EL7513IYZ [RENESAS]

0.5A SWITCHING REGULATOR, 1200kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, MO-187, MSOP-8;
EL7513IYZ
型号: EL7513IYZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

0.5A SWITCHING REGULATOR, 1200kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, MO-187, MSOP-8

开关 光电二极管
文件: 总12页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL7513  
White LED Step-Up Regulator  
FN7112  
Rev 5.00  
December 22, 2008  
The EL7513 is a constant current boost regulator specially  
designed for driving white LEDs. It can drive 4 LEDs in  
series or up to 12 LEDs in parallel/series configuration and  
achieves efficiency up to 91%.  
Features  
• 2.6V to 13.2V input voltage  
• 18V maximum output voltage  
• Drives up to 12 LEDs  
• 1MHz switching frequency  
• Up to 91% efficiency  
The brightness of the LEDs is adjusted through a voltage  
level on the CNTL pin. When the level falls below 0.1V, the  
chip goes into shut-down mode and consumes less than  
1µA of supply current for V less than 5.5V.  
IN  
• 1µA maximum shut-down current  
• Dimming control  
The EL7513 is available in the 8 Ld TSOT and 8 Ld MSOP  
packages. The TSOT package is just 1mm high, compared  
to 1.45mm for the standard SOT23 package.  
• 8 Ld TSOT and 8 Ld MSOP packages  
• Pb-free available (RoHS compliant)  
Applications  
• PDAs  
• Cellular phones  
• Digital cameras  
• White LED backlighting  
Ordering Information  
PART  
PART  
TEMP. RANGE  
NUMBER  
MARKING  
(°C)  
PACKAGE  
8 Ld TSOT Tape and Reel  
8 Ld TSOT Tape and Reel  
PKG. DWG. #  
MDP0049  
EL7513IWT-T7*  
9
-40 to +85  
-40 to +85  
-40 to +85  
EL7513IWT-T7A*  
9
MDP0049  
MDP0049  
EL7513IWTZ-T7*  
(See Note)  
BAAA  
8 Ld TSOT Tape and Reel  
(Pb-Free)  
EL7513IWTZ-T7A*  
(See Note)  
BAAA  
-40 to +85  
8 Ld TSOT Tape and Reel  
(Pb-Free)  
MDP0049  
EL7513IY  
d
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
8 Ld MSOP  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
EL7513IY-T7*  
EL7513IY-T13*  
d
8 Ld MSOP Tape and Reel  
8 Ld MSOP Tape and Reel  
d
EL7513IYZ  
(See Note)  
BAABA  
8 Ld MSOP  
(Pb-Free)  
EL7513IYZ-T7*  
(See Note)  
BAABA  
BAABA  
-40 to +85  
-40 to +85  
8 Ld MSOP Tape and Reel  
(Pb-Free)  
MDP0043  
MDP0043  
EL7513IYZ-T13*  
(See Note)  
8 Ld MSOP Tape and Reel  
(Pb-Free)  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%  
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7112 Rev 5.00  
Page 1 of 12  
December 22, 2008  
EL7513  
Pinouts  
Typical Connection  
EL7513  
(8 LD TSOT)  
TOP VIEW  
L
D
2.6V TO  
5.5V  
C
C
2
1
33µH  
4.7µF  
1µF  
COMP  
CNTL  
VOUT  
LX  
1
2
3
4
8
7
6
5
VIN  
CS  
VIN  
LX  
SGND  
PGND  
VOUT  
CS  
R
1
EL7513  
(8 LD MSOP)  
TOP VIEW  
5  
V
CNTL  
PGND  
CTRL  
COMP SGND  
C
3
CS  
VIN  
1
2
3
4
8
7
6
5
CNTL  
COMP  
LX  
0.1µF  
PGND  
SGND  
VOUT  
FN7112 Rev 5.00  
December 22, 2008  
Page 2 of 12  
EL7513  
