HTMS1001FTB/AF [NXP]

IC SPECIALTY TELECOM CIRCUIT, PDSO3, 1 X 1.45 MM, 0.50 MM HEIGHT, PLASTIC, SOT-1122, SON-3, Telecom IC:Other;
HTMS1001FTB/AF
型号: HTMS1001FTB/AF
厂家: NXP    NXP
描述:

IC SPECIALTY TELECOM CIRCUIT, PDSO3, 1 X 1.45 MM, 0.50 MM HEIGHT, PLASTIC, SOT-1122, SON-3, Telecom IC:Other

电信 光电二极管 电信集成电路
文件: 总57页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HTMS1x01; HTMS8x01  
HITAG µ transponder IC  
Rev. 3.2 — 3 July 2012  
152932  
Product data sheet  
COMPANY PUBLIC  
1. General description  
The HITAG product line is well known and established in the contactless identification  
market.  
Due to the open marketing strategy of NXP Semiconductors there are various  
manufacturers well established for both the transponders/cards as well as the read/write  
devices. All of them supporting HITAG 1, HITAG 2 and HITAG S transponder ICs.  
With the new HITAG µ family, this existing infrastructure is extended with the next  
generation of ICs being substantially smaller in mechanical size, lower in cost, offering  
more operation distance and speed, but still being operated with the same reader  
infrastructure and transponder manufacturing equipment.  
The protocol and command structure for HITAG µ is design to support Reader Talks First  
(RTF) operation, including anti-collision algorithm.  
Different memory sizes are offered and can be operated using exactly the same protocol.  
1.1 Target markets  
1.1.1 Animal identification  
The ISO standards ISO 11784 and ISO 11785 are well established in this market and  
HITAG µ is especially designed to deliver the optimum performance compliant to these  
standards. The HITAG µ advanced ICs are offering additional memory for storage of  
customized offline data like further breeding details.  
1.1.2 Laundry automation  
Identify 200 pcs of garment with one read/write device  
Long operation distance with typical small shaped laundry button transponders  
Insensitive to harsh conditions like pressure, heat and water  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
1.1.3 Beer keg and gas cylinder logistic  
Recognizing a complete pallet of gas cylinders at one time  
Long writing distance  
Voluntarily change between TTF Mode with user defined data length and read/write  
modes without changing the configuration on the transponder  
Authenticity check at the beer pubs - between beer bumper and supplied beer keg,  
provides a safe protection of the beer brand  
1.1.4 Brand protection  
Authenticity check for high level brands or for original refilling e.g. toner for fax  
machines.  
1.2 Customer application support and training  
Within the dedicated CAS team within the BU Identification.  
Accompanying data sheets and application notes:  
http://www.nxp.com/products/identification/HITAG  
2. Features and benefits  
2.1 Features  
Integrated circuit for contactless identification transponders and cards  
Integrated resonance capacitor of 210 pF with 3 % tolerance or 280 pF with 5 %  
tolerance over full production  
Frequency range 100 kHz to 150 kHz  
2.2 Protocol  
Modulation read/write device transponder: 100 % ASK and binary pulse length  
coding  
Modulation transponder read/write device: Strong ASK modulation with  
anti-collision, Manchester and Biphase coding  
Fast anti-collision protocol  
Cyclic Redundancy Check (CRC)  
Transponder Talks First (TTF) mode  
Temporary switch from Transponder Talks First into Reader Talks First (RTF) Mode  
Data rate read/write device to transponder: 5.2 kbit/s  
Data rates transponder to read/write device: 2 kbit/s, 4 kbit/s, 8 kbit/s  
2.3 Memory  
Different memory options  
Up to 10000 erase/write cycles  
10 years non-volatile data retention  
Memory Lock functionality  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
2 of 57  
 
 
 
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
32-bit password feature  
2.4 Supported standards  
Full compliant to ISO 11784 and ISO 11785 Animal ID  
Designed to support ISO/IEC 14223 Animal ID with anticollision and read/write  
functionality  
2.5 Security features  
48-bit Unique Identification Number (UID)  
2.6 Delivery types  
Sawn, gold-bumped 8” wafer  
HVSON2  
SOT-1122  
3. Applications  
Animal identification  
Laundry automation  
Beer keg and gas cylinder logistic  
Brand protection  
4. Quick reference data  
Table 1.  
Symbol  
Wafer EEPROM characteristics  
Quick reference data  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tret  
retention time  
Tamb 55 C  
10  
-
-
-
-
year  
Nendu(W)  
write endurance  
100000  
cycle  
Interface characteristics  
Ci input capacitance  
between LA and LB  
HTMS1x01  
[1][2]  
[1][3]  
203.7  
266  
210  
280  
216.3 pF  
294 pF  
HTMS8x01  
[1] Measured with an HP4285A LCR meter at 125 kHz/room temperature (25C); VIN1-IN2 = 0.5 V (RMS)  
[2] Integrated Resonance Capacitor: 210 pF 3 %  
[3] Integrated Resonance Capacitor: 280 pF 5 %  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
3 of 57  
 
 
 
 
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Type  
Version  
HTMS1001FUG/AM  
HTMS1101FUG/AM  
Wafer  
sawn, megabumped wafer, 150 µm, 8 inch, UV HITAG , 210 pF  
-
-
Wafer  
sawn, megabumped wafer, 150 µm, 8 inch, UV HITAG Advanced,  
210 pF  
HTMS1201FUG/AM  
Wafer  
sawn, megabumped wafer, 150 µm, 8 inch, UV HITAG Advanced+,  
-
210 pF  
HTMS8001FUG/AM  
HTMS8101FUG/AM  
Wafer  
Wafer  
sawn, megabumped wafer, 150 µm, 8 inch, UV HITAG , 280pF  
-
-
sawn, megabumped wafer, 150 µm, 8 inch, UV HITAG Advanced,  
280 pF  
HTMS8201FUG/AM  
HTMS1001FTB/AF  
HTMS1101FTB/AF  
HTMS1201FTB/AF  
HTMS8001FTB/AF  
HTMS8101FTB/AF  
HTMS8201FTB/AF  
HTMS1001FTK/AF  
Wafer  
sawn, megabumped wafer, 150 µm, 8 inch, UV HITAG Advanced+,  
-
280 pF  
XSON3  
XSON3  
XSON3  
XSON3  
XSON3  
XSON3  
HVSON2  
plastic extremely thin small outline package; no HITAG , 210 pF  
leads; 4 terminals; body 1 1.45 0.5 mm  
SOT1122  
SOT1122  
SOT1122  
SOT1122  
SOT1122  
SOT1122  
SOT899-1  
plastic extremely thin small outline package; no HITAG Advanced,  
leads; 4 terminals; body 1 1.45 0.5 mm  
plastic extremely thin small outline package; no HITAG Advanced+,  
leads; 4 terminals; body 1 1.45 0.5 mm 210 pF  
210 pF  
plastic extremely thin small outline package; no HITAG , 280 pF  
leads; 4 terminals; body 1 1.45 0.5 mm  
plastic extremely thin small outline package; no HITAG Advanced,  
leads; 4 terminals; body 1 1.45 0.5 mm  
plastic extremely thin small outline package; no HITAG Advanced+,  
leads; 4 terminals; body 1 1.45 0.5 mm 280 pF  
280 pF  
plastic thermal enhanced very thin small outline HITAG , 210 pF  
package; no leads; 2 terminals; body 3 2   
0.85 mm  
HTMS1101FTK/AF  
HTMS1201FTK/AF  
HTMS8001FTK/AF  
HTMS8101FTK/AF  
HTMS8201FTK/AF  
HVSON2  
HVSON2  
HVSON2  
HVSON2  
HVSON2  
plastic thermal enhanced very thin small outline HITAG Advanced,  
SOT899-1  
SOT899-1  
SOT899-1  
SOT899-1  
SOT899-1  
package; no leads; 2 terminals; body 3 2   
210 pF  
0.85 mm  
plastic thermal enhanced very thin small outline HITAG Advanced+,  
package; no leads; 2 terminals; body 3 2   
210 pF  
0.85 mm  
plastic thermal enhanced very thin small outline HITAG , 280 pF  
package; no leads; 2 terminals; body 3 2   
0.85 mm  
plastic thermal enhanced very thin small outline HITAG Advanced,  
package; no leads; 2 terminals; body 3 2   
280 pF  
0.85 mm  
plastic thermal enhanced very thin small outline HITAG Advanced+,  
package; no leads; 2 terminals; body 3 2   
280 pF  
0.85 mm  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
4 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
6. Block diagram  
The HITAG µ transponder ICs require no external power supply. The contactless interface  
generates the power supply and the system clock via the resonant circuitry by inductive  
coupling to the Read/Write Device (RWD). The interface also demodulates data  
transmitted from the RWD to the HITAG µ transponder IC, and modulates the magnetic  
field for data transmission from the HITAG µ transponder IC to the RWD.  
Data are stored in a non-volatile memory (EEPROM). The EEPROM has a capacity of up  
to 1760 bit and is organized in blocks.  
ANALOGUE  
RF INTERFACE  
DIGITAL CONTROL  
ANTICOLLISION  
EEPROM  
VREG  
PAD  
VDD  
RECT  
Cres  
DEMOD  
READ/WRITE  
CONTROL  
data  
in  
TRANSPONDER  
ACCESS CONTROL  
MOD  
data  
out  
R/W  
EEPROM INTERFACE  
CONTROL  
CLK  
PAD  
clock  
RF INTERFACE  
CONTROL  
SEQUENCER  
CHARGE PUMP  
001aai334  
Fig 1. Block diagram of HITAG µ transponder IC  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
5 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
7. Pinning information  
(4)  
(4)  
(3)  
(2)  
(5)  
(1)  
(1)  
(Y)  
LA  
LB  
(6)  
(6)  
(X)  
001aaj823  
Fig 2. HITAG µ - Mega bumps bondpad locations  
Table 3. HITAG µ - Mega bumps dimensions  
Description  
Dimension  
550 µm  
(X) chip size  
(Y) chip size  
550 µm  
(1) pad center to chip edge  
(2) pad center to chip edge  
(3) pad center to chip edge  
(4) pad center to chip edge  
(5) pad center to chip edge  
100.5 µm  
48.708 µm  
180.5 µm  
55.5 µm  
48.508 µm  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
6 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
Table 3.  
HITAG µ - Mega bumps dimensions  
Description  
Dimension  
(6) pad center to chip edge  
Bump Size:  
165.5 µm  
LA, LB  
294 x 164 µm  
60 x 60 µm  
Remaining pads  
Note: All pads except LA and LB are electrically disconnected after dicing.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
7 of 57  
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
8. Mechanical specification  
8.1 Wafer specification  
See Ref. 2 “General specification for 8” wafer on UV-tape with electronic fail die marking”.  
8.1.1 Wafer  
Designation:  
each wafer is scribed with batch number and  
wafer number  
Diameter:  
Thickness:  
Process:  
Batch size:  
PGDW:  
200 mm (8”)  
150 m ± 15 m  
CMOS 0.14 µm  
25 wafers  
91981  
8.1.2 Wafer backside  
Material:  
Si  
Treatment:  
Roughness:  
ground and stress release  
Ra max. 0.5 m, Rt max. 5 m  
8.1.3 Chip dimensions  
Die size without scribe:  
550 m x 550 m = 302500 m2  
Scribe line width:  
X-dimension:  
15 m (scribe line width is measured between  
nitride edges)  
Y-dimension:  
15 m (scribe line width is measured between  
nitride edges)  
Number of pads:  
5
8.1.4 Passivation on front  
Type:  
sandwich structure  
Material:  
Thickness:  
PE-Nitride (on top)  
1.75 m total thickness of passivation  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
8 of 57  
 
