935268596118 [NXP]

LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN;
935268596118
型号: 935268596118
厂家: NXP    NXP
描述:

LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN

输入元件 光电二极管 逻辑集成电路
文件: 总19页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
74LVC1GU04  
Inverter  
Product specification  
2003 Feb 12  
Supersedes data of 2001 Apr 06  
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
FEATURES  
DESCRIPTION  
Wide supply voltage range from 1.65 to 5.5 V  
High noise immunity  
The 74LVC1GU04 is a high-performance, low-power,  
low-voltage, Si-gate CMOS device, superior to most  
advanced CMOS compatible TTL families.  
Complies with JEDEC standard:  
– JESD8-7 (1.65 to 1.95 V)  
The input can be driven from either 3.3 or 5 V devices.  
This feature allows the use of this device in a mixed  
3.3 and 5 V environment.  
– JESD8-5 (2.3 to 2.7 V)  
– JESD8B/JESD36 (2.7 to 3.6 V).  
• ±24 mA output drive (VCC = 3.0 V)  
CMOS low power consumption  
Latch-up performance exceeds 250 mA  
Direct interface with TTL levels  
Input accepts voltages up to 5 V  
Multiple package options  
Schmitt-trigger action at all inputs makes the circuit  
tolerant for slower input rise and fall time.  
This device is fully specified for partial power-down  
applications using Ioff. The Ioff circuitry disables the output,  
preventing the damaging backflow current through the  
device when it is powered down.  
The 74LVC1GU04 provides the inverting single state  
unbuffered function.  
ESD protection:  
HBM EIA/JESD22-A114-A exceeds 2000 V  
MM EIA/JESD22-A115-A exceeds 200 V.  
Specified from 40 to +125 °C.  
QUICK REFERENCE DATA  
Ground = 0 V; Tamb = 25 °C; tr = tf 2.5 ns.  
SYMBOL  
PARAMETER  
CONDITIONS  
TYPICAL  
UNIT  
tPHL/tPLH  
propagation delay A to Y  
VCC = 1.8 V; CL = 30 pF; RL = 1 kΩ  
1.7  
ns  
ns  
ns  
ns  
ns  
V
CC = 2.5 V; CL = 30 pF; RL = 500 1.3  
VCC = 2.7 V; CL = 50 pF; RL = 500 1.7  
CC = 3.3 V; CL = 50 pF; RL = 500 1.6  
V
VCC = 5.0 V; CL = 50 pF; RL = 500 1.3  
CI  
input capacitance  
6
pF  
pF  
CPD  
power dissipation capacitance per buffer VCC = 3.3 V; notes 1 and 2  
14.9  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW).  
PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = output load capacitance in pF;  
VCC = supply voltage in Volts;  
N = total load switching outputs;  
Σ(CL × VCC2 × fo) = sum of the outputs.  
2. The condition is VI = GND to VCC  
.
2003 Feb 12  
2
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
FUNCTION TABLE  
See note 1.  
INPUT  
A
OUTPUT  
Y
L
H
L
H
Note  
1. H = HIGH voltage level;  
L = LOW voltage level.  
ORDERING INFORMATION  
TYPE NUMBER  
PACKAGE  
PACKAGE MATERIAL  
TEMPERATURE  
PINS  
CODE  
MARKING  
RANGE  
74LVC1GU04GW  
74LVC1GU04GV  
40 to +125 °C  
40 to +125 °C  
5
5
SC-88A  
SC-74A  
plastic  
plastic  
SOT353  
SOT753  
VD  
VU4  
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
1
2
3
4
5
n.c.  
not connected  
data input A  
A
GND  
Y
ground (0 V)  
data output Y  
supply voltage  
VCC  
handbook, halfpage  
n.c.  
1
2
3
5
4
V
Y
CC  
handbook, halfpage  
2
A
Y
4
A
U04  
GND  
MNA108  
MNA042  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
2003 Feb 12  
3
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
V
V
handbook, halfpage  
CC  
CC  
handbook, halfpage  
2
1
4
100  
Y
A
MNA109  
MNA636  
Fig.3 IEE/IEC logic symbol.  
Fig.4 Logic diagram.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
VCC  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
5.5  
UNIT  
supply voltage  
input voltage  
output voltage  
1.65  
0
V
VI  
5.5  
VCC  
+125  
20  
V
VO  
0
V
Tamb  
tr, tf  
operating ambient temperature  
input rise and fall times  
40  
0
°C  
VCC = 1.65 to 2.7 V  
CC = 2.7 to 5.5 V  
ns/V  
ns/V  
V
0
10  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
0.5  
MAX.  
+6.5  
UNIT  
VCC  
IIK  
supply voltage  
V
input diode current  
VI < 0  
note 1  
50  
mA  
V
VI  
input voltage  
0.5  
+6.5  
IOK  
VO  
IO  
output diode current  
output voltage  
VO > VCC or VO < 0  
active mode; notes 1 and 2  
VO = 0 to VCC  
±50  
mA  
V
0.5  
VCC + 0.5  
±50  
output source or sink current  
VCC or GND current  
storage temperature  
power dissipation per package  
mA  
mA  
°C  
I
CC, IGND  
±100  
+150  
200  
Tstg  
PD  
65  
for temperature range from  
mW  
40 to +125 °C  
Notes  
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
2. When VCC = 0 V (Power-down mode), the output voltage van be 5.5 V in normal operation.  
2003 Feb 12  
4
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
DC CHARACTERISTICS  
At recommended operating conditions; voltage are referenced to GND (ground = 0 V).  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
