F0443 [RENESAS]

Dual Matched Broadband RF DVGA 0.6GHz to 2.7GHz;
F0443
型号: F0443
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Dual Matched Broadband RF DVGA 0.6GHz to 2.7GHz

文件: 总65页 (文件大小:6308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Matched Broadband RF  
DVGA 0.6GHz to 2.7GHz  
F0443  
Datasheet  
Description  
Features  
The F0443 is a highly integrated 0.6GHz to 2.7GHz dual channel  
RF digital variable gain amplifier designed for use in  
diversity/MIMO receivers. The F0443 provides two independent  
receiver paths each with 29.5dB typical maximum gain and 3.2dB  
NF at 2.5GHz.  
.
RF Frequency Range: 0.6GHz to 2.7GHz  
Gain at 2.5GHz:  
.
29.5dB typical max gain in non-bypass mode  
10.9dB typical max gain in bypass mode  
DSA Control  
.
For each path, gain control is split into four separate digital step  
attenuators: DSA0 provides 6dB of attenuation in a single step  
using SPI/I3C control. Its counterpart, DSA1, also provides 6dB of  
attenuation in a single step but it is programmed instead using an  
external direct control pin. DSA2 yields 29dB of SPI/I3C-controlled  
attenuation in 1dB steps, while its counterpart, DSA3, includes  
18dB attenuation in 6dB steps programmed via two external control  
pins. The device offers +39dBm nominal output IP3 at 2.5GHz  
using 372mA total ICC for two active paths with a +5V supply  
voltage.  
DSA0: Single 6dB step via SPI/I3C control  
DSA1: Single 6dB step via 1-bit external pin control  
DSA2: 29dB range in 1dB steps via SPI/I3C control  
DSA3: 18dB range in 6dB steps via 2-bit external pin  
control  
.
.
+39dBm OIP3 at 2.5GHz  
NF at 2.5GHz  
3.2dB typical in non-bypass mode  
8.9dB typical in bypass mode  
+19.7dBm OP1dB at 2.5GHz  
ICC = 372mA  
The F0443 is packaged in a 7 × 7 mm, 48-LGA with 50Ω single-  
ended RF input and RF output impedances for ease of integration  
into the signal path.  
.
.
.
.
.
.
.
Standby Mode for power savings with 9mA standby current  
50Ω single-ended input/output impedances  
1.8V logic support  
Competitive Advantage  
.
High Linearity via Renesas’ patented Zero-Distortion™  
Technology  
Operating temperature (TEPAD) range: -40°C to +105°C  
7 × 7 mm 48-LGA package  
.
Exceptionally Low Gain Overshoot/Undershoot via Renesas’  
patented Glitch-Free™ Technology  
.
.
.
.
Low Noise Figure  
Low DC Current  
High Integration  
High Reliability  
Block Diagram  
Figure 1. Block Diagram  
RF AMP1_A  
6dB  
6dB  
29dB  
18dB  
DSA0_A  
DSA1_A  
DSA2_A RF AMP2_A DSA3_A  
Typical Applications  
RFOUT_A  
RFIN_A  
.
.
.
Multi-mode, Multi-carrier Receivers  
Distributed Antenna Systems  
Digital Radios  
Decode  
Logic  
Bias  
Control  
RFOUT_B  
RFIN_B  
DSA0_B  
6dB  
DSA1_B  
6dB  
DSA2_B RF AMP2_B DSA3_B  
29dB  
18dB  
RF AMP1_B  
© 2020 Renesas Electronics Corporation  
1
September 1, 2020  
 
F0443 Datasheet  
Contents  
Pin Assignments....................................................................................................................................................................................................7  
Pin Descriptions.....................................................................................................................................................................................................8  
Absolute Maximum Ratings.................................................................................................................................................................................10  
Recommended Operating Conditions .................................................................................................................................................................11  
Electrical Characteristics .....................................................................................................................................................................................12  
Thermal Characteristics.......................................................................................................................................................................................26  
Typical Operating Conditions (TOC) ...................................................................................................................................................................26  
Functional Description.........................................................................................................................................................................................44  
Parallel Programming.................................................................................................................................................................................44  
Standby (STBY) Mode Programming................................................................................................................................................44  
Parallel Programming of DSA1..........................................................................................................................................................44  
Parallel Programming of DSA3..........................................................................................................................................................45  
Multi-IC Addressing Scheme.............................................................................................................................................................45  
Serial Communication ................................................................................................................................................................................46  
Serial Programming...........................................................................................................................................................................46  
Truth Tables ......................................................................................................................................................................................46  
SPI Programming ..............................................................................................................................................................................48  
SPI Programming - Default................................................................................................................................................................51  
I3C Programming ..............................................................................................................................................................................51  
Application Information........................................................................................................................................................................................55  
Power Supplies...........................................................................................................................................................................................55  
Startup Condition........................................................................................................................................................................................55  
Digital Pin Voltage and Resistance Values.................................................................................................................................................55  
Signal Integrity.....................................................................................................................................................................................................56  
Evaluation Kit Picture ..........................................................................................................................................................................................57  
Evaluation Kit / Applications Circuit.....................................................................................................................................................................58  
Evaluation Kit BOM .............................................................................................................................................................................................59  
Evaluation Kit Operation......................................................................................................................................................................................60  
Power Supply Setup...................................................................................................................................................................................60  
Parallel Logic Control Setup..............................................................................................................................................................60  
Serial Logic Control Setup..........................................................................................................................................................................61  
Power-On Procedure..................................................................................................................................................................................61  
Power-Off Procedure..................................................................................................................................................................................61  
Package Outline Drawings ..................................................................................................................................................................................62  
Ordering Information............................................................................................................................................................................................62  
© 2020 Renesas Electronics Corporation  
2
September 1, 2020  
F0443 Datasheet  
List of Figures  
Figure 1. Block Diagram .....................................................................................................................................................................................1  
Figure 2. Pin Assignments for 7 × 7 × 0.75 mm 48-LGA Package – Top View ..................................................................................................7  
Figure 3. Gain, All DSA = 0dB, Bypass OFF ....................................................................................................................................................27  
Figure 4. Gain, All DSA = 0dB, Bypass ON......................................................................................................................................................27  
Figure 5. Gain, DSA0 = 6dB, Bypass OFF .......................................................................................................................................................27  
Figure 6. Gain, DSA0 = 6dB, Bypass ON.........................................................................................................................................................27  
Figure 7. Gain, DSA1 = 6dB, Bypass OFF .......................................................................................................................................................27  
Figure 8. Gain, DSA1 = 6dB, Bypass ON.........................................................................................................................................................27  
Figure 9. Gain, DSA2 = 5dB, Bypass OFF .......................................................................................................................................................28  
Figure 10. Gain, DSA2 = 5dB, Bypass ON.........................................................................................................................................................28  
Figure 11. Gain, DSA2 = 10dB, Bypass OFF .....................................................................................................................................................28  
Figure 12. Gain, DSA2 = 10dB, Bypass ON.......................................................................................................................................................28  
Figure 13. Gain, DSA2 = 15dB, Bypass OFF .....................................................................................................................................................28  
Figure 14. Gain, DSA2 = 15dB, Bypass ON.......................................................................................................................................................28  
Figure 15. Gain, DSA2 = 25dB, Bypass OFF .....................................................................................................................................................29  
Figure 16. Gain, DSA2 = 25dB, Bypass ON.......................................................................................................................................................29  
Figure 17. Gain, DSA3 = 6dB, Bypass OFF .......................................................................................................................................................29  
Figure 18. Gain, DSA3 = 6dB, Bypass ON.........................................................................................................................................................29  
Figure 19. Gain, DSA3 = 12dB, Bypass OFF .....................................................................................................................................................29  
Figure 20. Gain, DSA3 = 12dB, Bypass ON.......................................................................................................................................................29  
Figure 21. Gain, DSA3 = 18dB, Bypass OFF .....................................................................................................................................................30  
Figure 22. Gain, DSA3 = 18dB, Bypass ON.......................................................................................................................................................30  
Figure 23. Relative Gain Error, DSA0 = 6dB, Bypass OFF ................................................................................................................................30  
Figure 24. Relative Gain Error, DSA1 = 6dB, Bypass OFF ................................................................................................................................30  
Figure 25. Relative Gain Error, DSA2 = 5dB, Bypass OFF ................................................................................................................................30  
Figure 26. Relative Gain Error, DSA2 = 10dB, Bypass OFF ..............................................................................................................................30  
Figure 27. Relative Gain Error, DSA2 = 15dB, Bypass OFF ..............................................................................................................................31  
Figure 28. Relative Gain Error, DSA2 = 25dB, Bypass OFF ..............................................................................................................................31  
Figure 29. Relative Gain Error, DSA3 = 6dB, Bypass OFF ................................................................................................................................31  
Figure 30. Relative Gain Error, DSA3 = 12dB, Bypass OFF ..............................................................................................................................31  
Figure 31. Relative Gain Error, DSA3 = 18dB, Bypass OFF ..............................................................................................................................31  
Figure 32. Gain, All DSA2 Attenuation Settings, Bypass OFF, 25°C .................................................................................................................31  
Figure 33. Gain, All DSA2 Attenuation Settings, Bypass ON, 25°C...................................................................................................................32  
Figure 34. DSA2 INL (Absolute Attenuation Error) Bypass OFF........................................................................................................................32  
Figure 35. DSA2 DNL (Step Attenuation Error) Bypass OFF............................................................................................................................32  
Figure 36. DSA2 INL (Absolute Attenuation Error) Bypass ON.........................................................................................................................32  
Figure 37. DSA2 DNL (Step Attenuation Error) Bypass ON...............................................................................................................................32  
Figure 38. Gain, All DSA3 Attenuation Settings, Bypass OFF, 25°C .................................................................................................................32  
© 2020 Renesas Electronics Corporation  
3
September 1, 2020  
F0443 Datasheet  
Figure 39. Gain, All DSA3 Attenuation Settings, Bypass ON, 25°C...................................................................................................................33  
Figure 40. DSA3 INL (Absolute Attenuation Error) Bypass OFF........................................................................................................................33  
Figure 41. DSA3 DNL (Step Attenuation Error) Bypass OFF .............................................................................................................................33  
Figure 42. DSA3 INL (Absolute Attenuation Error) Bypass ON.........................................................................................................................33  
Figure 43. DSA3 DNL (Step Attenuation Error) Bypass ON...............................................................................................................................33  
Figure 44. S11, All DSA = 0dB, Bypass OFF .....................................................................................................................................................33  
Figure 45. S11, All DSA = 0dB, Bypass ON .......................................................................................................................................................34  
Figure 46. S11, DSA0 = 6dB, Bypass OFF ........................................................................................................................................................34  
Figure 47. S11, DSA0 = 6dB, Bypass ON..........................................................................................................................................................34  
Figure 48. S11, DSA1 = 6dB, Bypass OFF ........................................................................................................................................................34  
Figure 49. S11, DSA1 = 6dB, Bypass ON..........................................................................................................................................................34  
Figure 50. S11, DSA2 = 5dB, Bypass OFF ........................................................................................................................................................34  
Figure 51. S11, DSA2 = 5dB, Bypass ON..........................................................................................................................................................35  
Figure 52. S11, DSA2 = 10dB, Bypass OFF ......................................................................................................................................................35  
Figure 53. S11, DSA2 = 10dB, Bypass ON........................................................................................................................................................35  
Figure 54. S11, DSA2 = 15dB, Bypass OFF ......................................................................................................................................................35  
Figure 55. S11, DSA2 = 15dB, Bypass ON........................................................................................................................................................35  
Figure 56. S11, DSA2 = 25dB, Bypass OFF ......................................................................................................................................................35  
Figure 57. S11, DSA2 = 25dB, Bypass ON........................................................................................................................................................36  
Figure 58. S11, DSA3 = 6dB, Bypass OFF ........................................................................................................................................................36  
Figure 59. S11, DSA3 = 6dB, Bypass ON..........................................................................................................................................................36  
Figure 60. S11, DSA3 = 12dB, Bypass OFF ......................................................................................................................................................36  
Figure 61. S11, DSA3 = 12dB, Bypass ON........................................................................................................................................................36  
Figure 62. S11, DSA3 = 18dB, Bypass OFF ......................................................................................................................................................36  
Figure 63. S11, DSA3 = 18dB, Bypass ON........................................................................................................................................................37  
Figure 64. S22, All DSAs = 0dB, Bypass OFF....................................................................................................................................................37  
Figure 65. S22, All DSAs = 0dB, Bypass ON .....................................................................................................................................................37  
Figure 66. S22, DSA0 = 6dB, Bypass OFF ........................................................................................................................................................37  
Figure 67. S22, DSA0 = 6dB, Bypass ON..........................................................................................................................................................37  
Figure 68. S22, DSA1 = 6dB, Bypass OFF ........................................................................................................................................................37  
Figure 69. S22, DSA1 = 6dB, Bypass ON..........................................................................................................................................................38  
Figure 70. S22, DSA2 = 5dB, Bypass OFF ........................................................................................................................................................38  
Figure 71. S22, DSA2 = 5dB, Bypass ON..........................................................................................................................................................38  
Figure 72. S22, DSA2 = 10dB, Bypass OFF ......................................................................................................................................................38  
Figure 73. S22, DSA2 = 10dB, Bypass ON........................................................................................................................................................38  
Figure 74. S22, DSA2 = 15dB, Bypass OFF ......................................................................................................................................................38  
Figure 75. S22, DSA2 = 15dB, Bypass ON........................................................................................................................................................39  
Figure 76. S22, DSA2 = 25dB, Bypass OFF ......................................................................................................................................................39  
Figure 77. S22, DSA2 = 25dB, Bypass ON........................................................................................................................................................39  
Figure 78. S22, DSA3 = 6dB, Bypass OFF ........................................................................................................................................................39  
© 2020 Renesas Electronics Corporation  
4
September 1, 2020  
F0443 Datasheet  
Figure 79. S22, DSA3 = 6dB, Bypass ON..........................................................................................................................................................39  
Figure 80. S22, DSA3 = 12dB, Bypass OFF ......................................................................................................................................................39  
Figure 81. S22, DSA3 = 12dB, Bypass ON........................................................................................................................................................40  
Figure 82. S22, DSA3 = 18dB, Bypass OFF ......................................................................................................................................................40  
Figure 83. S22, DSA3 = 18dB, Bypass ON........................................................................................................................................................40  
Figure 84. S12, Max Gain, Bypass OFF.............................................................................................................................................................40  
Figure 85. S12, Max Gain, Bypass ON...............................................................................................................................................................40  
Figure 86. Noise figure, Max Gain, Bypass OFF................................................................................................................................................40  
Figure 87. Noise Figure, DSA2 = 5dB, Bypass OFF ..........................................................................................................................................41  
Figure 88. Noise Figure, DSA2 = 10dB, Bypass OFF .........................................................................................................................................41  
Figure 89. Noise Figure, DSA2 = 15dB, Bypass OFF .........................................................................................................................................41  
Figure 90. Noise Figure, DSA2 = 25dB, Bypass OFF .........................................................................................................................................41  
Figure 91. Noise figure, Max Gain, Bypass ON...................................................................................................................................................41  
Figure 92. OP1dB at Max Gain, Bypass OFF......................................................................................................................................................41  
Figure 93. OP1dB at Max Gain, Bypass ON .......................................................................................................................................................42  
Figure 94. OP1dB at DSA2 = 5dB, Bypass OFF.................................................................................................................................................42  
Figure 95. OP1dB at DSA2 = 10dB, Bypass OFF...............................................................................................................................................42  
Figure 96. OP1dB at DSA2 = 15dB, Bypass OFF...............................................................................................................................................42  
Figure 97. OP1dB at DSA2 = 25dB, Bypass OFF...............................................................................................................................................42  
Figure 98. OIP3 at Max Gain, Bypass OFF........................................................................................................................................................42  
Figure 99. OIP3 at Max Gain, Bypass ON...........................................................................................................................................................43  
Figure 100. OIP3 at DSA2 = 5dB, Bypass OFF ..................................................................................................................................................43  
Figure 101. OIP3 at DSA2 = 10dB, Bypass OFF ................................................................................................................................................43  
Figure 102. OIP3 at DSA2 = 15dB, Bypass OFF ................................................................................................................................................43  
Figure 103. OIP3 at DSA2 = 25dB, Bypass OFF ................................................................................................................................................43  
Figure 104. SPI Word..........................................................................................................................................................................................46  
Figure 105. I3C Word ..........................................................................................................................................................................................46  
Figure 106. Multi-IC Addressing Scheme Using SPI...........................................................................................................................................48  
Figure 107. SPI Timing Diagram .........................................................................................................................................................................49  
Figure 108. SPI Serial Register Timing Diagram.................................................................................................................................................50  
Figure 109. SPI Programming – Default Register Settings .................................................................................................................................51  
Figure 110. I3C Static Addressing Scheme.........................................................................................................................................................52  
Figure 111. I3C Timing Diagram – Initialization...................................................................................................................................................53  
Figure 112. I3C Timing Diagram .........................................................................................................................................................................53  
Figure 113. I3C Programming – Default Register Settings for Byte1 (Programming Word)................................................................................54  
Figure 114. I3C Timing Intervals (Pictorial View).................................................................................................................................................54  
Figure 115. Internal Pull-up Configuration for STBY_A, STBY_B, DSA1 and DSA3 Control Pins......................................................................55  
Figure 116. Internal Pull-down Configuration for the SPI_I3C_SEL, ID_0, and ID_1 Control Pins .....................................................................55  
Figure 117. Control Pin Interface for Signal Integrity...........................................................................................................................................56  
Figure 118. Top View ..........................................................................................................................................................................................57  
© 2020 Renesas Electronics Corporation  
5
September 1, 2020  
F0443 Datasheet  
Figure 119. Bottom View .....................................................................................................................................................................................57  
Figure 120. Electrical Schematic.........................................................................................................................................................................58  
Figure 121. Power Supply and Logic Voltage Connections.................................................................................................................................60  
Figure 122. Power Supply and Logic Voltage Connections.................................................................................................................................60  
Figure 123. Serial Logic Connections..................................................................................................................................................................61  
List of Tables  
Table 1. Pin Descriptions...................................................................................................................................................................................8  
Table 2. Absolute Maximum Ratings...............................................................................................................................................................10  
Table 3. Recommended Operating Conditions ...............................................................................................................................................11  
Table 4. General Electrical Characteristics .....................................................................................................................................................12  
Table 5. Electrical Characteristics – Low Band (0.6GHz to 1.1GHz) Performance.........................................................................................14  
Table 6. Electrical Characteristics – Mid Band (1.5GHz to 2GHz) Performance.............................................................................................18  
Table 7. Electrical Characteristics – High Band (2.3GHz to 2.7GHz) Performance ........................................................................................22  
Table 8. Package Thermal Characteristics......................................................................................................................................................26  
Table 9. STBY Mode Truth Table....................................................................................................................................................................44  
Table 10. DSA1 Truth Table..............................................................................................................................................................................44  
Table 11. DSA3 Truth Table..............................................................................................................................................................................45  
Table 12. Static Address Truth Table................................................................................................................................................................45  
Table 13. Serial Communication Mode Truth Table..........................................................................................................................................46  
Table 14. Path Select (Path A/Path B) Truth Table...........................................................................................................................................46  
Table 15. Bypass Mode (Amp1_A/Amp1_B) Truth Table..................................................................................................................................47  
Table 16. DSA0 Truth Table..............................................................................................................................................................................47  
Table 17. DSA2 Abbreviated Truth Table..........................................................................................................................................................47  
Table 18. SPI Timing Diagram Values Intervals................................................................................................................................................50  
Table 19. I3C Slave Addressing........................................................................................................................................................................51  
Table 20. I3C Timing Intervals (Tabulated Figures) ..........................................................................................................................................54  
Table 21. Bill of Materials (BOM).......................................................................................................................................................................59  
© 2020 Renesas Electronics Corporation  
6
September 1, 2020  
F0443 Datasheet  
Pin Assignments  
Figure 2. Pin Assignments for 7 × 7 × 0.75 mm 48-LGA Package – Top View  
RF AMP1_A  
RFIN_A  
GND  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
29dB  
DSA2_A  
18dB  
DSA3_A  
6dB  
DSA0_A  
6dB  
DSA1_A  
RF  
AMP2_A  
GND  
SPI_I3C_SEL  
STBY_A  
CSb  
RFOUT_A  
GND  
2
3
VCC_BIAS_A  
RSET2  
4
5
SDATA/SDA  
SCLK/SCL  
ID_0  
VCC  
6
Bias  
Control  
Decode Logic  
GND  
7
RDSET2  
VCC_BIAS_B  
GND  
8
ID_1  
9
STBY_B  
GND  
10  
11  
12  
RFOUT_B  
GND  
RF  
AMP2_B  
DSA2_B  
29dB  
DSA3_B  
18dB  
DSA0_B  
6dB  
DSA1_B  
6dB  
RFIN_B  
RF AMP1_B  
© 2020 Renesas Electronics Corporation  
7
September 1, 2020  
 