 
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
8.1.5 Au bump  
Bump material:  
> 99.9% pure Au  
35 – 80 HV 0.005  
> 70 MPa  
Bump hardness:  
Bump shear strength:  
Bump height:  
18 m  
Bump height uniformity:  
within a die:  
± 2 m  
± 3 m  
± 4 m  
± 1.5 m  
within a wafer:  
wafer to wafer:  
Bump flatness:  
Bump size:  
LA, LB  
294 x 164 m  
60 x 60 m  
5 m  
TEST, GND, VDD  
Bump size variation:  
Under bump metallization:  
sputtered TiW  
8.1.6 Fail die identification  
No inkdots are applied to the wafer.  
Electronic wafer mapping (SECS II format) covers the electrical test results and  
additionally the results of mechanical/visual inspection.  
See Ref. 2 “General specification for 8” wafer on UV-tape with electronic fail die marking”.  
8.1.7 Map file distribution  
See Ref. 2 “General specification for 8” wafer on UV-tape with electronic fail die marking”.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
9 of 57  
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
9. Functional description  
9.1 Memory organization  
The EEPROM has a capacity of up to 1760 bit and is organized in blocks of 4 bytes each  
(1 block = 32 bits). A block is the smallest access unit.  
The HITAG µ transponder IC is available with different memory sizes as shown in Table 4  
“Memory organization HITAG m (128-bit)”, Table 5 “Memory organization HITAG µ  
Advanced (512 bit)” and Table 6 “Memory organization HITAG µ Advanced+ (1760 bit)”.  
For permanent lock of blocks please refer to Section 14.9 “LOCK BLOCK”.  
9.1.1 Memory organization HITAG transponder ICs  
Table 4.  
Memory organization HITAG (128-bit)  
Block address  
Content  
User Config  
PWD  
Password Access  
FFh  
FEh  
03h  
02h  
01h  
00h  
bit3=0 R/W[2]  
bit3=1 RO[1]  
ISO 11784/ISO 11785 128 bit TTF data  
[1] RO: Read without password, write with password  
[2] R/W: Read and write without password  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
10 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
9.1.2 Memory organization HITAG µ Advanced  
Table 5.  
Memory organization HITAG µ Advanced (512 bit)  
Block address  
FFh  
Content  
User Config  
PWD  
Password Access  
FEh  
0Fh  
0Eh  
0Dh  
0Ch  
0Bh  
bit4=0 R/W[2]  
bit4=1 RO[1]  
0Ah  
User Memory  
09h  
08h  
07h  
06h  
05h  
04h  
03h  
bit3=0 R/W[2]  
bit3=1 RO[1]  
02h  
ISO 11784/ISO 11785 128-bit TTF data  
01h  
00h  
[1] RO: Read without password, write with password  
[2] R/W: Read and write without password  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
11 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
9.1.3 Memory organization HITAG µ Advanced +  
Table 6.  
Memory organization HITAG µ Advanced+ (1760 bit)  
Block address  
FFh  
FEh  
36h  
Content  
User Config  
PWD  
Password Access  
35h  
...  
bit6=0 bit5=0 R/W[2]  
bit6=0 bit5=1 RO[1]  
bit6=1 bit5=0 R/W(P)[3]  
bit6=1 bit5=1 R/W(P)[3]  
14h  
User Memory  
13h  
12h  
11h  
10h  
0Fh  
0Eh  
0Dh  
0Ch  
0Bh  
0Ah  
09h  
bit4=0 R/W[2]  
bit4=1 RO[1]  
User Memory  
08h  
07h  
06h  
05h  
04h  
03h  
bit3=0 R/W[2]  
bit3=1 RO[1]  
02h  
ISO 11784/ISO 11785 128-bit TTF data  
01h  
00h  
[1] RO: Read without password, write with password  
[2] R/W: Read and write without password  
[3] R/W(P): Read and write with password  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
12 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
9.2 Memory configuration  
The user configuration block consists of one configurable byte (Byte0) and three reserved  
bytes (Byte1 to Byte3)  
The bits in the user configuration block enable a customized configuration of the HITAG µ  
transponder ICs. In TTF mode the user can choose Bi-phase or Manchester encoding and  
also the data rate for the return link (bit0 to bit2). In RTF mode data rate and coding are  
fixed with 4 kbit/s Manchester encoding.  
Fitting to ISO 11785 standard the default values are set for 4 kbit/s Bi-Phase encoding.  
The next four bits (bit 3 to bit 6) are used for password settings.  
Three areas (TTF area(128bit), lower 512 bits and upper memory) can be restricted to  
read/write access.  
The user configuration block (User Config) is programmable by using WRITE SINGLE  
BLOCK command at address FFh. Bits 7 to 31 (Byte1 to Byte3) are reserved for further  
usage.  
The user configuration block (block address FFh) and the password block (block address  
FEh) can be locked with the LOCK BLOCK command.  
Attention:  
Pre-programmed default values are not locked !  
Configuration block has to be locked to make data unalterable!  
The lock of the blocks is permanently and therefore irreversible!  
Table 7.  
User configuration block to Byte0  
Byte0  
bit3  
Description  
bit6  
bit5  
bit4  
bit2  
bit1 ... 0  
Bit-no.  
PWD (r/w) [2]  
Bit512… Max  
PWD (w) [1]  
Bit512… Max  
PWD (w) [1]  
Bit128… 511  
PWD (w) [1]  
Bit0… 127  
Encoding  
Data rate  
0… MCH  
’00’… 2kbit/s  
’01’… 4kbit/s  
’10’… 8kbit/s  
Value/meaning  
1… Bi-Ph.  
[1] PWD(w)=1: read without password and write with password  
[2] PWD(r/w)=1: read and write with password  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
13 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
10. General requirements  
The HITAG transponder ICs are compatible with ISO 11785. At the time a HITAG   
transponder IC is in the interrogator field it will respond according to ISO 11785.  
A HITAG advanced/advanced+ can be identified as a transponder being in the data  
exchange mode (advanced mode) by the type information in the reserved bit field sent to  
the RWD.  
Bit 15 of the ISO 11784 frame shall be set to ’1’ indicating that this is an HITAG µ  
advanced/advanced+ in data exchange mode.  
Bit 16 of the ISO 11784 frame (additional data flag set to ’1’, indicating that the  
HITAG µ advanced/advanced+ in data exchange mode contains additional data in the  
user memory area.  
To bring the HITAG µ transponder ICs into the data exchange mode, the RWD needs to  
send a valid request or a valid switch command within the defined listening window.  
A HITAG µ transponder IC in data exchange mode only responds when requested by the  
RWD (RTF mode).  
The identification code, all communication from reader to HITAG µ transponder ICs and  
vice versa and the CRC error detection bits (if applicable) are transmitted starting with  
LSB first.  
In the case that multiple HITAG µ advanced/advanced+ in data exchange mode are in the  
interrogation field which cause collisions the RWD has to start the anticollision procedure  
as described in this document. Depending in which part of the ISO 11785 timing frame the  
collision is detected the RWD will start with the anticollision request.  
The HITAG transponder IC in data exchange mode switches back to the standard  
ISO 11785 mode when it :  
is no longer in the interrogation field  
has terminated the data exchange mode operations and the interrogation field was  
switched off for at least 5 ms afterwards  
11. HITAG transponder IC air interface  
11.1 Downlink description  
To transfer the HITAG µ transponder ICs into the data exchange mode, the RWD's  
interrogation field needs be switched off. After this off-period, the interrogation field is  
switched on again, and either the SOF at the start of a valid request or the special switch  
command needs to be sent to the HITAG µ transponder IC within the specified switch time  
window. The HITAG µ transponder IC switches itself into the data exchange mode upon  
reception of any of the switch commands. In this mode, the HITAG µ transponder IC  
respond when requested by the RWD (reader driven protocol).  
The HITAG µ transponder IC in data exchange mode switches back to the ISO 11785  
mode after the interrogation field has been switched off for at least 5 ms.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
14 of 57  
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
The steps necessary to transfer the HITAG transponder IC into the data exchange mode  
are shown in Figure 3. The downlink communication takes place in period C and D. The  
example in Figure 3 shows two data blocks (#1 and #2) being selected by the RWD, which  
then are transmitted by the HITAG µ transponder IC.  
ISO11785  
5 .. 20 ms  
HITAG μ  
ISO11785  
5 .. 20 ms  
min 5 ms  
D
A
B
C
D
E
A
B
A
reader  
field  
HITAG μ  
response  
ISO11785  
#1  
#2  
ISO11785  
time  
001aaj824  
Fig 3. RF interface for HITAG µ  
Cycle A:  
Cycle B:  
The RWD reads the ISO 11785 frame.  
The RWD switches off the interrogation field for at least 5 ms in order to reset the  
HITAG µ transponder IC.  
Cycle C:  
The RWD sends either the SOF at the start of a valid request or the SWITCH  
command to the HITAG µ transponder IC in order to put it into the data exchange  
mode. Any of these has to be issued within the switch window after reset - as  
defined in Section 11.2 “Mode switching protocol”  
Cycle D:  
Cycle E:  
Read/Write (for HITAG µ transponder ICs) or Inventory (HITAG µ  
advanced/advanced+ transponder ICs) operation in the data exchange mode.  
After all operations are finished or the HITAG µ transponder IC left the antenna  
field, the RWD switches off the field for at least 5 ms in order to poll for new  
incoming HITAG µ or HITAG µ advanced/advanced+.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
15 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
11.2 Mode switching protocol  
After powering the HITAG µ transponder IC switches to the data exchange mode after  
receiving one of the two possible switch commands from the RWD during the specified  
switch window (see Table 8 and Figure 4 for details).  
312.5 × T  
232 × T  
c
c
TTF operation in case  
of no command  
during switching window  
001aak278  
Fig 4. Switching window timing  
Table 8.  
HITAG µ transponder IC air interface parameters [1]  
Description  
Parameter  
Interrogation field modulation  
Encoding  
Amplitude modulation (ASK), 90 - 100%  
Pulse Interval Encoding; Least Significant Bit (LSB) first  
5.2 kbit/s typically  
Bit rate  
Mode switching  
Either a specific 5 bit switch command or the detection of the  
SOF as part of a valid HITAG µ transponder IC command,  
transmitted after the interruption of the interrogation field for at  
least 5 ms  
Mode switch timing  
HITAG µ transponder IC settling time: 312.5 TC switch  
command window after HITAG µ transponder IC settling:  
232.5 TC  
All within cycle C in Figure 3.  
00011 or SOF sequence  
Mode switch command  
[1] TC...Carrier period time (kHz = 7.45 s nominal)  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
16 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
The RWD sends either the SOF at the start of a valid request or a special switch  
command to the HITAG µ (as shown in Figure 5) in order to transfer it into the data  
exchange mode.  
SOF  
code violation  
FDX ADV command  
0
carrier on  
carrier off  
transceiver  
switch command  
1
0
0
0
1
stop condition  
carrier on  
carrier off  
time  
001aaj825  
Fig 5. Reader downlink modulation for SWITCH command  
11.2.1 SWITCH  
Setting the transponder into data exchange mode (advanced mode) is done by sending  
SOF pattern or the switch command within the listening window (232.5 x TC). The  
SWITCH command itself does not contain SOF and EOF.  
Table 9.  
Command  
5
SWITCH Command  
Description  
No. of bits  
00011  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
17 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
11.3 Downlink communication signal interface - RWD to HITAG µ  
transponder IC  
11.3.1 Modulation parameters  
Communications between RWD and HITAG µ transponder IC takes place using ASK  
modulation with a modulation index of m > 90%.  
T
F1  
T
T
F3  
F2  
y
a
x
b
envelope of transceiver field  
001aaj826  
Fig 6. Modulation details of data transmission from RWD to HITAG µ transponder IC  
Table 10. Modulation coding times[1][2]  
Symbol  
Min  
Max  
m = (a-b)/(a+b)  
90%  
100%  
TF1  
TF2  
TF3  
x
4 Tc  
10 Tc  
0.5 TF1  
0.5 TFd0  
0.05 a  
0.05 a  
0
0
0
0
y
[1] TF3 shall not exceed TFd0 - TF1 - 3 Tc  
[2] TC...Carrier period time (kHz = 7.45 s nominal)  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
18 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
11.3.2 Data rate and data coding  
The RWD to HITAG µ transponder IC communication uses Pulse Interval Encoding. The  
RWD creates pulses by switching the carrier off as described in Figure 7. The time  
between the falling edges of the pulses determines either the value of the data bit ’0’, the  
data bit ’1’, a code violation or a stop condition.  
data "0''  
T
Fd0  
T
T
T
T
T
F1  
F1  
F1  
F1  
F1  
carrier on  
carrier off  
data "1''  
T
Fd1  
T
F1  
carrier on  
carrier off  
"code violation''  
T
Fcv  
T
F1  
carrier on  
carrier off  
"stop condition''  
T
Fsc  
carrier on  
carrier off  
001aaj827  
Fig 7. Reader to HITAG µ transponder IC: Pulse Interval Encoding  
Assuming equal distributed data bits ’0’ and ’1’, the data rate is in the range of about  
5.2 kbit/s.  
Table 11. Data coding times [1]  
Meaning  
Symbol  
TF1  
Min  
Max  
Carrier off time  
Data “0” time  
4 Tc  
10 Tc  
22 Tc  
30 Tc  
38 Tc  
n/a  
TFd0  
18 Tc  
26 Tc  
34 Tc  
42 Tc  
Data “1” time  
TFd1  
Code violation time  
Stop condition time  
TFcv  
TFsc  
[1] TC...Carrier period time (kHz = 7.45 s nominal)  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
19 of 57  
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
11.3.3 RWD - Start of frame pattern  
The RWD requests in the data exchange mode always a start with a SOF pattern for ease  