MIN.  
TYP.(1)  
MAX.  
UNIT  
OTHER  
VCC (V)  
Tamb = 40 to +85 °C  
VOL  
LOW-level output voltage VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
1.65 to 5.5  
1.65  
2.3  
0.1  
V
V
V
V
V
V
0.45  
0.3  
2.7  
0.4  
3.0  
0.55  
0.55  
4.5  
VOH  
HIGH-level output  
voltage  
VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
1.65 to 5.5  
V
CC 0.1  
V
V
V
V
V
V
1.65  
2.3  
2.7  
3.0  
4.5  
3.6  
0
1.2  
1.9  
2.2  
2.3  
3.8  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
VI = 5.5 V or GND  
VI or VO = 5.5 V  
ILI  
input leakage current  
±0.1  
±0.1  
±5  
±10  
µA  
µA  
Ioff  
power OFF leakage  
current  
ICC  
quiescent supply current VI = VCC or GND;  
IO = 0  
5.5  
0.1  
5
10  
µA  
µA  
ICC  
additional quiescent  
supply current per pin  
VI = VCC 0.6 V;  
IO = 0  
2.3 to 5.5  
500  
Tamb = 40 to +125 °C  
VOL  
LOW-level output voltage VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
1.65 to 5.5  
1.65  
2.3  
0.1  
V
V
V
V
V
V
0.70  
0.45  
0.60  
0.80  
0.80  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
2.7  
3.0  
4.5  
VOH  
HIGH-level output  
voltage  
VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
1.65 to 5.5  
1.65  
2.3  
V
CC 0.1  
V
V
V
V
V
V
0.95  
1.7  
1.9  
2.0  
3.4  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
2.7  
3.0  
4.5  
2003 Feb 12  
5
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
MIN.  
TYP.(1)  
MAX.  
±5  
UNIT  
µA  
OTHER  
VCC (V)  
ILI  
input leakage current  
VI = 5.5 V or GND  
VI or VO = 5.5 V  
3.6  
0
±0.1  
Ioff  
power OFF leakage  
current  
±200  
µA  
µA  
µA  
ICC  
quiescent supply current VI = VCC or GND;  
IO = 0  
5.5  
200  
ICC  
additional quiescent  
supply current per pin  
VI = VCC 0.6 V;  
2.3 to 5.5  
5000  
IO = 0  
Note  
1. All typical values are measured at VCC = 3.3 V and Tamb = 25 °C.  
AC CHARACTERISTICS  
GND = 0 V; tr = tf 2.0 ns.  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
WAVEFORMS  
VCC (V)  
Tamb = 40 to +85 °C  
tPHL/tPLH propagation delay A to Y see Figs 5 and 8  
1.65 to 1.95 0.3  
1.7  
1.3  
1.7  
1.6  
1.3  
5.0  
4.0  
5.0  
3.7  
3.0  
ns  
ns  
ns  
ns  
ns  
2.3 to 2.7  
2.7  
0.3  
0.5  
0.5  
0.5  
3.0 to 3.6  
4.5 to 5.5  
Tamb = 40 to +125 °C  
tPHL/tPLH  
propagation delay A to Y see Figs 5 and 8  
1.65 to 1.95 0.3  
6.5  
5.5  
6.5  
5.0  
4.0  
ns  
ns  
ns  
ns  
ns  
2.3 to 2.7  
2.7  
0.3  
0.5  
0.5  
0.5  
3.0 to 3.6  
4.5 to 5.5  
2003 Feb 12  
6
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
AC WAVEFORMS  
V
handbook, halfpage  
A input  
I
V
M
GND  
t
t
PHL  
PLH  
V
OH  
V
Y output  
M
V
MNA637  
OL  
INPUT  
tr = tf  
VCC  
VM  
VI  
VCC  
1.65 to 1.95 V 0.5 × VCC  
2.0 ns  
2.0 ns  
2.5 ns  
2.5 ns  
2.5 ns  
2.3 to 2.7 V  
2.7 V  
0.5 × VCC  
1.5 V  
VCC  
2.7 V  
2.7 V  
VCC  
3.0 to 3.6 V  
4.5 to 5.5 V  
1.5 V  
0.5 × VCC  
VOL and VOH are typical output voltage drop that occur with the output load.  
Fig.5 Input A to output Y propagation delay times.  
MNA639  
120  
fs  
handbook, halfpage  
G
(mA/V)  
100  
R
= 560 k  
handbook, halfpage  
bias  
80  
60  
V
CC  
0.47 µF  
100 µF  
input  
output  
V
i
40  
20  
0
A
I
o
MNA638  
Io  
Gfs  
=
--------  
0
2
4
6
V
(V)  
Vi  
CC  
fi = 1 kHz.  
Tamb = 25 °C.  
VO is constant.  
Fig.6 Test set-up for measuring forward  
transconductance.  
Fig.7 Typical forward transconductance as a  
function of supply voltage.  
2003 Feb 12  
7
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
V
EXT  
V
CC  
R
L
V
V
O
I
PULSE  
GENERATOR  
D.U.T.  
C
R
R
L
L
T
MNA616  
VEXT  
VCC  
VI  
CL  
RL  
tPLH/tPHL  
tPZH/tPHZ  
tPZL/tPLZ  
1.65 to 1.95 V  
2.3 to 2.7 V  
2.7 V  
VCC  
VCC  
30 pF  
30 pF  
50 pF  
50 pF  
50 pF  
1 kΩ  
open  
open  
open  
open  
open  
GND  
GND  
GND  
GND  
GND  
2 × VCC  
2 × VCC  
6 V  
500 Ω  
500 Ω  
500 Ω  
500 Ω  
2.7 V  
2.7 V  
VCC  
3.0 to 3.6 V  
4.5 to 5.5 V  
6 V  
2 × VCC  
Definitions for test circuit:  
RL = Load resistor.  
CL = Load capacitance including jig and probe capacitance (see Chapter “AC characteristics”).  
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.  
Fig.8 Load circuitry for switching times.  
2003 Feb 12  
8
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
APPLICATION INFORMATION  
Remark to the application information  
Some applications for the 74LVC1GU04 are:  
Linear amplifier (see Fig.9)  
All values given are typical values unless otherwise  
specified.  
Crystal oscillator (see Fig.10).  
R2  
handbook, halfpage  
handbook, halfpage  
R1  
V
CC  
U04  
1 µF  
R2  
R1  
U04  
Z
C1  
C2  
L
out  
MNA052  
MNA053  
ZL > 10 k, R1 3 kand R2 1 M.  