 
F0443 Datasheet  
Pin Descriptions  
Table 1.  
Pin Descriptions  
Pin Number  
Name  
Description  
1
RFIN_A  
Channel A RF input internally matched to 50Ω. Must use external DC block.  
2, 11, 13,  
15, 20, 22,  
25, 27, 30,  
34, 36, 39,  
41, 46, 48  
GND  
Internally grounded. This pin must be grounded with a via as close to the pin as possible.  
Logic control to select between SPI or I3C mode. Logic HIGH = I3C slave mode using a ‘Slave-Lite’  
version of the MIPI I3C communication protocol. Logic LOW/Open = SPI slave mode. An internal pull-  
down resistor of 100kΩ connects between this pin and GND.  
3
SPI_I3C_SEL  
Standby control for Channel A. HIGH/Open = device power OFF with SPI/I3C still powered ON, LOW =  
device power ON. An internal pull-up resistor network connects between this pin and 1.67V.  
4
5
STBY_A  
CSb  
Chip Select bar input. Used only for SPI mode. Logic LOW allows data to be shifted in. Logic HIGH  
updates the programming register.  
6
7
DATA/SDA  
CLK/SCL  
SPI slave data in or I3C data in/out.  
SPI/I3C clock input.  
Bit 0 for the I3C static address or used for adding static addressing capability in SPI mode. See the  
8
9
ID_0  
ID_1  
Programming section for details. An internal pull-down resistor of 100kΩ connects between this pin and  
GND.  
Bit 1 for the I3C static address or used for adding static addressing capability in SPI mode. See the  
Programming section for details. An internal pull-down resistor of 100kΩ connects between this pin and  
GND.  
Standby control for Channel B. HIGH/Open = device power OFF with SPI/I3C still powered ON, LOW =  
device power ON. An internal pull-up resistor network connects between this pin and 1.67V.  
10  
12  
14  
STBY_B  
RFIN_B  
DSA1_B  
Channel B RF input internally matched to 50Ω. Must use external DC block.  
Logic control for channel B DSA1. Logic HIGH/Open = 6dB attenuation, logic LOW = 0dB attenuation. An  
internal pull-up resistor network connects between this pin and 1.67V.  
16  
17  
18  
19  
21  
VCC_AMP1_B  
RSET1_B  
Channel B amplifier 1 DC supply voltage. Connect bypass capacitor(s) as close to the pin as possible.  
Connect 2.67kΩ external resistor to GND to optimize amplifier bias. Used with RDSET1_B pin 18.  
Connect 9.1kΩ external resistor to GND to optimize amplifier bias. Used with RSET1_B pin 17.  
Connect 4.7kΩ external resistor to GND to optimize amplifier gain variation over temperature.  
Channel B amplifier 2 DC supply voltage. Connect bypass capacitor(s) as close to the pin as possible.  
RDSET1_B  
RFET_B  
VCC_AMP2_B  
Logic control bit 0 for channel B DSA3. An internal pull-up resistor network connects between this pin and  
1.67V.  
23  
24  
DSA3_B_BIT0  
DSA3_B_BIT1  
Logic control bit 1 for channel B DSA3. An internal pull-up resistor network connects between this pin and  
1.67V.  
26  
28  
RFOUT_B  
Channel B RF output internally matched to 50Ω. Must use external DC block.  
VCC_BIAS_B  
Channel B bias circuitry DC supply voltage. Connect bypass capacitor(s) as close to the pin as possible.  
© 2020 Renesas Electronics Corporation  
8
September 1, 2020  
 
