P87CL881H/000

更新时间:2024-09-18 01:52:20
品牌:NXP
描述:Low-voltage microcontroller with 63-kbyte OTP program memory and 2-kbyte RAM

P87CL881H/000 概述

Low-voltage microcontroller with 63-kbyte OTP program memory and 2-kbyte RAM 低电压微控制器,带有63 KB的OTP程序存储器和2 KB的RAM 微控制器

P87CL881H/000 规格参数

生命周期:Obsolete零件包装代码:QFP
包装说明:LQFP, QFP44,.47SQ,32针数:44
Reach Compliance Code:compliantHTS代码:8542.31.00.01
风险等级:5.77具有ADC:NO
地址总线宽度:16位大小:8
CPU系列:8051最大时钟频率:10 MHz
DAC 通道:NODMA 通道:NO
外部数据总线宽度:8JESD-30 代码:S-PQFP-G44
JESD-609代码:e3长度:10 mm
I/O 线路数量:32端子数量:44
最高工作温度:70 °C最低工作温度:-25 °C
PWM 通道:YES封装主体材料:PLASTIC/EPOXY
封装代码:LQFP封装等效代码:QFP44,.47SQ,32
封装形状:SQUARE封装形式:FLATPACK, LOW PROFILE
电源:3/3.3 V认证状态:Not Qualified
RAM(字节):2048ROM(单词):64512
ROM可编程性:OTPROM座面最大高度:1.6 mm
速度:10 MHz子类别:Microcontrollers
最大压摆率:4.8 mA最大供电电压:3.6 V
最小供电电压:2.7 V标称供电电压:3 V
表面贴装:YES技术:CMOS
温度等级:OTHER端子面层:TIN
端子形式:GULL WING端子节距:0.8 mm
端子位置:QUAD宽度:10 mm
uPs/uCs/外围集成电路类型:MICROCONTROLLERBase Number Matches:1

P87CL881H/000 数据手册

通过下载P87CL881H/000数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
INTEGRATED CIRCUITS  
DATA SHEET  
P87CL881H  
Low-voltage microcontroller with  
63-kbyte OTP program memory  
and 2-kbyte RAM  
1999 Apr 16  
Product specification  
File under Integrated Circuits, IC17  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
CONTENTS  
1
2
3
4
5
FEATURES  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING INFORMATION  
5.1  
5.2  
Pinning  
Pin description  
6
FUNCTIONAL DESCRIPTION  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Special Function Registers  
I/O facilities  
Internal data memory  
OTP programming  
Oscillator circuitry  
Non-conformance  
7
LIMITING VALUES  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
AC testing  
8
9
9.1  
10  
11  
11.1  
PACKAGE OUTLINE  
SOLDERING  
Introduction to soldering surface mount  
packages  
11.2  
11.3  
11.4  
11.5  
Reflow soldering  
Wave soldering  
Manual soldering  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
12  
13  
14  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
1999 Apr 16  
2
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
1
FEATURES  
Full static 80C51 CPU; enhanced 8-bit architecture with:  
– Minimum 6 cycles per instruction (twice as fast as a  
standard 80C51 core)  
– Non-page oriented instructions  
– Direct addressing  
Wake-up from Power-down mode via LVD or external  
interrupts at Port 1  
– Four 8-byte RAM register banks  
Two 16-bit timer/event counters  
– Stack depth limited only by available internal RAM  
(maximum 256 bytes)  
Additional 16-bit timer/event counters, with capture,  
compare and PWM function  
– Multiply, divide, subtract and compare instructions.  
Very low current consumption  
Watchdog Timer  
Full duplex enhanced UART with double buffering  
I2C-bus interface for serial transfer on two lines,  
Single supply voltage of 2.7 to 3.6 V  
Frequency: 1 to 10 MHz  
maximum operating frequency 400 kHz.  
Operating temperature: 25 to +70 °C  
44-pin LQFP package  
2
GENERAL DESCRIPTION  
Four 8-bit ports (32 I/O lines)  
The P87CL881 is an 8-bit microcontroller especially suited  
for pager applications.  
63-kbyte One-Time Programmable (OTP) program  
memory; programmable in parallel mode or in-system  
via I2C-bus interface.  
The P87CL881 is manufactured in an advanced CMOS  
technology and is based on single chip technology.  
256-byte internal RAM  
1792-byte internal AUX-RAM  
The device is optimized for low power consumption and  
has two software selectable features for power reduction:  
Idle and Power-down modes. In addition, all derivative  
blocks switch off their clock if they are inactive.  
External address range: 64 kbytes of ROM and  
64 kbytes of RAM  
Amplitude Controlled Oscillator (ACO) suitable for use  
with a quartz crystal or ceramic resonator  
The instruction set of the P87CL881 is based on that of  
the 80C51. The P87CL881 also functions as an arithmetic  
processor having facilities for both binary and BCD  
arithmetic plus bit-handling capabilities. The instruction set  
consists of over 100 instructions: 49 one-byte,  
46 two-byte, and 16 three-byte.  
Improved Power-on/Power-off reset circuitry (POR)  
Low Voltage Detection (LVD) with 11 software  
programmable levels  
8 interrupts on Port 1, edge or level sensitive triggering  
selectable via software power-saving use for keyboard  
control  
This data sheet details the specific properties of the  
P87CL881; for details of the P87CL881 core and the  
derivative functions see the “TELX family” data sheet and  
“8051-Based 8-bit Microcontrollers; Data Handbook IC20”.  
Twenty source, twenty vector interrupt structure with two  
priority levels  
3
ORDERING INFORMATION  
TYPE  
PACKAGE  
PRODUCT TYPE  
NUMBER(1)  
NAME  
DESCRIPTION  
VERSION  
P87CL881H/000 Blank OTP  
LQFP44  
plastic low profile quad flat package; SOT389-1  
44 leads; body 10 × 10 × 1.4 mm  
P87CL881H/xxx  
Factory-programmed OTP  
Note  
1. Please refer to the Order Entry Form (OEF) for this device for the full type number to use when ordering. This type  
number will also specify the required program and options.  
