EL5244CYZ-T13 [RENESAS]

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, ROHS COMPLIANT, MSOP-8;
EL5244CYZ-T13
型号: EL5244CYZ-T13
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, ROHS COMPLIANT, MSOP-8

放大器 光电二极管 商用集成电路
文件: 总24页 (文件大小:1311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL5144, 244, EL5246, EL5444  
-Rail Amplifiers  
FN7177  
Rev 2.00  
March 31, 2011  
es amplifiers are voltage-feedback, high  
d, rail-to-rail amplifiers designed to operate on a single  
+5V supply. They offer unity gain stability with an unloaded  
-3dB bandwidth of 100MHz. The input common-mode  
voltage range extends from the negative rail to within 1.5V of  
the positive rail. Driving a 75W double terminated coaxial  
cable, the EL5144 series amplifiers drive to within 150mV of  
either rail. The 200V/µs slew rate and 0.1%/0.1° differential  
gain/differential phase makes these parts ideal for composite  
and component video applications. With their voltage  
feedback architecture, these amplifiers can accept reactive  
feedback networks, allowing them to be used in analog  
filtering applications These amplifiers will source 90mA and  
sink 65mA.  
Features  
• Rail-to-rail output swing  
• -3dB bandwidth = 100MHz  
• Single-supply +5V operation  
• Power-down to 2.6µA  
• Large input common-mode range 0V < V  
• Diff gain/phase = 0.1%/0.1°  
< 3.5V  
CM  
• Low power 35mW per amplifier  
• Space-saving SOT23-5, 8 Ld MSOP and 10 Ld MSOP,  
and 16 Ld QSOP packages  
• Pb-Free available (RoHS compliant)  
The EL5146 and EL5246 have a power-savings disable  
feature. Applying a standard TTL low logic level to the CE (Chip  
Enable) pin reduces the supply current to 2.6µA within 10ns.  
Turn-on time is 500ns, allowing true break-before-make  
conditions for multiplexing applications. Allowing the CE pin to  
float or applying a high logic level will enable the amplifier.  
Applications  
• Video amplifiers  
• 5V analog signal processing  
• Multiplexers  
For applications where board space is critical, singles are  
offered in a 5 Ld SOT-23 package, duals in 8 Ld and 10 Ld  
MSOP packages, and quads in a 16 Ld QSOP package.  
Singles, duals, and quads are also available in industry  
standard pinouts in SO and PDIP packages. All parts operate  
over the industrial temperature range of -40°C to +85°C.  
• Line drivers  
• Portable computers  
• High speed communications  
• Sample and hold amplifiers  
• Comparators  
FN7177 Rev 2.00  
March 31, 2011  
Page 1 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Ordering Information  
PART NUMBER  
PART MARKING  
PACKAGE  
5 Ld SOT-23**  
PKG. DWG. #  
EL5144CW  
J
MDP0038  
MDP0038  
MDP0038  
MDP0038  
MDP0038  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
EL5144CW-T7*  
J
5 Ld SOT-23**  
5 Ld SOT-23**  
5 Ld SOT-23** (Pb-free)  
5 Ld SOT-23** (Pb-free)  
8 Ld PDIP  
EL5144CW-T7A*  
EL5144CWZ-T7* (Note)  
EL5144CWZ-T7A* (Note)  
EL5146CN  
J
BAHA  
BAHA  
EL5146CN  
5146CS  
5146CS  
5146CS  
5146CSZ  
5146CSZ  
5146CSZ  
EL5244CN  
5244CS  
5244CS  
5244CS  
5244CSZ  
5244CSZ  
5244CSZ  
H
EL5146CS  
8 Ld SOIC  
EL5146CS-T7*  
8 Ld SOIC  
EL5146CS-T13*  
EL5146CSZ (Note)  
EL5146CSZ-T7* (Note)  
EL5146CSZ-T13* (Note)  
EL5244CN  
8 Ld SOIC  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld PDIP  
EL5244CS  
8 Ld SOIC  
EL5244CS-T7*  
8 Ld SOIC  
EL5244CS-T13*  
EL5244CSZ (Note)  
EL5244CSZ-T7* (Note)  
EL5244CSZ-T13* (Note)  
EL5244CY  
8 Ld SOIC  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld MSOP  
EL5244CY-T13*  
EL5244CYZ (Note)  
EL5244CYZ-T7* (Note)  
EL5244CYZ-T13* (Note)  
EL5246CN  
H
8 Ld MSOP  
BAVAA  
BAVAA  
BAVAA  
EL5246CN  
5246CS  
5246CS  
5246CS  
5246CSZ  
5246CSZ  
5246CSZ  
C
8 Ld MSOP (Pb-free)  
8 Ld MSOP (Pb-free)  
8 Ld MSOP (Pb-free)  
14 Ld PDIP  
EL5246CS  
14 Ld SOIC  
EL5246CS-T7*  
14 Ld SOIC  
EL5246CS-T13*  
EL5246CSZ (Note)  
EL5246CSZ-T7* (Note)  
EL5246CSZ-T13* (Note)  
EL5246CY  
14 Ld SOIC  
14 Ld SOIC (Pb-free)  
14 Ld SOIC (Pb-free)  
14 Ld SOIC (Pb-free)  
10 Ld MSOP  
EL5246CY-T13*  
EL5246CYZ (Note)  
EL5246CYZ-T7* (Note)  
EL5246CYZ-T13* (Note)  
EL5444CN  
C
10 Ld MSOP  
BAWAA  
BAWAA  
BAWAA  
EL5444CN  
5444CS  
5444CS  
5444CS  
10 Ld MSOP (Pb-free)  
10 Ld MSOP (Pb-free)  
10 Ld MSOP (Pb-free)  
14 Ld PDIP  
EL5444CS  
14 Ld SOIC  
EL5444CS-T7*  
14 Ld SOIC  
EL5444CS-T13*  
14 Ld SOIC  
FN7177 Rev 2.00  
March 31, 2011  
Page 2 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Ordering Information (Continued)  
PART NUMBER  
PART MARKING  
PACKAGE  
14 Ld SOIC (Pb-free)  
14 Ld SOIC (Pb-free)  
14 Ld SOIC (Pb-free)  
16 Ld QSOP  
PKG. DWG. #  
EL5444CSZ (Note)  
5444CSZ  
5444CSZ  
5444CSZ  
5444CU  
MDP0027  
MDP0027  
MDP0027  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
EL5444CSZ-T7* (Note)  
EL5444CSZ-T13* (Note)  
EL5444CU  
EL5444CU-T13*  
5444CU  
16 Ld QSOP  
EL5444CUZ (Note)  
EL5444CUZ-T7* (Note)  