 
F0443 Datasheet  
Pin Number  
Name  
RDSET2  
VCC  
Description  
29  
31  
32  
33  
35  
Connect 13kΩ external resistor to GND to optimize amplifier bias. Used with RSET2 pin 32.  
DC supply voltage. Connect bypass capacitor(s) as close to the pin as possible.  
RSET2  
Connect 2.94kΩ external resistor to GND to optimize amplifier bias. Used with RDSET2 pin 29.  
Channel A bias circuitry DC supply voltage. Connect bypass capacitor(s) as close to the pin as possible.  
Channel A RF output internally matched to 50Ω. Must use external DC block.  
VCC_BIAS_A  
RFOUT_A  
Logic control bit 1 for channel B DSA3. An internal pull-up resistor network connects between this pin and  
1.67V.  
37  
38  
DSA3_A_BIT1  
DSA3_A_BIT0  
Logic control bit 0 for channel B DSA3. An internal pull-up resistor network connects between this pin and  
1.67V.  
40  
42  
43  
44  
45  
VCC_AMP2_A  
RFET_A  
Channel A amplifier 2 DC supply voltage. Connect bypass capacitor(s) as close to the pin as possible.  
Connect 4.7kΩ external resistor to GND to optimize amplifier gain variation over temperature.  
Connect 9.1kΩ external resistor to GND to optimize amplifier bias. Used with RSET1_A pin 44.  
Connect 2.67kΩ external resistor to GND to optimize amplifier bias. Used with RDSET1_A pin 43.  
Channel A Amplifier 1 DC supply voltage. Connect bypass capacitor(s) as close to the pin as possible.  
RDSET1_A  
RSET1_A  
VCC_AMP1_A  
Logic control for channel A DSA1. Logic HIGH/Open = 6dB attenuation, logic LOW = 0dB attenuation. An  
internal pull-up resistor network connects between this pin and 1.67V.  
47  
DSA1_A  
– EPAD  
Exposed paddle. Internally connected to ground. Solder this exposed paddle to a printed circuit board  
(PCB) pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground  
planes. These multiple ground vias are also required to achieve the specified RF performance.  
© 2020 Renesas Electronics Corporation  
9
September 1, 2020  
F0443 Datasheet  
Absolute Maximum Ratings  
Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the device at these or any other  
conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Minimum  
-0.3  
Maximum  
+5.5  
Units  
VCC to GND  
V
V
SDATA/SDA, SCLK/SCL, CSb  
VSPI_I3C  
-0.3  
2.2[c]  
STBY_A, STBY_B, DSA1_A, DSA1_B, DSA3_A_BIT0, DSA3_A_BIT1,  
DSA3_B_BIT0, DSA3_B_BIT1, SPI_I3C_SEL, ID_0, ID_1  
V LOGIC  
-0.3  
VCC + 0.25[c]  
V
RFIN_A, RFIN_B externally applied DC voltage  
VRFIN  
+1.4  
+1.4  
+3.6  
+3.6  
V
V
RFOUT_A, RFOUT_B, externally applied DC voltage  
VRFOUT  
RF Input CW Power (RFIN_A or RFIN_B) applied for 24 hours maximum [a]  
Input/Output VSWR < 2:1 in a 50Ω system  
VCC = +5.0V, TEPAD = 105°C [b]  
PRFMAX24_1  
PRFMAX24_2  
PRFMAX24_3  
PRFMAX24_4  
20  
23  
21  
23  
dBm  
dBm  
dBm  
dBm  
Under the Max Gain Condition (Bypass OFF)  
RF Input CW Power (RFIN_A or RFIN_B) applied for 24 hours maximum [a]  
Input/Output VSWR < 2:1 in a 50Ω system  
VCC = +5.0V, TEPAD = 105°C [b]  
Under the Max Gain Condition (Bypass OFF) with DSA0/DSA1 = 6dB Atten  
RF Input CW Power (RFIN_A or RFIN_B) applied for 24 hours maximum [a]  
Input/Output VSWR < 2:1 in a 50Ω system  
VCC = +5.0V, TEPAD = 105°C [b]  
Under the Max Gain Condition (Bypass ON)  
RF Input CW Power (RFIN_A or RFIN_B) applied for 24 hours maximum [a]  
Input/Output VSWR < 2:1 in a 50Ω system  
VCC = +5.0V, TEPAD = 105°C [b]  
Under the Max Gain Condition (Bypass ON) with DSA0/DSA1 = 6dB Atten  
Storage Temperature Range  
TSTOR  
TLEAD  
-65  
+150  
+260  
°C  
°C  
Lead Temperature (soldering, 10s)  
Electrostatic Discharge – HBM  
(JEDEC/ESDA JS-001-2012)  
VESDHBM  
VESDCDM  
2000  
500  
V
V
Electrostatic Discharge – CDM  
(JEDEC 22-C101F)  
[a] Exposure to these maximum RF levels can result in significant VCC current draw due to overdriving the amplifier stage.  
[b] EPAD = Temperature of the exposed paddle.  
[c] Control pins should remain at 0V (±0.3V) while the supply voltage ramps or while it returns to zero.  
T
© 2020 Renesas Electronics Corporation  
10  
September 1, 2020  
 
 
F0443 Datasheet  
Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC  
Condition  
All VCC pins.  
Minimum  
4.75  
-40  
Typical  
Maximum  
Units  
V
Power Supply Voltage [a]  
5.25  
+105  
1.1  
Operating Temperature Range  
TEPAD  
Exposed paddle.  
Tuning Set 1.  
Tuning Set 2.  
Tuning Set 3.  
°C  
0.6  
RF Frequency Range [b]  
fRF  
1.5  
2
GHz  
dBm  
2.3  
2.7  
(RFIN_A or RFIN_B)  
Input/Output VSWR < 2:1 in a  
50Ω system  
TEPAD = 105°C  
VCC = +5.0V  
-23  
-4  
RF Input CW Power [c]  
Max Gain Mode, Bypass OFF  
PRF1  
(RFIN_A or RFIN_B)  
Input/Output VSWR < 2:1 in a  
50Ω system  
dBm  
TEPAD = 105°C  
VCC = +5.0V  
Max Gain Mode, Bypass ON  
Port Impedance (RFIN_A, RFIN_B,  
RFOUT_A, RFOUT_B)  
ZRF  
TJ  
Single-ended.  
50  
Junction Temperature  
+125  
°C  
[a] Power-on resets will only occur for VCC < 3.75V. Device is designed to function with any supply voltage ≥ 3.75V, although performance  
may be degraded when operated outside the recommended voltage range.  
[b] To optimize RF performance, different matching components may be used as described in the BOM. The design will strive for one common  
match that covers the entire 0.6GHz to 2.7GHz band.  
[c] Recommended maximum conditions are defined as a guidance towards obtaining the datasheet specified linearity performance.  
© 2020 Renesas Electronics Corporation  
11  
September 1, 2020  
 
 
F0443 Datasheet  
Electrical Characteristics  
See the F0443 Typical Application Circuit. Specifications apply when operated as a Dual DVGA with VCC = +5.0V, fRF = 1.75GHz, TEPAD  
=
+25°C, STBY_A = STBY_B = logic LOW, ZS = ZL = 50, maximum gain setting (all DSAs set to 0dB attenuation), Evaluation Board (EVKit)  
traces and connectors are de-embedded, unless otherwise stated.  
Table 4.  
General Electrical Characteristics  
Parameter  
Symbol  
VIH-GPIO  
VIL-GPIO  
VIH-SDI  
Condition  
Minimum  
1.07 [a] [c]  
0
Typical  
Maximum  
3.6[c]  
Units  
All GPIO logic input pins.  
V
V
V
V
GPIO Logic Input Threshold  
All GPIO logic input pins.  
0.68[c]  
1.95[c]  
0.68[c]  
All Serial Interface logic input pins.  
All Serial Interface logic input pins.  
1.07 [a] [c]  
0
Serial Digital Interface  
Logic Input Threshold  
VIL-SDI  
Logic Current (per GPIO pin) –  
DSA1_X, DSA3_X_BIT0,  
DSA3_X_BIT1, SPI_I3C_SEL,  
ID_0, ID_1, STBY_X  
IIH-GPIO  
IIL-GPIO  
IIL-SDI  
3.3V logic.  
1.8V logic.  
1.8V logic.  
60[c]  
50[c]  
20[c]  
µA  
µA  
µA  
Logic Current (per SDI pin) -  
DATA/SDA, CLK/SCL, CSb  
ICC_2CH  
ICC_1CH  
ICC_STBY  
Both channels on.  
One channel on.  
Standby Mode [b].  
372  
192  
9
400[c]  
210[c]  
11.5[c]  
DC Current  
mA  
ns  
50% of STBY going low to the state  
where the gain is within ±1dB of its  
final value with no attenuation.  
Startup Time  
TSTART  
62  
DSA0 Adjustment Range  
DSA1 Adjustment Range  
DSA2 Adjustment Range  
DSA3 Adjustment Range  
Maximum Attenuation Glitch  
GADJ0  
GADJ1  
GADJ2  
GADJ3  
ATTNG  
6dB step size.  
6
6
dB  
dB  
dB  
dB  
dB  
6dB step size.  
1dB step size.  
29  
18  
1.6  
6dB step size.  
Any DSA state change.  
50% of CSb (SPI) or STOP command  
(I3C) to within 0.1dB of final value.  
DSA0 Gain Settling Time  
DSA0GST  
35  
20  
ns  
50% CTL to within 0.1dB of the final  
value, 0dB state to 6dB state.  
35[c]  
35[c]  
DSA1 Gain Settling Time  
DSA1GST  
ns  
50% CTL to within 0.1dB of the final  
value, 6dB state to 0dB state.  
20  
70  
50% of CSb (SPI) or STOP command  
(I3C) to within 0.1dB of the final value.  
DSA2 Gain Settling Time  
DSA2GST  
ns  
© 2020 Renesas Electronics Corporation  
12  
September 1, 2020  
 
 
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
50% CTL to within 0.1dB of the final  
value, 0dB state to 18dB state.  
20  
35[c]  
35[c]  
DSA3 Gain Settling Time  
DSA3GST  
ns  
50% CTL to within 0.1dB of the final  
value, 18dB state to 0dB state.  
20  
Stability K Factor  
KFACT  
fSPI_CLK  
fI3C_CLK  
Over entire temperature range.  
SPI interface clock.  
1
unit  
12.5[c]  
12.5[c]  
Serial Clock Speed  
MHz  
I3C interface clock.  
CSb to First Serial Clock  
Rising Edge  
SPI 3 wire bus. 50% of CSb falling  
edge to 50% of CLK rising edge.  
tLS  
tH  
10[c]  
10[c]  
10[c]  
ns  
ns  
ns  
SPI 3 wire bus. 50% of CLK rising  
edge to 50% of Data falling edge.  
Serial Data Hold Time  
Final Serial Clock Rising Edge  
to CSb  
SPI 3 wire bus. 50% of CLK rising  
edge to 50% of CSb rising edge.  
tCLS  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns  
that are not shown in bold italics are guaranteed by design characterization.  
[b] During standby mode, SPI is to be left ON and previous state shall be maintained when device is powered up.  
[c] The attenuators can be assumed to be purely resistive elements when performing cascaded analysis calculations. Ensure to take into  
account any relevant INL/DNL effects.  
© 2020 Renesas Electronics Corporation  
13  
September 1, 2020  
F0443 Datasheet  
Table 5.  
Electrical Characteristics – Low Band (0.6GHz to 1.1GHz) Performance  
See the F0443 Typical Application Circuit. Specifications apply when operated as a Dual DVGA. Typical data is with VCC = +5.0V, fRF = 0.9GHz,  
TEPAD = +25°C, minimum and maximum data is over fRF = 0.6GHz to 1.1GHz and TEPAD = -40°C to +105°C, STBY_A = STBY_B = logic LOW,  
ZS = ZL = 50, maximum gain setting (all DSAs set to 0dB attenuation), Tone Spacing = 1MHz, Pout = 0dBm/Tone, Evaluation Board (EVKit)  
traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
Min  
Typ  
12.2  
10.2  
13.7  
12.4  
Max Units  
Worst case typical, TEPAD = 25°C, fRF = 0.6GHz to 1.1GHz.  
Worst case typical, TEPAD = 105°C, fRF = 0.6GHz to 1.1GHz.  
Worst case typical, TEPAD = 25°C, fRF = 0.6GHz to 1.1GHz.  
Worst case typical, TEPAD = 105°C, fRF = 0.6GHz to 1.1GHz.  
RF Input Return Loss  
RLIN  
dB  
RF Output Return Loss  
Gain Non-Bypass Mode  
RLOUT  
dB  
27.6  
GMAX  
G1  
Maximum Gain  
30.4  
24.9  
19.9  
32  
[a, f]  
Minimum and maximum values  
are valid over:  
DSA0, = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
21.4  
16.4  
26  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
G2  
21.9  
dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
G3  
11.1  
1.4  
15  
17.5  
TEPAD = +25°C,  
VCC = 5V  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
G4  
4.9  
7
Gain Non-Bypass Mode  
Variation Over Temperature  
Gain Non-Bypass Mode  
Flatness  
+0.9/  
-1.4  
GTEMP  
GFLAT  
TEPAD = -40ºC to +105ºC.  
dB  
dB  
Gain Flatness. Any fixed temperature.  
Any 200MHz bandwidth within fRF = 0.6GHz to 1.1GHz.  
Minimum and maximum values  
are valid over:  
0.6  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
Gain Bypass Mode  
GBYP  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
Maximum Gain  
9
11.4  
13  
dB  
TEPAD = +25°C,  
VCC = 5V  
Gain Bypass Mode  
Variation Over Temperature  
+0.7/  
-1  
GTEMP_BYP TEPAD = -40ºC to +105ºC.  
dB  
dB  
Gain Bypass Mode  
Flatness  
Gain Flatness. Any fixed temperature.  
GFLAT_BYP  
0.3  
Any 200MHz bandwidth within fRF = 0.6GHz to 1.1GHz.  
NFMAX  
NF1  
Maximum Gain  
2.8  
3.3  
4.4  
6.7  
15  
3.8  
4.6  
Minimum and maximum values  
are valid over:  
DSA0, = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
Noise Figure Non-Bypass  
Mode  
NF2  
6.1  
dB  
NF3  
8.9  
TEPAD = +25°C,  
VCC = 5V  
NF4  
17.8  
© 2020 Renesas Electronics Corporation  
14  
September 1, 2020  
 