Open loop amplification: AOL = 20 (typical value).  
AOL  
C1 = 47 pF (typical).  
C2 = 22 pF (typical).  
R1 = 1 to 10 M(typical).  
Voltage amplification: Au = –  
-------------------------------------------  
R1  
1 +  
(1 + A  
)
OL  
-------  
R2  
R2 optimum value depends on the frequency and required stability  
against changes in VCC or average minimum ICC [ICC = 2 mA (typical)  
at VCC = 3.3 V and f = 10 MHz].  
Maximum output voltage:V o(p-p) VCC 1.5 V centered at 0.5VCC  
Unity gain bandwidth product: B = 5 MHz (typical value).  
Fig.9 Used as a linear amplifier.  
Fig.10 Crystal oscillator configuration.  
2003 Feb 12  
9
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
PACKAGE OUTLINES  
Plastic surface mounted package; 5 leads  
SOT353  
D
B
E
A
X
y
H
v
M
A
E
5
4
Q
A
A
1
1
2
3
c
e
1
b
p
L
p
w
M B  
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
(2)  
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
EIAJ  
SC-88A  
97-02-28  
SOT353  
2003 Feb 12  
10  
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
Plastic surface mounted package; 5 leads  
SOT753  
D
B
E
A
X
y
H
v
M
A
E
5
4
Q
A
A
1
c
L
1
2
3
p
detail X  
e
b
p
w
M B  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
UNIT  
A
A
b
c
D
E
e
H
L
Q
v
w
y
p
1
p
E
0.100  
0.013  
0.40  
0.25  
1.1  
0.9  
0.26  
0.10  
3.1  
2.7  
1.7  
1.3  
3.0  
2.5  
0.6  
0.2  
0.33  
0.23  
mm  
0.95  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC JEITA  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
SOT753  
SC-74A  
02-04-16  
2003 Feb 12  
11  
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferably be kept:  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
below 220 °C for all the BGA packages and packages  
with a thickness 2.5mm and packages with a  
thickness <2.5 mm and a volume 350 mm3 so called  
thick/large packages  
Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
below 235 °C for packages with a thickness <2.5 mm  
and a volume <350 mm3 so called small/thin packages.  
Wave soldering  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2003 Feb 12  
12  
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, HVSON, SMS  
not suitable(3)  
PLCC(4), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
SSOP, TSSOP, VSO, VSSOP  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2003 Feb 12  
13  
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
DATA SHEET STATUS  
DATA SHEET  
LEVEL  
PRODUCT  
STATUS(2)(3)  
DEFINITION  
STATUS(1)  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Feb 12  
14  
Philips Semiconductors  
Product specification  
Inverter  
74LVC1GU04  
NOTES  
2003 Feb 12  
15  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
613508/03/pp16  
Date of release: 2003 Feb 12  
Document order number: 9397 750 10078  
it Q  
Philips Semiconductors Home  
ProducBuy  
MySemContac  
Product Information  
catalogonline  
Information as of 2003-04-22  
My.Semiconductors.COM.  
Your personal service from Use right mouse button to  
Philips Semiconductors.  
Please register now !  
Stay informed  
74LVC1GU04;  
Inverter  
download datasheet  
Download datasheet  
General description  
Features  
Applications  
Datasheet  
Products  
Buy online  
Parametrics  
Support & tools  
Similar products  
Email/translate  
Block diagram  
Products & packages  
MultiMarket  
Semiconductors  
Product Selector  
Catalog by  
Function  
to
General description  
The 74LVC1GU04 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced  
CMOS compatible TTL families.  
Catalog by  
System  
The input can be driven from either 3.3 or 5 V devices. This feature allows the use of this device in a mixed 3.3 and 5 V  
environment.  
Cross-reference  
Packages  
End of Life  
information  
Distributors Go  
Here!  
Schmitt-trigger action at all inputs makes the circuit tolerant for slower input rise and fall time.  
This device is fully specified for partial power-down applications using Ioff . The Ioff circuitry disables the output,  
preventing the damaging backflow current through the device when it is powered down.  
Models  
SoC solutions  
The 74LVC1GU04 provides the inverting single state unbuffered function.  
to
Features  
Wide supply voltage range from 1.65 to 5.5 V  
High noise immunity  
Complies with JEDEC standard:  
JESD8-7 (1.65 to 1.95 V)  
JESD8-5 (2.3 to 2.7 V)  
JESD8B/JESD36 (2.7 to 3.6 V).  
+-24 mA output drive (VCC = 3.0 V)  
CMOS low power consumption  
Latch-up performance exceeds 250 mA  
Direct interface with TTL levels  
Input accepts voltages up to 5 V  
Multiple package options  
ESD protection:  
HBM EIA/JESD22-A114-A exceeds 2000 V  
MM EIA/JESD22-A115-A exceeds 200 V.  
Specified from -40 to +125 Cel.  
 
to
Applications  
AN10161_2: PicoGate Logic footprints (date 30-Oct-02)  
Down  
to
Datasheet  
Type number Title  
Publication release date Datasheet status  
Page count File size (kB) Datasheet  
74LVC1GU04 Inverter 2/12/2003  
Product specification 16 85 Download  
Down  
to
Parametrics  
Type number  
Package Description Propagation Voltage No. Power  
Logic  
Output  
Delay(ns)  
of  
Dissipation  
Switching Drive  
Pins Considerations Levels  
Capability  
3.3V  
PicoGate  
Inverter  
Low Power or  
Battery  
Applications  
SOT353  
(UMT5)  
74LVC1GU04GW  
2~4  
Low  
5
TTL  
Medium  
(Unbuffered)  
to
Products, packages, availability and ordering  
Type number  
North American Ordering code Marking/Packing Package Device  
Buy online  
IC packing info  
type number  
(12NC)  
status  
Down  
Standard Marking  
9352 720 22125 * Reel Pack,  
Reverse  
SOT753  
Full production  
Full production  
Full production  
Full production  
74LVC1GU04GV  
74LVC1GU04GW  
-
Standard Marking  
9352 685 96115 * Reel Pack,  
SMD, 7"  
SOT353  
(UMT5)  
74LVC1GU04GW-  
G
-
order this  
-
Standard Marking  
9352 685 96118 * Reel Pack,  
SMD, 13"  
SOT353  
(UMT5)  
Standard Marking  
9352 685 96125 * Reel Pack,  
Reverse  
SOT353  
(UMT5)  
-
-
Standard Marking  
SOT353  
(UMT5)  
* Reel Pack,  
SMD, Large,  
Reverse  
Full production  
9352 685 96165  
to
Similar products  
74LVC1GU04 links to the similar products page containing an overview of products that are similar in function or  
related to the type number(s) as listed on this page. The similar products page includes products from the same catalog  
tree(s), relevant selection guides and products from the same functional category.  
Produ  
to
Support & tools  
I²C Bus Solutions, Typical I²C Bus Arrangement  
Down  
Philips PicoGate Logic The logical alternative for miniaturization(date 01-Nov-02)  
Down  
to
Email/translate this product information  
Email this product information.  
Translate this product information page from English to:  
French  
Translate  
The English language is the official language used at the semiconductors.philips.com website and webpages. All  
translations on this website are created through the use of Google Language Tools and are provided for convenience  
purposes only. No rights can be derived from any translation on this website.  
About this Web Site  
| Copyright © 2003 Koninklijke Philips N.V. All rights reserved. | Privacy Policy |  
| Koninklijke Philips N.V. | Access to and use of this Web Site is subject to the following Terms of Use. |  

相关型号:

935268596125

IC LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN, Gate
NXP

935268596165

LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN
NXP

935268625518

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-314-2, LQFP-64, Bus Controller
NXP

935268625551

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-314-2, LQFP-64, Bus Controller
NXP

935268635118

DUAL LINE TRANSCEIVER, PDSO8, 3 MM, PLASTIC, SOT-505-1, TSSOP-8
NXP

935268660112

8-BIT, OTPROM, 20MHz, MICROCONTROLLER, PDSO20, 4.40 MM, TSSOP-20
NXP

935268660129

8-BIT, OTPROM, 20MHz, MICROCONTROLLER, PDSO20, 4.40 MM, TSSOP-20
NXP

935268660512

8-BIT, OTPROM, 20MHz, MICROCONTROLLER, PDSO20, 4.40 MM, TSSOP-20
NXP

935268661112

IC POSITIVE EDGE TRIGGERED D FLIP-FLOP, TRUE OUTPUT, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT-362-1, TSSOP-48, FF/Latch
NXP

935268661118

IC POSITIVE EDGE TRIGGERED D FLIP-FLOP, TRUE OUTPUT, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT-362-1, TSSOP-48, FF/Latch
NXP

935268664112

IC 133 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO56, 7.50 MM, PLASTIC, MO-118, SOT-371-1, SSOP-56, Clock Generator
NXP

935268664118

IC 133 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO56, 7.50 MM, PLASTIC, MO-118, SOT-371-1, SSOP-56, Clock Generator
NXP