of synchronization. The SOF pattern consists of an encoded data bit ’0’ and a ’code  
violation’.  
data "0"  
"code violation"  
T
T
Fcv  
Fd0  
T
T
T
F1  
F1  
F1  
carrier on  
carrier off  
T
FpSOF  
001aaj828  
Fig 8. Start of frame pattern  
The HITAG µ advanced/advanced+ is ready to receive a SOF from the RWD within  
1.2 ms after having sent a response to the RWD.  
The HITAG µ advanced/advanced+ is ready to receive a SOF or switch command from  
the RWD within 2.33 ms after the RWD has established the powering field.  
11.3.4 RWD - End of frame pattern  
For slot switching during a multi-slot anticollision sequence, the RWD request is an EOF  
pattern. The EOF pattern is represented by a RWD ’Stop condition’.  
"stop condition''  
T
Fsc  
T
F1  
carrier on  
carrier off  
T
FpEOF  
001aaj829  
Fig 9. End of frame pattern  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
20 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
11.4 Communication signal interface - HITAG µ transponder IC to RWD  
11.4.1 Data rate and data coding  
The HITAG µ transponder IC accepts the following data rates and encoding schemes:  
1/TFd Differential bi-phase coded data signal in the ISO 11785 mode, without SOF and  
EOF  
1/TFd Manchester coded data signal on the response to the HITAG µ  
advanced/advanced+ commands in data exchange mode  
1/(2 TFd) dual pattern data coding when responding within the inventory process  
TTF mode (not ISO 11785 compliant): 1/(2 TFd), 2/TFd Manchester or bi-phase  
coded  
TFd = 32 / fc = 32 Tc  
Remark: The slower data rate used during the inventory process allows for improving the  
collision detection when several HITAG µ transponder ICs are present in the RWD field,  
especially if some HITAG µ transponder ICs are in the near field and others in the far field.  
data  
element  
response encoding to a RWD  
request in data exchange mode  
response encoding in  
INVENTORY mode  
T
T
T
T
T
Fd  
Fd  
Fd  
data "0"  
load off  
load on  
load off  
load on  
T
Fd  
Fd  
Fd  
data "1"  
load off  
load on  
load off  
load on  
001aaj830  
Fig 10. HITAG µ transponder IC - Load modulation coding  
data  
1
0
1
1
1
0
0
1
Bi-phase  
001aaj831  
Fig 11. HITAG µ transponder IC - Differential Bi-Phase Modulation  
Differential Bi-phase (or FM0 respectively) contains a transition in the center of bit  
conversion representing Data ’0’ and no one for Data ’1’. At the beginning of every bit  
modulation a level transition must be performed.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
21 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
11.4.2 Start of frame pattern  
The HITAG µ transponder IC response - if not in ISO 11785 compliant mode - always  
starts with a SOF pattern. The SOF is a Manchester encoded bit sequence of ’110’.  
data "1"  
data "1"  
data "0"  
T
T
T
Fd  
Fd  
Fd  
load off  
load on  
001aaj832  
Fig 12. Start of fame pattern  
11.4.3 End of frame pattern  
A specific EOF pattern is neither used nor specified for the HITAG µ transponder IC  
response. An EOF is detected by the reader if there is no load modulation for more than  
two data bit periods (TFd).  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
22 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
12. General protocol timing specification  
For requests where an EEPROM erase and/or programming operation is required, the  
transponder IC returns its response when it has completed the write/lock operation. This  
will be after 20 ms upon detection of the last falling edge of the interrogator request or  
after the interrogator has switched off the field.  
12.1 Waiting time before transmitting a response after an EOF from the  
RWD  
When the HITAG advanced/advanced+ in data exchange mode has detected an EOF of a  
valid RWD request or when this EOF is in the normal sequence of a valid RWD request, it  
waits for TFp1 before starting to transmit its response to a RWD request or when switching  
to the next slot in an inventory process.  
TFp1 starts from the detection of the falling edge of the EOF received from the RWD.  
Remark: The synchronization on the falling edge from the RWD to the EOF of the HITAG  
µ transponder ICs is necessary to ensure the required synchronization of the HITAG µ  
transponder IC responses.  
request  
request (or EOF)  
carrier on  
carrier off  
transceiver  
T
T
T
Fp2  
Fp1  
NRT  
load off  
load on  
HITAG μ  
response  
001aaj833  
Fig 13. General protocol timing diagram  
The minimum value of TFp1 is TFp1min = 204 TC  
The typical value of TFp1 is TFp1typ = 209 TC  
The maximum value of TFp1 is TFp1max = 213 TC  
If the HITAG µ transponder IC detects a carrier modulation during this time (TFp1), it shall  
reset its TFp1-timer and wait for a further time (TFp1) before starting to transmit its  
response to a RWD request or to switch to the next slot when in an inventory process.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
23 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
12.2 RWD waiting time before sending a subsequent request  
When the RWD has received a HITAG µ advanced/advanced+ response to a previous  
request other than inventory and quiet, it needs to wait TFp2 before sending a  
subsequent request. TFp2 starts from the time the last bit has been received from the  
HITAG µ advanced/advanced+.  
When the RWD has sent a quiet request, it needs to wait TFp2 before sending a  
subsequent request. TFp2 starts from the end of the quiet request's EOF (falling edge  
of EOF pulse + 42 TC). This results in awaiting time of (150 TC + 42 TC) before  
the next request.  
The minimum value of TFp2 is TFp2min = 150 TC ensures that the HITAG µ  
advanced/advanced+ICs are ready to receive a subsequent request.  
Remark: The RWD needs to wait at least 2.33 ms after it has activated the  
electromagnetic field before sending the first request, to ensure that the HITAG µ  
transponder ICs are ready to receive a request.  
When the RWD has sent an inventory request, it is in an inventory process.  
12.3 RWD waiting time before switching to next inventory slot  
An inventory process is started when the RWD sends an inventory request. For a detailed  
explanation of the inventory process refer to Section 14.3 and Section 14.4.  
To switch to the next slot, the RWD sends an EOF after waiting a time period specified in  
the following sub-clauses.  
12.3.1 RWD started to receive one or more HITAG µ transponder IC responses  
During an inventory process, when the RWD has started to receive one or more HITAG µ  
advanced/advanced+ transponder IC responses (i.e. it has detected a HITAG µ  
advanced/advanced+ transponder IC SOF and/or a collision), it shall  
wait for the complete reception of the HITAG µ advanced/advanced+ transponder IC  
responses (i.e. when a last bit has been received or when the nominal response time  
TNRT has elapsed),  
wait an additional time TFp2 and then send an EOF to switch to the next slot, if a 16  
slot anticollision request is processed, or send a subsequent request (which could be  
again an inventory request).  
TFp2 starts from the time the last bit has been received from the HITAG µ  
advanced/advanced+ transponder IC.  
The minimum value of TFp2 is TFp2min = 150 TC.  
TNRT is dependant on the anticollisions current mask value and on the setting of the CRCT  
flag.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
24 of 57  
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
12.3.2 RWD receives no HITAG µ transponder IC response  
During an inventory process, when the RWD has received no HITAG µ  
advanced/advanced+ transponder IC response, it needs to wait TFp3 before sending a  
subsequent EOF to switch to the next slot, if a 16 slot anticollision request is processed, or  
sending a subsequent request (which could be again an inventory request).  
TFp3 starts from the time the RWD has generated the falling edge of the last sent EOF.  
The minimum value of TFp3 is TFp3min = TFp1max + TFpSOF  
.
TFpSOF is the time duration for a HITAG µ advanced/advanced+ transponder to transmit  
an SOF to the reader.  
request  
request (or EOF)  
carrier on  
carrier off  
reader  
T
T
FpSOF  
Fp1MAX  
T
Fp3  
load off  
load on  
HITAG μ  
no response  
001aaj834  
Fig 14. Protocol timing diagram without HITAG µ transponder IC response  
Table 12. Overview timing parameters [1]  
Symbol  
TFpSOF  
TFp1  
Min  
Max  
3 TFd  
3 TFd  
204 TC  
150 TC  
TFp1max + TFpSOF  
213 TC  
TFp2  
-
-
TFp3  
[1] TC...Carrier period time (kHz = 7.45 s nominal)  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
25 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
13. State diagram  
13.1 General description of states  
RF Off  
The powering magnetic field is switched off or the HITAG µ transponder IC is out of the  
field.  
WAIT  
After start up phase, the HITAG µ transponder IC is ready to receive the first command.  
READY  
The HITAG µ transponder IC enters this state after a valid command, except of the STAY  
QUIET, SELECT or WRITE-ISO11785 command. If there are several HITAG µ  
transponder ICs at the same time in the field of the RWD antenna, the anticollision  
sequence can be started to determine the UID of every HITAG µ transponder IC.  
SELECTED  
The HITAG µ transponder IC enters the Selected state after receiving the SELECT  
command with a matching UID. In the Selected state the respective commands with  
SEL=1 are valid only for selected transponder.  
Only one HITAG µ transponder IC can be selected at one time. If one transponder is  
selected and a second transponder receives the SELECT Command, the first transponder  
will automatically change to Quiet state.  
QUIET  
The HITAG µ transponder IC enters this state after receiving a STAY QUIET command or  
when he was in selected state and receives a SELECT command addressed to another  
transponder.  
In this state, the HITAG µ transponder IC reacts to any request commandos where the  
ADR flag is set.  
ISO 11785 STATE  
In this state the HITAG µ transponder IC replies according to the ISO 11785 protocol.  
Remark:  
In case of an invalid command the transponder will remain in his actual state.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
26 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
13.2 State diagram HITAG advanced/advanced+  
out of field  
or RF off  
RF on  
RF Off  
No request  
and RF on  
WAIT  
for time-out  
RF on  
ISO 11785  
FDX-B  
Invalid Request  
(reset time-out)  
out of field  
or RF off  
valid  
request  
out of field  
or RF off  
Anticollision  
„read UID“ or  
„INVENTORY“  
any other request  
with SEL flag not set  
„INVENTORY ISO-11785“  
„READ MULTIPLE BLOCK  
in inventory mode“  
READY  
„STAY QUIET“  
(UID)  
„SELECT“ (UID)  
RF-off:  
„go to RF-off state“  
„SELECT“ (UID)  
SELECTED  
QUIET  
any other request  
with ADR flag set  
any other request  
with ADR flag set or  
SEL flag set  
„STAY QUIET“ or  
„SELECT“ (non-matching-UID)  
aaa-000326  
Fig 15. State diagram of HITAG µ advanced/advanced+ transponder ICs  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
27 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
13.3 State diagram HITAG   
out of field  
or RF off  
RF on  
RF Off  
No request  
and RF on  
WAIT  
for time-out  
RF on  
ISO 11785  
FDX-B  
Invalid Request  
(reset time-out)  
valid  
request  
out of field  
or RF off  
„read UID“ or  
any other request  
with SEL flag not set  
READY  
aaa-000325  
Fig 16. State diagram of HITAG µ transponder IC  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
28 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
13.4 Modes  
HITAG µ transponder IC  
13.4.1 ISO 11785 Mode  
This mode is also named TTF (Transponder Talks First).  
Every time a transponder IC is activated by the field it starts executing this mode. After  
waiting the maximum listening window time (see Section 11.2) the transponder IC sends  
continuously its TTF data (128-bit).  
The TTF data stored in the memory will be not checked for ISO compliance, therefore  
data will be sent as stored in the EEPROM.  
Receiving a valid command or a switch command within the listening window sets the  
transponder IC into RTF (Reader Talks First) mode.  
13.4.2 RTF Mode  
In this mode the transponder IC reacts only to RWD request commands as presented in  
Section 14. A valid request consists of a command sent to the transponder IC being in  
matching state (therefore see tables in Section 14 and transponder ICs state machine in  
Section 13).  
13.4.3 Anticollision  
The RWD is the master of the communication with one or multiple transponder ICs. It  
starts the anticollision sequence by issuing the inventory request (see Section 14.3).  
Within the RWD command the NOS flag must be set to the desired setting (1 or 16 slots)  
and add the mask length and the mask value after the command field.  
The mask length n indicates the number of significant bits of the mask value. It can have  
any value between 0 and 44 when 16 slots are used and any value between 0 and 48  
when 1 slot is used.  
The next two subsections summarize the actions done by the transponder IC during an  
inventory round.  
13.4.3.1 Anticollision with 1 slot  
The transponder IC will receive one ore more inventory commands with NOS = '1'. Every  
time the transponder ICs fractional or whole UID matches the mask value of RWD's  
request it responses with remaining UID without mask value.  
Transponder ICs responses are modulated by dual pattern data coding as described in  
Section 11.4.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
29 of 57  
 