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max Units  
NF Non-Bypass Mode  
Variation Over Temperature  
-0.5/  
+0.7  
NFTEMP  
TEPAD = -40ºC to +105ºC.  
dB  
Minimum and maximum  
values are valid over:  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
Noise Figure Bypass Mode  
NFBYP  
Maximum Gain  
7.5  
10.2  
dB  
dB  
TEPAD = +25°C, VCC = 5V  
NF Bypass Mode Variation  
Over Temperature  
-1.1/  
+1.4  
NFTEMP_BYP TEPAD = -40ºC to +105ºC.  
Tone Spacing = 1MHz  
OIP31  
Maximum gain  
35.7  
35.2  
39.1  
Pout = 0dBm/Tone,  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
Pout = -10dBm/Tone at  
OIP32  
38  
DSA2 = 25dB Attenuation  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
Output Third Order Intercept  
Point  
Minimum and maximum  
values are valid over:  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
OIP33  
OIP34  
33.7  
30.8  
36.5  
34.1  
dBm  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
OIP35  
22.5  
25  
TEPAD = +25°C, VCC = 5V  
OIP3 Variation Over  
Temperature  
-0.2/  
+0.9  
OIP3TEMP  
TEPAD = -40ºC to +105ºC.  
dB  
dB  
dB  
Minimum and maximum  
values are valid over:  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
Output Third Order Intercept  
Point Bypass Mode  
OIP3BYP  
Maximum Gain  
Maximum gain  
36.3  
38.7  
TEPAD = +25°C, VCC = 5V  
OIP3 Bypass Mode Variation  
Over Temperature  
-0.2/  
0.2  
OIP3TEMP_BYP TEPAD = -40ºC to 105ºC.  
OP1dB1  
17.8  
19.1  
Minimum and maximum  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
values are valid over:  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
OP1dB2  
OP1dB3  
OP1dB4  
OP1dB5  
17.6  
18.9  
Output 1dB Compression  
Non-Bypass Mode[b]  
17.6  
14.9  
5.5  
18.8  
18.4  
9.1  
dBm  
dB  
TEPAD = +25°C, VCC = 5V  
OP1dB Variation Over  
Temperature  
+0.1/  
-0.2  
OP1dBTEMP TEPAD = -40ºC to +105ºC.  
© 2020 Renesas Electronics Corporation  
15  
September 1, 2020  
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max Units  
Minimum and maximum  
values are valid over:  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
Output 1dB Compression  
Bypass Mode  
OP1dBBYP  
Maximum Gain  
18  
19.1  
dBm  
TEPAD = +25°C, VCC = 5V  
OP1dB Bypass Mode  
Variation Over Temperature  
+0.2/  
-0.3  
OP1dBTEMP_BYP TEPAD = -40ºC to +105ºC.  
dB  
dB  
ISOREV1  
ISOREV2  
ISOREV3  
ISOREV4  
ISOCH-CH1  
ISOCH-CH2  
Maximum gain, Non-Bypass mode.  
Maximum gain, Bypass mode.  
42.4  
24  
44  
25.8  
83.6  
91  
Reverse Isolation  
Minimum gain, Non-Bypass mode.  
Minimum gain, Bypass mode.  
82.3  
88  
Maximum gain on both channels.  
Minimum gain on both channels, Bypass OFF.  
49  
57  
55  
Ch A: Max Gain  
Ch B: Note [d]  
Ch A: Note [d]  
Ch B: Max Gain  
Ch A: Min Gain  
Ch B: Note [e]  
Ch A: Note [e]  
Ch B: Min Gain  
ISOCH-CH3  
ISOCH-CH4  
ISOCH-CH5  
ISOCH-CH6  
ERRDSA0ABS  
41  
41  
Channel-to-Channel  
Isolation [c]  
dB  
43  
43  
DSA1, DSA2, DSA3 = 0dB  
DSA0 = 6dB  
±0.3  
DSA0, DSA2, DSA3 = 0dB  
DSA1 = 6dB  
ERRDSA1ABS  
±0.3  
+0.6  
+0.6  
+0.6  
+0.6  
+0.6  
+0.1  
+0.1  
+0.15  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 5dB  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 10dB  
Minimum and maximum  
values are valid over:  
fRF = 0.6GHz to 1.1GHz,  
TEPAD = -40°C to +105°C  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 0.9GHz,  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 15dB  
ERRDSA2ABS  
DSA Attenuation Error (INL)[f]  
dB  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 20dB  
TEPAD = +25°C,  
VCC = 5V  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 25dB  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 6dB  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 12dB  
ERRDSA3ABS  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 18dB  
© 2020 Renesas Electronics Corporation  
16  
September 1, 2020  
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
±0.2  
±0.2  
3
Max Units  
DSA2 Step Error (DNL)[f]  
DSA3 Step Error (DNL)[f]  
Relative Phase DSA0  
Relative Phase DSA1  
Phase Deviation DSA2  
ERRDSA2SE Between adjacent states.  
ERRDSA3SE Between adjacent states.  
dB  
ΦDSA0REL  
ΦDSA1REL  
ΦDSA2ADJ  
Any state, relative to 0dB attenuation state.  
Any state, relative to 0dB attenuation state.  
Between adjacent states.  
3
1.5  
5
deg  
ΦDSA2RELMAX DSA set to 29dB, relative to 0dB attenuation state.  
ΦDSA2RELMID DSA set to 14dB, relative to 0dB attenuation state.  
Relative Phase DSA2  
3
Relative Phase DSA3  
ΦDSA3REL  
Any state, relative to 0dB attenuation state.  
2
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that are  
not shown in bold italics are guaranteed by design characterization.  
[b] 1dB compression point is a linearity figure of merit. Refer to Abs Max Ratings table for maximum RF input power.  
[c] Signal applied to RFIN_A (RFIN_B) and measure desired signal at RFOUT_B (RFOUT_A) and compare to signal level at RFOUT_A  
(RFOUT_B).  
[d] Channel A or Channel B DSA combinations which yield 24dB in total attenuation. DSA2_A or DSA2_B settings limited to the following: 0dB,  
6dB, 12dB, 18dB, and 24dB.  
[e] Channel A or Channel B DSA combinations yielding 35dB in total attenuation. DSA2_A or DSA2_B settings limited to the following: 5dB, 11dB,  
17dB, 23dB, and 29dB. Since the maximum attenuation state totals 59dB, this will yield a 24dB difference between the two channels.  
[f] The attenuators can be assumed to be purely resistive elements when performing cascaded analysis calculations. Be sure to take into account  
any relevant INL/DNL effects  
© 2020 Renesas Electronics Corporation  
17  
September 1, 2020  
F0443 Datasheet  
Table 6.  
Electrical Characteristics – Mid Band (1.5GHz to 2GHz) Performance  
See the F0443 Typical Application Circuit. Specifications apply when operated as a Dual DVGA. Typical data is with VCC = +5.0V, fRF = 1.75GHz,  
TEPAD = +25°C, minimum and maximum data is over fRF = 1.5GHz to 2GHz and TEPAD = -40°C to +105°C, STBY_A = STBY_B = logic LOW,  
ZS = ZL = 50, maximum gain setting (all DSAs set to 0dB attenuation), Tone Spacing = 1MHz, Pout = 0dBm/Tone, Evaluation Board (EVKit)  
traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
Min  
Typ  
12.5  
10.3  
11  
Max Units  
Worst case typical, TEPAD = 25°C, fRF = 1.5GHz to 2GHz.  
Worst case typical, TEPAD = 105°C, fRF = 1.5GHz to 2GHz.  
Worst case typical, TEPAD = 25°C, fRF = 1.5GHz to 2GHz.  
Worst case typical, TEPAD = 105°C, fRF = 1.5GHz to 2GHz.  
RF Input Return Loss  
RLIN  
dB  
RF Output Return Loss  
Gain Non-Bypass Mode  
RLOUT  
dB  
10.4  
26.8  
GMAX  
G1  
Maximum Gain  
29.5  
24.7  
19.8  
31.5  
[a, f]  
Minimum and maximum values  
are valid over:  
DSA0, = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
22  
27  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
G2  
17.1  
22.2  
dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
G3  
12  
14.9  
5.1  
17.2  
TEPAD = +25°C,  
VCC = 5V  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
G4  
2.1  
7.5  
dB  
dB  
Gain Non-Bypass Mode  
Variation Over Temperature  
Gain Non-Bypass Mode  
Flatness  
+0.9/  
-1.3  
GTEMP  
GFLAT  
TEPAD = -40ºC to +105ºC.  
Gain Flatness. Any fixed temperature.  
Any 200MHz bandwidth within fRF = 1.5GHz to 2GHz.  
Minimum and maximum values  
are valid over:  
0.2  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
Gain Bypass Mode  
GBYP  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
Maximum Gain  
7.8  
10.9  
12.4  
dB  
TEPAD = +25°C,  
VCC = 5V  
Gain Bypass Mode  
Variation Over Temperature  
+0.8/  
-1.0  
GTEMP_BYP TEPAD = -40ºC to +105ºC.  
dB  
dB  
Gain Bypass Mode  
Flatness  
Gain Flatness. Any fixed temperature.  
GFLAT_BYP  
0.4  
Any 200MHz bandwidth within fRF = 1.5GHz to 2GHz.  
NFMAX  
NF1  
Maximum Gain  
3.2  
3.7  
4.5  
5.2  
Minimum and maximum values  
are valid over:  
DSA0, = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
Noise Figure Non-Bypass  
Mode  
NF2  
4.8  
6.7  
dB  
NF3  
7.1  
9.6  
TEPAD = +25°C,  
VCC = 5V  
NF4  
15.2  
18.2  
© 2020 Renesas Electronics Corporation  
18  
September 1, 2020  
 
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max Units  
NF Non-Bypass Mode  
Variation Over Temperature  
-0.6/  
+0.9  
NFTEMP  
TEPAD = -40ºC to +105ºC.  
dB  
Minimum and maximum  
values are valid over:  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
Noise Figure Bypass Mode  
NFBYP  
Maximum Gain  
8.9  
12  
dB  
dB  
TEPAD = +25°C, VCC = 5V  
NF Bypass Mode Variation  
Over Temperature  
-1.2/  
+1.6  
NFTEMP_BYP TEPAD = -40ºC to +105ºC.  
Tone Spacing = 1MHz  
OIP31  
Maximum gain  
34.5  
33.7  
41.7  
Pout = 0dBm/Tone,  
Pout = -10dBm/Tone at  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
OIP32  
40.1  
DSA2 = 25dB Attenuation  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
OIP33  
32  
29  
38.7  
36.1  
27  
Output Third Order Intercept  
Point  
Minimum and maximum  
values are valid over:  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
TEPAD = +25°C, VCC = 5V  
dBm  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
OIP34  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
OIP35  
22.7  
OIP3 Variation Over  
Temperature  
-1.8/  
+0.3  
OIP3TEMP  
TEPAD = -40ºC to +105ºC.  
dB  
dB  
dB  
Minimum and maximum  
values are valid over:  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
Output Third Order Intercept  
Point Bypass Mode  
OIP3BYP  
Maximum Gain  
Maximum gain  
34.3  
39  
TEPAD = +25°C, VCC = 5V  
OIP3 Bypass Mode Variation  
Over Temperature  
-1.8/  
+1.0  
OIP3TEMP_BYP TEPAD = -40ºC to +105ºC.  
OP1dB1  
18.3  
19.7  
Minimum and maximum  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
values are valid over:  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
OP1dB2  
OP1dB3  
OP1dB4  
OP1dB5  
17.8  
19.5  
Output 1dB Compression  
Non-Bypass Mode[b]  
17.8  
15.6  
7
19.6  
18.3  
9.1  
dBm  
dB  
TEPAD = +25°C, VCC = 5V  
OP1dB Variation Over  
Temperature  
+0.4/  
-0.7  
OP1dBTEMP TEPAD = -40ºC to +105ºC.  
© 2020 Renesas Electronics Corporation  
19  
September 1, 2020  
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max Units  
Minimum and maximum  
values are valid over:  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
Output 1dB Compression  
Bypass Mode  
OP1dBBYP  
Maximum Gain  
18.8  
19.9  
dBm  
TEPAD = +25°C, VCC = 5V  
OP1dB Bypass Mode  
Variation Over Temperature  
+0.3/  
-0.6  
OP1dBTEMP_BYP TEPAD = -40ºC to +105ºC.  
dB  
dB  
ISOREV1  
ISOREV2  
ISOREV3  
ISOREV4  
ISOCH-CH1  
ISOCH-CH2  
Maximum gain, Non-Bypass mode.  
Maximum gain, Bypass mode.  
43  
24  
45  
26.4  
77.6  
77  
Reverse Isolation  
Minimum gain, Non-Bypass mode.  
Minimum gain, Bypass mode.  
74.9  
70.7  
44  
Maximum gain on both channels.  
Minimum gain on both channels, Bypass OFF.  
51  
50  
Ch A: Max Gain  
Ch B: Note [d]  
Ch A: Note [d]  
Ch B: Max Gain  
Ch A: Min Gain  
Ch B: Note [e]  
Ch A: Note [e]  
Ch B: Min Gain  
ISOCH-CH3  
ISOCH-CH4  
ISOCH-CH5  
ISOCH-CH6  
ERRDSA0ABS  
38  
38  
Channel-to-Channel  
Isolation [c]  
dB  
38  
38  
DSA1, DSA2, DSA3 = 0dB  
DSA0 = 6dB  
±0.3  
DSA0, DSA2, DSA3 = 0dB  
DSA1 = 6dB  
ERRDSA1ABS  
±0.3  
-0.4  
-0.5  
-0.4  
-0.6  
-0.7  
0.1  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 5dB  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 10dB  
Minimum and maximum  
values are valid over:  
fRF = 1.5GHz to 2GHz,  
TEPAD = -40°C to +105°C  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 1.75GHz,  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 15dB  
ERRDSA2ABS  
DSA Attenuation Error (INL)[f]  
dB  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 20dB  
TEPAD = +25°C,  
VCC = 5V  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 25dB  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 6dB  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 12dB  
ERRDSA3ABS  
0.1  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 18dB  
0.1  
© 2020 Renesas Electronics Corporation  
20  
September 1, 2020  
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
±0.3  
±0.3  
3
Max Units  
DSA2 Step Error (DNL)[f]  
DSA3 Step Error (DNL)[f]  
Relative Phase DSA0  
Relative Phase DSA1  
Phase Deviation DSA2  
ERRDSA2SE Between adjacent states.  
ERRDSA3SE Between adjacent states.  
dB  
ΦDSA0REL  
ΦDSA1REL  
ΦDSA2ADJ  
Any state, relative to 0dB attenuation state.  
Any state, relative to 0dB attenuation state.  
Between adjacent states.  
3
2.5  
16  
deg  
ΦDSA2RELMAX DSA set to 29dB, relative to 0dB attenuation state.  
ΦDSA2RELMID DSA set to 14dB, relative to 0dB attenuation state.  
Relative Phase DSA2  
6.5  
13  
Relative Phase DSA3  
ΦDSA3REL  
Any state, relative to 0dB attenuation state.  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that are  
not shown in bold italics are guaranteed by design characterization.  
[b] 1dB compression point is a linearity figure of merit. Refer to Abs Max Ratings table for maximum RF input power.  
[c] Signal applied to RFIN_A (RFIN_B) and measure desired signal at RFOUT_B (RFOUT_A) and compare to signal level at RFOUT_A  
(RFOUT_B).  
[d] Channel A or Channel B DSA combinations which yield 24dB in total attenuation. DSA2_A or DSA2_B settings limited to the following: 0dB,  
6dB, 12dB, 18dB, and 24dB.  
[e] Channel A or Channel B DSA combinations yielding 35dB in total attenuation. DSA2_A or DSA2_B settings limited to the following: 5dB, 11dB,  
17dB, 23dB, and 29dB. Since the maximum attenuation state totals 59dB, this will yield a 24dB difference between the two channels.  
[f] The attenuators can be assumed to be purely resistive elements when performing cascaded analysis calculations. Be sure to take into account  
any relevant INL/DNL effects.  
© 2020 Renesas Electronics Corporation  
21  
September 1, 2020  
F0443 Datasheet  
Table 7.  
Electrical Characteristics – High Band (2.3GHz to 2.7GHz) Performance  
See the F0443 Typical Application Circuit. Specifications apply when operated as a Dual DVGA. Typical data is with VCC = +5.0V, fRF = 2.5GHz,  
TEPAD = +25°C, minimum and maximum data is over fRF = 2.3GHz to 2.7GHz and TEPAD = -40°C to +105°C, STBY_A = STBY_B = logic LOW,  
ZS = ZL = 50, maximum gain setting (all DSAs set to 0dB attenuation), Tone Spacing = 1MHz, Pout = 0dBm/Tone, Evaluation Board (EVKit)  
traces and connectors are de-embedded, unless otherwise stated.  
Parameter  
Symbol  
Condition  
Min  
Typ  
13.7  
12  
Max Units  
Worst case typical, TEPAD = 25°C, fRF = 2.3GHz to 2.7GHz.  
Worst case typical, TEPAD = 105°C, fRF = 2.3GHz to 2.7GHz.  
Worst case typical, TEPAD = 25°C, fRF = 2.3GHz to 2.7GHz.  
Worst case typical, TEPAD = 105°C, fRF = 2.3GHz to 2.7GHz.  
RF Input Return Loss  
RLIN  
dB  
12  
RF Output Return Loss  
Gain Non-Bypass Mode  
RLOUT  
dB  
12  
26.4  
GMAX  
G1  
Maximum Gain  
30.1  
25  
33  
[a, f]  
Minimum and maximum values  
are valid over:  
DSA0, = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
21.6  
16.6  
28  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 2.5GHz,  
G2  
20  
23  
dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
G3  
11.5  
1.6  
14.5  
5
17  
TEPAD = +25°C,  
VCC = 5V  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
G4  
8.5  
dB  
dB  
Gain Non-Bypass Mode  
Variation Over Temperature  
Gain Non-Bypass Mode  
Flatness  
+1.0/  
-1.5  
GTEMP  
GFLAT  
TEPAD = -40ºC to +105ºC.  
Gain Flatness. Any fixed temperature.  
Any 200MHz bandwidth within fRF = 2.3GHz to 2.7GHz.  
Minimum and maximum values  
are valid over:  
0.3  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
Gain Bypass Mode  
GBYP  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 2.5GHz,  
Maximum Gain  
6.4  
9.2  
12  
dB  
TEPAD = +25°C,  
VCC = 5V  
Gain Bypass Mode  
Variation Over Temperature  
+0.8/  
-1.0  
GTEMP_BYP TEPAD = -40ºC to +105ºC.  
dB  
dB  
Gain Bypass Mode  
Flatness  
Gain Flatness. Any fixed temperature.  
GFLAT_BYP  
0.6  
Any 200MHz bandwidth within fRF = 2.3GHz to 2.7GHz.  
NFMAX  
NF1  
Maximum Gain  
3.6  
4
5.1  
5.8  
Minimum and maximum values  
are valid over:  
DSA0, = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at:  
fRF = 2.5GHz,  
Noise Figure Non-Bypass  
Mode  
NF2  
5.1  
7.5  
15.4  
7.3  
dB  
NF3  
10.4  
19.2  
TEPAD = +25°C,  
VCC = 5V  
NF4  
© 2020 Renesas Electronics Corporation  
22  
September 1, 2020  
 
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max Units  
NF Non-Bypass Mode  
Variation Over Temperature  
-0.7/  
+0.9  
NFTEMP  
TEPAD = -40ºC to +105ºC.  
dB  
Minimum and maximum  
values are valid over  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at  
fRF = 2.5GHz,  
Noise Figure Bypass Mode  
NFBYP  
Maximum Gain  
10  
13.3  
dB  
dB  
TEPAD = +25°C, VCC = 5V  
NF Bypass Mode Variation  
Over Temperature  
-1.3/  
+1.8  
NFTEMP_BYP TEPAD = -40ºC to +105ºC.  
Tone Spacing = 1MHz  
OIP31  
Maximum gain  
33.4  
32  
40  
Pout = 0dBm/Tone,  
Pout = -10dBm/Tone at  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
OIP32  
40  
DSA2 = 25dB Attenuation  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
OIP33  
31.2  
28.7  
39.6  
37.9  
Output Third Order Intercept  
Point  
Minimum and maximum  
dBm  
OIP34  
values are valid over  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at  
fRF = 2.5GHz,  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
OIP35  
19  
27  
TEPAD = +25°C, VCC = 5V  
OIP3 Variation Over  
Temperature  
-1.9/  
+0.2  
OIP3TEMP  
TEPAD = -40ºC to +105ºC.  
dB  
dB  
dB  
Minimum and maximum  
values are valid over  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at  
fRF = 2.5GHz,  
Output Third Order Intercept  
Point Bypass Mode  
OIP3BYP  
Maximum Gain  
Maximum gain  
33.6  
39  
TEPAD = +25°C, VCC = 5V  
OIP3 Bypass Mode Variation  
Over Temperature  
-2.2/  
+2.0  
OIP3TEMP_BYP TEPAD = -40ºC to +105ºC.  
OP1dB1  
17.6  
19.2  
Minimum and maximum  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 5dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 10dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 15dB, DSA3 = 0dB  
DSA0 = 0dB, DSA1 = 0dB,  
DSA2 = 25dB, DSA3 = 0dB  
values are valid over  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at  
fRF = 2.5GHz,  
OP1dB2  
OP1dB3  
OP1dB4  
OP1dB5  
17.6  
19.2  
Output 1dB Compression  
Non-Bypass Mode[b]  
17.4  
15.5  
4
19.2  
17.8  
7.7  
dBm  
dB  
TEPAD = +25°C, VCC = 5V  
OP1dB Variation Over  
Temperature  
+0.5/  
-0.8  
OP1dBTEMP TEPAD = -40ºC to +105ºC.  
© 2020 Renesas Electronics Corporation  
23  
September 1, 2020  
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max Units  
Minimum and maximum  
values are valid over  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C,  
VCC = 4.75V to 5.25V  
Typical values valid at  
fRF = 2.5GHz,  
Output 1dB Compression  
Bypass Mode  
OP1dBBYP  
Maximum Gain  
16.8  
19.5  
dBm  
TEPAD = +25°C, VCC = 5V  
OP1dB Bypass Mode  
Variation Over Temperature  
+0.4/  
-0.8  
OP1dBTEMP_BYP TEPAD = -40ºC to +105ºC.  
dB  
dB  
ISOREV1  
ISOREV2  
ISOREV3  
ISOREV4  
ISOCH-CH1  
ISOCH-CH2  
Maximum gain, Non-Bypass mode.  
Maximum gain, Bypass mode.  
42  
24  
44.3  
27.7  
72.4  
71.4  
53  
Reverse Isolation  
Minimum gain, Non-Bypass mode.  
Minimum gain, Bypass mode.  
69.5  
65.4  
46  
Maximum gain on both channels.  
Minimum gain on both channels, Bypass OFF.  
54  
Ch A: Max Gain  
Ch B: Note [d]  
Ch A: Note [d]  
Ch B: Max Gain  
Ch A: Min Gain  
Ch B: Note [e]  
Ch A: Note [e]  
Ch B: Min Gain  
ISOCH-CH3  
ISOCH-CH4  
ISOCH-CH5  
ISOCH-CH6  
ERRDSA0ABS  
38  
39  
Channel-to-Channel  
Isolation [c]  
dB  
37  
37  
DSA1, DSA2, DSA3 = 0dB  
DSA0 = 6dB  
±0.3  
DSA0, DSA2, DSA3 = 0dB  
DSA1 = 6dB  
ERRDSA1ABS  
±0.3  
-0.2  
+0.1  
+0.1  
+0.2  
-0.2  
-0.1  
-0.1  
-0.1  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 5dB  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 10dB  
Minimum and maximum  
values are valid over  
fRF = 2.3GHz to 2.7GHz,  
TEPAD = -40°C to +105°C  
VCC = 4.75V to 5.25V  
Typical values valid at  
fRF = 2.5GHz,  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 15dB  
ERRDSA2ABS  
DSA Attenuation Error (INL)[f]  
dB  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 20dB  
TEPAD = +25°C,  
VCC = 5V  
DSA0, DSA1, DSA3 = 0dB  
DSA2 = 25dB  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 6dB  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 12dB  
ERRDSA3ABS  
DSA0, DSA1, DSA2 = 0dB  
DSA3 = 18dB  
© 2020 Renesas Electronics Corporation  
24  
September 1, 2020  
F0443 Datasheet  
Parameter  
Symbol  
Condition  
Min  
Typ  
±0.3  
±0.2  
4
Max Units  
DSA2 Step Error (DNL)[f]  
DSA3 Step Error (DNL)[f]  
Relative Phase DSA0  
Relative Phase DSA1  
Phase Deviation DSA2  
ERRDSA2SE Between adjacent states.  
ERRDSA3SE Between adjacent states.  
dB  
ΦDSA0REL  
ΦDSA1REL  
ΦDSA2ADJ  
Any state, relative to 0dB attenuation state.  
Any state, relative to 0dB attenuation state.  
Between adjacent states.  
5
3
deg  
ΦDSA2RELMAX DSA set to 29dB, relative to 0dB attenuation state.  
ΦDSA2RELMID DSA set to 14dB, relative to 0dB attenuation state.  
16  
6
Relative Phase DSA2  
Relative Phase DSA3  
ΦDSA3REL  
Any state, relative to 0dB attenuation state.  
15  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that are  
not shown in bold italics are guaranteed by design characterization.  
[b] 1dB compression point is a linearity figure of merit. Refer to Abs Max Ratings table for maximum RF input power.  
[c] Signal applied to RFIN_A (RFIN_B) and measure desired signal at RFOUT_B (RFOUT_A) and compare to signal level at RFOUT_A  
(RFOUT_B).  
[d] Channel A or Channel B DSA combinations which yield 24dB in total attenuation. DSA2_A or DSA2_B settings limited to the following: 0dB,  
6dB, 12dB, 18dB, and 24dB.  
[e] Channel A or Channel B DSA combinations yielding 35dB in total attenuation. DSA2_A or DSA2_B settings limited to the following: 5dB, 11dB,  
17dB, 23dB, and 29dB. Since the maximum attenuation state totals 59dB, this will yield a 24dB difference between the two channels.  
[f] The attenuators can be assumed to be purely resistive elements when performing cascaded analysis calculations. Be sure to take into account  
any relevant INL/DNL effects.  
© 2020 Renesas Electronics Corporation  
25  
September 1, 2020  
F0443 Datasheet  
Thermal Characteristics  
Table 8.  
Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
θJA  
Junction to Ambient Thermal Resistance.  
16  
°C/W  
Junction to Case Thermal Resistance.  
(Case is defined as the exposed paddle)  
θJC-BOT  
6
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL 3  
Typical Operating Conditions (TOC)  
Unless otherwise noted, for the TOC graphs on the following pages, the following conditions apply:  
.
.
.
.
.
.
.
.
VCC = +5V  
TEPAD = 25°C  
ZL = ZS = 50Ω  
Small signal parameters measured with PIN = -35dBm  
ATTN setting = 0dB (Maximum Gain; DSA0 = DSA1 = DSA2 = DSA3 = 0dB)  
POUT = 0dBm/tone  
All temperatures are referenced to the exposed paddle  
Evaluation Kit traces and connector losses are de-embedded  
© 2020 Renesas Electronics Corporation  
26  
September 1, 2020  
 
 
 
F0443 Datasheet  
Typical Performance Characteristics  
Figure 3.  
Gain, All DSA = 0dB, Bypass OFF  
Figure 4.  
Gain, All DSA = 0dB, Bypass ON  
Figure 5.  
Gain, DSA0 = 6dB, Bypass OFF  
Figure 6.  
Gain, DSA0 = 6dB, Bypass ON  
Figure 7.  
Gain, DSA1 = 6dB, Bypass OFF  
Figure 8.  
Gain, DSA1 = 6dB, Bypass ON  
© 2020 Renesas Electronics Corporation  
27  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 9.  
Gain, DSA2 = 5dB, Bypass OFF  
Figure 10. Gain, DSA2 = 5dB, Bypass ON  
Figure 11. Gain, DSA2 = 10dB, Bypass OFF  
Figure 12. Gain, DSA2 = 10dB, Bypass ON  
Figure 13. Gain, DSA2 = 15dB, Bypass OFF  
Figure 14. Gain, DSA2 = 15dB, Bypass ON  
© 2020 Renesas Electronics Corporation  
28  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 15. Gain, DSA2 = 25dB, Bypass OFF  
Figure 16. Gain, DSA2 = 25dB, Bypass ON  
Figure 17. Gain, DSA3 = 6dB, Bypass OFF  
Figure 18. Gain, DSA3 = 6dB, Bypass ON  
Figure 19. Gain, DSA3 = 12dB, Bypass OFF  
Figure 20. Gain, DSA3 = 12dB, Bypass ON  
© 2020 Renesas Electronics Corporation  
29  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 21. Gain, DSA3 = 18dB, Bypass OFF  
Figure 22. Gain, DSA3 = 18dB, Bypass ON  
Figure 23. Relative Gain Error, DSA0 = 6dB,  
Bypass OFF  
Figure 24. Relative Gain Error, DSA1 = 6dB,  
Bypass OFF  
Figure 25. Relative Gain Error, DSA2 = 5dB,  
Bypass OFF  
Figure 26. Relative Gain Error, DSA2 = 10dB,  
Bypass OFF  
© 2020 Renesas Electronics Corporation  
30  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 27. Relative Gain Error, DSA2 = 15dB,  
Bypass OFF  
Figure 28. Relative Gain Error, DSA2 = 25dB,  
Bypass OFF  
Figure 29. Relative Gain Error, DSA3 = 6dB,  
Bypass OFF  
Figure 30. Relative Gain Error, DSA3 = 12dB,  
Bypass OFF  
Figure 31. Relative Gain Error, DSA3 = 18dB,  
Bypass OFF  
Figure 32. Gain, All DSA2 Attenuation Settings,  
Bypass OFF, 25°C  
© 2020 Renesas Electronics Corporation  
31  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 33. Gain, All DSA2 Attenuation Settings,  
Bypass ON, 25°C  
Figure 34. DSA2 INL (Absolute Attenuation  
Error) Bypass OFF  
Figure 35. DSA2 DNL (Step Attenuation Error)  
Bypass OFF  
Figure 36. DSA2 INL (Absolute Attenuation  
Error) Bypass ON  
Figure 37. DSA2 DNL (Step Attenuation Error)  
Bypass ON  
Figure 38. Gain, All DSA3 Attenuation Settings,  
Bypass OFF, 25°C  
© 2020 Renesas Electronics Corporation  
32  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 39. Gain, All DSA3 Attenuation Settings,  
Bypass ON, 25°C  
Figure 40. DSA3 INL (Absolute Attenuation  
Error) Bypass OFF  
Figure 41. DSA3 DNL (Step Attenuation Error)  
Bypass OFF  
Figure 42. DSA3 INL (Absolute Attenuation  
Error) Bypass ON  
Figure 43. DSA3 DNL (Step Attenuation Error)  
Bypass ON  
Figure 44. S11, All DSA = 0dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
33  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 45. S11, All DSA = 0dB, Bypass ON  
Figure 47. S11, DSA0 = 6dB, Bypass ON  
Figure 49. S11, DSA1 = 6dB, Bypass ON  
Figure 46. S11, DSA0 = 6dB, Bypass OFF  
Figure 48. S11, DSA1 = 6dB, Bypass OFF  
Figure 50. S11, DSA2 = 5dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
34  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 51. S11, DSA2 = 5dB, Bypass ON  
Figure 53. S11, DSA2 = 10dB, Bypass ON  
Figure 55. S11, DSA2 = 15dB, Bypass ON  
Figure 52. S11, DSA2 = 10dB, Bypass OFF  
Figure 54. S11, DSA2 = 15dB, Bypass OFF  
Figure 56. S11, DSA2 = 25dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
35  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 57. S11, DSA2 = 25dB, Bypass ON  
Figure 59. S11, DSA3 = 6dB, Bypass ON  
Figure 61. S11, DSA3 = 12dB, Bypass ON  
Figure 58. S11, DSA3 = 6dB, Bypass OFF  
Figure 60. S11, DSA3 = 12dB, Bypass OFF  
Figure 62. S11, DSA3 = 18dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
36  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 63. S11, DSA3 = 18dB, Bypass ON  
Figure 65. S22, All DSAs = 0dB, Bypass ON  
Figure 67. S22, DSA0 = 6dB, Bypass ON  
Figure 64. S22, All DSAs = 0dB, Bypass OFF  
Figure 66. S22, DSA0 = 6dB, Bypass OFF  
Figure 68. S22, DSA1 = 6dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
37  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 69. S22, DSA1 = 6dB, Bypass ON  
Figure 71. S22, DSA2 = 5dB, Bypass ON  
Figure 73. S22, DSA2 = 10dB, Bypass ON  
Figure 70. S22, DSA2 = 5dB, Bypass OFF  
Figure 72. S22, DSA2 = 10dB, Bypass OFF  
Figure 74. S22, DSA2 = 15dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
38  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 75. S22, DSA2 = 15dB, Bypass ON  
Figure 77. S22, DSA2 = 25dB, Bypass ON  
Figure 79. S22, DSA3 = 6dB, Bypass ON  
Figure 76. S22, DSA2 = 25dB, Bypass OFF  
Figure 78. S22, DSA3 = 6dB, Bypass OFF  
Figure 80. S22, DSA3 = 12dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
39  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 81. S22, DSA3 = 12dB, Bypass ON  
Figure 83. S22, DSA3 = 18dB, Bypass ON  
Figure 85. S12, Max Gain, Bypass ON  
Figure 82. S22, DSA3 = 18dB, Bypass OFF  
Figure 84. S12, Max Gain, Bypass OFF  
Figure 86. Noise figure, Max Gain, Bypass OFF  
© 2020 Renesas Electronics Corporation  
40  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 87. Noise Figure, DSA2 = 5dB, Bypass  
OFF  
Figure 88. Noise Figure, DSA2 = 10dB, Bypass  
OFF  
Figure 89. Noise Figure, DSA2 = 15dB, Bypass  
OFF  
Figure 90. Noise Figure, DSA2 = 25dB, Bypass  
OFF  
Figure 91. Noise figure, Max Gain, Bypass ON  
Figure 92. OP1dB at Max Gain, Bypass OFF  
© 2020 Renesas Electronics Corporation  
41  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 93. OP1dB at Max Gain, Bypass ON  
Figure 95. OP1dB at DSA2 = 10dB, Bypass OFF  
Figure 97. OP1dB at DSA2 = 25dB, Bypass OFF  
Figure 94. OP1dB at DSA2 = 5dB, Bypass OFF  
Figure 96. OP1dB at DSA2 = 15dB, Bypass OFF  
Figure 98. OIP3 at Max Gain, Bypass OFF  
© 2020 Renesas Electronics Corporation  
42  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Figure 99. OIP3 at Max Gain, Bypass ON  
Figure 101. OIP3 at DSA2 = 10dB, Bypass OFF  
Figure 103. OIP3 at DSA2 = 25dB, Bypass OFF  
Figure 100. OIP3 at DSA2 = 5dB, Bypass OFF  
Figure 102. OIP3 at DSA2 = 15dB, Bypass OFF  
© 2020 Renesas Electronics Corporation  
43  
September 1, 2020  
 
 
 
 
 
F0443 Datasheet  
Functional Description  
The F0443 employs a variety of programming options to control the device’s standby (STBY) operation, the on-chip digital step attenuators  
(DSAs) and the amplifier bypass. The standby (STBY) function and four of the DSAs are programmed using external control pins (parallel  
mode), while the remaining DSAs and amplifiers are programmed serially via a SPI or I3C interface. The following sections provide specific  
details on each programming mode.  
Parallel Programming  
Standby (STBY) Mode Programming  
The F0443 allows for the independent shutdown of each signal path. Simply apply the logic shown in Table 9 to control paths A and B.  
Table 9.  
STBY Mode Truth Table  
Path  
Pin  
Logic  
0
Path Power State  
Path A Power On  
STBY_A  
(Pin 4)  
A
B
1 (NC)  
0
Path A Standby (SPI/I3C still active)  
Path B Power On  
STBY_B  
(Pin 10)  
1 (NC)  
Path B Standby (SPI/I3C still active)  
When the STBY_A and STBY_B pins are toggled between the logic LOW and Logic HIGH modes, the register settings remain unchanged.  
Therefore the bypass setting and DSA2 attenuators will retain their settings during standby. The only exception is if a new programming  
command is received (via the SPI or I3C interface) during the STBY state. Since the SPI/I3C interface remains active during the Standby mode,  
the attenuator and bypass registers can still be reprogrammed during this time. When each path is brought out of Standby, the attenuators will  
be set per the latest register settings.  
The default state for each of these pins is a logic HIGH which leaves the RF paths in the off state.  
Parallel Programming of DSA1  
DSA1_A and DSA1_B programming is accomplished by applying the desired logic to the external control pins described below. By using parallel  
programming, fast switching of these DSAs can take place without experiencing the delays commonly associated with serial programming.  
Logic HIGH selects the 6dB attenuation state, while logic LOW selects the 0dB attenuation state as seen in Table 10.  
Upon startup the DSA1 attenuator will be set per the logic level. If the pin is left floating (e.g. left in a ‘no connect’ or ‘NC’ state) the attenuator  
will be set for the maximum value of 6dB since the pin is set to logic HIGH internally.  
Table 10. DSA1 Truth Table  
DSA1_A Logic (Pin 47)  
Attenuation  
DSA1_B Logic (Pin 14)  
0
0dB  
6dB  
1 (NC)  
© 2020 Renesas Electronics Corporation  
44  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Parallel Programming of DSA3  
DSA3 uses 2-bit logic to select up to 4 different states per attenuator with a 6dB step. By using parallel programming, fast switching of these  
DSAs can take place without experiencing the delays commonly associated with serial programming. Logic HIGH selects the 6dB attenuation  
state for Bit 0, while logic HIGH selects the 12dB attenuation state for Bit 1. When both pins are set for logic LOW, the DSA is set to the 0dB  
attenuation state. In all cases, the logic for each control bit will default to the HIGH state when the control pin is left floating (e.g. left in a ‘no  
connect’ or ‘NC’ state). The DSA states are listed in Table 11.  
Upon startup, the DSA3 attenuator will be set per the logic level. If the pins are left floating (e.g. left in a ‘no connect’ or ‘NC’ state), the attenuator  
will be set for the maximum value of 18dB since the pin is set HIGH internally.  
Table 11. DSA3 Truth Table  
DSA3_A_BIT1 (Pin 37)  
DSA3_B_BIT1 (Pin 24)  
DSA3_A_BIT0 (Pin 38)  
DSA3_B_BIT0 (Pin 23)  
Attenuation  
0
0
0dB  
6dB  
0
1 (NC)  
0
1 (NC)  
1 (NC)  
12dB  
18dB  
1 (NC)  
Multi-IC Addressing Scheme  
The F0443 has the ability to share the serial interface lines for up to four devices. This is accomplished by giving the device a specific, or static,  
address using pins ID_0 (pin 8), and ID_1 (pin 9). Use of these pins is specific to whether the serial programming is done using standard serial  
programming (SPI) or serial I3C programming.  
Upon startup, the static address is set per the logic levels. If the pins are left floating (e.g. left in a ‘no connect’ or ‘NC’ state), the static address  
will be set to ‘00’ since the pins are set to logic LOW internally.  
Table 12. Static Address Truth Table  
ID_1 (Pin 9)  
ID_0 (Pin 8)  
Static Identifier  
0
0
1
1
0
1
0
1
0
1
2
3
© 2020 Renesas Electronics Corporation  
45  
September 1, 2020  
 
 
 