EL5444CUZ-T13* (Note)  
5444CUZ  
5444CUZ  
5444CUZ  
16 Ld QSOP (Pb-free)  
16 Ld QSOP (Pb-free)  
16 Ld QSOP (Pb-free)  
*Please refer to TB347 for details on reel specifications.  
**EL5144CW symbol is .Jxxx where xxx represents date  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%  
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations).  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J  
STD-020.  
FN7177 Rev 2.00  
March 31, 2011  
Page 3 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
s
Pinouts  
EL5144  
(5 LD SOT-23)  
TOP VIEW  
EL5146  
(8 LD SO, PDIP)  
TOP VIEW  
EL5244  
(8 LD SOIC, PDIP, MSOP)  
TOP VIEW  
OUT  
GND  
IN+  
1
2
3
5
4
VS  
IN-  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
OUT  
1
2
3
4
8
7
6
5
V
S
A
IN -  
A
VS  
-
OUT  
B
-
+
+
-
+
IN +  
A
IN -  
B
IN+  
OUT  
NC  
-
IN +  
+
GND  
GND  
B
EL5246  
(10 LD MSOP)  
TOP VIEW  
EL5246  
(14 LD SOIC, PDIP)  
TOP VIEW  
EL5444  
(14 LD SOIC, PDIP)  
TOP VIEW  
IN +  
A
1
2
3
4
5
10 IN -  
1
14  
13  
12  
11  
10  
9
IN -  
A
1
14  
13  
12  
11  
10  
9
IN +  
A
OUT  
OUT  
D
A
A
-
-
CEA  
GND  
CEB  
9
8
7
6
OUT  
2
3
4
5
6
7
NC  
CEA  
GND  
CEB  
NC  
OUT  
IN -  
A
2
3
4
5
6
7
IN -  
A
A
D
+
+
V
NC  
IN +  
A
S
IN +  
D
+
-
OUT  
V
S
B
V
S
GND  
IN +  
B
IN -  
B
NC  
IN +  
B
IN +  
C
+
-
OUT  
B
IN -  
B
IN -  
C
8
IN +  
B
IN -  
B
OUT  
8
OUT  
B
C
EL5444  
(16 LD QSOP)  
TOP VIEW  
1
16  
15  
OUT  
OUT  
D
A
2
3
4
5
6
7
8
IN -  
A
IN -  
D
14 IN +  
D
IN +  
A
13 GND  
V
V
S
S
12  
11  
GND  
IN +  
B
IN +  
C
IN -  
B
10 IN -  
C
9
OUT  
C
OUT  
B
FN7177 Rev 2.00  
March 31, 2011  
Page 4 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V and GND. . . . . . . . . . . . . . . . . . . . .+6V  
S
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . GND -0.5V to VS +0.5V  
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Operating Conditions  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V = +5V, GND = 0V, T = +25°C, CE = +2V, unless otherwise specified.  
S A  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
d
d
Differential Gain Error (Note 1)  
Differential Phase Error (Note 1)  
Bandwidth  
G = 2, R = 150to 2.5V, R = 1k  
0.1  
0.1  
100  
60  
%
G
P
L
F
G = 2, R = 150to 2.5V, R = 1k  
°
L
F
BW  
-3dB, G = 1, R = 10k R = 0  
MHz  
MHz  
MHz  
MHz  
V/µs  
L
F
-3dB, G = 1, R = 150 R = 0  
L
F
BW1  
GBWP  
SR  
Bandwidth  
±0.1dB, G = 1, R = 150to GND, R = 0  
8
L
F
Gain Bandwidth Product  
Slew Rate  
60  
G = 1, R = 150to GND, R = 0, V = 0.5V  
150  
200  
L
F
O
to 3.5V  
t
Settling Time  
to 0.1%, V  
= 0V to 3V  
OUT  
35  
ns  
S
DC PERFORMANCE  
A
Open Loop Voltage Gain  
R = no load, V  
= 0.5V to 3V  
54  
40  
65  
50  
dB  
dB  
VOL  
L
OUT  
R = 150to GND, V  
= 0.5V to 3V  
L
OUT  
V
Offset Voltage  
V
V
= 1V, SOT23-5 and MSOP packages  
25  
15  
mV  
OS  
CM  
= 1V, All other packages  
= 0V and 3.5V  
mV  
CM  
T V  
Input Offset Voltage Temperature  
Coefficient  
10  
2
mV/°C  
C
OS  
I
Input Bias Current  
V
100  
3.5  
nA  
B
CM  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
CMRR 47dB  
0
V
CMRR  
Common Mode Rejection Ratio  
DC, V  
DC, V  
= 0 to 3.0V  
= 0 to 3.5V  
50  
47  
60  
60  
dB  
dB  
G  
pF  
CM  
CM  
R
C
Input Resistance  
Input Capacitance  
1.5  
1.5  
IN  
IN  
OUTPUT CHARACTERISTICS  
V
Positive Output Voltage Swing  
R = 150to 2.5V (Note 2)  
4.70  
4.20  
4.95  
4.85  
4.65  
4.97  
0.15  
0
V
V
V
V
V
V
OP  
L
R = 150to GND (Note 2)  
L
R = 1kto 2.5V (Note 2)  
L
V
Negative Output Voltage Swing  
R = 150to 2.5V (Note 2)  
0.30  
0.05  
ON  
L
R = 150to GND (Note 2)  
L
R = 1kto 2.5V (Note 2)  
0.03  
L
FN7177 Rev 2.00  
March 31, 2011  
Page 5 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Electrical Specifications  
V
= +5V, GND = 0V, T = +25°C, CE = +2V, unless otherwise specified. (Continued)  
A
S
PARAMETER  
DESCRIPTION  
Positive Output Current  
Negative Output Current  
CONDITIONS  
R = 10to 2.5V  
MIN  
60  
TYP  
90  
MAX  
150  
UNIT  
mA  
+I  
OUT  
L
-I  
R = 10to 2.5V  
-50  
-65  
-125  
mA  
OUT  
L
ENABLE (EL5146 AND EL5246 ONLY)  
t
t
I
I
Enable Time  
EL5146, EL5246  
500  
10  
ns  
ns  
EN  
Disable Time  
EL5146, EL5246  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE = 5V, EL5146, EL5246  
CE = 0V, EL5146, EL5246  
EL5146, EL5246  
0.003  
-1.2  
1
mA  
mA  
V
IHCE  
ILCE  
-3  
V
CE Pin Input High Voltage for  
Power-Up  
2.0  
IHCE  
V
CE Pin Input Low Voltage for  
Power-Down  
EL5146, EL5246  
0.8  
V
ILCE  
SUPPLY  
Is  
Supply Current - Enabled  
(Per Amplifier)  
No load, V = 0V, CE = 5V  
IN  
7
8.8  
5
mA  
mA  
ON  
Is  
Supply Current - Disabled  
(Per Amplifier)  
No load, V = 0V, CE = 0V, EL5146 and  
IN  
EL5246 only  
2.6  
OFF  
PSOR  
PSRR  
Power Supply Operating Range  
Power Supply Rejection Ratio  
4.75  
50  
5.0  
60  
5.25  
V
DC, V = 4.75V to 5.25V  
dB  
S
NOTES:  