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
13.4.3.2 Anticollision with 16 slots  
The transponder IC will receive several inventory commands with NOS = '0' defining an  
amount of 16 slots. Within the request there is the mask specified by length and value  
(sent LSB first).  
In case of mask length = '0' the four least significant bits of transponder ICs UID become  
the starting value of transponder IC's slot counter.  
In case of mask length '0' the received fractional mask is compared to transponder IC's  
UID. If it matches the starting value for transponder IC's slot number will be calculated.  
Starting at last significant bit of the sent mask the next four less significant bits of UID are  
used for this value. At the same time transponder IC's slot counter is reset to '0'.  
Now the RWD begins its anticollision algorithm. Every time the transponder IC receives an  
EOF it increments slot-counter. Now if mask value and slot-counter value are matching  
the transponder IC responses with the remaining UID without mask value but with slot  
number  
In case of collision within one slot the RWD changes the mask value and starts again  
running its algorithm.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
30 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14. Command set  
The first part of this section (Section 14.1) describes the flags used in every RWD  
command. The following subsections (Section 14.3 until Section 14.13) explain all  
implemented commands and their suitable transponder IC responses which are done with  
tables showing the command itself and suitable responses.  
Within tables flags, parameter bits and parts of a response written in braces are optional.  
That means if the suitable flag is set resulting transponder IC's action will be performed  
according to Section 14.1.  
Every command except the Switch command is embedded in SOF and EOF pattern. As  
described in Table 13 and Table 14 sending and receiving data is done with the least  
significant bit of every field on first position.  
Important information:  
In this document the fields (i.e. command codes) are written with most significant  
bit first.  
Table 13. Reader - Transponder IC transmission [1][2]  
SOF  
Flags  
Commands  
6
Parameters  
var.  
Data  
CRC-16  
(16)  
EOF  
-
-
5
var.  
-
-
LSB ... MSB  
LSB ... MSB  
LSB ... MSB  
LSB ... MSB  
LSB ... MSB  
[1] values in braces are optional  
[2] data is sent with least significant bit first  
Table 14. Transponder IC - Reader transmission [1][2]  
SOF  
Error flag  
Data/Error code CRC-16  
EOF  
-
-
1
-
var.  
(16)  
-
-
LSB ... MSB  
LSB ... MSB  
[1] values in braces are optional  
[2] data is sent with least significant bit first  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
31 of 57  
 