1999 Apr 16  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
(4)  
INT1  
(5)  
(2)  
(4)  
(4)  
(4)  
V
V
V
V
V
INT2 to INT8  
7
T0  
T1  
INT0  
DD DDP  
SS SSP PP  
TWO 16-BIT  
TIMER/  
EVENT  
COUNTERS  
(T0, T1)  
PROGRAM  
MEMORY  
ROM  
DATA  
MEMORY  
RAM  
DATA  
MEMORY  
AUX-RAM  
EA  
CPU  
P87CL881H  
80C51  
core  
excluding  
ROM/RAM  
XTAL1  
XTAL2  
ACO  
(2)  
8-bit  
CLK  
internal bus  
PSEN  
ALE  
(4)  
WR  
(4)  
RD  
LVD  
16-BIT  
TIMER/EVENT  
COUNTER WITH  
CAPTURE/  
COMPARE/  
(T2)  
(1)  
AD0 to AD7  
WATCHDOG  
SERIAL  
UART  
PORT  
2
PARALLEL  
I/O PORTS  
I C-BUS  
INTERFACE  
EEPROM  
TIMER  
(T3)  
(3)  
POR  
A8 to A15  
MGL617  
(4)  
(2)  
(2)  
(2)  
RXD  
(4)  
T2EX  
SDA  
SCL  
RST EW  
PORENABLE  
(2)  
(2)  
P0 P1 P2 P3 TXD  
T2  
T2COMP  
(1) Alternative function of Port 0.  
(2) Alternative function of Port 1.  
(3) Alternative function of Port 2.  
(4) Alternative function of Port 3.  
(5) Alternative function of pin 6.  
ahdnbok,uflapegwidt  
Fig.1 Block diagram.  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
5
PINNING INFORMATION  
Pinning  
5.1  
P1.5/INT7  
P1.6/INT8/SCL  
P1.7/INT9/SDA  
RST  
1
2
3
4
5
6
7
8
9
33 P0.4/AD4  
32 P0.5/AD5  
31 P0.6/AD6  
30 P0.7/AD7  
29 EA  
P3.0/RXD/data  
P87CL881H  
PORENABLE/V  
PP  
28 EW  
P3.1/TXD/clock  
P3.2/INT0  
27 ALE  
26 PSEN  
P3.3/INT1  
25 P2.7/A15  
24 P2.6/A14  
23 P2.5/A13  
P3.4/T0 10  
P3.5/T1 11  
MGL616  
Fig.2 Pin configuration.  
5
1999 Apr 16  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
5.2  
Table 1 LQFP package  
SYMBOL PIN  
Pin description  
DESCRIPTION  
VDD  
39  
38  
17  
16  
4
Power supply for core.  
Power supply for I/O ring.  
Ground for core.  
VDDP  
VSS  
VSSP  
RST  
Ground for I/O ring.  
RESET. A LOW level on this pin for two machine cycles while the oscillator is running,  
resets the device. The RST pin is also an output which can be used to reset other ICs.  
PORENABLE/VPP  
6
PORENABLE. If set to a logic 1, the internal Power-on reset circuit is enabled. If external  
reset circuitry is used, it is recommended to keep PORENABLE LOW in order to achieve  
the lowest power consumption. This pin is also used for the OTP programming voltage  
VPP  
.
EW  
28  
14  
Enable Watchdog Timer.  
XTAL2  
Crystal output. Output of the amplitude controlled oscillator. If an external oscillator  
clock is used this pin not used.  
XTAL1  
PSEN  
15  
26  
Crystal input. Input to the amplitude controlled oscillator. Also the input for an externally  
generated clock source.  
Program Store Enable. Read strobe to external program memory. When executing  
code out of external program memory, PSEN is activated twice each machine cycle.  
However, during each access to external data memory two PSEN activations are  
skipped. During Power-down mode the PSEN pin stays HIGH.  
ALE  
27  
Address Latch Enable. Latches the low byte of the address during accesses to external  
memory. It is activated every six oscillator periods and may be used for external timing or  
clocking purposes. For improved EMC behaviour, the toggle of the ALE pin can be  
disabled by setting the RFI bit in the PCON register by software. This bit is cleared on  
reset and can be set and cleared by software. When set, the ALE pin will be pulled-down  
internally, switching an external address latch to a quiet state. The MOVX instruction will  
still toggle ALE if external memory is accessed. ALE will retain its normal HIGH state  
during Idle mode and a LOW state during the Power-down mode while in the EMC mode.  
Additionally, during internal access (EA = 1) ALE will toggle normally when the address  
exceeds the internal program memory size. During external access (EA = 0) ALE will  
always toggle normally, whether the RFI bit is set or not.  
EA  
29  
External Access. When EA is held HIGH, the CPU executes out of the internal program  
memory (unless the program counter exceeds the highest address for internal program  
memory). When EA is held LOW, the CPU executes out of external program memory  
regardless of the value of the program counter. The state of the EA pin is internally  
latched at reset.  
1999 Apr 16  
6
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
SYMBOL  
P0.0/AD0  
PIN  
DESCRIPTION  
37  
36  
35  
34  
33  
32  
31  
30  
40  
41  
42  
Port 0. 8-bit bidirectional I/O port with alternative functions. Every port pin can be used  
as open-drain, standard port, high-impedance input or push-pull output, according to  
Section 6.2. AD7 to AD0 provide the multiplexed low-order address and data bus during  
accesses to external memory.  
P0.1/AD1  
P0.2/AD2  
P0.3/AD3  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
P1.0/INT2/T2  
P1.1/INT3/T2EX  
Port 1. 8-bit bidirectional I/O port with alternative functions. Every port pin except P1.6  
and P1.7 (I2C-bus pins) can be used as open-drain, standard port, high-impedance input  
or push-pull output, according to Section 6.2. Port 1 also serves the alternative functions  
INT2 to INT9 interrupts, Timer 2 external input and Timer 2 compare output, external  
clock output CLK and I2C-bus clock and I2C-bus data in/outputs.  
P1.2/INT4/  
T2COMP  
P1.3/INT5  
P1.4/INT6/CLK  
P1.5/INT7  
P1.6/INT8/SCL  
P1.7/INT9/SDA  
P2.0/A8  
43  
44  
1
2
3
18  
19  
20  
21  
22  
23  
24  
25  
5
Port 2. 8-bit bidirectional I/O port with alternative functions. Every port pin can be used  
as open-drain, standard port, high-impedance input or push-pull output, according to  
Section 6.2. Port 2 emits the high order address byte during accesses to external  
memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses the  
strong internal pull-ups when emitting logic 1's. During accesses to external memory that  
use 8-bit addresses (MOVX @ Ri), Port 2 emits the contents of the P2 Special Function  
Register.  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
P3.0/RXD/data  
P3.1/TXD/clock  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
Port 3. 8-bit bidirectional I/O port with alternative functions. Every port pin can be used  
as open-drain, standard port, high-impedance input or push-pull output, according to  
Section 6.2. RXD/data is the serial port receiver data input (asynchronous) or data I/O  
(synchronous). TXD/clock is the serial port transmitter data output (asynchronous) or  
clock output (synchronous). INT0 and INT1 are external interrupt lines. T0 and T1 are  
external inputs for Timers 0 and 1 respectively. WR is the external memory write strobe  
and RD is the external memory read strobe.  