 
F0443 Datasheet  
Serial Communication  
The F0443 has been designed to use standard 3-wire serial communication (SPI) or a ‘Slave-Lite’ version of the I3C protocol communication  
(l3C). The communication mode is set using SPI_I3C_SEL (pin 3). Logic LOW is for SPI and logic HIGH is for I3C.  
Upon startup, the serial communication is set per the logic level. If the pin is left floating (e.g. left in a ‘no connect’ or ‘NC’ state), SPI  
communication is used since the pin is set to logic LOW internally.  
Table 13. Serial Communication Mode Truth Table  
SPI_I3C_SEL (Pin 3)  
Communication  
0
1
SPI  
I3C  
Serial Programming  
The serial programming is different for the SPI (SPI_I3C_SEL is logic LOW) or I3C (SPI_I3C_SEL is logic HIGH) modes of operation. The SPI  
interface requires a 16-bit word, whereas the I3C interface utilizes 23 bits. In both cases the information is shifted with the most significant bit  
(MSB) first.  
Figure 104. SPI Word  
Path  
Select  
0 or  
6 dB  
ID_1  
ID_0  
A6  
0
1
1
0
0
1
16 dB 8 dB 4 dB  
2 dB 1 dB  
Bypass  
A7  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
LSB  
Figure 105. I3C Word  
Path  
Select  
0 or  
6 dB  
0
0
1
0
0
ID_1  
A1  
ID_0  
0
0
0
0
0
0
0
1
16 dB 8 dB 4 dB  
2 dB 1 dB  
Bypass  
A6  
A5  
A4  
A3  
A2  
A0  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
LSB  
Truth Tables  
The settings for path selection (Path Select), bypassing the amplifier (AMP1_A and AMP1_B), the first attenuator (DSA0_A and DSA0_B), and  
the third attenuator (DSA2_A, and DSA2_B) are all programmed serially via the F0443’s SPI or I3C interface. The truth tables for each digital  
bit or word remains the same regardless of the serial interface being used.  
The Path Select bit, which uses one bit, directs the data word to control one of the two paths, A or B, in the F0443. All the serially controlled  
components, DSA0, DSA2 and Bypass Mode are controlled simultaneously.  
Table 14. Path Select (Path A/Path B) Truth Table  
Path Select  
Logic  
Path  
A
0
1
A5 (SPI)  
S0 (I3C)  
B
The Bypass mode which uses one bit will reduce the overall gain of the F0443 and is directed to the correct path (channel) with Path Select.  
© 2020 Renesas Electronics Corporation  
46  
September 1, 2020  
 
 
 
 
 
 
 
F0443 Datasheet  
Table 15. Bypass Mode (Amp1_A/Amp1_B) Truth Table  
Bypass  
Logic  
Bypass Mode Setting  
Bypass OFF (full gain)  
Bypass ON (reduced gain)  
0
1
D0  
The first digital attenuator, DSA0, is programmed using one bit and is used in conjunction with the Path Select bit.  
Table 16. DSA0 Truth Table  
DSA0  
Attenuation Setting  
DSA0  
Logic  
0
1
0dB  
6dB  
D1  
The third attenuator, DSA2, has 29dB of attenuation with 1 dB steps. DSA2 is programmed with a 5-bit data word. The maximum attenuation  
is 29dB and states greater than 29 (30, 31) will set the attenuator for 29dB. These bits are used in conjunction with the Path Select bit.  
Table 17. DSA2 Abbreviated Truth Table  
DSA2  
D6  
D5  
D4  
D3  
D2  
Attenuation Setting  
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1
1
0
0
0
1
0
0
1
1
1
0
0
1
0
0
0
0
1
1
0
1
0
0
0
0
1
0
1
0dB  
1dB  
2dB  
4dB  
8dB  
16dB  
29dB (max)  
29dB (max)  
29dB (max)  
© 2020 Renesas Electronics Corporation  
47  
September 1, 2020  
 
 
 
F0443 Datasheet  
SPI Programming  
Programming the F0443 using the SPI communication requires that SPI_I3C_SEL be set to logic LOW.  
Standard SPI operation is possible using a dedicated control line CSb, SDATA and SCLK. Since ID_0 and ID_1 pins default to logic LOW  
(forming address 00), the serial bits ID_0 and ID_1 must also be set for logic LOW during the programming process.  
The F0443 can also utilize the ID_0 and ID_1 addressing bits to support multi-chip SPI programming. Note that this alternative SPI addressing  
mode is completely optional. However, when used, this feature enables a single CSb control line to program up to four separate F0443 devices,  
thereby reducing the number of dedicated IC control lines by a factor of four. This is accomplished by:  
.
.
.
Sharing the CSb, SDATA, and SCLK control line for all devices  
Setting ID_0 and ID_1 to give each device a unique identification.  
Using the appropriate identification bits to control the device.  
Most common applications would employ a static implementation where the bits are hardwired to a preset address based on the part’s location  
on the circuit board. See Figure 106 for details. The logic present on pins ID_0 and ID_1 will be compared with the relevant sub-addressing bits  
that are delivered as part of the DATA payload. (Refer to the complete payload bit assignments shown in Figure 104). If the addressing in the  
payload matches the logic on ID_0 and ID_1, then the device recognizes the programming within the payload as being relevant, and the SPI  
commands are executed accordingly. If the addresses do not match, then the device simply ignores the programming command.  
Figure 106. Multi-IC Addressing Scheme Using SPI  
CSb  
SCLK  
SDATA  
Static Addresses  
ID_1 ID_0  
ID_1  
ID_0  
F0443 - 0  
0
0
0
1
ID_1  
ID_0  
F0443 - 1  
VCC  
VCC  
ID_1  
ID_0  
1
1
0
1
F0443 - 2  
ID_1  
ID_0  
VCC  
VCC  
F0443 - 3  
The SPI’s DATA payload consists of an 8-bit addressing word followed by an 8-bit data word. See the SPI Timing Diagram in Figure 107. The  
serial words are clocked in with the most significant bit with the address word first (MSB A7).  
© 2020 Renesas Electronics Corporation  
48  
September 1, 2020  
 
 
F0443 Datasheet  
Figure 107. SPI Timing Diagram  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SCLK  
Data Word  
Latched into  
Active Register  
CSb  
Path  
Select  
Bypass  
On/Off  
0dB or  
6dB  
ID_1  
ID_0  
0
1
1
1
0
0
16 dB 8 dB  
4 dB  
2 dB  
1 dB  
SDATA  
A7  
MSB  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
Chip Selection  
Addressing Bits  
Reserved  
DSA2  
Data Word D2 – D6  
DSA0  
0 = 0dB  
1 = 6dB  
Path Programming Selection  
0 = Path A  
Bypass Selection  
0 = Amp Enabled  
1 = Bypass Enabled  
1 = Path B  
Clock in MSB first  
Increasing Time  
The addressing word includes three essential ‘selection’ bits, namely A7, A6 and A5. A7 and A6 pertain to the chip selection (using ID_0 and  
ID_1, as described above), whereas A5 selects the specific path to be programmed with the write command. Setting bit A5 to logic LOW selects  
Path A, and logic HIGH selects Path B. Note that the SPI payload only allows for the programming of a SINGLE PATH per write command.  
Separate, unique write commands will therefore be needed to fully program both paths on the F0443.  
Bits A4-A0 and D7 are reserved. The values configured for these bits are set to extract optimal performance from the part. They MUST be  
included with each SPI command.  
The 8-bit data word follows the addressing word. D6-D2 sets the attenuation level of DSA2, D1 sets the attenuation of DSA0, and D0 selects  
the amplifier bypass option. Refer to the truth tables (Table 14 to Table 17 listed above) for each block’s programming code. The entire data  
word gets latched into the active register with the rising edge of CSb. One Additional clock cycle (Clock 17 in Figure 107) is required after  
setting the CSb high to reinitialize the SPI for further programming.  
Note: After the SPI payload is delivered and latched into the active register, the F0443 must encounter at least two clock pulses before accepting  
a new SPI command. These additional clock cycles are required to reset the device’s microcontroller, essentially clearing the buffer to accept  
a new payload.  
© 2020 Renesas Electronics Corporation  
49  
September 1, 2020  
 
F0443 Datasheet  
Figure 108 shows the relevant SPI timing intervals.  
Figure 108. SPI Serial Register Timing Diagram  
Table 18. SPI Timing Diagram Values Intervals  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
12.5 [a]  
Units  
MHz  
ns  
CLK Frequency  
fC  
tCH  
tCL  
tS  
CLK High Duration Time  
CLK Low Duration Time  
DATA to CLK Setup Time  
CLK Period [b]  
20  
20  
10  
40  
10  
ns  
ns  
tP  
ns  
CLK to DATA Hold Time  
tH  
ns  
Final CLK Rising Edge to CSb  
Rising Edge  
tCLS  
10  
ns  
CSb to CLK Setup Time  
CSb Trigger Pulse Width  
tLS  
tL  
10  
10  
10  
ns  
ns  
ns  
CSb Trigger to CLK Setup Time [c]  
tLC  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns  
that are not shown in bold italics are guaranteed by design characterization.  
[b] (tCH + tCL) ≥ 1/fC  
[c] Once all desired DATA is clocked in, tLC represents the time a CSb high needs to occur before any subsequent CLK signals.  
© 2020 Renesas Electronics Corporation  
50  
September 1, 2020  
 
 
F0443 Datasheet  
SPI Programming - Default  
When the device is first powered on, it will default to the register settings shown in Figure 109. Please note that these default settings are the  
recommended conditions for the F0443. DSA0 and DSA2 will be set to their maximum attenuation states, the amplifier will be enabled. These  
settings apply to a hard reset when first applying VCC and SPI_I3C_SE is set for logic LOW.  
Figure 109. SPI Programming – Default Register Settings  
0
0
0
0
1
1
00  
0
1
1
1
1
1
1
1
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
LSB  
I3C Programming  
The F0443 also supports a ‘Slave-Lite’ version of the I3C serial programming protocol where the addressing and data payloads are transferred  
between the master and slave via a single SDA line. Programming the device using the I3C bus will require the use of the SCL, SDA, ID_0 and  
ID_1pins.  
To enable I3C communication on the F0443, the SPI_I3C_SEL pin must be set to logic HIGH.  
The addressing of each I3C slave requires a total of 7 bits. The F0443’s first 5 addressing bits are internally fixed per Table 19, while the  
remaining 2 bits are defined by the external logic applied to pins ID_0 and ID_1. Most common applications will employ a static addressing  
implementation where these two bits are hardwired to a preset address based on the part’s location on the circuit board. Since two bits are  
being used to set the address, a total of four F0443’s can be included on any given I3C bus. See Figure 110 for details. Note that the ID_0 and  
ID_1 pins are internally pulled down to ground per the configuration shown in Figure 115 so these pins will default to a static address of 00  
when left unconnected.  
Table 19. I3C Slave Addressing  
© 2020 Renesas Electronics Corporation  
51  
September 1, 2020  
 
 
 
 
F0443 Datasheet  
Figure 110. I3C Static Addressing Scheme  
I3C Static Addresses  
SDA  
SCL  
ID_1 ID_0  
Preset Address Bits  
ID_1  
ID_0  
F0443 - 0  
0
0
0
0
1
1
0
0
0
0
0
0
0
1
ID_1  
ID_0  
F0443 - 1  
VCC  
VCC  
ID_1  
ID_0  
F0443 - 2  
0
0
0
0
1
1
0
0
0
0
1
1
0
1
ID_1  
ID_0  
VCC  
VCC  
F0443 - 3  
During the Initialization of the I3C bus, the master performs a “Dynamic Address Assignment” to assign addresses to slave devices. The method  
to do this uses the command code “Set dynamic address from static address” (SETDASA) to assign a predefined dynamic address to each  
slave which has a predefined static address. This can be seen in Figure 111. The slave static address is a sub-addressing word which  
determines the specific path (A or B) to be programmed. Bits D7 to D1 are reserved within this word; only bit D0 is used to select between paths  
A or B.  
Programming the F0443 requires that the addressing word be sent across the SDA line first, followed by a 2-byte write command. See Figure  
112 for details surrounding the required I3C payload. As shown, the first byte is the dynamic address that has been predefined in the Initialization  
phase.  
The second byte contains the same 8 control bits which were defined in the SPI section above. As with the SPI mode, the I3C payload only  
allows for the programming of a SINGLE PATH per write command. Separate, unique write commands will therefore be needed to fully program  
both paths on the F0443.  
For the 8-bit programming word, D6-D2 sets the attenuation level of DSA2, D1 sets the attenuation of DSA0, and D0 selects the amplifier  
bypass option. Refer to the truth tables listed above for each block’s programming code. When the device is first powered on, it will default to  
the Byte1 register settings shown in Figure 113 below. DSA0 and DSA2 will be set to their maximum attenuation states, the Amplifier will be  
fully enabled. These settings apply to a hard reset when first applying VCC.  
The entire data word gets latched into the active register with the execution of the STOP bit.  
© 2020 Renesas Electronics Corporation  
52  
September 1, 2020  
 
F0443 Datasheet  
Figure 111. I3C Timing Diagram – Initialization  
7-bit Slave Static  
Address  
7-bit Dynamic  
Address  
SETDASA CCC  
7'h7E  
STOP(P)  
START(S)  
SDA  
T
W
ACK  
D7 D6 D5 D4 D3 D2  
D1  
D0  
Sr  
A6  
A5 A4 A3 A2 A1  
A0  
W ACK  
A6  
A5 A4 A3 A2  
A1  
A0  
0
T
D6  
D0  
D5 D4 D3 D2 D1  
SCL  
ID_1 ID_0  
1
1
1
0
0
1
0
0
1
1
1
1
0
0
0
0
1
1
1
0
D6  
MSB  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
S7  
MSB  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
LSB  
A6  
MSB  
A5  
A4  
A2  
A2  
A1  
A0  
LSB  
A6  
MSB  
A5  
A4  
A2  
A2  
A1  
A0  
LSB  
Chip Selection  
Addressing Bits  
Dynamic Address  
Clock in MSB first  
Increasing Time  
Figure 112. I3C Timing Diagram  
Sub-Addressing Word  
(Path Selection)  
Programming Word  
7-bit Dynamic  
Address  
Wr_Byte  
_
0
Wr Byte1  
START(S)  
STOP(P)  
SDA  
T
D0  
D7 D6  
D5 D4 D3 D2  
D1  
D0  
A6  
A5 A4 A3 A2 A1  
A0 RnW ACK D7 D6 D5 D4 D3 D2 D1  
T
SCL  
Bypass  
On/Off  
Path  
Select  
0dB or  
6dB  
0
0
0
0
0
0
0
16 dB 8 dB  
4 dB  
D4  
2 dB  
D3  
1 dB  
D2  
1
A6  
MSB  
A5  
A4  
A2  
A2  
A1  
A0  
LSB  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
D7  
D6  
D5  
D1  
D0  
LSB  
LSB  
MSB  
MSB  
RESERVED  
DSA2  
Data Word  
D2 – D6  
DSA0  
0 = 0dB  
1 = 6dB  
RESERVED  
Dynamic Address  
Bypass Selection  
0 = Amp Enabled  
1 = Bypass Enabled  
Path Programming Selection  
0 = Path A  
1 = Path B  
Clock in MSB first  
Increasing Time  
© 2020 Renesas Electronics Corporation  
53  
September 1, 2020  
 
 
F0443 Datasheet  
Figure 113. I3C Programming – Default Register Settings for Byte1 (Programming Word)  
1
1
1
1
1
1
1
0
D7  
MSB  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
Note: Applies to the register settings for paths A and B.  
Figure 114 shows the relevant I3C timing intervals which are specified in Table 20.  
Figure 114. I3C Timing Intervals (Pictorial View)  
tp  
ts  
th  
tch  
tcl  
SCLK  
SDATA  
Time  
MSB  
LSB  
Table 20. I3C Timing Intervals (Tabulated Figures)  
Parameter  
SCL Frequency  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
MHz  
ns  
fC  
tCH  
tCL  
tS  
12.5 [a]  
SCL High Duration Time  
SCL Low Duration Time  
SDA to SCL Setup Time  
SCL Period [b]  
20  
20  
10  
40  
10  
ns  
ns  
tP  
ns  
SCL to SDA Hold Time  
tH  
ns  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns  
that are not shown in bold italics are guaranteed by design characterization.  
[b] (tCH + tCL) ≥ 1/fC  
© 2020 Renesas Electronics Corporation  
54  
September 1, 2020  
 
 
 
F0443 Datasheet  
Application Information  
The F0443 has been optimized for use in high performance RF applications ranging in frequency from 0.6GHz to 2.7GHz in individual frequency  
bands.  
Power Supplies  
A common VCC power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to  
minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail.  
Supply voltage change or transients should have a slew rate smaller than 1V/20μs (50mV/μs). In addition, all control pins should remain at 0V  
(±0.3V) while the supply voltage ramps or while it returns to zero.  
Startup Condition  
Upon device power-up, both channels will default to the STBY mode.  
Digital Pin Voltage and Resistance Values  
The logic for the control bits (STBY_A, STBY_B, DSA1_A, DSA1_B, DSA3_A and DSA3_B) will default to the HIGH state, 1.67 V when the  
control pin is left floating (i.e. left in a ‘no connect’ or ‘NC’ state). A simplified internal circuit is shown in Figure 114.  
Figure 115. Internal Pull-up Configuration for STBY_A, STBY_B, DSA1 and DSA3 Control Pins  
5V  
5V  
200kΩ  
100kΩ  
1.67V  
100kΩ  
200Ω  
External Pin  
To enable SPI communication on the F0443, the SPI_I3C_SEL pin must be set to logic LOW or left open in a ‘no connect’ state. Internally, the  
SPI_I3C_SEL pin is pulled down to ground per the configuration shown in Figure 115.  
Figure 116. Internal Pull-down Configuration for the SPI_I3C_SEL, ID_0, and ID_1 Control Pins  
5V  
100kΩ  
200Ω  
External Pin  
© 2020 Renesas Electronics Corporation  
55  
September 1, 2020  
 
 
 
 
 
 
F0443 Datasheet  
Signal Integrity  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit  
at the input of each control pin is recommended. This applies to pins for the SPI (16, 17, 18), parallel (1, 19-24) and VMODE pin (3) as shown  
below. Note the recommended resistor and capacitor values do not necessarily match the EVKit BOM for the case of poor control signal integrity.  
For multiple devices driven by a single control line, the component values will need to be adjusted accordingly so as not to load down the control  
line.  
Figure 117. Control Pin Interface for Signal Integrity  
2pF  
5k  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
STBY_A  
2pF  
3
5kΩ  
CSB  
4
5
2pF  
5kΩ  
5kΩ  
SDATA  
SCLK  
6
F0443  
Exposed Pad (GND)  
7
2pF  
8
9
5kΩ  
2pF  
ID0  
10  
11  
12  
5kΩ  
2pF  
ID1  
5kΩ  
2pF  
STBY_B  
© 2020 Renesas Electronics Corporation  
56  
September 1, 2020  
 
 
F0443 Datasheet  
Evaluation Kit Picture  
Figure 118. Top View  
Figure 119. Bottom View  
© 2020 Renesas Electronics Corporation  
57  
September 1, 2020  
 
 
 
F0443 Datasheet  
Evaluation Kit / Applications Circuit  
Figure 120. Electrical Schematic  
© 2020 Renesas Electronics Corporation  
58  
September 1, 2020  
 
 
F0443 Datasheet  
Evaluation Kit BOM  
Table 21. Bill of Materials (BOM)  
Part Reference  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
C1, C8, C11, C13, C18,  
C19, C21, C23, C26,  
C29, C31, C47, C48, C49  
C20, C22, C24  
C34  
C12, C14, C30, C32  
R1-R6, R10, R11, R14,  
R15, R19, R27, R28, R29  
R20-R26, C2, C9, C17,  
C25  
14  
100pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
GRM1555C1H101J  
MURATA  
3
1
4
1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
100nF ±10%, 50V (0603)  
100nF ±10%, 16V, X7R Ceramic Capacitor (0402)  
GRM1555C1H102J  
GRM188R7H104KA93D  
GRM155R71H104K  
MURATA  
MURATA  
MURATA  
14  
11  
100Ω ±1%, 1/10W, Resistor (0402)  
ERJ-2RKF1000X  
ERJ-2GE0R00X  
PANASONIC  
PANASONIC  
0Ω Resistors (0402)  
J1-J5  
5
9
5
2
1
Edge Launch SMA (0.375 inch pitch ground, tab)  
CONN HEADER VERT SGL 2 X 1 POS GOLD  
CONN HEADER VERT SGL 3 X 1 POS GOLD  
CONN HEADER VERT DBL 3 X 2 POS GOLD  
CONN HEADER VERT DBL 11 X 2 POS GOLD  
142-0701-851  
961102-6404-AR  
961103-6404-AR  
67997-106HLF  
67997-122HLF  
Emerson Johnson  
3M  
J9, J11-J17, J19  
J6, J7, J8, J22, J23  
J10, J18  
3M  
AMPHENOL FCI  
AMPHENOL FCI  
J21  
C3,C4,C5,C6,C7,C10,  
C15,C16,C27,C28,C33  
R36  
11  
2pF ±0.1pF, 50V, C0G Ceramic Capacitor (0402)  
GJM1555C1H2R0B  
MURATA  
1
1
2
2
2
1
1
2
13 KΩ  
2.94 KΩ  
2.67 KΩ  
9.1 KΩ  
4.7 KΩ  
ERK-2RKF1302X  
ERJ-2RKF2941X  
ERJ-2RKF2671X  
ERJ-2RKF9101X  
ERJ-2GEJ472X  
F0443LGRI  
PANASONIC  
PANASONIC  
PANASONIC  
PANASONIC  
PANASONIC  
RENESAS  
R37  
R30, R35  
R31, R34  
R32, R33  
U1  
Dual Broadband RF DVGA  
Printed Circuit Board Rev 01  
DNP  
F0443 EVKit Rev 01  
RENESAS  
J24, J25  
C35-C38, L1-L4, R12,  
R13, R7-R9, R16-R18  
16  
DNP  
© 2020 Renesas Electronics Corporation  
59  
September 1, 2020  
 
 
F0443 Datasheet  
Evaluation Kit Operation  
Power Supply Setup  
Set up a power supply in the voltage range of 4.75V to 5.25V with the power supply output disabled. The voltage can be applied via one of the  
following connections (see Figure 121):  
.
.
Directly to J5 SMA connector  
Individually to J9, J11, J12, J14, J15, J17 and J19 header connections (note the polarity of the GND pin on this connector)  
Figure 121. Power Supply and Logic Voltage Connections  
Parallel Logic Control Setup  
The Evaluation Board can control the F0443 in the Parallel Mode. For external control, apply logic voltages to the J21 header pins 11 through  
21 (see Figure 122). The logic voltage can be applied directly to connector J21.  
Figure 122. Power Supply and Logic Voltage Connections  
The F0443 uses parallel programming for its DSA1 and DSA3 Attenuators. The rest are controlled through SPI or I3C programming.  
© 2020 Renesas Electronics Corporation  
60  
September 1, 2020  
 
 
 
 
 
F0443 Datasheet  
Serial Logic Control Setup  
The Evaluation Board has the ability to control the F0443 in the Serial Mode. Connect the serial controller to the J21 header (Pins 1 through 8)  
connection as shown in Figure 123.  
The attenuation settings for DSA0 and DSA2 can be programmed according to Table 16 and Table 17, respectively.  
Figure 123. Serial Logic Connections  
Power-On Procedure  
Set up the voltage supplies and Evaluation Board as described in the “Power Supply Setup” section and either the “Parallel Logic Control Setup”  
and/or “Serial Logic Control Setup” sections above.  
Enable the VCC supply.  
Enable the proper attenuation setting for DSA0 and DSA2 through Serial Programming and for DSA1 and DSA3 through Parallel Programming  
as discussed earlier in the datasheet.  
Power-Off Procedure  
Set the logic control pins to a logic LOW and Disable the VCC supply.  
© 2020 Renesas Electronics Corporation  
61  
September 1, 2020  
 
 
 
 
F0443 Datasheet  
Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
www.idt.com/document/psc/lga-48-package-outline-drawing-70-x-70-mm-body-epad-50-x-50-mm-0mm-pitch-lgr48  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
Shipping Packaging  
Temperature  
-40° to +105°C  
-40° to +105°C  
F0443LGRI  
7 × 7 × 0.7 mm 48-LGA  
7 × 7 × 0.7 mm 48-LGA  
1
1
Tray  
Reel  
F0443LGRI8  
F0443EVBI  
Evaluation Board  
Marking Diagram  
.
.
.
Line 1 indicates the manufacturer.  
Lines 2 and 3 indicate the part number.  
Line 4:  
IDT  
F0443  
LGRI  
ZS1629L  
Q54E042PY  
“ZS” is for die version.  
1629 has two digits for the year and week that the part was assembled.  
“L” denotes assembly site.  
.
Line 5: “Q54E042PY” is the assembly lot number.  
Revision History  
Revision Date  
Description of Change  
Sep 1, 2020  
July 2, 2020  
May 18, 2020  
April 29, 2020  
April 1, 2020  
Added Footnote [c] to Recommended Operating Conditions table.  
Minor corrections to the DNL/INL plots made. NF plot with Bypass ON added.  
Logic control specifications updated in Table 4.  
Updated SPI/I3C timing diagram.  
Initial release.  
© 2020 Renesas Electronics Corporation  
62  
September 1, 2020  
 
 
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

F0443EVBI

Dual Matched Broadband RF DVGA 0.6GHz to 2.7GHz
RENESAS

F0443LGRI

Dual Matched Broadband RF DVGA 0.6GHz to 2.7GHz
RENESAS

F0443LGRI8

Dual Matched Broadband RF DVGA 0.6GHz to 2.7GHz
RENESAS

F0448

Dual Matched Broadband RF DVGA 3.4GHz to 3.8GHz
RENESAS

F0448EVB

Dual Matched Broadband RF DVGA 3.4GHz to 3.8GHz
RENESAS

F0448EVS

Dual Matched Broadband RF DVGA 3.4GHz to 3.8GHz
RENESAS

F0448NBGK

Dual Matched Broadband RF DVGA 3.4GHz to 3.8GHz
RENESAS

F0448NBGK8

Dual Matched Broadband RF DVGA 3.4GHz to 3.8GHz
RENESAS

F045

Fuse Blocks and Clips - For 3AG Fuses
LITTELFUSE

F045-ND

Fuse Blocks and Clips - For 3AG Fuses
LITTELFUSE

F0452B

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz
RENESAS

F0452BEVB

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz
RENESAS