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
14.1 Flags  
HITAG µ transponder IC  
Every request command contains five flags which are sent in order Bit 1 (LSB) to Bit 5  
(MSB). The specific meaning depends on the context.  
Table 15. Command Flags  
Bit Flag  
Full name  
Value Description  
1
2
3
PEXT  
Protocol EXTension  
0
1
0
1
0
1
No protocol format extension  
RFU  
INV  
INVentory  
Flag 4 and Flag 5 are ’SEL’ and ’ADR’ Flag  
Flag 4 and Flag 5 are ’RFU’ and ’NOS’ Flag  
Transponder IC respond without CRC  
Transponder IC respond contains CRC  
in combination with ADR (see Table 17)  
CRCT  
CRC-Transponder  
4
5
4
5
SEL  
(INV==0)  
SELect  
ADR  
(INV==0)  
ADdRess  
in combination with SEL (see Table 17)  
this flag is not used and set to '0'  
RFU  
(INV==1) use  
Reserved for future  
0
NOS  
(INV==1)  
0
1
16 slots while performing anti-collision  
1 slot while performing anti-collision  
Table 16. Command Flags - Bit order  
MSB  
LSB  
bit5  
bit4  
bit3  
bit2  
INV  
INV  
bit1  
INV==0  
INV==1  
ADR  
NOS  
SEL  
RFU  
CRCT  
CRCT  
PEXT  
PEXT  
Table 17. Meaning of ADR and SEL flag  
ADR  
SEL  
0
Meaning  
0
1
Request without UID, all transponder ICs in READY state shall respond  
0
Request contains UID, one transponder IC (with corresponding UID) shall  
respond  
0
1
1
1
Request without UID, the transponder IC in SELECTED state shall respond  
Reserved for future use  
Note:  
For HITAG µ inventory (INV) flag and select (SEL) flag must be set to ’0’  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
32 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.2 Error handling  
In case an error has been occurred the transponder IC responses with the set error flag  
and the three bit code ’111’ (meaning ’unknown error’).  
The general response format in case of an error response is shown in Table 18 whereas  
commands not supporting error responses are excluded. In case of an unsupported  
command there will be no response. The format is embedded into SOF and EOF.  
Table 18. Response format in error case  
Error flag  
Error code  
CRC-16  
Description  
1
1
3
(16)  
No. of bits  
111  
Error Flag  
''0''  
SOF  
Data  
(CRC)  
EOF  
001aak260  
Fig 17. HITAG µ transponder IC response - in case of no error  
Error Flag  
''1''  
Error Code  
''111''  
SOF  
(CRC)  
EOF  
001aak262  
Fig 18. HITAG µ transponder IC response - in error case  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
33 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.3 INVENTORY  
[Advanced, Advanced+]  
Upon reception of this command without error, all transponder ICs in the ready state shall  
perform the anticollision sequence. The inventory (INV) flag shall be set to '1'. The NOS  
flag determines whether 1 or 16 slots are used.  
If a transponder IC detects any error, it shall remain silent.  
Table 19. INVENTORY - Request format (00h)  
Flags  
Command  
Mask length  
Mask value  
CRC-16  
Description  
5
6
6
n
(16)  
No. of bits  
AC with 1  
timeslot  
10(1)10  
00(1)10  
000000  
000000  
0 n UID length  
0 n UID length  
UID Mask  
UID Mask  
AC with 16  
timeslot  
Table 20. Response to a successful INVENTORY request [1][2]  
Error Flag  
Data  
CRC-16  
Description  
1
0
48 - n  
(16)  
No. of bits  
Remaining UID without mask value  
[1] Error and CRC are Manchester coded, UID is dual pattern coded  
[2] Response within the according time slot  
Error Flag set to ’0’ indicates no error.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
34 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.4 INVENTORY ISO 11785  
[Advanced, Advanced+]  
Upon reception of this command without error, all transponder ICs in the ready state are  
performing the anticollision sequence. The inventory (INV) flag is set to '1'. The NOS flag  
determines whether 1 or 16 slots are used.  
In contrast to INVENTORY command the transponder IC (holding requested slot) sends  
the 64-bit ISO 11785 number in addition to remaining UID. The 64-bit number is taken  
from a fixed area of EEPROM. It will not be checked on ISO 11785 compliance before  
sending.  
If a transponder IC detects any error, it remains silent.  
Table 21. INVENTORY ISO 11785 - request format (23h)  
Flags  
Command  
Mask length  
Mask value  
CRC-16  
Description  
5
6
6
n
(16)  
No. of bits  
AC with 1  
timeslot  
10(1)10  
00(1)10  
100011  
100011  
0 n UID length  
0 n UID length  
UID Mask  
UID Mask  
AC with 16  
timeslot  
Table 22. Response to a successful INVENTORY ISO 11785 request[1]  
Error Flag Data 1  
Data 2  
CRC-16  
Description  
1
0
48 - n  
64  
(16)  
No. of bits  
Remaining UID without mask value ISO 11785 number  
[1] Error, CRC and ISO 11785 number are Manchester coded, UID is dual pattern coded  
14.5 STAY QUIET  
[Advanced, Advanced+]  
Upon reception of this command without error, a transponder IC in either ready state or  
selected state enters the quiet state and shall not send back a response.  
The STAY QUIET command with both SEL and ADR flag set to '0' or both set to '1' is not  
allowed.  
There is no response to the STAY QUIET request, even if the transponder detects an error  
Table 23. STAY QUIET - request format(01h)  
Flags  
5
Command  
6
Data  
(48)  
-
CRC-16  
Description  
No. of bits:  
without UID  
with UID  
(16)  
00(1)00  
11(1)00  
000001  
000001  
UID  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
35 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.6 READ UID  
[, Advanced, Advanced+]  
Upon reception of this command without error all transponder ICs in the ready state are  
sending their UID.  
The addressed (ADR), the select (SEL), the inventory (INV) and the (PEXT) flag are set to  
'0'.  
Table 24. READ UID - request format (02h)  
Flags  
5
Command  
6
CRC-16  
Description  
(16)  
No. of bits  
00(1)00  
000010  
Table 25. Response to a successful READ UID request  
Error flag  
Data  
48  
CRC-16  
Description  
1
0
(16)  
No. of bits  
UID  
Error flag set to ’0’ indicates no error.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
36 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.7 READ MULTIPLE BLOCK  
[, Advanced, Advanced+]  
Upon reception of this command without error, the transponder reads the requested  
block(s) and sends back their value in the response. The blocks are numbered from 0 to  
255.  
The number of blocks in the request is one less than the number of blocks that the  
transponder returns in its response i.e. a value of '6' in the ’Number of blocks’ field  
requests to read 7 blocks. A value '0' requests to read a single block.  
Table 26. READ MULTIPLE BLOCKS (advanced/advanced+) - request format (12h)  
Flags  
5
Command Data 1  
Data 2  
Data 3  
CRC-16 Description  
6
(48)  
-
8
8
(16)  
No. of bits  
00(1)00  
010010  
First block  
number  
Number of  
blocks  
without UID  
in READY  
state  
10(1)00  
01(1)00  
010010  
010010  
UID  
-
First block  
number  
Number of  
blocks  
with UID in  
READY  
state  
First block  
number  
Number of  
blocks  
without UID  
in  
SELECTED  
state  
Table 27. READ MULTIPLE BLOCKS (µ) - request format (12h)  
Flags  
5
Command Data 1  
Data 2  
Data 3  
CRC-16 Description  
6
(48)  
-
8
8
(16)  
No. of bits  
00(1)00  
010010  
First block  
number  
Number of  
blocks  
without UID  
in READY  
state  
10(1)00  
010010  
UID  
First block  
number  
Number of  
blocks  
with UID in  
READY  
state  
Table 28. Response to a successful READ MULTIPLE BLOCKS request  
Error Flag  
Data  
CRC-16 Description  
1
0
32 x Number of blocks  
User memory block data  
(16)  
No. of bits  
Error Flag set to ’0’ indicates no error.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
37 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.7.1 READ MULTIPLE BLOCKS in INVENTORY mode  
[Advanced, Advanced+]  
The READ MULTIPLE BLOCK command can also be sent in inventory mode (which is  
marked by INV-Flag = '1' within the request). Here request and response will change as  
shown in following tables.  
If the transponder detects an error during the inventory sequence, it shall remain silent.  
Table 29. READ MULTIPLE BLOCKS - request format (12h)  
Flags  
Command Mask  
length  
Mask Parameter 1 Parameter 2 CRC-16 Description  
value  
5
6
6
n
8
8
(16)  
No. of bits  
10(1)10 010010  
0 n UID  
length  
First block  
number  
Number of  
blocks  
AC with 1  
timeslot  
00(1)10 010010  
0 n UID  
length  
First block  
number  
Number of  
blocks  
AC with 16  
timeslot  
After receiving RWD's command without error the transponder IC transmits the remaining  
section of the UID in dual pattern code. The following data (Error Flag, Data 2, optional  
CRC in no error case; Error Flag, Error Code, optional CRC in error case) is transmitted in  
Manchester Code.  
Table 30. READ MULTIPLE BLOCKS in INVENTORY mode Response format [1]  
Error Flag Data 1  
Data 2  
CRC-16 Description  
(16) No.of bits  
1
0
48 - n  
32 x number of blocks  
User memory block data  
Remaining section of UID  
(without mask value)  
[1] Error, CRC and Data are Manchester coded, UID is dual pattern coded  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
38 of 57  
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.8 WRITE SINGLE BLOCK  
[, Advanced, Advanced+]  
Upon reception of this command without error, the transponder IC writes 32-bit of data into  
the requested user memory block and report the success of the operation in the response.  
Table 31. WRITE SINGLE BLOCK (advanced/advanced+) - request format (14h)  
Flags  
5
Command Data 1  
Data 2  
Data 3  
CRC-16 Description  
6
(48)  
-
8
32  
(16)  
No. of bits  
(1)0(1)00  
010100  
block number block data  
block number block data  
block number block data  
without UID  
in READY  
state  
0(1)(1)00  
01(1)00  