7
8
9
10  
11  
12  
13  
P3.5/T1  
P3.6/WR  
P3.7/RD  
1999 Apr 16  
7
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
6
FUNCTIONAL DESCRIPTION  
For the functional and block descriptions of the P87CL881, refer to the “TELX family” data sheet.  
6.1  
Special Function Registers  
Table 2 Special Function Registers memory map and reset values; note 1  
REGISTER NAME  
REGISTER MNEMONIC  
SFR ADDRESS  
RESET VALUE(2)  
80C51 core  
Accumulator  
B Register  
ACC  
B
E0H  
F0H  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0111  
XXXX X000  
Data Pointer Low byte  
Data Pointer High byte  
Program Counter High byte  
Program Counter Low byte  
Power Control Register  
Prescaler Register  
DPL  
82H  
DPH  
PCH  
PCL  
83H  
no SFR  
no SFR  
87H  
PCON  
PRESC  
PSW  
SP  
F3H  
Program Status Word  
Stack Pointer  
D0H  
81H  
XRAM Page Register  
XRAMP  
FAH  
Timers 0 and 1  
Timer/Counter Control Register  
Timer/Counter 0 High byte  
Timer/Counter 1 High byte  
Timer/Counter 0 Low byte  
TCON  
TH0  
88H  
8CH  
8DH  
8AH  
8BH  
89H  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TH1  
TL0  
Timer/Counter 1 Low byte  
TL1  
Timer/Counter Mode Control Register  
TMOD  
Ports  
Alternative Port Function Control Register  
Port P0 output data Register  
ALTP  
A3H  
80H  
8EH  
8FH  
90H  
9EH  
9FH  
A0H  
AEH  
AFH  
B0H  
BEH  
BFH  
0000 0000  
1111 1111  
1111 1111  
0000 0000  
0111 1111  
0000 1000  
0111 1111  
1111 1111  
1111 1111  
0000 0000  
1111 1111  
1111 1110  
1111 1111  
P0  
Port P0 Configuration A Register  
Port P0 Configuration B Register  
Port P1 output data Register  
P0CFGA  
P0CFGB  
P1  
Port P1 Configuration A Register  
Port P1 Configuration B Register  
Port P2 output data Register  
P1CFGA  
P1CFGB  
P2  
Port P2 Configuration A Register  
Port P2 Configuration B Register  
Port P3 output data Register  
P2CFGA  
P2CFGB  
P3  
Port P3 Configuration A Register  
Port P3 Configuration B Register  
P3CFGA  
P3CFGB  
1999 Apr 16  
8
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
REGISTER NAME  
REGISTER MNEMONIC  
SFR ADDRESS  
RESET VALUE(2)  
Timer 2  
Timer 2 Compare High byte  
Timer 2 Compare Low byte  
Timer 2 Reload/Capture High byte  
Timer 2 Reload/Capture Low byte  
Timer/Counter 2 Control Register  
Timer/Counter 2 High byte  
COMP2H  
COMP2L  
RCAP2H  
RCAP2L  
T2CON  
TH2  
ABH  
AAH  
CBH  
CAH  
C8H  
CDH  
CCH  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Timer/Counter 2 Low byte  
TL2  
Interrupt logic  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Enable Register 2  
Interrupt Priority Register 0  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Sensitivity Register 1  
Interrupt Polarity Register  
Interrupt Request Flag Register 1  
IEN0  
IEN1  
IEN2  
IP0  
A8H  
E8H  
F1H  
B8H  
F8H  
F9H  
E1H  
E9H  
C0H  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
IP1  
IP2  
ISE1  
IX1  
IRQ1  
Low Voltage Detection  
LVD Control Register  
PORACO  
LVDCON  
RSTAT  
F2H  
E6H  
0000 0000  
Reset Status Register  
UART  
XXX1 1000  
Serial Port Buffer  
S0BUF  
S0CON  
99H  
98H  
0000 0000  
0000 0000  
Serial Port Control Register  
I2C-bus interface  
Address Register  
S1ADR  
S1CON  
S1DAT  
S1STA  
DBH  
D8H  
DAH  
D9H  
0000 0000  
0000 0000  
0000 0000  
1111 1000  
Serial Control Register  
Data Shift Register  
Serial Status Register  
Watchdog timer  
Watchdog Timer Control Register  
Watchdog Timer Interval Register  
WDCON  
WDTIM  
A5H  
FFH  
1010 0101  
0000 0000  
1999 Apr 16  
9
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
REGISTER NAME  
OTP interface  
REGISTER MNEMONIC  
SFR ADDRESS  
RESET VALUE(2)  
OTP Address High Register  
OTP Address Low Register  
OTP Data Register  
OAH  
D5  
D4  
D6  
DC  
D7  
X00X XXXX  
XXXX XXXX  
XXXX XXXX  
000X 0000  
0000 0000  
OAL  
ODATA  
OISYS  
OTEST  
OTP In-System Programming Register  
OTP Test Register  
Notes  
1. E7H and FDH are reserved locations and must not be written to.  
2. Where: X = undefined state.  
To enable a port pin alternative function, the port bit latch  
in its SFR must contain a logic 1.  
6.2  
I/O facilities  
6.2.1  
PORTS  
Each port consists of a latch (Special Function Registers  
P0 to P3), an output driver and input buffer. All ports have  
internal pull-ups. Figure 3(a) shows that the strong  
transistor P1 is turned on for only 1 oscillator period after a  
LOW-to-HIGH transition in the port latch. When on, it turns  
on P3 (a weak pull-up) through the inverter IN1. This  
inverter and transistor P3 form a latch which holds the  
logic 1.  
The P87CL881 has 32 I/O lines treated as 32 individually  
addressable bits or as four parallel 8-bit addressable ports.  
Ports 0, 1, 2 and 3 perform the following alternative  
functions:  
Port 0 Provides the multiplexed low-order address and  
data bus for expanding the device with standard  
memories and peripherals.  
Port 1 Used for a number of special functions:  
6.2.2  
PORT I/O CONFIGURATION  
P1.0 to P1.7 provides the inputs for the external  
interrupts INT2 to INT9  
I/O port output configurations are determined by the  
settings in the port configuration SFRs. Each port has two  
associated SFRs: PnCFGA and PnCFGB, where ‘n’  
indicates the specific port number (0 to 3). One bit in each  
of the 2 SFRs relates to the output setting for the  
corresponding port pin, allowing any combination of the  
2 output types to be mixed on those port pins.  
P1.0/T2 and P1.1/T2EX for external inputs of Timer 2  
P1.2/T2COMP for external activation and compare  
output of Timer 2  
P1.4/CLK for the clock output  
P1.6/SCL and P1.7/SDA for the I2C-bus interface are  
real open-drain outputs or high-impedance; no other  
port configurations are available.  
For example, the output type of P1.3 is controlled by  
setting bit 3 in the SFRs P1CFGA and P1CFGB.  