1. Standard NTSC test, AC signal amplitude = 286mV , f = 3.8MHz, V  
P-P OUT  
is swept from 0.8V to 3.4V, R is DC-coupled.  
L
2. R is total load resistance due to feedback resistor and load resistor.  
L
Typical Performance Curves  
2
A
= 1, R = 0  
F
V
0
-45  
A
= 1, R = 0  
F
V
0
-2  
-4  
-6  
-8  
A
= 2,  
= 1k  
V
A
= 5.6,  
= 1k  
V
R
F
R
F
-90  
A
= 2,  
= 1k  
A
= 5.6,  
= 1k  
V
V
R
R
F
F
-135  
-180  
V
R
= 1.5V  
= 150  
V
R
= 1.5V  
CM  
= 150  
CM  
L
L
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 1. NON-INVERTING FREQUENCY RESPONSE (GAIN)  
FIGURE 2. NON-INVERTING FREQUENCY RESPONSE  
(PHASE)  
FN7177 Rev 2.00  
March 31, 2011  
Page 6 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
2
180  
135  
90  
A
= -1  
V
A
= -1  
0
-2  
-4  
-6  
-8  
V
A
= -2  
A
= -2  
V
V
A
= -5.6  
A
= -5.6  
V
V
45  
V
R
R
= 1.5V  
= 1k  
= 150  
V
R
R
= 1.5V  
= 1k  
= 150  
CM  
F
L
CM  
F
L
0
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 3. INVERTING FREQUENCY RESPONSE (GAIN)  
FIGURE 4. INVERTING FREQUENCY RESPONSE (PHASE)  
150  
100  
R
= 150  
R
= 10k  
L
L
80  
60  
40  
20  
0
120  
90  
60  
30  
0
A
= 1, R = 0  
F
V
A
= 1, R = 0  
F
V
A
= 2, R = 1k  
V
F
A
= 2, R = 1k  
F
V
A
= 5.6, R = 1k  
A
= 5.6, R = 1k  
F
V
F
V
-55  
-15  
25  
65  
105  
145  
-55  
-15  
25  
65  
105  
145  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 5. 3dB BANDWIDTH vs DIE TEMPERATURE FOR  
VARIOUS GAINS  
FIGURE 6. 3dB BANDWIDTH VS DIE TEMPERATURE FOR  
VARIOUS GAINS  
V
R
A
= 1.5V  
= 0  
= 1  
V
R
A
= 1.5V  
= 150  
= 1  
C =100pF  
CM  
F
V
CM  
L
V
L
4
2
8
4
C = 47pF  
L
R
= 10k  
L
0
0
R
= 520  
L
C
= 22pF  
L
-2  
-4  
-4  
-8  
C
= 0pF  
L
R = 150  
L
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 7. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 8. FREQUENCY RESPONSE FOR VARIOUS C  
L
L
FN7177 Rev 2.00  
March 31, 2011  
Page 7 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
10  
8
R
= R = 2k  
G
F
2
0
A
= 2  
= 1k  
V
R
= R = 1k  
G
F
R
F
6
-2  
-4  
-6  
R
= R = 560  
F
G
4
A
= 1  
= 1  
V
R
F
V
R
A
= 1.5V  
= 150  
= 2  
CM  
L
V
2
0
1M  
1M  
10M  
100M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
FIGURE 9. FREQUENCY RESPONSE FOR VARIOUS R AND  
FIGURE 10. GROUP DELAY vs FREQUENCY  
F
R
G
0
80  
80  
60  
40  
20  
0
R
= 1k  
45  
70  
L
PHASE  
NO LOAD  
90  
60  
50  
R
= 150  
L
135  
180  
225  
GAIN  
R
= 150  
L
40  
30  
-55  
1k  
10k  
100k  
1M  
10M  
100M  
-15  
25  
65  
105  
145  
FREQUENCY (Hz)  
DIE TEMPERATURE (°C)  
FIGURE 11. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
FIGURE 12. OPEN LOOP VOLTAGE GAIN vs DIE  
TEMPERATURE  
10k  
1k  
200  
R
A
= 0  
= 2  
F
V
20  
2
100  
0.2  
10  
10  
100  
1k  
10k 100k 1M 10M 100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. VOLTAGE NOISE vs FREQUENCY - VIDEO AMP  
FIGURE 14. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY  
FN7177 Rev 2.00  
March 31, 2011  
Page 8 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
20  
0
12  
6
CMRR  
-20  
-40  
-60  
-80  
PSRR-  
0
-6  
PSRR+  
1M  
-12  
-55  
-15  
25  
65  
105  
145  
1k  
10k  
100k  
10M  
100M  
DIE TEMPERATURE (°C)  
FREQUENCY (Hz)  
FIGURE 15. OFFSET VOLTAGE vs DIE TEMPERATURE  
(6 TYPICAL SAMPLES)  
FIGURE 16. PSRR AND CMRR vs FREQUENCY  
5
5
R
A
= 1k  
= 2  
R
A
= 1k  
= 2  
F
V
F
V
4
3
2
1
0
4
3
2
1
0
R
= 500TO 2.5V  
L
R
= 500TO 2.5V  
L
R
= 150TO 2.5V  
L
R
= 150TO 2.5V  
L
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 17. OUTPUT VOLTAGE SWING vs FREQUENCY FOR  
THD < 1%  
FIGURE 18. OUTPUT VOLTAGE SWING vs FREQUENCY FOR  
THD < 0.1%  
4
1.9  
V
= 5V  
= 150TO 0V  
= 1k  
V
= 5V  
S
S
R
R
A
R
R
A
= 150TO 0V  
= 1k  
= 2  
L
F
V
L
F
V
3
2
1
0
1.7  
1.5  
1.3  
1.1  
= 2  
TIME (20ns/div)  
TIME (20ns/div)  
FIGURE 19. LARGE SIGNAL PULSE RESPONSE (SINGLE  
SUPPLY)  
FIGURE 20. SMALL SIGNAL PULSE RESPONSE (SINGLE  
SUPPLY)  
FN7177 Rev 2.00  
March 31, 2011  
Page 9 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
4
0.4  
0.2  
0
= ±2.5V  
= 150TO 0V  
= 1k  
V
= ±2.5V  
= 150TO 0V  
= 1k  
S
R
R
A
L
F
V
2
0
= 2  
= 2  
-2  
-4  
-0.2  
-0.4  
TIME (20ns/div)  
TIME (20ns/div)  
FIGURE 21. LARGE SIGNAL PULSE RESPONSE (SPLIT  
SUPPLIES)  
FIGURE 22. SMALL SIGNAL PULSE RESPONSE (SPLIT  
SUPPLY)  
100  
250  
200  
150  
R
R
A
= 1k  
= 500  
= -1  
L
F
V
80  
60  
40  
20  
0
V
= 3V  
STEP  
0.01  
0.1  
SETTLING ACCURACY (%)  
1
-55  
-15  
25  
65  
105  
145  
DIE TEMPERATURE (°C)  
FIGURE 23. SETTLING TIME vs SETTLING ACCURACY  
FIGURE 24. SLEW RATE vs DIE TEMPERATURE  
R
A
= 0  
= 1  
R
A
= 0  
= 1  
F
V
F
V
0.08  
0.04  
0
0.2  
0.1  
0
R
= 10k  
= 150  
L
R
= 10k  
L
R
= 150  
L
R
L
-0.04  
-0.08  
-0.1  
-0.2  
0.25  
1.75  
(V)  
3.25  
0.25  
1.75  
(V)  
3.25  
V
V
OUT  
OUT  
FIGURE 25. DIFFERENTIAL GAIN FOR R TIED TO 0V  
L
FIGURE 26. DIFFERENTIAL PHASE FOR R TIED TO 0V  
L
FN7177 Rev 2.00  
March 31, 2011  
Page 10 of 24  
 
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
R
A
= 0  
= 1  
R
A
= 0  
= 1  
F
V
F
V
0.2  
0.1  
0
0.2  
0.1  
0
R
= 10k  
L
R
= 10k  
L
-0.1  
-0.2  
-0.1  
-0.2  
R
= 150  
L
R
= 150  
L
0.5  
2.0  
3.5  
0.5  
2.0  
3.5  
V
(V)  
V
(V)  
OUT  
OUT  
FIGURE 27. DIFFERENTIAL GAIN FOR R TIED TO 2.5V  
FIGURE 28. DIFFERENTIAL PHASE FOR R TIED TO 2.5V  
L
L
R
A
= 1k  
= 2  
R
A
= 1k  
= 2  
F
V
F
V
0.2  
0.1  
0
R =150  
0.2  
0.1  
0
L
R
= 150  
L
R =10k  
L
R
= 10k  
L
-0.1  
-0.2  
-0.1  
-0.2  
0.5  
2.0  
3.5  
0.5  
2.0  
3.5  
V
(V)  
V
(V)  
OUT  
OUT  
FIGURE 29. DIFFERENTIAL GAIN FOR R TIED TO 0V  
FIGURE 30. DIFFERENTIAL PHASE FOR R TIED TO 0V  
L
L
R
A
= 1k  
= 2  
R
A
= 1k  
= 2  
F
V
F
V
0.2  
0.1  
0
0.2  
0.1  
0
R
= 10k  
L
R
= 150  
L
R
= 150  
-0.1  
-0.2  
-0.1  
-0.2  
L
R
= 10k  
L
0.5  
2.0  
3.5  
0.5  
2.0  
3.5  
V
(V)  
V
(V)  
OUT  
OUT  
FIGURE 31. DIFFERENTIAL GAIN FOR R TIED TO 2.5V  
L
FIGURE 32. DIFFERENTIAL PHASE FOR R TIED TO 2.5V  
L
FN7177 Rev 2.00  
March 31, 2011  
Page 11 of 24  
 