010100  
010100  
UID  
-
with UID in  
READY  
state  
without UID  
in  
SELECTED  
state  
Table 32. WRITE SINGLE BLOCK (µ) - request format (14h)  
Flags  
5
Command Data 1  
Data 2  
Data 3  
CRC-16 Description  
6
(48)  
-
8
32  
(16)  
No. of bits  
00(1)00  
010100  
block number block data  
without UID  
in READY  
state  
10(1)00  
010100  
UID  
block number block data  
with UID in  
READY  
state  
Table 33. Response to a successful WRITE SINGLE BLOCK request  
Error Flag  
CRC-16  
Description  
1
0
(16)  
No. of bits  
Error Flag set to ’0’ indicates no error.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
39 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.9 LOCK BLOCK  
[, Advanced, Advanced+]  
Upon reception of this command without error, the transponder IC is write locking the  
requested block (block size = 32-bit) permanently.  
Blocks within the block address range from 00h to 17h as well as FEh and FFh can be  
locked individually.  
For HITAG µ advanced+ transponder IC a LOCK BLOCK command with a block number  
value between 18h to 36h will lock all blocks within the block address range 18h to 36h.  
In case a password is applied to the memory a lock is only possible after a successful  
login.  
Table 34. LOCK BLOCK (advanced/advanced+) - request format (16h)  
Flags  
5
Command  
6
Data 1  
(48)  
-
Data 2  
CRC-16  
Description  
8
(16)  
No. of bits  
00(1)00  
010110  
block number  
without UID  
in READY  
state  
10(1)00  
01(1)00  
010110  
010110  
UID  
-
block number  
block number  
with UID in  
READY  
state  
without UID  
in  
SELECTED  
state  
Table 35. LOCK BLOCK (µ) - request format (16h)  
Flags  
5
Command  
6
Data 1  
(48)  
Data 2  
CRC-16  
Description  
8
(16)  
No. of bits  
00(1)00  
010110  
UID  
block number  
without UID  
in READY  
state  
10(1)00  
010110  
-
block number  
with UID in  
READY  
state  
Table 36. Response to a successful LOCK BLOCK request  
Error flag  
CRC-16  
Description  
1
0
(16)  
No. of bits  
Error Flag set to ’0’ indicates no error.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
40 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.10 SELECT  
[Advanced, Advanced+]  
The SELECT command is always be executed with SEL flag set to '0' and ADR flag set to  
'1'. There are several possibilities upon reception of this command without error:  
If the UID, received by the transponder IC, is equal to its own UID, the transponder IC  
enters the Selected state and shall send a response.  
If the received UID is different there are two possibilities  
A transponder IC in a non-selected state (QUIET or READY) is keeping its state  
and not sending a response.  
The transponder IC in the Selected state enters the Quiet state and does not send  
a response.  
Table 37. SELECT - request format (18h)  
Flags  
5
Command  
6
Data 1  
48  
CRC-16  
Description  
(16)  
No. of bits  
10(1)00  
011000  
UID  
Table 38. Response to a successful SELECT request  
Error flag  
CRC-16  
Description  
1
0
(16-bit)  
No. of bits  
Error Flag set to ’0’ indicates no error.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
41 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.11 WRITE ISO 11785 (custom command)  
[, Advanced, Advanced+]  
Upon reception of this command without error, the transponder IC (in Ready state) writes  
128-bit of ISO 11785 TTF data into suitable reserved memory block and report the  
success of the operation in the response. The user does not have to attend whether the  
data is compliant to ISO 11785 or not. The command data block is sent exactly the same  
way as it is sent by the transponder IC in TTF mode (Header, 64-bit ID, CRC…) after  
entering the field again.  
There are two different command codes one for locking the TTF area after successful  
write command and one without locking.  
The command must be completed by a reset of the IC. After entering the RF field the  
ISO 11785 data is sent when the transponder is in ISO 11785 state.  
Table 39. WRITE ISO 11785 - request format (38h, 39h)  
Flags  
5
Command  
6
Data 1  
CRC-16  
Description  
128  
(16)  
No. of bits  
00(1)00  
00(1)00  
111000  
111001  
ISO 11785 TTF data  
ISO 11785 TTF data  
inc. LOCK  
Table 40. Response to a successful WRITE ISO 11785 request  
Error flag  
CRC-16  
Description  
1
0
(16)  
No. of bits  
Error Flag set to ’0’ indicates no error.  
request  
request (or EOF)  
carrier on  
transceiver  
carrier off  
T
T
T
Fp2  
Fp1  
NRT  
load off  
load on  
HITAG μ  
response  
001aaj833  
Fig 19. Waiting time before a response for WRITE ISO 11785 command  
The minimum value of TFp1 is 20 ms.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
42 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
14.12 GET SYSTEM INFORMATION  
[Advanced, Advanced+]  
Upon reception of this command without error, the transponder IC reads the requested  
system memory block(s) and sends back their values in the response.  
Table 41. GET SYSTEM INFORMATION - request format (17h)  
Flags  
5
Command  
6
Data 1  
CRC-16  
Description  
No. of bits  
without UID  
with UID  
(48)  
(16)  
00(1)00  
10(1)00  
010111  
010111  
UID  
Table 42. GET SYSTEM INFORMATION - response format  
Error  
flag  
Data  
CRC-16  
Description  
1
0
40  
8
8
8
8
8
8
8
0
8
0
(16)  
No. of bits  
system memory block data  
MSN MFC ICR  
0
0
0
0
Error Flag set to ’0’ indicates no error.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
43 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
14.13 LOGIN  
HITAG µ transponder IC  
[, Advanced, Advanced+]  
Upon reception of this command without error, the transponder IC compares received  
password with PWD in memory block (FEh) and if correct it permits write (opt. read)  
access to the protected memory area (defined in User config, see Table 7) and reports the  
success of the operation in the response. In case a wrong password is issued in a further  
login request no access to protected memory blocks will be granted.  
Default password: FFFFFFFFh  
Table 43. LOGIN (advanced/advanced+) - request format  
Flags  
5
Command IC MFC  
Parameter 1 Password  
CRC-16 Description  
6
8
(48)  
-
32  
(16)  
No. of bits  
00(1)00  
101000  
MFC  
password  
without UID  
in READY  
state  
10(1)00  
01(1)00  
101000  
101000  
MFC  
MFC  
UID  
-
password  
password  
with UID in  
READY state  
without UID  
in  
SELECTED  
state  
Table 44. LOGIN (µ) - request format  
Flags  
5
Command IC MFC  
Parameter 1 Password  
CRC-16 Description  
6
8
(48)  
-
32  
(16)  
No. of bits  
00(1)00  
101000  
MFC  
password  
without UID  
in READY  
state  
10(1)00  
101000  
MFC  
UID  
password  
with UID in  
READY state  
Table 45. Response to a successful LOGIN request  
Error flag  
CRC-16  
Description  
1
0
(16)  
No. of bits  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
44 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
15. Transponder Talks First (TTF) mode  
This mode of the HITAG µ transponder enables data transmission to a RWD without  
sending any command. Every time the transponder IC is activated by the field it starts  
executing this mode.  
The transponder in TTF mode sends the data stored in the EEPROM independent if the  
data is ISO compliant or not.  
If the transponder IC is configured in TTF mode a SWITCH command or SOF sent by the  
RWD within the defined listening window sets the transponder into RTF mode.  
16. Data integrity/calculation of CRC  
The following explanations show the features of the HITAG µ protocol to protect read and  
write access to transponders from undetected errors. The CRC is an 16-bit CRC  
according to ISO 11785.  
16.1 Data transmission: RWD to HITAG µ transponder IC  
Data stream transmitted by the RWD to the HITAG µ transponder may include an optional  
16-bit Cyclic Redundancy Check (CRC-16).  
The data stream is first verified for data errors by the HITAG µ transponder IC and then  
executed.  
The generator polynomial for the CRC-16 is:  
u
16 + u12 + u5+ 1 = 1021h  
The CRC pre set value is: 0000h  
16.2 Data transmission: HITAG µ transponder IC to RWD  
The HITAG µ transponder calculates the CRC on all received bits of the request. Whether  
the HITAG µ transponder IC calculated CRC is appended to the response depends on the  
setting of the CRCT flag.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
45 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
17. Limiting values  
Table 46. Limiting values[1][2]  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Tstg  
Parameter  
Conditions  
Min  
55  
2  
Max  
+125  
-
Unit  
C  
storage temperature  
electrostatic discharge voltage  
VESD  
JEDEC JESD 22-A114-AB  
Human Body Model  
kV  
Ii(max)  
Tj  
maximum input current  
junction temperature  
IN1-IN2  
20  
mA  
40  
+85  
C  
[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical  
Characteristics section of this specification is not implied.  
[2] This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions should be taken to avoid applying values greater than the rated  
maxima  
18. Characteristics  
Table 47. Characteristics  
Symbol  
Parameter  
Conditions  
Min  
100  
4
Typ  
125  
5
Max  
150  
6
Unit  
kHz  
V
foper  
VI  
operating frequency  
input voltage  
IN1-IN2  
II  
input current  
IN1-IN2  
-
-
10  
mA  
Ci  
input capacitance  
between IN1-IN2  
HTMS1x01  
HTMS8x01  
[2][3]  
[2][4]  
203.7  
266  
210  
280  
216.3  
294  
pF  
pF  
[1] Typical ratings are not guaranteed. Values are at 25 C.  
[2] Measured with an HP4285A LCR meter at 125 kHz/room temperature (25C); VIN1-IN2 = 0.5 V (RMS)  
[3] Integrated Resonance Capacitor: 210pF 3%  
[4] Integrated Resonance Capacitor: 280pF 5%  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
46 of 57  
 