The port pins may be individually configured via the SFRs  
with one of the following modes (P1.6 and P1.7 can be  
open-drain or high-impedance but never have any diodes  
against VDD).  
Port 2 Provides the high-order address bus when  
expanding the device with external program  
memory and/or external data memory.  
Port 3 Pins can be configured individually to provide:  
Mode 0 Open-drain; quasi-bidirectional I/O with  
n-channel open-drain output. Use as an output  
(e.g. Port 0 for external memory accesses  
(EA = 0) or access above the built-in memory  
boundary) requires the connection of an external  
pull-up resistor. The ESD protection diodes  
against VDD and VSS are still present. Except for  
the I2C-bus pins P1.6 and P1.7, ports which are  
configured as open-drain still have a protection  
diode to VDD. See Fig.3a.  
P3.0/RXD/data and P3.1/TXD/clock which are serial  
port receiver input and transmitter output (UART)  
P3.2/INT0 and P3.3/INT1 are external interrupt request  
inputs  
P3.4/T0 and P3.5/T1 as counter inputs  
P3.6/WR and P3.7/RD are control signals to write and  
read to external memories.  
1999 Apr 16  
10  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
Mode 1 Standard port; quasi-bidirectional I/O with  
pull-up. The strong pull-up p1 is turned on for  
only one oscillator periods after a LOW-to-HIGH  
transition in the port latch. After these two  
oscillator periods the port is only weakly driven  
through p2 and ‘very weakly’ driven through p3.  
See Fig.3b.  
Tables 2 and 3 show the configuration register settings for  
the four output configurations. The electrical  
characteristics of each output configuration are specified  
in Chapter 8. The default port configuration after reset is  
given in Table 2.  
In case of external memory access, the appropriate  
options for ports P0, P2 and P3.6/P3.7 (WR/RD, only in  
case of external data memory access) must be set by  
software.  
Mode 2 High-impedance; this mode turns all port output  
drivers off. Thus, the pin will not source or sink  
current and may be used as an input-only pin with  
no internal drivers for an external device to  
overcome. See Fig.3c.  
For Special Function Registers for port configurations/data  
please refer to Table 2, note 1.  
Mode 3 Push-pull; output with drive capability in both  
polarities. In this mode, pins can only be used as  
outputs. See Fig.3d.  
Table 3 Port configuration register settings  
PORT OUTPUT CONFIGURATION  
MODE(1)  
PnCFGA  
PnCFGB  
NORMAL PORTS  
I2C-BUS PORTS (P1.6 AND P1.7)  
0
1
2
3
0
1
0
1
0
0
1
1
open-drain  
open-drain  
quasi-bidirectional  
high-impedance  
push-pull  
open-drain  
high-impedance  
open-drain  
Note  
1. Mode changes may cause glitches to occur during transitions. When modifying both registers, write instructions  
should be carried out consecutively.  
1999 Apr 16  
11  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
V
external  
V
DD  
DD  
this diode is not  
implemented  
on the I C-bus pins  
external  
pull-up  
2
I/O pin  
Q
from port latch  
n
V
V
SS  
SS  
MBK004  
input data  
a. Open-drain.  
V
strong pull-up  
DD  
1 oscillator  
period  
p2  
p3  
p1  
n
I/O pin  
Q
from port latch  
IN1  
V
V
SS  
SS  
MBK001  
input data  
b. Standard/quasi-bidirectional.  
V
DD  
this diode is not  
implemented  
2
on the I C-bus pins  
input data  
I/O pin  
MBK002  
V
SS  
c. High-impedance.  
strong pull-up  
V
DD  
V
DD  
p
I/O pin  
Q
from port latch  
n
V
V
SS  
SS  
MBK003  
input data  
d. Push-pull.  
Fig.3 Port configuration options.  
1999 Apr 16  
12  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
instructions in the same way as in the 80C51 structure, so  
with P0 and P2 as data/address bus and P3.6 and P3.7 as  
write and read timing signals. Note that the external data  
memory cannot be accessed with R0 and R1 as address  
pointer if the AUX-RAM is enabled (ARD = 0, default after  
reset).  
6.3  
Internal data memory  
The internal data memory is divided into three physically  
separated parts:  
256 bytes of RAM, 128 bytes of Special Function  
Registers and 1792 bytes of AUX-RAM. These can be  
addressed each in a different way (see also Table 4).  
The Special Function Registers (SFR) can only be  
1. RAM 0 to 127 can be addressed directly and indirectly  
as in the 80C51; address pointers are R0 and R1 of  
the selected register-bank  
addressed directly in the address range from 128 to 255.  
Four register banks, each 8 registers wide, occupy  
locations 0 through 31 in the lower RAM area. Only one of  
these banks may be enabled at a time. The next 16 bytes,  
locations 32 through 47, contain 128 directly addressable  
bit locations. The stack can be located anywhere in the  
internal 256 bytes RAM. The stack depth is only limited by  
the available internal RAM space of 256 bytes (see Fig.4).  
2. RAM 128 to 255 can only be addressed indirectly;  
address pointers are R0 and R1 of the selected  
register bank  
3. AUX-RAM 0 to 1791 is indirectly addressable via the  
AUX-RAM Page Register (XRAMP) and MOVX-Ri  
instructions, unless it is disabled by setting ARD = 1.  
AUX-RAM 0 to 1791 is also indirectly addressable as  
external data memory via MOVX-datapointer  
Table 4 Internal data memory map  
LOCATION ADDRESS  
ADDRESSING  
instruction, unless it is disable by setting ARD = 1.  
When executing from internal program memory, an  
access to AUX-RAM 0 to 1791 when ARD = 0 will not  
affect the ports P0, P2, P3.6 and P3.7.  
RAM  
0 to 127  
direct and indirect  
indirect only with MOVX  
indirect only  
AUX-RAM  
RAM  
0 to 1791  
128 to 255  
128 to 255  
An access to external data memory locations higher  
than 1791 will be performed with the MOVX @ DPTR  
SFR  
direct only  
FFFFH  
FFFFH  
FBFFH  
(ARD = 0/1)  
0700H  
06FFH  
PAGE 6  
PAGE 5  
PAGE 4  
PAGE 3  
PAGE 2  
PAGE 1  
PAGE 0  
FFH  
INDIRECT  
ADDRESSING  
(ARD = 1)  
DIRECT  
7FH  
INDIRECT AND  
DIRECT  
ADDRESSING  
INTERNAL  
(EA = 1)  
EXTERNAL  
(EA = 0)  
00H  
0000H  
INTERNAL RAM  
INTERNAL  
AUX-RAM  
(ARD = 0)  
EXTERNAL DATA  
MEMORY  
0
0
MGL618  
PROGRAM MEMORY  
DATA MEMORY  
Fig.4 Memory map.  
