High  
impedance*  
Retained High  
impedance*  
Retained High  
impedance  
Retained High  
impedance  
Retained High  
impedance  
Retained High  
impedance  
High  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
High  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
High  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
Functions Functions  
High  
High  
High  
impedance impedance impedance impedance impedance impedance impedance  
Note: * High level output when MOS pull-up is in on state.  
478  
Appendix E Product Code Lineup  
Table E-1 H8/3834U Series Product Code Lineup  
Package  
(Hitachi  
Package  
Code)  
Product  
Type  
Product  
Code  
Order Code  
Name  
Mark Code  
H8/3837U ZTAT  
Standard HD6473837UH HD6473837UH  
products  
HD6473837UH  
HD6473837UF  
HD6473837UX  
100-pin QFP  
(FP-100B)  
version  
HD6473837UF HD6473837UF  
100-pin QFP  
(FP-100A)  
HD6473837UX HD6473837UX  
100-pin TQFP  
(TFP-100B)  
Mask ROM Standard HD6433837UH HD6433837U(***)H HD6433837U(***)H 100-pin QFP  
version  
products  
(FP-100B)  
HD6433837UF HD6433837U(***)F HD6433837U(***)F 100-pin QFP  
(FP-100A)  
HD6433837UX HD6433837U(***)X HD6433837U(***)X 100-pin TQFP  
(TFP-100B)  
H8/3836U Mask ROM Standard HD6433836UH HD6433836U(***)H HD6433836U(***)H 100-pin QFP  
version  
products  
(FP-100B)  
HD6433836UF HD6433836U(***)F HD6433836U(***)F 100-pin QFP  
(FP-100A)  
HD6433836UX HD6433836U(***)X HD6433836U(***)X 100-pin TQFP  
(TFP-100B)  
H8/3835U Mask ROM Standard HD6433835UH HD6433835U(***)H HD6433835U(***)H 100-pin QFP  
version  
products  
(FP-100B)  
HD6433835UF HD6433835U(***)F HD6433835U(***)F 100-pin QFP  
(FP-100A)  
HD6433835UX HD6433835U(***)X HD6433835U(***)X 100-pin TQFP  
(TFP-100B)  
H8/3834U ZTAT  
version  
Standard HD6473834UH HD6473834UH  
products  
HD6473834UH  
HD6473834UF  
HD6473834UX  
100-pin QFP  
(FP-100B)  
HD6473834UF HD6473834UF  
100-pin QFP  
(FP-100A)  
HD6473834UX HD6473834UX  
100-pin TQFP  
(TFP-100B)  
479  
Table E-1 H8/3834U Series Product Code Lineup (cont)  
Package  
(Hitachi  
Package  
Code)  
Product  
Type  
Product  
Code  
Order Code  
Name  
Mark Code  
H8/3834U Mask ROM Standard HD6433834UH HD6433834U(***)H HD6433834U(***)H 100-pin QFP  
version  
products  
(FP-100B)  
HD6433834UF HD6433834U(***)F HD6433834U(***)F 100-pin QFP  
(FP-100A)  
HD6433834UX HD6433834U(***)X HD6433834U(***)X 100-pin TQFP  
(TFP-100B)  
H8/3833U Mask ROM Standard HD6433833UH HD6433833U(***)H HD6433833U(***)H 100-pin QFP  
version  
products  
(FP-100B)  
HD6433833UF HD6433833U(***)F HD6433833U(***)F 100-pin QFP  
(FP-100A)  
HD6433833UX HD6433833U(***)X HD6433833U(***)X 100-pin TQFP  
(TFP-100B)  
Note: 1. (***) in mask ROM versions is the ROM code.  
480  
Appendix F Package Dimensions  
Dimensional drawings of H8/3834U Series packages FP-100B, FP-100A, and TFP-100B are  
shown in figures F-1, F-2, and F-3 below.  
unit: mm  
16.0 ± 0.3  
14  
0.5 mm Pitch  
75  
51  
50  
26  
76  
100  
25  
1
0.20 ± 0.10  
M
0.08  
1.0  
0 – 10 °  
0.50 ± 0.20  
0.10  
Hitachi code FP-100B  
JEDEC code –  
EIAJ code  
Weight (g)  
SC-595-D  
Figure F-1 FP-100B Package Dimensions  
481  
unit: mm  
24.8 ± 0.4  
20.0  
0.65 mm Pitch  
80  
51  
50  
31  
81  
100  
1
0.30 ± 0.10  
30  
0.13  
0.15  
M
2.40  
0 – 10 °  
1.20 ± 0.20  
Hitachi code FP-100A  
JEDEC code –  
EIAJ code  
Weight (g)  
SC-580-J  
Figure F-2 FP-100A Package Dimensions  
482  
unit: mm  
0.5 mm Pitch  
16.0 ± 0.2  
14.0  
75  
51  
50  
26  
76  
100  
1
0.20 ± 0.05  
25  
M
0.08  
1.00  
0 – 5°  
0.10  
0.50 ± 0.10  
Hitachi code TFP-100B  
JEDEC code –  
EIAJ code  
Weight (g)  
Figure F-3 TFP-100B Package Dimensions  
Note: In case of inconsistencies arising within figures, dimensional drawings listed in the Hitachi  
Semiconductor Packages Manual take precedence and are considered correct.  
483  
H8/3834U Series Hardware Manual  
Publication Date: 1st Edition, September 1995  
Published by:  
Semiconductor and IC Div.  
Hitachi, Ltd.  
Edited by:  
Technical Document Center  
Hitachi Microcomputer System Ltd.  
Copyright © Hitachi, Ltd., 1995. All rights reserved. Printed in Japan.  

相关型号:

H8/3836

single-chip microcomputers
RENESAS

H8/3836S

single-chip microcomputers
RENESAS

H8/3836U

Single-Chip Microcomputer
RENESAS

H8/3837

single-chip microcomputers
RENESAS

H8/3837S

single-chip microcomputers
RENESAS

H8/3837U

Single-Chip Microcomputer
RENESAS

H8/3842

Single-Chip Microcomputer
RENESAS

H8/38422

Renesas 8-Bit Single-Chip Microcomputer H8 Family/H8/300L Super Low Power Series
RENESAS

H8/38423

Renesas 8-Bit Single-Chip Microcomputer H8 Family/H8/300L Super Low Power Series
RENESAS

H8/38424

Renesas 8-Bit Single-Chip Microcomputer H8 Family/H8/300L Super Low Power Series
RENESAS

H8/38425

Renesas 8-Bit Single-Chip Microcomputer H8 Family/H8/300L Super Low Power Series
RENESAS

H8/38426

Renesas 8-Bit Single-Chip Microcomputer H8 Family/H8/300L Super Low Power Series
RENESAS