EL5329IREZ-T7 [RENESAS]

10 BUFFER AMPLIFIER, PDSO28, ROHS COMPLIANT, MO-153, HTSSOP-20;
EL5329IREZ-T7
型号: EL5329IREZ-T7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

10 BUFFER AMPLIFIER, PDSO28, ROHS COMPLIANT, MO-153, HTSSOP-20

放大器 光电二极管
文件: 总13页 (文件大小:1005K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL5129, EL5329  
Multi-Channel Buffers  
FN7430  
Rev 1.00  
May 13, 2005  
The EL5129 and EL5329 integrate multiple gamma buffers  
Features  
and a single V  
buffer for use in large panel LCD  
COM  
• Multiple gamma buffers  
- 6 channels (EL5129)  
- 10 channels (EL5329)  
displays of 10” and greater. The EL5129 integrates 6 gamma  
channels and the EL5329 integrates 10 gamma channels.  
Half of the gamma channels in each device are designed to  
swing to the upper supply rail, with the other half designed to  
swing to the lower rail. The output capability of each channel  
is 10mA continuous, with 120mA peak. The gamma buffers  
feature a 10MHz 3dB bandwidth specification and a 9V/µs  
slew rate.  
• Single V  
COM  
amplifier  
• Low supply current  
- 3.5mA (EL5129)  
- 5.5mA (EL5329)  
• For higher speed or higher output power, see the EL5x24  
family  
The V  
amplifier is designed to swing from rail to rail. The  
output current capability of the V in the EL5129 and  
COM  
COM  
EL5329 is 30mA continuous, 150mA peak and a slew rate of  
10V/µs.  
• Pb-free available (RoHS compliant)  
Applications  
Ordering Information  
• TFT-LCD monitors  
• LCD televisions  
TAPE &  
REEL  
PART NUMBER  
EL5129IRE  
PACKAGE  
PKG DWG. #  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
• Industrial flat panel displays  
20-Pin HTSSOP  
20-Pin HTSSOP  
20-Pin HTSSOP  
-
7”  
13”  
-
EL5129IRE-T7  
EL5129IRE-T13  
EL5129IREZ  
(See Note)  
20-Pin HTSSOP  
(Pb-free)  
EL5129IREZ-T7  
(See Note)  
20-Pin HTSSOP  
(Pb-free)  
7”  
13”  
-
MDP0048  
MDP0048  
MDP0044  
MDP0044  
MDP0044  
MDP0048  
MDP0048  
MDP0048  
MDP0044  
MDP0044  
MDP0044  
EL5129IREZ-T13  
(See Note)  
20-Pin HTSSOP  
(Pb-free)  
EL5129IRZ  
(See Note)  
20-Pin TSSOP  
(Pb-free)  
EL5129IRZ-T7  
(See Note)  
20-Pin TSSOP  
(Pb-free)  
7”  
13”  
-
EL5129IRZ-T13  
(See Note)  
20-Pin TSSOP  
(Pb-free)  
EL5329IREZ  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
EL5329IREZ-T7  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
7”  
13”  
-
EL5329IREZ-T13  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
EL5329IRZ  
(See Note)  
28-Pin TSSOP  
(Pb-free)  
EL5329IRZ-T7  
(See Note)  
28-Pin TSSOP  
(Pb-free)  
7”  
13”  
EL5329IRZ-T13  
(See Note)  
28-Pin TSSOP  
(Pb-free)  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding  
compounds/die attach materials and 100% matte tin plate termination finish, which are  
RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7430 Rev 1.00  
May 13, 2005  
Page 1 of 13  
EL5129, EL5329  
Pinouts  
EL5129  
(20-PIN TSSOP, HTSSOP)  
TOP VIEW  
EL5329  
(28-PIN TSSOP, HTSSOP)  
TOP VIEW  
VS+  
1
2
3
4
5
6
7
8
9
20 VS+  
19 IN1  
18 IN2  
17 IN3  
16 IN4  
15 IN5  
14 IN6  
13 NC  
VS+  
NC  
1
2
3
4
5
6
7
8
9
28 VS+  
27 NC  
OUT1  
OUT2  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
26 IN1  
25 IN2  
24 IN3  
23 IN4  
22 IN5  
21 IN6  
20 IN7  
19 IN8  
18 IN9  
17 IN10  
16 INCOM  
15 VS-  
OUT3  
OUT4  
THERMAL  
PAD*  
OUT5  
OUT5  
THERMAL  
PAD*  
NC  
OUTCOM  
12 INCOM  
11 VS-  
VS- 10  
OUT8 10  
OUT9 11  
* THERMAL PAD CONNECTED TO PIN 10 OR 11 (V -)  
S
OUT10 12  
OUTCOM 13  
VS- 14  
* THERMAL PAD CONNECTED TO PIN 14 OR 15 (V -)  
S
FN7430 Rev 1.00  
May 13, 2005  
Page 2 of 13  
EL5129, EL5329  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . .V - -0.5V, V + +0.5V  
S
S
Maximum Continuous Output Current (V  
Maximum Continuous Output Current (V  
) . . . . . . . . . . 15mA  
OUT0-9  
). . . . . . . . . . . 100mA  
OUTA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +15V, V - = 0, R = 10k, C = 10pF to 0V, T = 25°C unless otherwise specified  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
20  
UNIT  
INPUT CHARACTERISTICS (REFERENCE BUFFERS)  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 0V  
CM  
2
5
mV  
µV/C  
nA  
OS  
TCV  
(Note 1)  
= 0V  
OS  
I
V
2
50  
B
CM  
R
C
10  
1.35  
M  
pF  
IN  
IN  
Input Capacitance  
Voltage Gain  
A
1V V  
14V  
OUT  
0.992  
1.5  
1.5  
0
1.008  
V/V  
V
V
CMIR  
Input Voltage Range  
EL5129, IN1 to IN3  
EL5329, IN1 to IN5  
EL5129, IN4 to IN6  
V +  
S
V +  
V
S
V +  
S
V
-1.5  
EL5329, IN6 to IN10  
0
V +  
S
V
-1.5  
INPUT CHARACTERISTICS (V  
BUFFER)  
COM  
V
Input Offset Voltage  
V
= 7.5V  
1
3
20  
mV  
µV/C  
nA  
OS  
CM  
TCV  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
(Note 1)  
OS  
I
V
V
V
= 7.5V  
2
50  
B
CM  
R
C
10  
1.35  
M  
pF  
IN  
IN  
Input Capacitance  
Load Regulation  
V
= 7.5V, -60mA < I < 60mA  
-20  
0
+20  
mV  
V
REG  
COM  
L
CMIR  
Input Voltage Range V  
COM  
V +  
S
COM  
OUTPUT CHARACTERISTICS (REFERENCE BUFFERS)  
V
V
High Output Voltage - EL5129 & EL5329  
(Output 1)  
= 15V, I = 5mA  
14.85  
14.8  
14.9  
14.85  
13.5  
1.5  
V
V
OH  
IN  
O
High Output Voltage - EL5129 (Output 2, 3),  
EL5329 (Output 2-5)  
High Output Voltage - EL5129 (Output 4-6),  
EL5329 (Output 6-10)  
V
V
V
= 13.5V, I = 5mA  
13.45  
V
IN  
IN  
IN  
O
Low Output Voltage - EL5129 (Output 1-3),  
EL5329 (Output 1-5)  
= 1.5V, I = 5mA  
1.55  
200  
150  
V
OL  
O
Low Output Voltage - EL5129 (Output 4-5),  
EL5329 (Output 6-9)  
= 0V, I = 5mA  
150  
mV  
mV  
mA  
O
Low Output Voltage - EL5129 (Output 6),  
EL5329 (Output 10)  
100  
I
Short Circuit Current  
100  
120  
SC  
FN7430 Rev 1.00  
May 13, 2005  
Page 3 of 13  
EL5129, EL5329  
Electrical Specifications V + = +15V, V - = 0, R = 10k, C = 10pF to 0V, T = 25°C unless otherwise specified (Continued)  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
14.85  
150  
TYP  
MAX  
UNIT  
OUTPUT CHARACTERISTICS (V  
BUFFER)  
COM  
V
V
High Level Saturated Output Voltage  
Low Level Saturated Output Voltage  
Short Circuit Current  
V + = 15V, I = -5mA, V = 15V  
14.9  
0.1  
V
V
OH  
OL  
S
O
I
V + = 15V, I = -5mA, V = 0V  
0.15  
S
O
I
I
170  
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Reference buffer V from 5V to 15V  
50  
55  
80  
80  
dB  
dB  
S
V
buffer, V from 5V to 15V  
S
COM  
I
Total Supply Current  
EL5129  
EL5329  
3.5  
5.5  
4.5  
7
mA  
mA  
S
DYNAMIC PERFORMANCE (BUFFER AMPLIFIERS)  
SR Slew Rate (Note 2)  
5
7
9
V/µs  
ns  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
500  
10  
S
V
O
BW  
CS  
-3dB Bandwidth  
R
= 10k, C = 10pF  
MHz  
dB  
L
L
Channel Separation  
f = 5MHz  
75  
EL5129 & EL5329 DYNAMIC PERFORMANCE (V  
AMPLIFIERS)  
COM  
SR  
Slew Rate (Note 2)  
-4V V  
4V, 20% to 80%  
10  
350  
15  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
V O  
S
BW  
-3dB Bandwidth  
R
= 10k, C = 10pF  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
75  
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
FN7430 Rev 1.00  
May 13, 2005  
Page 4 of 13  
EL5129, EL5329  
Pin Descriptions  
EL5129  
EL5329  
1, 28  
3
PIN NAME  
VS+  
PIN FUNCTION  
1, 20  
2
Positive supply voltage  
Output gamma channel 1  
Output gamma channel 2  
Output gamma channel 3  
Output gamma channel 4  
Output gamma channel 5  
Output gamma channel 6  
No connect  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
NC  
3
4
4
5
5
6
6
7
7
8
8, 13  
9
2, 27  
13  
14, 15  
16  
21  
22  
23  
24  
25  
26  
9
OUTCOM  
VS-  
Output, V  
COM  
Negative supply  
Input, V  
10, 11  
12  
14  
15  
16  
17  
18  
19  
INCOM  
IN6  
COM  
Input gamma channel 6  
Input gamma channel 5  
Input gamma channel 4  
Input gamma channel 3  
Input gamma channel 2  
Input gamma channel 1  
Output gamma channel 7  
Output gamma channel 8  
Output gamma channel 9  
Output gamma channel 10  
Input gamma channel 10  
Input gamma channel 9  
Input gamma channel 8  
Input gamma channel 7  
IN5  
IN4  
IN3  
IN2  
IN1  
OUT7  
OUT8  
OUT9  
OUT10  
IN10  
10  
11  
12  
17  
18  
19  
20  
IN9  
IN8  
IN7  
FN7430 Rev 1.00  
May 13, 2005  
Page 5 of 13  
EL5129, EL5329  
Block Diagram  
V +  
S
EL5129  
COLUMN  
DRIVER  
V
COM  
Typical Performance Curves  
5
10  
V =±7.5V  
V =±7.5V  
S
L
S
C =10pF  
R =10k  
L
3
1
6
2
C =100pF  
L
R =10k  
L
C =47pF  
L
R =1k  
L
-1  
-3  
-5  
-2  
R =562  
C =12pF  
L
L
-6  
R =150  
L
-10  
1K  
100  
1K  
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS R  
(BUFFER)  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS C  
(BUFFER)  
LOAD  
LOAD  
FN7430 Rev 1.00  
May 13, 2005  
Page 6 of 13  
EL5129, EL5329  
Typical Performance Curves (Continued)  
V =±7.5V  
V =±7.5V  
S
S
R =10k  
R =10k  
L
L
C =8pF  
C =8pF  
L
L
V
V
V
V
IN  
IN  
2V/DIV  
50mV/DIV  
OUT  
OUT  
1µs/DIV  
100ns/DIV  
FIGURE 3. LARGE SIGNAL TRANSIENT RESPONSE (BUFFER)  
FIGURE 4. SMALL SIGNAL TRANSIENT RESPONSE (BUFFER)  
20  
V =±7.5V  
V =±7.5V  
S
S
R =1k  
L
C =1.5pF  
L
0
-20  
-40  
-60  
-80  
100  
PSRR+  
PSRR-  
10  
10K  
100K  
1M  
10M  
100M  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. INPUT NOISE SPECIAL DENSITY vs FREQUENCY  
(BUFFER)  
FIGURE 6. PSRR vs FREQUENCY (BUFFER)  
60  
5
V =±7.5V  
V =±7.5V  
S
L
S
R =10k  
C =10pF  
L
OPP  
50  
40  
30  
20  
10  
0
V
=1V  
3
1
R =10k  
L
R =1k  
L
R =562  
-1  
-3  
-5  
L
R =150  
L
0
500  
1K  
1.5K  
2K  
100  
1K  
10K  
100K  
1M  
10M  
100M  
C
(pF)  
FREQUENCY (Hz)  
LOAD  
FIGURE 7. OVERSHOOT vs CAPACITANCE LOAD (BUFFER)  
FIGURE 8. FREQUENCY RESPONSE FOR VARIOUS R  
LOAD  
(V  
)
COM  
FN7430 Rev 1.00  
May 13, 2005  
Page 7 of 13  
EL5129, EL5329  
Typical Performance Curves (Continued)  
10  
10  
6
V =±7.5V  
V =±7.5V  
S
L
S
R =10k  
R =1k  
L
C =100pF  
L
6
2
C =47pF  
L
C =47pF  
C =100pF  
L
L
2
-2  
-2  
-6  
-10  
C =12pF  
C =12pF  
L
L
-6  
-10  
1K  
10K  
100K  
1M  
10M  
100M  
1G  
1K  
10K  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 10. FREQUENCY RESPONSE FOR VARIOUS C  
LOAD  
LOAD  
(V  
)
(V  
)
COM  
COM  
V =±7.5V  
V =±7.5V  
S
S
R =10k  
R =10k  
L
L
V
C =8pF  
C =8pF  
IN  
L
L
V
IN  
2V/DIV  
50mV/DIV  
V
V
OUT  
OUT  
1µs/DIV  
100ns/DIV  
FIGURE 11. LARGE SIGNAL TRANSIENT RESPONSE (V  
)
FIGURE 12. SMALL SIGNAL TRANSIENT RESPONSE (V  
)
COM  
COM  
-20  
V =±7.5V  
V =±7.5V  
S
S
R =1k  
L
C =1.5pF  
L
0
-20  
-40  
-60  
-80  
100  
PSRR+  
PSRR-  
10  
1K  
10K  
100K  
1M  
10M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. PSRR vs FREQUENCY (V  
)
FIGURE 14. INPUT NOISE SPECIAL DENSITY vs FREQUENCY  
(V  
COM  
)
COM  
FN7430 Rev 1.00  
May 13, 2005  
Page 8 of 13  
EL5129, EL5329  
Typical Performance Curves (Continued)  
50  
1K  
100  
10  
1
V =±7.5V  
S
R =10k  
L
OPP  
V
=1V  
V =±5V  
40  
30  
20  
10  
0
S
BUFFER  
V
COM  
0
1K  
0
200  
400  
600  
800  
10K  
100K  
FREQUENCY (Hz)  
1M  
10M  
C
(pF)  
LOAD  
FIGURE 15. OVERSHOOT vs CAPACITANCE LOAD (V  
)
FIGURE 16. OUTPUT IMPEDANCE vs FREQUENCY  
COM  
800  
0
V =±7.5V  
S
V =±5V  
S
R =10k  
A =+1  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
L
V
700  
600  
500  
400  
300  
200  
C =8pF  
R =1k  
L
L
FREQ=200kHz  
BUFFER  
V
COM  
BUFFER  
V
COM  
2
3
4
STEP SIZE (+V)  
5
6
1
2
3
4
5
6
7
8
9
10  
V
(V)  
OPP  
FIGURE 17. SETTLING TIME vs STEP SIZE  
FIGURE 18. TOTAL HARMONIC DISTORTION vs OUTPUT  
VOLTAGE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD - HTSSOP  
EXPOSED DIEPAD SOLDERED TO PCB PER  
JESD51-5  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
3.5  
909mW  
833mW  
HTSSOP28  
HTSSOP28  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.333W  
3
=110°C/W  
JA  
TSSOP28  
=120°C/W  
=30°C/W  
JA  
800mW  
714mW  
2.857W  
2.5  
2
HTSSOP20  
=35°C/W  
JA  
JA  
HTSSOP20  
=125°C/W  
1.333W  
1.111W  
1.5  
1
JA  
TSSOP28  
=75°C/W  
TSSOP20  
JA  
=140°C/W  
JA  
TSSOP20  
=90°C/W  
JA  
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7430 Rev 1.00  
May 13, 2005  
Page 9 of 13  
EL5129, EL5329  
need to be modified for the buffer to remain in the safe  
operating area.  
Description of Operation and Application  
Information  
The maximum power dissipation allowed in a package is  
determined according to:  
Product Description  
The EL5129 and EL5329 are fabricated using a high voltage  
CMOS process. They exhibit rail to rail input and output  
capability and have very low power consumption. When driving  
a load of 10K and 12pF, the buffers have a  
T
- T  
AMAX  
JMAX  
--------------------------------------------  
P
=
DMAX  
JA  
where:  
-3dB bandwidth of 10MHz and exhibit 9V/µs slew rate. The  
V
amplifier has a -3dB bandwidth of 12MHz and exhibit  
COM  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
10V/µs slew rate.  
AMAX  
Input, Output, and Supply Voltage Range  
= Thermal resistance of the package  
JA  
The EL5129 and EL5329 are specified with a single nominal  
supply voltage from 5V to 15V or a split supply with its total  
range from 5V to 15V. Correct operation is guaranteed for a  
supply range from 4.5V to 16.5V.  
• P  
DMAX  
= Maximum power dissipation in the package  
The maximum power dissipation actually produced by an IC is  
the total quiescent supply current times the total power supply  
voltage, plus the power in the IC due to the loads, or:  
The input common-mode voltage range of the EL5129 and  
EL5329 within 500mV beyond the supply rails. The output  
swings of the buffers and V  
within 100mV of the positive and negative supply rails with load  
currents of 5mA. Decreasing load currents will extend the  
output voltage even closer to each supply rails.  
P
= V I + i  V + V  
i  I  
i+  
LOAD  
amplifier typically extend to  
DMAX  
S
S
S
OUT  
COM  
V + V  
  I  
S
OUT  
LA  
when sourcing, and:  
Output Phase Reversal  
P
= V I + i  V  
i V -  I  
i+  
LOAD  
DMAX  
S
S
OUT  
S
V  
V -  I  
The EL5129 and EL5329 are immune to phase reversal as  
OUT  
S
LA  
long as the input voltage is limited from V - -0.5V to V +  
S
S
+0.5V. Although the device's output will not change phase, the  
input's over-voltage should be avoided. If an input voltage  
exceeds supply voltage by more than 0.6V, electrostatic  
protection diode placed in the input stage of the device begin to  
conduct and over-voltage damage could occur.  
when sinking.  
where:  
• i = 1 to total number of buffers  
• V = Total supply voltage of buffer and V  
S
COM  
Output Drive Capability  
• I  
= Total quiescent current  
SMAX  
The EL5129 and EL5329 do not have internal short-circuit  
protection circuitry. The buffers will limit the short circuit current  
• V  
• V  
i = Maximum output voltage of the application  
OUT  
OUT  
to ±120mA and the V  
amplifier will limit the short circuit  
= Maximum output voltage of V  
COM  
COM  
current to ±170mA if the outputs are directly shorted to the  
positive or the negative supply. If the output is shorted  
indefinitely, the power dissipation could easily increase such  
that the part will be destroyed. Maximum reliability is  
maintained if the output continuous current never exceeds  
• I  
i = Load current of buffer  
LOAD  
• I = Load current of V  
LA  
COM  
If we set the two P  
DMAX  
solve for the R  
equations equal to each other, we can  
's to avoid device overheat. The package  
LOAD  
±15mA for the buffers and ±100mA for the V  
amplifier.  
COM  
power dissipation curves provide a convenient way to see if the  
device will overheat. The maximum safe power dissipation can  
be found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
simple matter to see if P  
derating curves.  
These limits are set by the design of the internal metal  
interconnections.  
The Unused Buffers  
exceeds the device's power  
DMAX  
It is recommended that any unused buffers should have their  
inputs tied to ground plane.  
Power Dissipation  
With the high-output drive capability of the EL5129 and  
EL5329, it is possible to exceed the 125°C “absolute-maximum  
junction temperature” under certain load current conditions.  
Therefore, it is important to calculate the maximum junction  
temperature for the application to determine if load conditions  
FN7430 Rev 1.00  
May 13, 2005  
Page 10 of 13  
EL5129, EL5329  
Power Supply Bypassing and Printed Circuit Board  
Layout  
As with any high frequency device, good printed circuit board  
layout is necessary for optimum performance. Ground plane  
construction is highly recommended, lead lengths should be as  
short as possible, and the power supply pins must be well  
bypassed to reduce the risk of oscillation. For normal single  
supply operation, where the V - pin is connected to ground,  
S
one 0.1µF ceramic capacitor should be placed from the V +  
S
pin to ground. A 4.7µF tantalum capacitor should then be  
connected from the V + pin to ground. One 4.7µF capacitor  
S
may be used for multiple devices. This same capacitor  
combination should be placed at each supply pin to ground if  
split supplies are to be used.  
Important Note: The metal plane used for heat sinking of  
the device is electrically connected to the negative supply  
potential (V -). If V - is tied to ground, the thermal pad can  
S
S
be connected to ground. Otherwise, the thermal pad must  
be isolated from any other power planes.  
FN7430 Rev 1.00  
May 13, 2005  
Page 11 of 13  
EL5129, EL5329  
TSSOP Package Outline Drawing  
FN7430 Rev 1.00  
May 13, 2005  
Page 12 of 13  
EL5129, EL5329  
HTSSOP Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil  
website at <http://www.intersil.com/design/packages/index.asp>  
© Copyright Intersil Americas LLC 2005. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7430 Rev 1.00  
May 13, 2005  
Page 13 of 13  

相关型号:

EL5329IRZ

Multi-Channel Buffers
INTERSIL

EL5329IRZ

10 BUFFER AMPLIFIER, PDSO28, ROHS COMPLIANT, MO-153, TSSOP-20
RENESAS

EL5329IRZ-T13

Multi-Channel Buffers
INTERSIL

EL5329IRZ-T7

Multi-Channel Buffers
INTERSIL

EL5329IRZ-T7

10 BUFFER AMPLIFIER, PDSO28, ROHS COMPLIANT, MO-153, TSSOP-20
RENESAS

EL5360

200MHz Low-Power Current Feedback Amplifiers
INTERSIL

EL5360IS

200MHz Low-Power Current Feedback Amplifiers
INTERSIL

EL5360IS-T13

200MHz Low-Power Current Feedback Amplifiers
INTERSIL

EL5360IS-T7

200MHz Low-Power Current Feedback Amplifiers
INTERSIL

EL5360ISZ

200MHz Low-Power Current Feedback Amplifiers
INTERSIL

EL5360ISZ-T13

200MHz Low-Power Current Feedback Amplifiers
INTERSIL

EL5360ISZ-T7

200MHz Low-Power Current Feedback Amplifiers
INTERSIL