13  
1999 Apr 16  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
6.3.1  
AUX-RAM PAGE REGISTER (XRAMP)  
The AUX-RAM Page Register is used to select one of the seven 256 bytes pages of the internal 1792-byte AUX-RAM  
for MOVX-accesses via R0 or R1. Its reset value is ‘XXXX X000’ (AUX-RAM page 0).  
Table 5 AUX-RAM Page Register (SFR address FAH)  
7
6
5
4
3
2
1
0
XRAMP2  
XRAMP1  
XRAMP0  
Table 6 Description of XRAMP bits  
BIT  
SYMBOL  
FUNCTION  
7 to 3  
reserved, undefined during read, a write operation must write logic 0 to these locations  
AUX-RAM page select bit 2  
2
1
0
XRAMP2  
XRAMP1  
XRAMP0  
AUX-RAM page select bit 1  
AUX-RAM page select bit 0  
Table 7 Memory locations for all possible MOVX accesses  
ARD(1) XRAMP2 XRAMP1 XRAMP0  
ACCESS  
INSTRUCTION TYPE  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
X
X
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
X
X
AUX-RAM page 0 (address 0 to 255)  
AUX-RAM page 1 (address 256 to 511)  
AUX-RAM page 2 (address 512 to 767)  
AUX-RAM page 3 (address 768 to 1023)  
AUX-RAM page 4 (address 1024 to 1279)  
AUX-RAM page 5 (address 1280 to 1535)  
AUX-RAM page 6 (address 1536 to 1791)  
no valid memory access  
MOVX @ Ri, A and  
MOVX @ A, Ri  
external RAM locations 0 to 255  
AUX-RAM locations 0 to 1791 external  
RAM locations 1792 to 65535  
MOVX @ DPTR, A and  
MOVX A, DPTR  
1
X
X
X
external RAM locations 0 to 65535  
Note  
1. ARD (AUX-RAM Disable) corresponds to bit 6 in the Special Function Register PCON (address 87H).  
1999 Apr 16  
14  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
6.4  
OTP programming  
6.4.2  
IN-SYSTEM PROGRAMMING MODE  
In the In-System Programming mode the OTP can be  
programmed under control of the CPU. A program to  
control programming has to be available in the OTP. This  
mode can be used to program several bytes in the OTP if  
the chip is already in a system e.g. to store tuning  
parameters.  
6.4.1  
OTP PROGRAMMING  
The 63-kbyte One-Time Programmable (OTP) memory  
can be programmed by using an OM4260 programmer  
together with a programmer adapter OM5510. Since the  
memory is programmable only once, programming an  
already programmed address results in a logical AND of  
the old and new code. The OTP code can be read out by  
the programmer for verification.  
In the In-System Programming mode the complete  
address space OTP can be programmed.  
The user should take care not to overwrite the existing  
code.  
6.4.1.1  
Signature bytes  
For In-System Programming four SFRs are used to control  
the OTP.  
The OTP memory contains three signature bytes which  
can be read by the programmer to identify the device.  
A special address space has been used for these bytes  
which does not influence the user address space.  
The values of the signature bytes are:  
Table 8 SFRs for In-System Programming  
SFR NAME  
DESCRIPTION  
(030H) = 15H, indicates manufactured by Philips  
Semiconductors  
OAH  
OTP Address High Register  
OTP Address Low Register  
OTP Data Register  
OAL  
(031H) = D6H, indicates P87CL881H  
(060H) = 00H, currently not used.  
ODATA  
OISYS  
OTP In-System Register  
6.4.2.1  
OTP In-System Programming Register (OISYS)  
The OISYS SFR controls the In-System Programming mode. The data that has to be programmed is stored in the SFR  
ODATA and the address for this data in the SFRs OAH and OAL.  
Table 9 OTP In-System Programming Register (SFR address DCH)  
7
6
5
4
3
2
1
0
VPon  
0
SIG  
WE  
InSysMode  
Table 10 Description of OISYS bits  
BIT  
SYMBOL  
DESCRIPTION  
7 to 5  
VPon  
0
These bits are reserved.  
VPP status (read only).  
4
3
2
1
0
This bit is reserved and must be kept to logic 0.  
Signature bytes enable.  
SIG  
WE  
Write Enable, enables programming.  
InSysMode In-System Programming status bit.  
1999 Apr 16  
15  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
The signature bytes (and other test addresses) are always  
readable independent of the security.  
6.4.2.2  
Mode entry  
The In-System Programming mode is entered by setting  
the InSysMode bit of the OISYS SFR. The I2C-bus is used  
for data transfer in this mode. If the I2C-bus interface is  
addressed by an external master, the interface generates  
an interrupt request. The interrupt handler can now read  
the OISYS SFR and determine the status of the external  
high voltage (VPon). If high voltage is not present the  
interrupt is a standard I2C-bus interrupt.  
6.4.2.6  
How to connect the PORENABLE/VPP pin in  
the In-System Programming mode  
If the VPP pin is dual-mode (e.g. PORENABLE/VPP), ICs  
connected to the signal PORENABLE must be able to  
withstand up to 13 V, i.e. cannot have clamping diodes or  
low break-down voltages. If the pin is connected to a fixed  
voltage (VDD or VSS) there must be a way of switching-off  
this connection on the PCB. A possible implementation is  
presented in Fig.5.  
If high voltage is present the In-System program interrupt  
routine has to start that writes the InSysMode bit  
(OISYS.0) and controls the address and data transfer.  
In the example (see Fig.5) the POR is enabled in normal  
mode of operation (pin PORENABLE/VPP = 1 by the  
pull-up), but the VPP source must supply enough current  
in Rp in order to guarantee a minimum 12.5 V on the  
PORENABLE/VPP pin.  
The program voltage has to be available and stable for at  
least 10 µs before the mode is entered and has to be  
stable until the circuit has left the In-System Programming  
mode. The high voltage can be applied for maximum  
60 seconds during the complete lifetime of the circuit.  
Note that if in the application the Power-on reset is  
disabled (pin PORENABLE/VPP = 0), applying a high  
voltage to the PORENABLE/VPP pin will also enable the  
POR circuit. This will cause a reset independent of the  
actual VDD value.  
6.4.2.3  
Program cycle  
The data and address must be supplied to the  
microcontroller and the control program has to write the  
SFRs: ODATA, OAH and OAL. A timer has to be initialized  
for a 100 µs cycle and the WE bit of the OISYS SFR must  
be set. Now the core has to be set into Idle mode. As long  
as the circuit is in Idle mode a programming pulse is  
applied. After the interrupt request of the timer the OTP is  
available for normal code fetching.  
V
handbook, halfpage  
DD  
R
p
The address applied to the OAH and OAL SFRs must be  
in the 63 kbytes address space.  
V
pad on PCB  
PP  
6.4.2.4  
Verify for In-System Programming  
44  
34  
Verify is done in similar way as programming. The circuit  
is put into Idle mode and at the start of this mode the sense  
amplifiers are switched to verify mode and a read cycle is  
started. The timer has to be initialized for a cycle of at least  
1 µs. The address is supplied by the SFRs OAH and OAL.  
The WE bit of the OISYS SFR has to be reset. The OTP  
output data is latched in the ODATA SFR. After Idle mode  
is finished this SFR can be read in a normal way. To be  
sure that the verified data is written into the SFR it is  
advised to write FFH into the ODATA SFR before a verify  
is started.  
1
6
33  
P87CL881H  
11  
23  
12  
22  
6.4.2.5  
Signature bytes  
MBL001  
The signature bytes can be read by setting the SIG bit of  
the OISYS SFR and applying the address of the signature  
byte. Applying a write pulse while the SIG bit of the OISYS  
SFR is HIGH is forbidden although the contents of the  
signature bytes will never be destroyed.  
Fig.5 Example of PORENABLE/VPP connection  
on a PCB.  
1999 Apr 16  
16  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
6.5  
Oscillator circuitry  
6.6  
Non-conformance  
General information on the oscillator circuitry can be found  
in the “TELX family” data sheet.  
6.6.1  
PROGRAMMING INTERFACE/TRANSPARENT MODE  
The transparent mode is a special operating mode of the  
microcontroller used for parallel and In-System OTP  
programming.  
6.5.1  
RESONATOR REQUIREMENTS  
For correct function of the oscillator, the values  
For certain combinations of data written to Port 2 (used for  
control signal during parallel programming mode) the  
Transparent mode may be incorrectly active during normal  
operation of the microcontroller. In this case, a transition  
on any of the Port 0 pins can influence the read out of the  
on-chip program memory resulting in incorrect code  
execution.  
of R1 and C0 of the chosen resonator (quartz or PXE) must  
be below the line shown in Fig.6a. The value of the parallel  
resistor R0 must be less than 47 k. The wiring between  
chip and resonator should be kept as short as possible.  
To avoid this problem, the InSysMode bit in the OTP  
In-System Programming Register (SFR address DCH)  
must be set in the start-up sequence of the program code.  
MDA088  
500  
handbook, halfpage  
R1  
()  
400  
300  
Apart from preventing incorrect operation as described  
above, the setting of this bit does not affect the normal  
operation.  
(1)  
(2) (3)  
6.6.2  
MOVC INSTRUCTION LIMITATION  
200  
The ‘MOVC’ access to a data or program byte stored in  
internal ROM/OTP-memory is inhibited while fetching  
code from external program memory in roll-over mode.  
100  
0
Roll-over mode means that the CPU executes code out of  
the external program memory because the program  
counter exceeds the highest address for internal program  
memory. The affected address range is FC00H to FFFFH.  
0
20  
40  
60  
80  
C
(pF)  
o
6.6.3  
LOW VOLTAGE DETECTION  
C1e and C2e are the external load capacitances; normally not needed  
due to integrated load capacitances of typically 10 pF.  
The LVDI bit (LVDCON.6) may be incorrectly set due to a  
glitch on the LVD output when the LVD is enabled by  
changing the bits LVDCON<3:0> from ‘0000’ to any value  
within the range ‘0001’ to ‘0101’. If bit EA in register IEN0  
is enabled, an unwanted interrupt may occur.  
(1) C1e = C2e = 22 pF.  
(2)  
C1e = C2e = 0 pF.  
(3) C1e = C2e = 12 pF.  
a. Resonator curves for 3.58 MHz.  
A software workaround for this problem exist. During the  
initialisation sequence:  
C
Enable LVD by writing to register LVDCON  
L
R
1
handbook, halfpage  
1
1
Enable LVD interrupt by writing to register IEN2  
Clear the LVDI bit by writing to LVDCON a second time  
R
0
MGL137  
Set bit EA in register IEN0 (ensures LVDI to be cleared  
C
0
after initialisation).  
b. Resonator equivalent circuit.  
Fig.6 Resonator requirements for the ACO.  
1999 Apr 16  
17  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
7
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
MIN.  
0.5  
MAX.  
+4.0  
UNIT  
VDD  
VI  
supply voltage  
V
V
input voltage on any pin with respect to ground (VSS  
total power dissipation  
)
0.5  
VDD + 0.5  
800  
Ptot  
Tstg  
mW  
storage temperature  
65  
+150  
°C  
8
DC CHARACTERISTICS  
VDD = 2.7 to 3.6 V; VSS = 0 V; fxtal = 1 to 10 MHz; Tamb = 25 to +70 °C; all voltages with respect to VSS; unless  
otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
VDD  
supply voltage  
operating  
2.7  
3.6  
V
RAM data retention in  
Power-down mode  
1.0  
3.6  
V
VPP  
IDD  
OTP programming voltage  
supply current operating  
12.5  
13.0  
4.8  
V
VDD = 3 V; fxtal = 7 MHz; note 1  
mA  
mA  
mA  
mA  
T
amb = 25 °C  
VDD = 3 V; fxtal = 7 MHz; note 2  
amb = 25 °C  
3.7  
IDD(id)  
supply current Idle mode  
0.7  
T
0.58  
IDD(pd)  
supply current Power-down VDD = 3 V; Tamb = 25 °C; note 3  
mode  
POR and LVD enabled  
2
5
µA  
POR and LVD disabled  
50  
nA  
IDD(block)  
supply current per block:  
Watchdog  
VDD = 3 V; fxtal = 7 MHz; Tamb = 25 °C;  
notes 4 and 5  
220  
180  
180  
180  
10  
µA  
µA  
µA  
µA  
µA  
I2C-bus  
UART  
Timer T2  
Timer T0 or T1  
1999 Apr 16  
18  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Inputs (ports, RST and PORENABLE)  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
notes 6 and 7  
0
0.2VDD  
VDD  
V
note 6  
0.8VDD  
V
LOW-level input current  
(ports in Mode 1)  
VIN = 0.4 V; note 8 and Fig.8  
10  
50  
µA  
IIL(T)  
LOW-level input current;  
HIGH-to-LOW transition  
(ports in Mode 1)  
VIN = 0.2VDD; note 8 and Fig.8  
200  
1000  
1
µA  
µA  
IILEAK  
input leakage current (ports  
in Mode 0 or 2)  
VSS VI VDD  
Outputs (ports and RST)  
IOL  
LOW-level output current;  
except SDA and SCL  
VOL = 0.4 V  
2
3
2
mA  
mA  
mA  
IOL2  
IOH  
LOW-level output current;  
SDA and SCL  
VOL = 0.4 V; note 9  
HIGH-level output current  
except (push-pull options  
only)  
VOH = VDD 0.4 V  
IRST  
RST pull-up current source VDD = 3 V; VOH = VDD 0.4 V  
DD = 3 V; VOH = VSS  
POR (Power-on reset) for the LVD (Low Voltage Detection), see note 10  
0.05  
0.2  
0.6  
µA  
µA  
V
2.5  
VPORH  
trip level HIGH  
(option 5 in “TELX family  
specification”)  
2.13  
2.37  
1.30  
2.61  
V
V
VPORL  
trip level LOW  
(option B in “TELX family  
specification”)  
ACO (Amplitude Controlled Oscillator)  
VXTAL1  
external clock signal  
500  
VDD  
mV  
amplitude peak-to-peak  
zi(XTAL1)  
C1i; C2i  
input impedance on XTAL1  
300  
1000  
10  
kΩ  
input capacitance on  
XTAL1 and XTAL2  
notes 5 and 11  
pF  
In-System Programming for the OTP  
tprog program cycle time  
tprog(security) program cycle time security note 12  
90  
180  
1
100  
200  
110  
220  
µs  
µs  
µs  
µs  
s
tver  
verify cycle time  
tVPP(setup)  
tVPP(max)  
program voltage setup time  
10  
maximum program voltage cumulative for the product lifetime  
time  
60  
IVPP  
program voltage current  
In-System Programming  
40  
mA  
1999 Apr 16  
19  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
Notes  
1. The operating supply current is measured with all output pins disconnected; VIL = VSS; VIH = VDD; RST = VDD; XTAL1  
driven with square wave; XTAL2 not connected; fetch of NOP instructions; all derivative blocks disabled.  
2. The Idle mode supply current is measured with all output pins and RST disconnected; VIL = VSS; VIH = VDD; XTAL1  
driven with square wave; XTAL2 not connected; all derivative blocks disabled.  
3. The power-down current is measured with all output pins and RST disconnected; VIL = VSS; VIH = VDD; XTAL1 and  
XTAL2 not connected.  
4. The typical currents are only for the specific block. To calculate the typical power consumption of the microcontroller,  
the current consumption of the CPU must be added. Example: the typical current consumption of the microcontroller  
in operating mode with CPU, Watchdog and UART active can be calculated as (3.7 + 0.220 + 0.18) mA = 4.1 mA at  
VDD = 3 V and fXTAL = 7 MHz.  
5. Verified on sampling basis.  
6. The input threshold voltage of P1.6/SCL and P1.7/SDA meet the I2C-bus specification. Therefore, an input voltage  
below 0.3VDD will be recognized as a logic 0 and an input voltage above 0.7VDD will be recognized as a logic 1.  
7. For pin PORENABLE the VIL max is 0.1VDD  
.
8. Not valid for pins SDA, SCL, RST and PORENABLE.  
9. The maximum allowed load capacitance CL is in this case limited to around 200 pF.  
10. The LVD is tested according to the “TELX family specification, Chapter - Low voltage detection”.  
11. C1i/C2i are the total internal capacitances (including gate capacitance and leadframe capacitance).  
12. Can also be done by two 100 µs pulses.  
MGL506  
500 µA  
I
IL(T)  
I
I
I
IL  
10 µA  
0
0.3V  
0.5V  
V
DD  
DD  
DD  
Fig.7 Input current.  
1999 Apr 16  
20  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
MGL625  
MGL626  
5.3  
1.0  
handbook, halfpage  
handbook, halfpage  
I
I
DD  
DD(id)  
(mA)  
(mA)  
4.7  
0.8  
4.1  
3.5  
0.6  
0.4  
2.9  
2.2  
0.2  
2.2  
2.6  
3
3.4  
3.8  
V
4.2  
(V)  
2.6  
3
3.4  
3.8  
V
DD  
4.2  
(V)  
DD  
Fig.8 Typical operating current as a function of  
Fig.9 Typical Idle current as a function of VDD;  
VDD; Tamb = 25 °C; fxtal = 7 MHz.  
Tamb = 25 °C; fxtal = 7 MHz.  
MDA085  
4
handbook, halfpage  
I
DD(pd)  
(µA)  
(1)  
3
(2)  
2
1
(3)  
(4)  
0
0
1
2
3
4
V
(V)  
DD  
(1) POR and LVD enabled (Tamb = 70 °C).  
(2) POR and LVD enabled (Tamb = 25 °C).  
(3) POR and LVD disabled (Tamb = 70 °C).  
(4) POR and LVD disabled (Tamb = 25 °C).  
Fig.10 Typical power-down current as a function of  
VDD  
.
1999 Apr 16  
21  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
9
AC CHARACTERISTICS  
DD = 3 V; VSS = 0 V; Tamb = 25 to +70 °C; CL = 50 pF for Port 0, ALE and PSEN; CL = 80 pF for all other outputs  
V
unless otherwise specified. All values verified on sampling basis.  
VARIABLE CLOCK  
MIN. MAX.  
SYMBOL  
PARAMETER  
UNIT  
External program memory  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
ALE pulse width  
address valid to ALE LOW  
tCLK  
ns  
0.5tCLK 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
address hold after ALE LOW  
ALE LOW to valid instruction in  
ALE LOW to PSEN LOW  
0.5tCLK  
2tCLK 25  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
tPXIZ  
tAVIV  
tPLAZ  
0.5tCLK  
PSEN pulse width  
1.5tCLK  
PSEN LOW to valid instruction in  
input instruction hold after PSEN  
input instruction float after PSEN  
address to valid instruction in  
PSEN LOW to address float  
0
1.5tCLK 35  
0.5tCLK  
2.5tCLK 35  
5
External data memory  
tRLRH  
tWLWH  
tAVLL  
RD pulse width  
3tCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
3tCLK  
address valid to ALE LOW  
address hold after ALE LOW  
RD LOW to valid data in  
data hold after RD  
0.5tCLK  
tLLAX  
0.5tCLK  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
2.5tCLK  
0
data float after RD  
tCLK  
ALE LOW to valid data in  
address to valid data in  
ALE LOW to RD or WR LOW  
address valid to RD or WR LOW  
RD or WR HIGH to ALE HIGH  
data valid to WR transition  
data valid time WR HIGH  
data hold after WR  
4tCLK  
4.5tCLK 30  
1.5tCLK 15  
2tCLK  
1.5tCLK + 15  
0.5tCLK 5  
0.5tCLK  
3.5tCLK  
0.5tCLK  
0.5tCLK + 5  
0
RD LOW to address float  
1999 Apr 16  
22  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
one machine cycle  
one machine cycle  
S1  
S2  
S3  
S4  
S5  
S6  
S1  
S2  
S3  
S4  
S5  
S6  
P1 P2  
P1 P2  
P1 P2 P1 P2 P1 P2  
P1 P2 P1 P2 P1 P2  
P1 P2 P1 P2 P1 P2  
P1 P2  
XTAL1  
INPUT  
ALE  
PSEN  
RD  
dotted lines  
are valid when  
RD or WR are  
active  
only active  
during a read  
from external  
data memory  
only active  
during a write  
to external  
WR  
data memory  
BUS  
(PORT 0)  
inst.  
in  
address  
A0 - A7  
inst.  
in  
address  
A0 - A7  
inst.  
in  
address  
A0 - A7  
inst.  
in  
address  
A0 - A7  
external  
program  
memory  
fetch  
PORT 2  
address A8 - A15  
address A8 - A15  
address A8 - A15  
address A8 - A15  
BUS  
(PORT 0)  
inst.  
in  
address  
A0 - A7  
inst.  
in  
address  
A0 - A7  
address  
A0 - A7  
data output or data input  
read or  
write of  
external data  
memory  
address A8 - A15  
address A8 - A15 or Port 2 out  
address A8 - A15  
PORT 2  
PORT  
OUTPUT  
old data  
new data  
PORT  
INPUT  
sampling time of I/O port pins during input (including INT0 and INT1)  
SERIAL  
PORT  
CLOCK  
MGA180  
Fig.11 Instruction cycle timing.  
23  
1999 Apr 16  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
t
CY  
t
t
LLIV  
LHLL  
ALE  
PSEN  
t
LLPL  
t
PLPH  
t
LLAX  
t
t
t
PXIZ  
AVLL  
PLIV  
PORT 0  
PORT 2  
A0 to A7  
inst. input  
A0 to A7  
inst. input  
t
t
PXIX  
PLAZ  
t
AVIV  
address A8 to A15  
address A8 to A15  
MGA176  
Fig.12 Read from external program memory.  
t
CY  
ALE  
t
t
t
LHLL  
LLDV  
WHLH  
PSEN  
RD  
t
t
RLRH  
LLWL  
t
t
t
RHDZ  
AVLL  
LLAX  
t
t
t
RHDX  
AVWL  
RLDV  
PORT 0  
PORT 2  
A0 to A7  
data input  
t
RLAZ  
t
AVDV  
address A8 to A15 (DPH) or Port 2  
MGA177  
Fig.13 Read from external data memory.  
24  
1999 Apr 16  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
t
CY  
t
t
WHLH  
LHLL  
ALE  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
AVWL  
t
t
t
t
AVLL  
LLAX  
QVWH  
WHQX  
t
QVWX  
PORT 0  
PORT 2  
A0 to A7  
data output  
address A8 to A15 (DPH) or Port 2  
MGA178  
Fig.14 Write to external data memory.  
9.1  
AC testing  
AC testing inputs are driven at 2.4 V for a HIGH level and 0.45 V for a LOW level. Timing measurements are taken at  
2.0 V for a HIGH level and 0.8 V for a LOW level, see Fig.15a. The float state is defined as the point at which a Port 0  
pin sinks 3.2 mA or sources 400 µA at the voltage test levels, see Fig.15b.  
V
OH(min)  
V
IH(min)  
V
IL(max)  
V
OL(max)  
MGL620  
a. AC inputs during testing are driven at VOH(min) for a logic 1 and VOL(max) for a logic 0. Timing measurements  
are made at VIH(min) for a logic 1 and VIL(max) for a logic 0.  
V
V
0.1 V  
0.1 V  
OH  
OL  
V
V
0.1 V  
0.1 V  
LOAD  
LOAD  
V
= 0.5 V  
DD  
LOAD  
MGL619  
b. For timing purposes, a port is no longer floating when a 100 mV change from load voltage occurs and begins  
to float when a 100 mV change from the loaded VOH/VOL level occurs. IOH/IOL > 1.6 mA.  
Fig.15 AC testing input, output waveform (a) and float waveform (b).  
1999 Apr 16  
25  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
10 PACKAGE OUTLINE  
LQFP44: plastic low profile quad flat package; 44 leads; body 10 x 10 x 1.4 mm  
SOT389-1  
c
y
X
33  
23  
A
E
34  
22  
Z
E
e
Q
H
E
A
2
A
(A )  
3
A
1
w M  
p
pin 1 index  
θ
b
L
p
L
44  
12  
detail X  
11  
1
Z
v M  
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
Q
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.45 0.20 10.10 10.10  
0.30 0.12 9.90 9.90  
12.15 12.15  
11.85 11.85  
0.75 0.70  
0.45 0.57  
1.14 1.14  
0.85 0.85  
mm  
1.60  
0.25  
0.80  
1.0  
0.20 0.20 0.10  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
SOT389-1  
1999 Apr 16  
26  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
11 SOLDERING  
11.1 Introduction to soldering surface mount  
packages  
For packages with leads on two sides and a pitch (e):  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
11.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
11.4 Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
11.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
1999 Apr 16  
27  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
11.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
1999 Apr 16  
28  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
12 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
13 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
14 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1999 Apr 16  
29  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
NOTES  
1999 Apr 16  
30  
Philips Semiconductors  
Product specification  
Low-voltage microcontroller with 63-kbyte  
OTP program memory and 2-kbyte RAM  
P87CL881H  
NOTES  
1999 Apr 16  
31  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA63  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
465008/00/01/pp32  
Date of release: 1999 Apr 16  
Document order number: 9397 750 05026  

P87CL881H/000 相关器件

型号 制造商 描述 价格 文档
P87CL881H/XXX ETC 8-Bit Microcontroller 获取价格
P87CL881HDH/000 NXP IC 8-BIT, OTPROM, 10 MHz, MICROCONTROLLER, PQFP44, Microcontroller 获取价格
P87CL881HDH/XXX NXP IC 8-BIT, OTPROM, 10 MHz, MICROCONTROLLER, PQFP44, Microcontroller 获取价格
P87CL881HDH/XXX-T NXP IC 8-BIT, OTPROM, 10 MHz, MICROCONTROLLER, PQFP44, Microcontroller 获取价格
P87CL883DDT NXP 8-BIT, OTPROM, 3.58MHz, MICROCONTROLLER, PDSO28 获取价格
P87CL883DDT PHILIPS Microcontroller, 8-Bit, UVPROM, 8051 CPU, 3.58MHz, CMOS, PDSO28, 获取价格
P87CL883DDT-T NXP 暂无描述 获取价格
P87CL883T NXP TELX microcontrollers for CT0 handset/basestation applications 获取价格
P87CL883T/000 NXP TELX microcontrollers for CT0 handset/basestation applications 获取价格
P87CL883T/XXX NXP MICROCONTROLLER|8-BIT|8051 CPU|CMOS|SOP|28PIN|PLASTIC 获取价格

P87CL881H/000 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6