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
-25  
-35  
-45  
-55  
-65  
-75  
-25  
HD3  
-35  
HD3  
-45  
-55  
-65  
-75  
HD2  
HD2  
V
R
= 0.5V TO 2.5V  
= 100TO 0V  
OUT  
L
V
R
= 0.25V TO 2.25V  
= 100TO 0V  
OUT  
L
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 33. 2nd AND 3rd HARMONIC DISTORTION vs  
FREQUENCY  
FIGURE 34. 2nd AND 3rd HARMONIC DISTORTION vs  
FREQUENCY  
-25  
0
-20  
HD3  
-35  
-45  
-40  
HD2  
-55  
-60  
-65  
-80  
V
R
=1V TO3V
= 100TO 0V  
OUT
L
-75  
1M  
-100  
100k  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 35. 2nd AND 3rd HARMONIC DISTORTION vs  
FREQUENCY  
FIGURE 36. CHANNEL-TO-CHANNEL CROSSTALK - DUALS  
AND QUADS (WORST CHANNEL)  
120  
R
= 10TO 2.5V  
L
8
6
4
2
0
100  
80  
60  
SINK  
25  
40  
20  
-55  
0
1
2
3
4
5
-15  
65  
105  
145  
SUPPLY VOLTAGE (V)  
DIE TEMPERATURE (°C)  
FIGURE 37. SUPPLY CURRENT (PER AMP) vs SUPPLY  
VOLTAGE  
FIGURE 38. OUTPUT CURRENT VS DIE TEMPERATURE  
FN7177 Rev 2.00  
March 31, 2011  
Page 12 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
9
5
4
3
2
1
0
8
7
6
5
4
-55  
-15  
25  
65  
105  
145  
-55  
-15  
25  
65  
105  
145  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 39. SUPPLY CURRENT - ON (PER AMP) vs DIE  
TEMPERATURE  
FIGURE 40. SUPPLY CURRENT - OFF (PER AMP) vs DIE  
TEMPERATURE  
5.0  
0.5  
0.4  
0.3  
R =150  
L
4.9  
4.8  
4.7  
4.6  
4.5  
R
= 150TO 2.5V  
L
R
= 150TO 2.5V  
L
0.2  
0.1  
0
R
= 150TO 0V  
L
R
= 150TO 0V  
L
-55  
-15  
25  
65  
105  
145  
-55  
-15  
25  
65  
105  
145  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 41. POSITIVE OUTPUT VOLTAGE SWING vs DIE  
TEMPERATURE  
FIGURE 42. NEGATIVE OUTPUT VOLTAGE SWING vs DIE  
TEMPERATURE  
-20  
300  
100  
EL5146CS AND  
EL5146CN  
-40  
-60  
EL5246CS  
-80  
10  
EL5246CN  
-100  
EFFECTIVE R  
-15  
= R //R TO V /2  
LOAD  
L
F
S
-120  
1
-55  
10k  
100k  
1M  
10M  
100M  
25  
65  
105  
145  
FREQUENCY (Hz)  
DIE TEMPERATURE (°C)  
FIGURE 43. OUTPUT VOLTAGE FROM EITHER RAIL vs DIE  
TEMPERATURE FOR VARIOUS EFFECTIVE  
FIGURE 44. OFF ISOLATION - EL5146 AND EL5246  
R
LOAD  
FN7177 Rev 2.00  
March 31, 2011  
Page 13 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PDIP-14, JA = 87°C/W  
PDIP, JA = 110°C/W  
1.6  
PDIP-8, JA = 107°C/W  
SOIC-14, JA = 120°C/W  
SOIC, JA = 161°C/W  
1.2  
0.8  
0.4  
SOIC-8, JA = 159°C/W  
MSOP-8,10, JA = 206°C/W  
SOT23-5, JA = 256°C/W  
0
-50  
-20  
10  
40  
70  
-50  
-20  
10  
40  
70  
100  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 45. MAXIMUM POWER DISSIPATION vs AMBIENT  
TEMPERATURE SINGLES (T = +150°C)  
FIGURE 46. MAXIMUM POWER DISSIPATION vs AMBIENT  
TEMPERATURE DUALS (T  
= +150°C)  
JMAX  
JMAX  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PDIP-14, JA = 83°C/W  
SOIC-14, JA = 118°C/W  
QSOP-16, JA = 158°C/W  
-50  
-20  
10  
40  
70  
100  
AMBIENT TEMPERATURE (°C)  
FIGURE 47. MAXIMUM POWER DISSIPATION vs AMBIENT TEMPERATURE QUADS (T  
JMAX  
= +150°C)  
FN7177 Rev 2.00  
March 31, 2011  
Page 14 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Pin Descriptions  
EL5144 EL5146  
5 Ld 8 Ld  
EL5244  
8 Ld SO/  
EL5246 EL5246 EL5444 EL5444  
10 Ld 14 Ld 14 Ld 16 Ld  
SOT23 SO/PDIP PDIP/MSOP MSOP SO/PDIP SO/PDIP QSOP NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
5
2
7
4
8
4
8
3
11  
4
4
4, 5  
VS  
Positive Power Supply  
11  
12, 13  
GND Ground or Negative  
Power Supply  
3
3
IN+ Non-inverting Input  
V
S
GND  
Circuit 1  
4
1
2
6
IN-  
Inverting Input  
(Reference Circuit 1)  
OUT Amplifier Output  
V
S
GND  
Circuit 2  
3
2
1
1
3
2
3
2
INA+ Amplifier A  
Non-inverting Input  
(Reference Circuit 1)  
10  
14  
INA- Amplifier A Inverting (Reference Circuit 1)  
Input  
1
5
9
5
13  
7
1
5
1
6
OUTA Amplifier A Output  
(Reference Circuit 2)  
(Reference Circuit 1)  
INB+ Amplifier B  
Non-inverting Input  
6
7
6
7
8
9
6
7
INB- Amplifier B Inverting (Reference Circuit 1)  
Input  
7
8
OUTB Amplifier B Output  
(Reference Circuit 2)  
(Reference Circuit 1)  
10  
11  
INC+ Amplifier C  
Non-inverting Input  
9
10  
INC- Amplifier C Inverting (Reference Circuit 1)  
Input  
8
9
OUTC Amplifier C Output  
(Reference Circuit 2)  
(Reference Circuit 1)  
12  
14  
IND+ Amplifier D  
Non-inverting Input  
13  
14  
15  
16  
IND- Amplifier D Inverting (Reference Circuit 1)  
Input  
OUTD Amplifier D Output  
(Reference Circuit 2)  
f
8
CE  
Enable  
(Enabled when high)  
V
S
+
1.4V  
GND  
Circuit 3  
FN7177 Rev 2.00  
March 31, 2011  
Page 15 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Pin Descriptions (Continued)  
EL5144 EL5146  
5 Ld 8 Ld  
EL5244  
8 Ld SO/  
EL5246 EL5246 EL5444 EL5444  
10 Ld 14 Ld 14 Ld 16 Ld  
SOT23 SO/PDIP PDIP/MSOP MSOP SO/PDIP SO/PDIP QSOP NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
(Reference Circuit 3)  
2
3
CEA Enable Amplifier A  
(Enabled when high)  
4
5
CEB Enable Amplifier B  
(Enabled when high)  
(Reference Circuit 3)  
1, 5  
2, 6,  
10, 12  
NC  
No Connect.  
Not internally  
connected.  
Input, Output and Supply Voltage Range  
Description of Operation and Applications  
Information  
The EL5144 series has been designed to operate with a  
single supply voltage of 5V. Split supplies can be used so  
long as their total range is 5V.  
Product Description  
The EL5144 series is a family of wide bandwidth, single  
supply, low power, rail-to-rail output, voltage feedback  
operational amplifiers. The family includes single, dual, and  
quad configurations. The singles and duals are available  
with a power-down pin to reduce power to 2.6µA typically. All  
the amplifiers are internally compensated for closed loop  
feedback gains of +1 or greater. Larger gains are acceptable  
but bandwidth will be reduced according to the familiar Gain  
Bandwidth Product.  
The amplifiers have an input common mode voltage range  
that includes the negative supply (GND pin) and extends to  
within 1.5V of the positive supply (V pin). They are  
S
specified over this range.  
The output of the EL5144 series amplifiers can swing rail to  
rail. As the load resistance becomes lower in value, the  
ability to drive close to each rail is reduced. However, even  
with an effective 150load resistor connected to a voltage  
halfway between the supply rails, the output will swing to  
within 150mV of either rail.  
Connected in voltage follower mode and driving a high  
impedance load, the EL5144 series has a -3dB bandwidth of  
100MHz. Driving a 150load, they have a -3dB bandwidth  
of 60MHz while maintaining a 200V/µs slew rate. The input  
common mode voltage range includes ground while the  
output can swing rail-to-rail.  
Figure 48 shows the output of the EL5144 series amplifier  
swinging rail to rail with R = 1k, A = +2 and R = 1M.  
F
V
L
Figure 49 is with R = 150  
L
5V  
0V  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high-frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended. Lead lengths  
should be as short as possible. The power supply pin must  
be well bypassed to reduce the risk of oscillation For normal  
single supply operation, where the GND pin is connected to  
the ground plane, a single 4.7µF tantalum capacitor in  
FIGURE 48.  
parallel with a 0.1µF ceramic capacitor from V to GND will  
S
suffice. This same capacitor combination should be placed  
at each supply pin to ground if split supplies are to be used.  
In this case, the GND pin becomes the negative supply rail.  
For good AC performance, parasitic capacitance should be  
kept to a minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use  
of sockets, particularly for the SO package, should be  
avoided if possible. Sockets add parasitic inductance and  
capacitance that can result in compromised performance.  
5V  
0V  
FIGURE 49.  
FN7177 Rev 2.00  
March 31, 2011  
Page 16 of 24  
 
 
EL5144, EL5146, EL5244, EL5246, EL5444  
Choice of Feedback Resistor, R  
However, this will obviously reduce the gain slightly. If your  
F
gain is greater than 1, the gain resistor (R ) can then be  
G
These amplifiers are optimized for applications that require a  
gain of +1. Hence, no feedback resistor is required.  
However, for gains greater than +1, the feedback resistor  
forms a pole with the input capacitance. As this pole  
becomes larger, phase margin is reduced. This causes  
ringing in the time domain and peaking in the frequency  
chosen to make up for any gain loss, which may be created  
by this additional resistor at the output. Another method of  
reducing peaking is to add a “snubber” circuit at the output.  
A snubber is a resistor in a series with a capacitor, 150and  
100pF being typical values. The advantage of a snubber is  
that it does not draw DC load current.  
domain. Therefore, R has some maximum value that  
F
should not be exceeded for optimum performance. If a large  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will de-couple  
the EL5144 series amplifier from the cable and allow extensive  
capacitive drive. However, other applications may have high  
capacitive loads without a back-termination resistor. Again, a  
small series resistor at the output can reduce peaking.  
value of R must be used, a small capacitor in the few  
F
picofarad range in parallel with R can help to reduce this  
F
ringing and peaking at the expense of reducing the  
bandwidth.  
As far as the output stage of the amplifier is concerned, R +  
F
R
appear in parallel with R for gains other than +1. As this  
G
L
combination gets smaller, the bandwidth falls off.  
Disable/Power-Down  
Consequently, R also has a minimum value that should not  
F
The EL5146 and EL5246 amplifiers can be disabled, placing  
its output in a high-impedance state. Turn-off time is only  
10ns and turn-on time is around 500ns. When disabled, the  
amplifier’s supply current is reduced to 2.6µA typically,  
thereby effectively eliminating power consumption. The  
amplifier’s power-down can be controlled by standard TTL or  
CMOS signal levels at the CE pin. The applied logic signal is  
relative to the GND pin. Letting the CE pin float will enable  
the amplifier. Hence, the 8 Ld PDIP and 8 Ld SOIC single  
amps are pin compatible with standard amplifiers that don’t  
have a power-down feature.  
be exceeded for optimum performance.  
For A = +1, R = 0is optimum. For A = -1 or +2 (noise  
V
F
V
gain of 2), optimum response is obtained with R between  
F
300and 1k. For A = -4 or +5 (noise gain of 5), keep R  
V
F
between 300and 15k.  
Video Performance  
For good video signal integrity, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the output.  
This can be difficult when driving a standard video load of  
150, because of the change in output current with DC level.  
A look at Figures 25 through 32 beginning on page 10  
(Differential Gain and Differential Phase curves for various  
supply and loading conditions) will help you obtain optimal  
Short Circuit Current Limit  
The EL5144 series amplifiers do not have internal short  
circuit protection circuitry. Short circuit current of 90mA  
sourcing and 65mA sinking typically will flow if the output is  
trying to drive high or low but is shorted to half way between  
the rails. If an output is shorted indefinitely, the power  
dissipation could easily increase such that the part will be  
destroyed. Maximum reliability is maintained if the output  
current never exceeds 50mA. This limit is set by internal  
metal interconnect limitations. Obviously, short circuit  
conditions must not remain or the internal metal connections  
will be destroyed.  
performance. Curves are provided for A = +1 and +2, and  
V
R = 150and 10ktied both to ground as well as 2.5V. As  
L
with all video amplifiers, there is a common mode sweet spot  
for optimum differential gain/differential phase. For example,  
with A = +2 and R = 150tied to 2.5V, and the output  
V
L
common mode voltage kept between 0.8V and 3.2V, dG/dP  
is a very low 0.1%/0.1°. This condition corresponds to  
driving an AC-coupled, double terminated 75coaxial cable.  
With A = +1, R = 150tied to ground, and the video level  
V
L
Power Dissipation  
kept between 0.85V and 2.95V, these amplifiers provide  
dG/dP performance of 0.05%/0.20°. This condition is  
representative of using the EL5144 series amplifier as a  
buffer driving a DC coupled, double terminated, 75coaxial  
cable. Driving high impedance loads, such as signals on  
computer video cards, gives similar or better dG/dP  
performance as driving cables.  
With the high output drive capability of the EL5144 series  
amplifiers, it is possible to exceed the +150°C Absolute  
Maximum junction temperature under certain load current  
conditions. Therefore, it is important to calculate the maximum  
junction temperature for the application to determine if load  
conditions or package type need to be modified for the  
amplifier to remain in the safe operating area.  
Driving Cables and Capacitive Loads  
The maximum power dissipation allowed in a package is  
determined according to Equation 1:  
The EL5144 series amplifiers can drive 50pF loads in  
parallel with 150with 4dB of peaking and 100pF with 7dB  
of peaking. If less peaking is desired in these applications, a  
small series resistor (usually between 5and 50) can be  
placed in series with the output to eliminate most peaking.  
T
- T  
AMAX  
JMAX  
(EQ. 1)  
--------------------------------------------  
PD  
=
MAX  
JA  
FN7177 Rev 2.00  
March 31, 2011  
Page 17 of 24  
 
EL5144, EL5146, EL5244, EL5246, EL5444  
where:  
EL5144 Series Comparator Application  
The EL5144 series amplifier can be used as a very fast,  
single supply comparator. Most op amps used as a  
comparator allow only slow speed operation because of  
output saturation issues. The EL5144 series amplifier  
doesn’t suffer from output saturation issues. Figure 50  
shows the amplifier implemented as a comparator. Figure 51  
is a graph of propagation delay vs overdrive as a square  
wave is presented at the input of the comparator.  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
T
AMAX  
= Thermal resistance of the package  
JA  
PD  
= Maximum power dissipation in the package  
MAX  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or  
as expressed in Equation 2:  
+5V  
1
2
3
4
8
7
6
5
EL5146  
0.1µF  
V
OUT  
R
L
+
---------------  
PD  
= N V I  
+ V - V  
   
(EQ. 2)  
-
+
V
IN  
MAX  
S
SMAX  
S
OUT  
V
+2.5V  
OUT  
R
L
where:  
N = Number of amplifiers in the package  
V = Total supply voltage  
FIGURE 50. EL5146 AMPLIFIER IMPLEMENTED AS A  
COMPARATOR  
S
I
= Maximum supply current per amplifier  
SMAX  
1000  
V
= Maximum output voltage of the application  
OUT  
R = Load resistance tied to ground  
L
NEGATIVE GOING  
If we set the two PD  
equations equal to each other, we  
can solve for R using Equation 3:  
SIGNAL  
MAX  
100  
L
V
 V - V  
OUT  
OUT  
S
---------------------------------------------------------------------------------------------  
=
(EQ. 3)  
R
L
POSITIVEGOING  
SIGNAL  
T
- T  
JMAX  
AMAX  
--------------------------------------------  
- V I  
SMAX  
S
N    
JA  
10  
0.01  
0.1  
1.0  
Assuming worst case conditions of T = +85C, V  
OUT  
= V /2V,  
S
OVERDRIVE (V)  
A
V = 5.5V, and I  
of all packages and the minimum RL allowed.  
= 8.8mA per amplifier, following is a table  
FIGURE 51. PROPAGATION DELAY vs OVERDRIVE FOR  
AMPLIFIER USED AS A COMPARATOR  
S
SMAX  
Multiplexing with the EL5144 Series Amplifier  
PART  
PACKAGE  
SOT23-5  
SOIC-8  
MINIMUM R  
L
Besides normal power-down usage, the CE pin on the  
EL5146 and EL5246 series amplifiers also allow for  
multiplexing applications. Figure 52 shows an EL5246 with  
its outputs tied together, driving a back terminated 75video  
EL5144CW  
EL5146CS  
EL5146CN  
EL5244CS  
EL5244CN  
EL5244CY  
EL5246CY  
EL5246CS  
EL5246CN  
EL5444CU  
EL5444CS  
EL5444CN  
37  
21  
14  
48  
30  
69  
69  
34  
23  
139  
85  
51  
PDIP-8  
load. A 3V  
10MHz sine wave is applied at Amp A input,  
5MHz square wave to Amp B. Figure 53  
P-P  
and a 2.4V  
SOIC-8  
P-P  
PDIP-8  
shows the SELECT signal that is applied, and the resulting  
output waveform at V . Observe the break-before-make  
OUT  
operation of the multiplexing. Amp A is on and V  
MSOP-8  
MSOP-10  
SOIC-14  
PDIP-14  
QSOP-16  
SOIC-14  
PDIP-14  
is being  
IN1  
passed through to the output of the amplifier. Then Amp A  
turns off in about 10ns. The output decays to ground with an  
R C time constants. 500ns later, Amp B turns on and V  
IN2  
L
L
is passed through to the output. This break-before-make  
operation ensures that more than one amplifier isn’t trying to  
drive the bus at the same time. Notice the outputs are tied  
directly together. Isolation resistors at each output are not  
necessary.  
FN7177 Rev 2.00  
March 31, 2011  
Page 18 of 24  
 
 
 
 
EL5144, EL5146, EL5244, EL5246, EL5444  
V
3V  
1
IN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
5V  
PP  
V
-
OUT  
+
V
OUT  
EL5246  
+5V  
Sele  
4.7µ 0.1µ  
0V  
5V  
0V  
+
-
Selec  
150  
V
2.4V  
2
IN  
8
PP  
FIGURE 52.  
FIGURE 53.  
5V  
470K  
+5V  
1
5
470K  
V
OUT  
0.1µ  
R
C
OS  
OS  
2
3
4
470K  
0V  
FIGURE 54.  
FIGURE 55.  
5V  
0V  
FIGURE 56.  
Free Running Oscillator Application  
Figure 54 is an EL5144 configured as a free running oscillator.  
To first order, R and C determine the frequency of  
OSC OSC  
oscillation according to:  
0.72  
---------------------------------------  
=
F
(EQ. 4)  
OSC  
R
C  
OSC  
OSC  
For rail to rail output swings, maximum frequency of oscillation  
is around 15MHz. If reduced output swings are acceptable,  
25MHz can be achieved. Figure 55 shows the oscillator for  
R
= 510, C  
OSC  
= 240pF and F = 6MHz.  
OSC  
OSC  
FN7177 Rev 2.00  
March 31, 2011  
Page 19 of 24  
 
 
EL5144, EL5146, EL5244, EL5246, EL5444  
SOT-23 Package Family  
MDP0038  
SOT-23 PACKAGE FAMILY  
e1  
D
A
6
SYMBOL  
SOT23-5  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
4
N
A
A1  
A2  
b
±0.05  
±0.15  
E1  
E
±0.05  
2
3
c
±0.06  
0.15  
2X  
C
D
D
Basic  
1
2
3
0.20  
2X  
C
E
Basic  
5
e
E1  
e
Basic  
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. E 3/00  
0.15  
2X  
C
A-B  
1
3
NOTES:  
D
1. Plastic or metal protrusions of 0.25mm maximum per side are  
not included.  
C
A2  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
SEATING  
PLANE  
3. This dimension is measured at Datum Plane “H”.  
A1  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.10  
NX  
C
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
FN7177 Rev 2.00  
March 31, 2011  
Page 20 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
0.003  
0.002  
0.003  
0.001  
0.004  
0.008  
0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7177 Rev 2.00  
March 31, 2011  
Page 21 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Plastic Dual-In-Line Packages (PDIP)  
E
N
1
D
PIN #1  
INDEX  
A2  
A
E1  
SEATING  
PLANE  
L
c
A1  
NOTE 5  
2
N/2  
eA  
eB  
e
b
b2  
MDP0031  
PLASTIC DUAL-IN-LINE PACKAGE  
INCHES  
SYMBOL  
PDIP8  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.375  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
8
PDIP14  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
14  
PDIP16  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
16  
PDIP18  
PDIP20  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
1.020  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.890  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
18  
MIN  
±0.005  
±0.002  
b2  
c
+0.010/-0.015  
+0.004/-0.002  
±0.010  
D
1
2
E
+0.015/-0.010  
±0.005  
E1  
e
Basic  
eA  
eB  
L
Basic  
±0.025  
±0.010  
N
Reference  
Rev. C 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.010” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.  
4. Dimension eB is measured with the lead tips unconstrained.  
5. 8 and 16 lead packages have half end-leads as shown.  
FN7177 Rev 2.00  
March 31, 2011  
Page 22 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
N
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
M
C A B  
b
0.08  
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
FN7177 Rev 2.00  
March 31, 2011  
Page 23 of 24  
EL5144, EL5146, EL5244, EL5246, EL5444  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
INCHES  
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
PIN #1  
I.D. MARK  
E
E1  
-
-
-
1
(N/2)  
c
-
B
D
1, 3  
0.010 C A B  
E
-
e
E1  
e
2, 3  
H
-
C
SEATING  
L
±0.009  
Basic  
-
PLANE  
L1  
N
-
0.007 C A B  
b
0.004 C  
Reference  
-
Rev. F 2/07  
L1  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
A
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
c
SEE DETAIL "X"  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
© Copyright Intersil Americas LLC 2003-2008. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7177 Rev 2.00  
March 31, 2011  
Page 24 of 24  

相关型号:

EL5244CYZ-T7

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5244CYZ-T7

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, ROHS COMPLIANT, MSOP-8
RENESAS

EL5246

100MHz Single-Supply Rail-to-Rail Amplifiers
ETC

EL5246CN

100 MHz Single Supply Rail to Rail Amplifier
ELANTEC

EL5246CN

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5246CS

100 MHz Single Supply Rail to Rail Amplifier
ELANTEC

EL5246CS

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5246CS-T13

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5246CS-T13

2 CHANNEL, VIDEO AMPLIFIER, PDSO14, SO-14
RENESAS

EL5246CS-T13

Video Amplifier, 2 Channel(s), 1 Func, PDSO14, SO-14
ELANTEC

EL5246CS-T7

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5246CS-T7

2 CHANNEL, VIDEO AMPLIFIER, PDSO14, SO-14
RENESAS