 
 
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
19. Marking  
19.1 Marking SOT1122  
Table 48. Marking SOT1122  
Type  
Type code  
HTMS1001FTB/AF  
HTMS1101FTB/AF  
HTMS1201FTB/AF  
HTMS8001FTB/AF  
HTMS8101FTB/AF  
HTMS8201FTB/AF  
10  
11  
12  
80  
81  
82  
Table 49. Pin description SOT1122  
Pin  
1
Description  
IN 1  
2
IN 2  
3
n.c not connected  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
47 of 57  
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
19.2 Marking HVSON2  
Only two lines are available for marking (Figure 20).  
A : 5  
B : 4  
0
3
aaa-004170  
Fig 20. Marking overview  
First line consists on five digits and contains the diffusion lot number. Second line consists  
on four digits and describes the product type, HTSH5601ETK or HTSH4801ETK (see  
example in Table 50).  
Table 50. Marking example  
Line  
A
Marking  
70960  
Description  
5 digits, Diffusion Lot Number, First letter truncated  
4 digits, Type: Table 51 “Marking HVSON2”  
B
HM10  
Table 51. Marking HVSON2  
Type  
Type code  
HM10  
HTMS1001FTK/AF  
HTMS1101FTK/AF  
HTMS1201FTK/AF  
HTMS8001FTK/AF  
HTMS8101FTK/AF  
HTMS8201FTK/AF  
HM11  
HM12  
HM80  
HM81  
HM82  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
48 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
20. Package outline  
XSON3: plastic extremely thin small outline package; no leads; 3 terminals; body 1 x 1.45 x 0.5 mm  
SOT1122  
b
b
1
1
4×  
(2)  
L
1
3
L
e
2
e
1
e
1
4×  
A
(2)  
A
1
D
type code  
E
terminal 1  
index area  
pin 1 indication  
0
1
2 mm  
scale  
Dimensions  
Unit  
(1)  
A
A
b
b
D
E
e
e
1
L
L
1
1
1
max 0.50 0.04 0.45 0.55 1.50 1.05  
0.35 0.30  
0.40 0.50 1.45 1.00 0.55 0.425 0.30 0.25  
0.37 0.47 1.40 0.95 0.27 0.22  
mm nom  
min  
Notes  
1. Dimension A is including plating thickness.  
2. Can be visible in some manufacturing processes.  
sot1122_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
09-10-09  
SOT1122  
MO-252  
Fig 21. Package outline SOT1122  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
49 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
HVSON2: plastic thermal enhanced very thin small outline package; no leads;  
2 terminals; body 3 × 2 × 0.85 mm  
SOT899-1  
D
B
A
E
A
A
1
detail X  
terminal 1  
index area  
C
y
C
1
y
M
M
v  
w  
C
A
B
b
C
terminal 1  
index area  
1
L
e
E
h
2
X
D
h
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
b
D
D
h
E
E
e
L
v
w
y
y
1
h
max  
0.05  
0
0.9  
0.7  
2.1  
1.9  
1.35  
1.05  
3.1  
2.9  
1.35  
1.05  
0.5  
0.3  
mm  
1
2.5  
0.1  
0.05 0.05  
0.1  
Note  
1. Plastic or metal protrusions of 0.75 mm maximum per side are not included  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
05-02-25  
05-05-09  
SOT899-1  
Fig 22. Package outline HVSON2  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
50 of 57  
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
21. Abbreviations  
Table 52. Abbreviations  
Abbreviation  
AC  
Definition  
Anticollision Code  
ASK  
BC  
Amplitude Shift Keying  
Bi-phase Code  
BPLC  
CRC  
DSFID  
EEPROM  
EOF  
IC  
Binary Pulse Length Coding  
Cyclic Redundancy Check  
Data Storage Format Identifier  
Electrically Erasable Programmable Read-Only Memory  
End Of Frame  
Integrated Circuit  
ICR  
Integrated Circuit Reference number  
Least Significant Bit  
Least Significant Byte  
Modulation Index  
LSB  
LSByte  
m
MC  
Manchester Code  
MFC  
MSB  
MSByte  
MSN  
NA  
integrated circuit Manufacturer Code  
Most Significant Bit  
Most Significant Byte  
Manufacturer Serial Number  
No Access  
NOB  
NOP  
NOS  
NSS  
OTP  
PID  
Number Of Block  
Number Of Pages  
Number Of Slots  
Number Of Sensors  
One Time Programmable  
Product Identifier  
PWD  
RF  
Password  
Radio Frequency  
RFU  
RND  
RO  
Reserved for Future Use  
Random Number  
Read Only  
RTF  
Reader Talks First  
R/W  
Read/Write  
RWD  
SOF  
TTF  
Read Write Device  
Start of Frame  
Transponder Talks First  
Unique IDentifier  
UID  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
51 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
22. References  
[1] Application note — AN10214, HITAG Coil Design Guide, Transponder IC  
BU-ID Doc.No.: 0814**1  
[2] General specification for 8” wafer on UV-tape with electronic fail die  
marking — Delivery type description, BU-ID Doc.No.: 1093**1  
1. ** ... document version number  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
52 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
23. Revision history  
Table 53: Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
HTMS1x01_8x01 20120703  
Product data sheet  
-
H152931_HITAGµ  
Modifications:  
Section 9.2 “Memory configuration”: updated  
Section 14.9 “LOCK BLOCK”: updated  
Some modifications done to comply with HTMS1x01_HTSMS8x01 short data sheet  
152931  
20100114  
Product data sheet  
152930  
Modifications:  
Section 6 “Ordering information”: updated  
Section 10 “Mechanical specification”, Section 21 “Marking” and Section 22  
“Package outline”: added  
A number of tables have been redesigned.  
152930  
20090716  
Product data sheet  
152912  
Modifications:  
Section 3.6 “Delivery types”: remove delivery types  
Section 6 “Ordering information”: remove delivery types SOT1122 and  
SOT732-1  
Section 15.2 “State diagram HITAG m advanced/advanced+”: Note added  
Section 19 “Limiting values”: move input current to table 42  
Section 17 “Package outline”: removed  
Section 20 “Legal information”: update  
152912  
20090619  
Objective data sheet  
152911  
Modifications:  
General update  
The drawings have been redesigned to comply with the new identity guidelines  
of NXP Semiconductors.  
152911  
20090225  
Objective data sheet  
-
-
152910  
-
Modifications:  
152910  
General update  
20090114  
Objective data sheet  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
53 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
24. Legal information  
24.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
24.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
24.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
54 of 57  
 