Absolute Maximum Ratings (T = +25°C)  
A
COMP, CNTL, CS to SGND. . . . . . . . . . . . . . . . . . . . . .-0.3V to +6V  
SGND to PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
V
V
to SGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+14V  
IN  
to SGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+19V  
OUT  
LX to PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+20V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V
= 3V, V = 12V, C = 4.7µF, L = 33µH, C = 1µF, C = 0.1µF, R = 5, T =+ 25°C,  
IN  
O
1
2
3
1
A
Unless Otherwise Specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
13.2  
1
UNIT  
V
V
Input Voltage  
Total Input Current at Shut-down  
2.6  
IN  
I
I
I
V
V
= 0V  
µA  
mA  
µA  
V
Q1  
CNTL  
CNTL  
Quiescent Supply Current at V Pin  
O
= 1V, load disconnected  
1
1.5  
20  
Q1  
COMP Pin Pull-up Current  
COMP Voltage Swing  
CNTL Shut-down Current  
Chip Enable Voltage  
COMP connected to SGND  
11  
1.5  
COMP  
V
0.5  
2.5  
1
COMP  
I
CNTL = 0V  
µA  
mV  
mV  
mA  
V
CNTL  
V
V
240  
CNTL1  
Chip Disable Voltage  
100  
16  
CNTL2  
I
V
= 1V  
V
V
V
= 1V  
CNTL  
14  
17  
15  
18  
16  
OUT_ACCURACY  
CNTL  
V
V
Over-voltage Threshold  
Over-voltage Threshold  
MOSFET Current Limit  
MOSFET On-resistance  
MOSFET Leakage Current  
Switching Frequency  
Maximum Duty Ratio  
CS Input Bias Current  
Line Regulation  
rising  
19  
OUT1  
OUT2  
OUT  
OUT  
falling, with resistive load  
15  
17.5  
V
ILX  
500  
mA  
R
0.7  
DS_ON  
I
V
V
V
= 0V, V = 12V  
LX  
1
µA  
kHz  
%
LEAK  
CNTL  
CNTL  
F
800  
85  
1000  
90  
1200  
S
D
= 2V, I = 0  
S
MAX  
I
1
µA  
%/V  
CS  
I /V  
= 2.6V - 5.5V  
IN  
0.03  
O
IN  
Pin Descriptions  
8 LD TSOT 8 LD MSOP PIN NAME  
DESCRIPTION  
1
2
7
8
COMP  
Compensation pin. A compensation cap (4700pF to 1µF) is normally connected between this pin and  
SGND.  
CNTL  
Control pin for dimming and shut-down. A voltage between 250mV and 5.5V controls the brightness,  
and less than 100mV shuts down the converter.  
3
4
5
6
7
8
5
6
3
4
1
2
VOUT  
LX  
Output voltage sense. Use for over voltage protection.  
Inductor connection pin. The drain of internal MOSFET.  
PGND  
SGND  
CS  
Power Ground pin. The source of internal MOSFET.  
Signal Ground. Ground pin for internal control circuitry. Needs to connect to PGND at only one point.  
Current sense pin. Connect to sensing resistor to set the LED bias current.  
Power supply for internal control circuitry.  
VIN  
FN7112 Rev 5.00  
Page 3 of 12  
December 22, 2008  
EL7513  
Block Diagram  
2.6V TO  
5.5V  
C
V
IN  
IN  
4.7µF  
REFERENCE  
GENERATOR  
1MHz  
OSCILLATOR  
THERMAL  
SHUTDOWN  
L
33µH  
OVER-VOLTAGE  
PROTECTION  
V
OUT  
LX  
C
OUT  
PWM  
COMP  
+
+
+
LOGIC  
1µF  
C
COMP  
0.1µF  
I(LED)  
BOOST  
I-SENSE  
START-UP  
CONTROL  
PGND  
PWM  
SIGNAL  
ERROR AMP  
C
S
+
-
5  
617k  
50k  
CNTL  
V
CNTL  
SGND  
Typical Performance Curves  
All performance curves and waveforms are taken with C = 4.7µF, C = 1µF, C = 0.1µF, L = 3F, V = 3.3V, V  
= 1V, R = 5, 4 LEDs in a  
1
1
2
3
IN  
CNTL  
series; unless otherwise specified.  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 0V, 0.1V  
CNTL  
WHITE LEDs DISCONNECTED  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
4.5  
6.5  
8.5  
(V)  
10.5  
12.5  
14.5  
V
V
IN  
IN  
FIGURE 1. SWITCHING FREQUENCY vs V  
FIGURE 2. QUIESCENT CURRENT  
IN  
FN7112 Rev 5.00  
December 22, 2008  
Page 4 of 12  
EL7513  
Typical Performance Curves (Continued)  
All performance curves and waveforms are taken with C = 4.7µF, C = 1µF, C = 0.1µF, L = 3F, V = 3.3V, V  
= 1V, R = 5, 4 LEDs in a  
1
2
3
IN  
CNTL  
1
series; unless otherwise specified.  
V
= 1V  
CNTL  
16.0  
15.8  
15.6  
15.4  
15.2  
15.0  
14.8  
14.6  
14.4  
14.2  
14.0  
35  
30  
25  
20  
15  
10  
5
0
0
0.5  
1.0  
V
1.5  
(V)  
2.0  
2.5  
5.0  
3.0  
4.0  
2.5  
3.5  
4.5  
IN  
5.5  
V
(V)  
CNTL  
IN  
FIGURE 3. I  
vs V  
FIGURE 4. I  
vs V  
LED  
LED  
CNTL  
BAT54HT1  
L
V
IN  
33µH  
2 LEDs IN A SERIES  
4.7µF  
1µF  
90  
85  
80  
75  
70  
V
= 4.2V  
IN  
8
4
VIN  
LX  
V
= 2.7V  
IN  
3
7
5
6
VOUT  
CS  
5  
2
1
V
CNTL PGND  
COMP SGND  
CTRL  
L=COILCRAFT LPO1704-333CM  
5
10  
15  
20  
(mA)  
25  
O
30  
0.1µF  
I
O
FIGURE 5A. 2 LEDs IN A SERIES  
FIGURE 5B. EFFICIENCY vs I  
FIGURE 5.  
BAT54HT1  
L
V
IN  
33µH  
3 LEDs IN A SERIES  
4.7µF  
1µF  
90  
85  
80  
75  
70  
V
= 4.2V  
IN  
8
4
VIN  
LX  
V
= 2.7V  
IN  
3
7
5
6
VOUT  
CS  
5  
2
1
V
CNTL PGND  
COMP SGND  
CTRL  
L = COILCRAFT LPO1704-333CM  
5
10  
15  
20  
(mA)  
25  
O
30  
0.1µF  
I
O
FIGURE 6A. 3 LEDs IN A SERIES  
FIGURE 6B. EFFICIENCY vs I  
FIGURE 6.  
FN7112 Rev 5.00  
Page 5 of 12  
December 22, 2008  
EL7513  
Typical Performance Curves (Continued)  
All performance curves and waveforms are taken with C = 4.7µF, C = 1µF, C = 0.1µF, L = 3F, V = 3.3V, V  
= 1V, R = 5, 4 LEDs in a  
1
1
2
3
IN  
CNTL  
series; unless otherwise specified.  
BAT54HT1  
L
V
IN  
33µH  
4 LEDs IN A SERIES  
4.7µF  
1µF  
90  
85  
80  
75  
70  
V
= 4.2V  
IN  
8
4
VIN  
LX  
V
= 2.7V  
IN  
V
= 3.3V  
IN  
3
7
5
6
VOUT  
CS  
5  
2
1
V
CNTL PGND  
COMP SGND  
CTRL  
L = COILCRAFT LPO1704-333CM  
5
10  
15  
20  
25  
O
30  
60  
60  
0.1µF  
LED CURRENT (mA)  
FIGURE 7A. 4 LEDs IN A SERIES  
FIGURE 7B. EFFICIENCY vs I  
FIGURE 7.  
FIGURE 8.  
FIGURE 9.  
BAT54HT1  
L
V
IN  
33µH  
2 LEGS OF 2 LEDs IN A SERIES  
90  
85  
80  
75  
70  
4.7µF  
1µF  
V
= 4.2V  
= 2.7V  
IN  
8
4
VIN  
LX  
V
IN  
3
7
5
6
VOUT  
CS  
5  
5  
2
1
V
CTRL  
CNTL PGND  
COMP SGND  
L = COILCRAFT LPO1704-333CM  
10  
20  
30  
40  
(mA)  
50  
O
0.1µF  
I
O
FIGURE 8A. 2 LEGS OF 2 LEDs IN A SERIES  
FIGURE 8B. EFFICIENCY vs I  
BAT54HT1  
L
V
IN  
33µH  
2 LEGS OF 3 LEDs IN A SERIES  
90  
85  
80  
75  
70  
4.7µF  
1µF  
V
= 4.2V  
IN  
8
4
VIN  
LX  
V
= 2.7V  
IN  
3
7
5
6
VOUT  
CS  
5  
5  
2
1
V
CTRL  
CNTL PGND  
COMP SGND  
L = SUMIDA CMD13D13-33µH  
10  
20  
30  
40  
(mA)  
50  
0.1µF  
I
O
FIGURE 9A. 2 LEGS OF 3 LEDs IN A SERIES  
FIGURE 9B. EFFICIENCY vs I  
O
FN7112 Rev 5.00  
Page 6 of 12  
December 22, 2008  
EL7513  
Typical Performance Curves (Continued)  
All performance curves and waveforms are taken with C = 4.7µF, C = 1µF, C = 0.1µF, L = 3F, V = 3.3V, V  
= 1V, R = 5, 4 LEDs in a  
1
1
2
3
IN  
CNTL  
series; unless otherwise specified.  
BAT54HT1  
L
V
IN  
33µH  
4.7µF  
1µF  
2 LEGS OF 4 LEDs IN A SERIES  
90  
85  
80  
75  
70  
V
= 4.2V  
IN  
8
4
VIN  
LX  
3
7
5
6
VOUT  
CS  
V
= 2.7V  
IN  
5  
5  
2
1
V
CNTL PGND  
COMP SGND  
CTRL  
L =SUMIDA CMD13D13-33µH  
10  
20  
30  
I
40  
(mA)  
50  
60  
0.1µF  
O
FIGURE 10A. 2 LEGS OF 4 LEDs IN A SERIES  
FIGURE 10B. EFFICIENCY vs I  
O
FIGURE 10.  
BAT54HT1  
L
V
IN  
15µH  
4.7µF  
1µF  
3 LEGS OF 2 LEDs IN A SERIES  
95  
90  
85  
80  
75  
70  
8
4
V
= 4.2V  
= 2.7V  
VIN  
LX  
IN  
V
IN  
3
7
5
6
VOUT  
CS  
V
CTRL  
5  
5  
5  
2
1
CNTL PGND  
COMP SGND  
L = SUMIDA CMD13D13-15µH  
15  
35  
55  
75  
95  
0.1µF  
I
(mA)  
O
FIGURE 11A. 3 LEGS OF 2 LEDs IN A SERIES  
FIGURE 11B. EFFICIENCY vs I  
O
FIGURE 11.  
BAT54HT1  
L
V
IN  
15µH  
4.7µF  
1µF  
3 LEGS OF 3 LEDs IN A SERIES  
95  
90  
85  
80  
75  
70  
V
=4.2V  
IN  
8
4
VIN  
LX  
3
7
5
6
VOUT  
CS  
V
=2.7V  
IN  
V
5  
5  
5  
CTRL  
2
1
CNTL PGND  
COMP SGND  
L=SUMIDA CMD13D13-15µH  
15  
35  
55  
75  
95  
0.1µF  
I
(mA)  
O
FIGURE 12A. 3 LEGS OF 3 LEDs IN A SERIES  
FIGURE 12B. EFFICIENCY vs I  
O
FIGURE 12.  
FN7112 Rev 5.00  
Page 7 of 12  
December 22, 2008  
EL7513  
Typical Performance Curves (Continued)  
All performance curves and waveforms are taken with C = 4.7µF, C = 1µF, C = 0.1µF, L = 3F, V = 3.3V, V  
= 1V, R = 5, 4 LEDs in a  
1
1
2
3
IN  
CNTL  
series; unless otherwise specified.  
BAT54HT1  
V
L
IN  
15µH  
4.7µF  
1µF  
3 LEGS OF 4 LEDs IN A SERIES  
95  
90  
85  
80  
75  
70  
8
4
VIN  
LX  
V
=4.2V  
IN  
3
7
5
6
VOUT  
CS  
V
=2.7V  
IN  
V
CTRL  
5  
5  
5  
2
1
CNTL PGND  
COMP SGND  
L=SUMIDA CMD13D13-15µH  
15  
35  
55  
75  
95  
0.1µF  
I
(mA)  
O
FIGURE 13A. 3 LEGS of 4 LEDs in a SERIES  
FIGURE 13B. EFFICIENCY vs I  
O
FIGURE 13.  
Waveforms  
All performance curves and waveforms are taken with C = 4.7µF, C = 1µF, C = 0.1µF, L = 3F, V = 3.3V, V  
= 1V, R = 5, 4 LEDs in a  
1
2
3
IN  
CNTL  
1
series; unless otherwise specified.  
C
= 4700pF  
3
I
50mA/DIV  
IN  
V
I
IN  
2V/DIV  
50mA/DIV  
IN  
V
1V/DIV  
CNTL  
I
10mA/DIV  
LED  
V
1V/DIV  
CNTL  
I
10mA/DIV  
LED  
10ms/DIV  
0.1ms/DIV  
FIGURE 14. START-UP  
FIGURE 15. SHUT-DOWN  
I
= 15mA  
LED  
2V  
1V  
10mV/DIV  
V  
IN  
V
CNTL  
I
100mA/DIV  
L
14.2V  
12.9V  
V
O
30mA  
V
10V/DIV  
LX  
I
LED  
15mA  
V  
50mV/DIV  
O
20ms/DIV  
1µs/DIV  
FIGURE 16. TRANSIENT RESPONSE  
FIGURE 17. CONTINUOUS CONDUCTION MODE  
FN7112 Rev 5.00  
Page 8 of 12  
December 22, 2008  
EL7513  
Waveforms (Continued)  
All performance curves and waveforms are taken with C = 4.7µF, C = 1µF, C = 0.1µF, L = 3F, V = 3.3V, V  
= 1V, R = 5, 4 LEDs in a  
1
1
2
3
IN  
CNTL  
series; unless otherwise specified.  
V
= 0.34V, I  
= 5mA  
LED  
CTRL  
V  
10mV/DIV  
IN  
V
V
(5V/DIV)  
O
I
100mA/DIV  
L
(1V/DIV)  
V
COMP  
LX  
10V/DIV  
V  
50mV/DIV  
O
1µs/DIV  
FIGURE 18. DISCONTINUOUS CONDUCTION MODE  
FIGURE 19. OVER VOLTAGE PROTECTION (LED  
DISCONNECTED)  
The relationship between the LED current and CNTL voltage  
level is as follows:  
Detailed Description  
The EL7513 is a constant current boost regulator specially  
designed for driving white LEDs. It can drive up to 4 LEDs in  
series or 12 LEDs in parallel/series configuration and  
achieves efficiency up to 91%.  
V
CNTL  
----------------------------  
I
=
(EQ. 1)  
LED  
13.33 R  
1
When R is 5, 1V of V  
conveniently sets I  
to  
LED  
The brightness of the LEDs is adjusted through a voltage  
level on the CNTL pin. When the level falls below 0.1V, the  
chip goes into shut-down mode and consumes less than  
1
CNTL  
is 250mV to 5.5V.  
15mA. The range of V  
CNTL  
Shut-Down  
When V  
1µA of current for V less than 5.5V.  
IN  
is less than 100mV, the converter is in shut-  
CNTL  
Steady-State Operation  
down mode. The max current consumed by the chip is less  
than 1µA for V less than 5.5V.  
IN  
EL7513 is operated in constant frequency PWM. The  
switching is around 1MHz. Depending on the input voltage,  
the inductance, the type of LEDs driven, and the LED’s  
current, the converter operates at either continuous  
conduction mode or discontinuous conduction mode (see  
waveforms). Both are normal.  
Over-Voltage Protection  
When an LED string is disconnected from the output, V will  
continue to rise because of no current feedback. When V  
reaches 18V (nominal), the chip will shut down. The output  
O
O
voltage will drop. When V drops below 16V (nominal), the  
O
Brightness Control  
chip will boost output voltage again until it reaches 18V. This  
hiccough continues until LED is applied or converter is shut  
down.  
LED’s current is controlled by the voltage level on CNTL pin  
(V  
). This voltage can be either a DC or a PWM signal  
CNTL  
with frequency less than 200Hz (for C = 4700pF). When a  
higher frequency PWM is used, an RC filter is recommended  
before the CNTL pin (see Figure 20).  
3
When designing the converter, caution should be taken to  
ensure the highest operating LED voltage does not exceed  
17V, the minimum shut-down voltage. There is no external  
component required for this function.  
Component Selection  
The input and output capacitors are not very important for  
the converter to operate normally. The input capacitance  
is normally 0.22µF - 4.7µF and output capacitance  
0.22µF - 1µF. Higher capacitance is allowed to reduce the  
voltage/current ripple, but at added cost. Use X5R or X7R  
type (for its good temperature characteristics) of ceramic  
capacitors with correct voltage rating and maximum height.  
100k  
PWM  
CNTL  
SIGNAL  
0.1µF  
COMP  
FIGURE 20. PWM BRIGHTNESS CONTROL  
FN7112 Rev 5.00  
Page 9 of 12  
December 22, 2008  
EL7513  
When choosing an inductor, make sure the inductor can  
handle the average and peak currents giving by following  
formulas (80% efficiency assumed):  
The diode should be Schottky type with minimum reverse  
voltage of 20V. The diode's peak current is the same as  
inductor's peak current, the average current is I , and RMS  
O
current is:  
I
V  
O
O
-----------------------  
=
I
I
LAVG  
(EQ. 2)  
(EQ. 3)  
0.8 V  
I
=
I
I  
LAVG O  
IN  
DRMS  
(EQ. 5)  
1
2
Ensure the diode's ratings exceed these current  
requirements.  
--  
= I  
+
 I  
LPK  
LAVG  
L
White LED Connections  
V
 V V  
IN  
IN  
O
--------------------------------------------  
I  
=
(EQ. 4)  
L
One leg of LEDs connected in series will ensure the  
L V F  
O
S
uniformity of the brightness. 18V maximum voltage enables  
4 LEDs can be placed in series.  
where:  
However, placing LEDs into series/parallel connection can  
give higher efficiency as shown in the efficiency curves. One  
of the ways to ensure the brightness uniformity is to pre-  
screen the LEDs.  
I is the peak-to-peak inductor current ripple in Ampere  
L
• L inductance in µH  
• FS switching frequency, typical 1MHz  
A wide range of inductance (6.8µH - 68µH) can be used for  
the converter to function correctly. For the same series of  
inductors, the lower inductance has lower DC resistance  
(DCR), which has less conducting loss. But the ripple current  
is bigger, which generates more RMS current loss. Figure 11  
shows the efficiency of the demo board under different  
inductance for a specific series of inductor. For optimal  
efficiency in an application, it is a good exercise to check  
several adjacent inductance values of your preferred series  
of inductors.  
PCB Layout Considerations  
The layout is very important for the converter to function  
properly. Power Ground ( ) and Signal Ground ( ) should  
be separated to ensure the high pulse current in the power  
ground does not interference with the sensitive signals  
connected to Signal Ground. Both grounds should only be  
connected at one point right at the chip. The heavy current  
paths (V -L-L pin-PGND, and V -L-D-C -PGND) should  
IN IN  
X
2
be as short as possible.  
The trace connected to the CS pin is most important. The  
current sense resister R should be very close to the pin  
1
When the trace is long, use a small filter capacitor close to  
For the same inductance, higher overall efficiency can be  
obtained by using lower DCR inductor.  
the CS pin.  
EFFICIENCY vs I  
O
85  
83  
81  
79  
77  
The heat of the IC is mainly dissipated through the PGND  
pin. Maximizing the copper area around the plane is  
preferable. In addition, a solid ground plane is always helpful  
for the EMI performance.  
V
= 3.3V FOR  
IN  
DIFFERENT L  
L = 22µH  
L = 33µH  
L = 15µH  
L = 10µH  
The demo board is a good example of layout based on the  
principle. Please refer to the EL7513 Application Brief for the  
layout.  
L = Coilcraft  
LPO1704 SERIES  
1mm HEIGHT  
5
10  
15  
20  
(mA)  
25  
30  
I
O
FIGURE 21. EFFICIENCY OF DIFFERENT INDUCTANCE  
(4 LEDs IN A SERIES)  
FN7112 Rev 5.00  
Page 10 of 12  
December 22, 2008  
EL7513  
TSOT Package Family  
MDP0049  
TSOT PACKAGE FAMILY  
e1  
D
A
MILLIMETERS  
6
4
N
SYMBOL  
TSOT5  
1.00  
0.05  
0.87  
0.38  
0.127  
2.90  
2.80  
1.60  
0.95  
1.90  
0.40  
0.60  
0.20  
5
TSOT6  
1.00  
0.05  
0.87  
0.38  
0.127  
2.90  
2.80  
1.60  
0.95  
1.90  
0.40  
0.60  
0.20  
6
TSOT8  
1.00  
0.05  
0.87  
0.29  
0.127  
2.90  
2.80  
1.60  
0.65  
1.95  
0.40  
0.60  
0.13  
8
TOLERANCE  
Max  
A
A1  
A2  
b
±0.05  
E1  
E
±0.03  
2
3
±0.07  
0.15  
2X  
C
D
c
+0.07/-0.007  
Basic  
1
2
(N/2)  
0.25  
C
D
5
2X N/2 TIPS  
e
E
Basic  
E1  
e
Basic  
ddd  
C A-B D  
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
ddd  
N
Reference  
-
0.15  
2X  
C A-B  
1
3
D
Reference  
Rev. B 2/07  
C
NOTES:  
A2  
1. Plastic or metal protrusions of 0.15mm maximum per side are  
not included.  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.15mm maximum per side are  
not included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(TSOT6 AND TSOT8 only).  
(L1)  
H
6. TSOT5 version has no center lead (shown as a dashed line).  
A
GAUGE  
PLANE  
0.25  
c
L
4° ±4°  
FN7112 Rev 5.00  
Page 11 of 12  
December 22, 2008  
EL7513  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
N
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
M
C A B  
b
0.08  
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
© Copyright Intersil Americas LLC 2004-2008. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7112 Rev 5.00  
Page 12 of 12  
December 22, 2008  

相关型号:

EL7513IYZ-T13

White LED Step-Up Regulator
INTERSIL

EL7513IYZ-T13

0.5A SWITCHING REGULATOR, 1200kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, MO-187, MSOP-8
RENESAS

EL7513IYZ-T7

White LED Step-Up Regulator
INTERSIL

EL7513IYZ-T7

0.5A SWITCHING REGULATOR, 1200kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, MO-187, MSOP-8
RENESAS

EL7513_06

White LED Step-Up Regulator
INTERSIL

EL7515

High Frequency PWM Step-Up Regulator
INTERSIL

EL7515IY

High Frequency PWM Step-Up Regulator
INTERSIL

EL7515IY-T13

High Frequency PWM Step-Up Regulator
INTERSIL

EL7515IY-T7

High Frequency PWM Step-Up Regulator
INTERSIL

EL7515IYZ

High Frequency PWM Step-Up Regulator
INTERSIL

EL7515IYZ-T13

High Frequency PWM Step-Up Regulator
INTERSIL

EL7515IYZ-T7

High Frequency PWM Step-Up Regulator
INTERSIL