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
24.4 Licenses  
ICs with HITAG functionality  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
NXP Semiconductors owns a worldwide perpetual license for the patents  
US 5214409, US 5499017, US 5235326 and for any foreign counterparts  
or equivalents of these patents. The license is granted for the Field-of-Use  
covering: (a) all non-animal applications, and (b) any application for animals  
raised for human consumption (including but not limited to dairy animals),  
including without limitation livestock and fish.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Please note that the license does not include rights outside the specified  
Field-of-Use, and that NXP Semiconductors does not provide indemnity for  
the foregoing patents outside the Field-of-Use.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
24.5 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
HITAG — is a trademark of NXP B.V.  
25. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
55 of 57  
 
 
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
26. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
11.4  
Communication signal interface -  
HITAG µ transponder IC to RWD. . . . . . . . . . 21  
Data rate and data coding . . . . . . . . . . . . . . . 21  
Start of frame pattern . . . . . . . . . . . . . . . . . . . 22  
End of frame pattern . . . . . . . . . . . . . . . . . . . 22  
1.1  
Target markets . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Animal identification . . . . . . . . . . . . . . . . . . . . . 1  
Laundry automation . . . . . . . . . . . . . . . . . . . . . 1  
Beer keg and gas cylinder logistic . . . . . . . . . . 2  
Brand protection . . . . . . . . . . . . . . . . . . . . . . . 2  
Customer application support and training. . . . 2  
11.4.1  
11.4.2  
11.4.3  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
1.2  
12  
12.1  
General protocol timing specification. . . . . . 23  
Waiting time before transmitting a response  
after an EOF from the RWD. . . . . . . . . . . . . . 23  
RWD waiting time before sending a  
subsequent request . . . . . . . . . . . . . . . . . . . . 24  
RWD waiting time before switching to next  
inventory slot . . . . . . . . . . . . . . . . . . . . . . . . . 24  
RWD started to receive one or more  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Supported standards . . . . . . . . . . . . . . . . . . . . 3  
Security features. . . . . . . . . . . . . . . . . . . . . . . . 3  
Delivery types. . . . . . . . . . . . . . . . . . . . . . . . . . 3  
12.2  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
12.3  
12.3.1  
12.3.2  
HITAG µ transponder IC responses. . . . . . . . 24  
RWD receives no HITAG µ transponder  
IC response . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3
4
5
6
7
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
13  
13.1  
13.2  
13.3  
State diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 26  
General description of states . . . . . . . . . . . . . 26  
State diagram HITAG advanced/advanced+ 27  
State diagram HITAG . . . . . . . . . . . . . . . . . 28  
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
ISO 11785 Mode . . . . . . . . . . . . . . . . . . . . . . 29  
RTF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8
8.1  
Mechanical specification . . . . . . . . . . . . . . . . . 8  
Wafer specification . . . . . . . . . . . . . . . . . . . . . . 8  
Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Wafer backside. . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip dimensions . . . . . . . . . . . . . . . . . . . . . . . . 8  
Passivation on front . . . . . . . . . . . . . . . . . . . . . 8  
Au bump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Fail die identification . . . . . . . . . . . . . . . . . . . . 9  
Map file distribution. . . . . . . . . . . . . . . . . . . . . . 9  
13.4  
13.4.1  
13.4.2  
13.4.3  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
13.4.3.1 Anticollision with 1 slot. . . . . . . . . . . . . . . . . . 29  
13.4.3.2 Anticollision with 16 slots . . . . . . . . . . . . . . . . 30  
14  
Command set . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Error handling . . . . . . . . . . . . . . . . . . . . . . . . 33  
INVENTORY . . . . . . . . . . . . . . . . . . . . . . . . . 34  
[Advanced, Advanced+]. . . . . . . . . . . . . . . . . . 34  
INVENTORY ISO 11785 . . . . . . . . . . . . . . . . 35  
[Advanced, Advanced+]. . . . . . . . . . . . . . . . . . 35  
STAY QUIET . . . . . . . . . . . . . . . . . . . . . . . . . 35  
[Advanced, Advanced+]. . . . . . . . . . . . . . . . . . 35  
READ UID . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
[, Advanced, Advanced+]. . . . . . . . . . . . . . . . 36  
READ MULTIPLE BLOCK . . . . . . . . . . . . . . . 37  
[, Advanced, Advanced+]. . . . . . . . . . . . . . . . 37  
READ MULTIPLE BLOCKS in INVENTORY  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
[Advanced, Advanced+]. . . . . . . . . . . . . . . . . . 38  
WRITE SINGLE BLOCK . . . . . . . . . . . . . . . . 39  
[, Advanced, Advanced+]. . . . . . . . . . . . . . . . 39  
LOCK BLOCK . . . . . . . . . . . . . . . . . . . . . . . . 40  
[, Advanced, Advanced+]. . . . . . . . . . . . . . . . 40  
SELECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
14.1  
14.2  
14.3  
9
9.1  
9.1.1  
Functional description . . . . . . . . . . . . . . . . . . 10  
Memory organization . . . . . . . . . . . . . . . . . . . 10  
Memory organization HITAG transponder  
ICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Memory organization HITAG µ Advanced . . . 11  
Memory organization HITAG µ Advanced + . . 12  
Memory configuration. . . . . . . . . . . . . . . . . . . 13  
14.4  
14.5  
14.6  
14.7  
14.7.1  
9.1.2  
9.1.3  
9.2  
10  
General requirements . . . . . . . . . . . . . . . . . . . 14  
11  
HITAG m transponder IC air interface . . . . . . 14  
Downlink description. . . . . . . . . . . . . . . . . . . . 14  
Mode switching protocol. . . . . . . . . . . . . . . . . 16  
SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Downlink communication signal interface -  
RWD to HITAG µ transponder IC . . . . . . . . . . 18  
Modulation parameters. . . . . . . . . . . . . . . . . . 18  
Data rate and data coding . . . . . . . . . . . . . . . 19  
RWD - Start of frame pattern . . . . . . . . . . . . . 20  
RWD - End of frame pattern . . . . . . . . . . . . . . 20  
11.1  
11.2  
11.2.1  
11.3  
14.8  
14.9  
14.10  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
continued >>  
HTMS1x01_8x01  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 3 July 2012  
152932  
56 of 57  
 
HTMS1x01; HTMS8x01  
NXP Semiconductors  
HITAG µ transponder IC  
[Advanced, Advanced+] . . . . . . . . . . . . . . . . . .41  
14.11  
14.12  
14.13  
WRITE ISO 11785 (custom command) . . . . . 42  
[, Advanced, Advanced+] . . . . . . . . . . . . . . . .42  
GET SYSTEM INFORMATION. . . . . . . . . . . . 43  
[Advanced, Advanced+] . . . . . . . . . . . . . . . . . .43  
LOGIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
[, Advanced, Advanced+] . . . . . . . . . . . . . . . .44  
15  
Transponder Talks First (TTF) mode . . . . . . . 45  
16  
16.1  
Data integrity/calculation of CRC. . . . . . . . . . 45  
Data transmission: RWD to HITAG µ transponder  
IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Data transmission: HITAG µ transponder IC  
16.2  
to RWD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
17  
18  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 46  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 46  
19  
19.1  
19.2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Marking SOT1122. . . . . . . . . . . . . . . . . . . . . . 47  
Marking HVSON2. . . . . . . . . . . . . . . . . . . . . . 48  
20  
21  
22  
23  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 49  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 51  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 53  
24  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 54  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 54  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
24.1  
24.2  
24.3  
24.4  
24.5  
25  
26  
Contact information. . . . . . . . . . . . . . . . . . . . . 55  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 3 July 2012  
152932  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY