935230190112 [NXP]

IC TELEPHONE SPEECH CKT, PDIP16, 0.300 INCH, PLASTIC, SOT-38, DIP-16, Telephone Circuit;
935230190112
型号: 935230190112
厂家: NXP    NXP
描述:

IC TELEPHONE SPEECH CKT, PDIP16, 0.300 INCH, PLASTIC, SOT-38, DIP-16, Telephone Circuit

电信 光电二极管 电信集成电路
文件: 总30页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TEA1062; TEA1062A  
Low voltage transmission circuits  
with dialler interface  
1997 Sep 03  
Product specification  
Supersedes data of 1996 Dec 04  
File under Integrated Circuits, IC03  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
FEATURES  
GENERAL DESCRIPTION  
Low DC line voltage; operates down to 1.6 V (excluding  
polarity guard)  
The TEA1062 and TEA1062A are integrated circuits that  
perform all speech and line interface functions required in  
fully electronic telephone sets. They perform electronic  
switching between dialling and speech. The ICs operate at  
line voltage down to 1.6 V DC (with reduced performance)  
to facilitate the use of more telephone sets connected in  
parallel.  
Voltage regulator with adjustable static resistance  
Provides a supply for external circuits  
Symmetrical high-impedance inputs (64 k) for  
dynamic, magnetic or piezoelectric microphones  
Asymmetrical high-impedance input (32 k) for electret  
microphones  
All statements and values refer to all versions unless  
otherwise specified.  
DTMF signal input with confidence tone  
Mute input for pulse or DTMF dialling  
– TEA1062: active HIGH (MUTE)  
– TEA1062A: active LOW (MUTE)  
Receiving amplifier for dynamic, magnetic or  
piezoelectric earpieces  
Large gain setting ranges on microphone and earpiece  
amplifiers  
Line loss compensation (line current dependent) for  
microphone and earpiece amplifiers  
Gain control curve adaptable to exchange supply  
DC line voltage adjustment facility.  
QUICK REFERENCE DATA  
SYMBOL  
VLN  
PARAMETER  
CONDITIONS  
Iline = 15 mA  
MIN.  
TYP. MAX. UNIT  
line voltage  
3.55  
4.0  
4.25  
V
Iline  
operating line current  
normal operation  
11  
1
140  
11  
mA  
mA  
mA  
with reduced performance  
internal supply current  
supply voltage for peripherals  
TEA1062  
ICC  
VCC = 2.8 V  
Iline = 15 mA  
0.9  
1.35  
VCC  
Ip = 1.2 mA; MUTE = HIGH 2.2  
Ip = 0 mA; MUTE = HIGH  
Ip = 1.2 mA; MUTE = LOW 2.2  
2.7  
3.4  
2.7  
3.4  
V
V
V
V
TEA1062A  
Ip = 0 mA; MUTE = LOW  
Gv  
voltage gain  
microphone amplifier  
receiving amplifier  
44  
52  
dB  
dB  
°C  
20  
31  
Tamb  
operating ambient temperature  
25  
+75  
Line loss compensation  
Gv  
gain control  
5.8  
dB  
V
Vexch  
Rexch  
exchange supply voltage  
exchange feeding bridge resistance  
36  
0.4  
60  
1
kΩ  
1997 Sep 03  
2
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
TEA1062  
DIP16  
DIP16  
plastic dual in-line package; 16 leads (300 mil)  
plastic dual in-line package; 16 leads (300 mil)  
SOT38-1  
TEA1062M1  
SOT38-4 or  
SOT38-9  
TEA1062A  
DIP16  
DIP16  
plastic dual in-line package; 16 leads (300 mil)  
plastic dual in-line package; 16 leads (300 mil)  
SOT38-1  
TEA1062AM1  
SOT38-4 or  
SOT38-9  
TEA1062T  
SO16  
SO16  
plastic small outline package; 16 leads; body width 3.9 mm  
plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
SOT109-1  
TEA1062AT  
BLOCK DIAGRAM  
V
LN  
1
CC  
13  
10  
5
IR  
GAR  
4
QR  
TEA1062A  
7
6
MIC  
2
3
GAS1  
GAS2  
MIC  
11  
12  
DTMF  
MUTE  
dB  
(1)  
SUPPLY AND  
REFERENCE  
CONTROL  
CURRENT  
LOW VOLTAGE  
CIRCUIT  
CURRENT  
REFERENCE  
9
14  
15  
8
16  
SLPE  
MBA359 - 1  
V
REG AGC  
STAB  
EE  
(1) Pin 12 is active HIGH (MUTE) for TEA1062.  
Fig.1 Block diagram for TEA1062A.  
1997 Sep 03  
3
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
PINNING  
SYMBOL  
LN  
PIN  
DESCRIPTION  
positive line terminal  
1
2
GAS1  
GAS2  
QR  
gain adjustment; transmitting  
amplifier  
handbook, halfpage  
3
4
5
gain adjustment; transmitting  
amplifier  
1
2
3
4
5
6
7
8
16 SLPE  
15 AGC  
LN  
GAS1  
GAS2  
QR  
non-inverting output; receiving  
amplifier  
14  
13  
12  
REG  
GAR  
gain adjustment; receiving  
amplifier  
V
CC  
TEA1062A  
GAR  
MIC  
MUTE  
MIC−  
MIC+  
STAB  
VEE  
6
inverting microphone input  
non-inverting microphone input  
current stabilizer  
11 DTMF  
10 IR  
7
8
MIC  
9
negative line terminal  
STAB  
9
V
EE  
IR  
10  
11  
12  
13  
14  
15  
16  
receiving amplifier input  
MBA354 - 1  
DTMF  
MUTE  
VCC  
dual-tone multi-frequency input  
mute input (see note 1)  
positive supply decoupling  
voltage regulator decoupling  
automatic gain control input  
slope (DC resistance) adjustment  
REG  
AGC  
SLPE  
Fig.2 Pin configuration for TEA1062A.  
Note  
1. Pin 12 is active HIGH (MUTE) for TEA1062.  
1997 Sep 03  
4
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
FUNCTIONAL DESCRIPTION  
Supplies VCC, LN, SLPE, REG and STAB  
LN  
Power for the IC and its peripheral circuits is usually  
obtained from the telephone line. The supply voltage is  
derived from the line via a dropping resistor and regulated  
by the IC. The supply voltage VCC may also be used to  
supply external circuits e.g. dialling and control circuits.  
handbook, halfpage  
L
R1  
V
R
eq  
V
p
REG  
CC  
ref  
Decoupling of the supply voltage is performed by a  
capacitor between VCC and VEE. The internal voltage  
regulator is decoupled by a capacitor between REG and  
R9  
20 Ω  
C3  
4.7 µF  
C1  
100 µF  
V
VEE  
.
EE  
MBA454  
The DC current flowing into the set is determined by the  
exchange supply voltage Vexch, the feeding bridge  
resistance Rexch and the DC resistance of the telephone  
Leq = C3 × R9 × Rp.  
Rp = 16.2 k.  
line Rline  
.
The circuit has an internal current stabilizer operating at a  
level determined by a 3.6 kresistor connected between  
STAB and VEE (see Fig.9). When the line current (Iline) is  
more than 0.5 mA greater than the sum of the IC supply  
current (ICC) and the current drawn by the peripheral  
circuitry connected to VCC (Ip) the excess current is  
shunted to VEE via LN.  
Fig.3 Equivalent impedance circuit.  
At line currents below 9 mA the internal reference voltage  
is automatically adjusted to a lower value (typically 1.6 V  
at 1 mA). This means that more sets can be operated in  
parallel with DC line voltages (excluding the polarity guard)  
down to an absolute minimum voltage of 1.6 V. At line  
currents below 9 mA the circuit has limited sending and  
receiving levels. The internal reference voltage can be  
adjusted by means of an external resistor (RVA).  
This resistor when connected between LN and REG will  
decrease the internal reference voltage and when  
connected between REG and SLPE will increase the  
internal reference voltage.  
The regulated voltage on the line terminal (VLN) can be  
calculated as:  
VLN = Vref + ISLPE × R9  
VLN = Vref + {(Iline ICC 0.5 × 103 A) Ip} × R9  
Vref is an internally generated temperature compensated  
reference voltage of 3.7 V and R9 is an external resistor  
connected between SLPE and VEE  
.
In normal use the value of R9 would be 20 .  
Current (Ip) available from VCC for peripheral circuits  
depends on the external components used. Fig.10 shows  
this current for VCC > 2.2 V. If MUTE is LOW (TEA1062) or  
MUTE is HIGH (TEA1062A) when the receiving amplifier  
is driven, the available current is further reduced. Current  
availability can be increased by connecting the supply IC  
(TEA1081) in parallel with R1 as shown in Fig.19 and  
Fig.20, or by increasing the DC line voltage by means of  
an external resistor (RVA) connected between REG and  
SLPE (Fig.18).  
Changing the value of R9 will also affect microphone gain,  
DTMF gain, gain control characteristics, sidetone level,  
maximum output swing on LN and the DC characteristics  
(especially at the lower voltages).  
Under normal conditions, when ISLPE >> ICC + 0.5 mA + Ip,  
the static behaviour of the circuit is that of a 3.7 V regulator  
diode with an internal resistance equal to that of R9. In the  
audio frequency range the dynamic impedance is largely  
determined by R1. Fig.3 shows the equivalent impedance  
of the circuit.  
1997 Sep 03  
5
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
Microphone inputs MIC+ and MICand gain pins  
Receiving amplifier IR, QR and GAR  
GAS1 and GAS2  
The receiving amplifier has one input (IR) and a  
non-inverting output (QR). Earpiece arrangements are  
illustrated in Fig.12. The IR to QR gain is typically 31 dB  
(when R4 = 100 k). It can be adjusted between  
20 and 31 dB to match the sensitivity of the transducer in  
use. The gain is set with the value of R4 which is  
connected between GAR and QR. The overall receive  
gain, between LN and QR, is calculated by subtracting the  
anti-sidetone network attenuation (32 dB) from the  
amplifier gain. Two external capacitors, C4 and C7, ensure  
stability. C4 is normally 100 pF and C7 is 10 times the  
value of C4. The value of C4 may be increased to obtain a  
first-order low-pass filter. The cut-off frequency will depend  
on the time constant R4 × C4.  
The circuit has symmetrical microphone inputs. Its input  
impedance is 64 k(2 × 32 k) and its voltage gain is  
typically 52 dB (when R7 = 68 k, see Figures 14  
and 15). Dynamic, magnetic, piezoelectric or electret (with  
built-in FET source followers) can be used. Microphone  
arrangements are illustrated in Fig.11.  
The gain of the microphone amplifier can be adjusted  
between 44 dB and 52 dB to suit the sensitivity of the  
transducer in use. The gain is proportional to the value of  
R7 which is connected between GAS1 and GAS2.  
Stability is ensured by two external capacitors, C6  
connected between GAS1 and SLPE and C8 connected  
between GAS1 and VEE. The value of C6 is 100 pF but this  
may be increased to obtain a first-order low-pass filter.  
The value of C8 is 10 times the value of C6. The cut-off  
frequency corresponds to the time constant R7 × C6.  
The output voltage of the receiving amplifier is specified for  
continuous-wave drive. The maximum output voltage will  
be higher under speech conditions where the peak to RMS  
ratio is higher.  
Input MUTE (TEA1062)  
Automatic Gain Control input AGC  
When MUTE is HIGH the DTMF input is enabled and the  
microphone and receiving amplifier inputs are inhibited.  
The reverse is true when MUTE is LOW or open-circuit.  
MUTE switching causes only negligible clicking on the line  
and earpiece output. If the number of parallel sets in use  
causes a drop in line current to below 6 mA the speech  
amplifiers remain active independent to the DC level  
applied to the MUTE input.  
Automatic line loss compensation is achieved by  
connecting a resistor (R6) between AGC and VEE  
.
The automatic gain control varies the gain of the  
microphone amplifier and the receiving amplifier in  
accordance with the DC line current. The control range is  
5.8 dB which corresponds to a line length of 5 km for a  
0.5 mm diameter twisted-pair copper cable with a DC  
resistance of 176 /km and average attenuation of  
1.2 dB/km). Resistor R6 should be chosen in accordance  
with the exchange supply voltage and its feeding bridge  
resistance (see Fig.13 and Table 1). The ratio of start and  
stop currents of the AGC curve is independent of the value  
of R6. If no automatic line-loss compensation is required  
the AGC pin may be left open-circuit. The amplifiers, in this  
condition, will give their maximum specified gain.  
Input MUTE (TEA1062A)  
When MUTE is LOW or open-circuit, the DTMF input is  
enabled and the microphone and receiving amplifier inputs  
are inhibited. The reverse is true when MUTE is HIGH.  
MUTE switching causes only negligible clicking on the line  
and earpiece output. If the number of parallel sets in use  
causes a drop in line current to below 6 mA the DTMF  
amplifier becomes active independent to the DC level  
applied to the MUTE input.  
Dual-tone multi-frequency input DTMF  
When the DTMF input is enabled dialling tones may be  
sent on to the line. The voltage gain from DTMF to LN is  
typically 25.5 dB (when R7 = 68 k) and varies with R7 in  
the same way as the microphone gain. The signalling  
tones can be heard in the earpiece at a low level  
(confidence tone).  
1997 Sep 03  
6
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
Sidetone suppression  
EXAMPLE  
The anti-sidetone network, R1//Zline, R2, R3, R8, R9 and  
Zbal, (see Fig.4) suppresses the transmitted signal in the  
earpiece. Maximum compensation is obtained when the  
following conditions are fulfilled:  
The balance impedance Zbal at which the optimum  
suppression is present can be calculated by:  
Suppose Zline = 210 + (1265 //140 nF) representing a  
5 km line of 0.5 mm diameter, copper, twisted-pair cable  
matched to 600 (176 /km; 38 nF/km).  
R8 × Zbal  
R9 × R2 = R1 × R3 +  
(1)  
------------------------  
R8 + Zbal  
When k = 0.64 then R8 = 390 ;  
Z
bal = 130 + (820 //220 nF).  
Zbal  
Z line  
-------------------------  
line + R1  
=
(2)  
------------------------  
Z
bal + R8  
Z
The anti-sidetone network for the TEA1060 family shown  
in Fig.4 attenuates the signal received from the line by  
32 dB before it enters the receiving amplifier.  
The attenuation is almost constant over the whole  
audio-frequency range.  
If fixed values are chosen for R1, R2, R3 and R9, then  
condition (1) will always be fulfilled when |R8//Zbal| << R3.  
To obtain optimum sidetone suppression, condition (2) has  
to be fulfilled which results in:  
Figure 5 shows a conventional Wheatstone bridge  
anti-sidetone circuit that can be used as an alternative.  
Both bridge types can be used with either resistive or  
complex set impedances. (More information on the  
balancing of anti-sidetone bridges can be obtained in our  
publication “Applications Handbook for Wired telecom  
systems, IC03b”, order number 9397 750 00811.)  
R8  
R1  
Z bal  
=
× Z  
= k × Zline  
line  
-------  
R8  
-------  
R1  
Where k is a scale factor; k =  
The scale factor k, dependent on the value of R8, is  
chosen to meet the following criteria:  
compatibility with a standard capacitor from the E6 or  
E12 range for Zbal  
Zbal//R8 << R3 fulfilling condition (a) and thus  
ensuring correct anti-sidetone bridge operation  
Zbal + R8 >> R9 to avoid influencing the transmit gain.  
In practise Zline varies considerably with the line type and  
length. The value chosen for Zbal should therefore be for  
an average line length thus giving optimum setting for  
short or long lines.  
1997 Sep 03  
7
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
LN  
R1  
R2  
Z
line  
IR  
i
m
V
R
EE  
t
R3  
Z
R9  
R8  
bal  
SLPE  
MSA500 - 1  
Fig.4 Equivalent circuit of TEA1060 family anti-sidetone bridge.  
LN  
o
Z
R1  
bal  
Z
line  
IR  
i
m
V
R
EE  
t
R9  
R8  
R
A
SLPE  
MSA501 - 1  
Fig.5 Equivalent circuit of an anti-sidetone network in a Wheatstone bridge configuration.  
8
1997 Sep 03  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VLN  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
positive continuous line voltage  
12  
V
VLN(R)  
repetitive line voltage during switch-on  
or line interruption  
13.2  
V
VLN(RM)  
repetitive peak line voltage for a 1 ms  
pulse per 5 s  
R9 = 20 ; R10 = 13 ;  
see Fig.18  
28  
V
Iline  
VI  
line current  
R9 = 20 ; note 1  
140  
mA  
V
input voltage on all other pins  
positive input voltage  
negative input voltage  
R9 = 20 ; note 2  
VCC + 0.7  
0.7  
V
Ptot  
total power dissipation  
TEA1062; TEA1062A  
666  
617  
454  
+75  
+125  
125  
mW  
mW  
mW  
°C  
TEA1062M1; TEA1062AM1  
TEA1062T; TEA1062AT  
operating ambient temperature  
storage temperature  
Tamb  
Tstg  
Tj  
25  
40  
°C  
junction temperature  
°C  
Notes  
1. Mostly dependent on the maximum required Tamb and on the voltage between LN and SLPE (see Figs 6, 7 and 8).  
2. Calculated for the maximum ambient temperature specified (Tamb = 75 °C) and a maximum junction temperature of  
125 °C.  
HANDLING  
This device meets class 2 ESD test requirements [Human Body Model (HBM)], in accordance with  
“MIL STD 883C - method 3015”.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
Rth j-a  
thermal resistance from junction to ambient in free air  
TEA1062; TEA1062A  
75  
81  
K/W  
K/W  
K/W  
TEA1062M1; TEA1062AM1  
TEA1062T; TEA1062AT (note 1)  
110  
Note  
1. Mounted on glass epoxy board 28.5 × 19.1 × 1.5 mm.  
1997 Sep 03  
9
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
MLC200  
MLC201  
150  
150  
handbook, halfpage  
handbook, halfpage  
I
I
LN  
LN  
(mA)  
130  
(mA)  
130  
(1)  
110  
90  
110  
90  
(1)  
(2)  
(2)  
(3)  
(4)  
(3)  
(4)  
70  
70  
50  
30  
50  
30  
2
2
4
6
8
10  
12  
4
6
8
10  
12  
V
(V)  
V
(V)  
V
V
LN  
SLPE  
LN  
SLPE  
(1) Tamb = 45 °C; Ptot = 1068 mW.  
(2) Tamb = 55 °C; Ptot = 934 mW.  
(3) Tamb = 65 °C; Ptot = 800 mW.  
(4) Tamb = 75 °C; Ptot = 666 mW.  
(1) Tamb = 45 °C; Ptot = 988 mW.  
(2) Tamb = 55 °C; Ptot = 864 mW.  
(3) Tamb = 65 °C; Ptot = 741 mW.  
(4) Tamb = 75 °C; Ptot = 617 mW.  
Fig.6 TEA1062 and TEA1062A safe operating  
area.  
Fig.7 TEA1062M1 and TEA1062AM1 safe  
operating area.  
MLC202  
150  
handbook, halfpage  
I
LN  
(mA)  
130  
110  
90  
(1)  
(2)  
(3)  
(4)  
70  
50  
30  
2
4
6
8
10  
12  
V
(V)  
V
LN  
SLPE  
(1) Tamb = 45 °C; Ptot = 727 mW.  
(2) Tamb = 55 °C; Ptot = 636 mW.  
(3) Tamb = 65 °C; Ptot = 545 mW.  
(4) Tamb = 75 °C; Ptot = 454 mW.  
Fig.8 TEA1062T and TEA1062AT safe operating  
area.  
1997 Sep 03  
10  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
CHARACTERISTICS  
Iline = 11 to 140 mA; VEE = 0 V; f = 800 Hz; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
Supplies LN and VCC (pins 1 and 13)  
VLN voltage drop over circuit between LN  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
MIC inputs open-circuit  
and VEE  
I
line = 1 mA  
1.6  
1.9  
4.0  
5.7  
V
Iline = 4 mA  
V
Iline = 15 mA  
3.55  
4.9  
4.25  
6.5  
7.5  
V
I
I
line = 100 mA  
line = 140 mA  
V
V
VLN/T variation with temperature  
Iline = 15 mA  
Iline = 15 mA  
0.3  
mV/K  
VLN  
voltage drop over circuit between LN  
and VEE with external resistor RVA  
R
VA (LN to REG) = 68 kΩ  
3.5  
4.5  
0.9  
V
RVA (REG to SLPE) = 39 kΩ −  
V
ICC  
supply current  
VCC = 2.8 V  
1.35  
mA  
VCC  
supply voltage available for peripheral  
circuitry  
Iline = 15 mA; MUTE = HIGH  
TEA1062  
Ip = 1.2 mA  
2.2  
2.7  
3.4  
V
V
Ip = 0 mA  
VCC  
supply voltage available for peripheral  
circuitry  
Iline = 15 mA; MUTE = LOW  
TEA1062A  
Ip = 1.2 mA  
Ip = 0 mA  
2.2  
2.7  
3.4  
V
V
Microphone inputs MICand MIC+ (pins 6 and 7)  
Zi  
input impedance  
differential  
between MICand MIC+  
MICor MIC+ to VEE  
64  
kΩ  
kΩ  
dB  
dB  
dB  
single-ended  
32  
CMRR  
Gv  
common mode rejection ratio  
voltage gain MIC+ or MICto LN  
82  
Iline = 15 mA; R7 = 68 kΩ  
50.5  
52.0  
±0.2  
53.5  
Gvf  
gain variation with frequency  
referenced to 800 Hz  
f = 300 and 3400 Hz  
GvT  
gain variation with temperature  
without R6; Iline = 50 mA;  
±0.2  
dB  
referenced to 25 °C  
Tamb = 25 and +75 °C  
DTMF input (pin 11)  
|Zi|  
input impedance  
20.7  
25.5  
±0.2  
kΩ  
dB  
dB  
Gv  
voltage gain from DTMF to LN  
Iline = 15 mA; R7 = 68 kΩ  
24.0  
27.0  
Gvf  
gain variation with frequency  
referenced to 800 Hz  
f = 300 and 3400 Hz  
GvT  
gain variation with temperature  
Iline = 50 mA;  
±0.2  
dB  
referenced to 25 °C  
Tamb = 25 and +75 °C  
1997 Sep 03  
11  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Gain adjustment inputs GAS1 and GAS2 (pins 2 and 3)  
Gv  
transmitting amplifier gain variation by  
adjustment of R7 between  
GAS1 and GAS2  
8  
0
dB  
Sending amplifier output LN (pin 1)  
VLN(rms)  
output voltage (RMS value)  
THD = 10%  
I
I
line = 4 mA  
line = 15 mA  
0.8  
2.3  
69  
V
1.7  
V
Vno(rms)  
noise output voltage (RMS value)  
Iline = 15 mA; R7 = 68 k;  
200 between MICand  
MIC+; psophometrically  
weighted (P53 curve)  
dBmp  
Receiving amplifier input IR (pin 10)  
Zi input impedance  
Receiving amplifier output QR (pin 4)  
21  
kΩ  
Zo  
Gv  
output impedance  
4
voltage gain from IR to QR  
Iline = 15 mA; RL = 300 Ω  
29.5  
31  
32.5  
dB  
(from pin 9 to pin 4)  
Gvf  
gain variation with frequency  
referenced to 800 Hz  
f = 300 and 3400 Hz  
±0.2  
±0.2  
dB  
dB  
GvT  
Vo(rms)  
gain variation with temperature  
referenced to 25 °C  
without R6; Iline = 50 mA;  
Tamb = 25 and +75 °C  
output voltage (RMS value)  
THD = 2%; sine wave drive;  
R4 = 100 k; Iline = 15 mA;  
Ip = 0 mA  
RL = 150 Ω  
RL = 450 Ω  
0.22  
0.3  
0.33  
0.48  
15  
V
V
Vo(rms)  
output voltage (RMS value)  
THD = 10%; R4 = 100 k;  
RL = 150 ; Iline = 4 mA  
mV  
Vno(rms)  
noise output voltage (RMS value)  
Iline = 15 mA; R4 = 100 k;  
IR open-circuit  
50  
µV  
psophometrically weighted  
(P53 curve); RL = 300 Ω  
Gain adjustment input GAR (pin 5)  
Gv receiving amplifier gain variation by  
adjustment of R4 between GAR and QR  
Mute input (pin 12)  
11  
0
dB  
VIH  
HIGH level input voltage  
1.5  
8
VCC  
0.3  
15  
V
VIL  
LOW level input voltage  
input current  
V
IMUTE  
µA  
1997 Sep 03  
12  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Reduction of gain  
Gv  
MIC+ or MICto LN  
TEA1062  
MUTE = HIGH  
70  
70  
dB  
dB  
TEA1062A  
MUTE = LOW  
Gv  
voltage gain from DTMF to QR  
TEA1062  
R4 = 100 k; RL = 300 Ω  
MUTE = HIGH  
17  
17  
dB  
dB  
TEA1062A  
MUTE = LOW  
Automatic gain control input AGC (pin 15)  
Gv  
controlling the gain from IR to QR  
R6 = 110 kΩ  
and the gain from MIC+, MICto LN  
(between AGC and VEE  
Iline = 70 mA  
)
gain control range  
5.8  
23  
dB  
IlineH  
IlineL  
highest line current for maximum gain  
lowest line current for minimum gain  
mA  
mA  
61  
R
I
line  
line  
0.5 mA  
R1  
I
I
CC  
SLPE  
LN  
V
TEA1062  
CC  
TEA1062A  
R
I
p
exch  
DC  
AC  
0.5 mA  
peripheral  
circuits  
C1  
V
exch  
V
REG  
C3  
STAB  
SLPE  
R9  
EE  
I
SLPE  
R5  
MBA357 - 1  
Fig.9 Supply arrangement.  
1997 Sep 03  
13  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
MSA504  
2.4  
handbook, halfpage  
(1)  
I
p
(mA)  
(2)  
1.6  
0.8  
0
0
1
2
3
4
V
(V)  
CC  
The supply possibilities can be increased by setting the voltage drop over the circuit VLN to a higher value by resistor RVA connected between REG and  
SLPE.  
VCC > 2.2 V; Iline = 15 mA at VLN = 4 V; R1 = 620 ; R9 = 20 .  
(1) Ip = 2.1 mA. Is valid when the receiving amplifier is not driven or when MUTE = HIGH (TEA1062), MUTE = LOW (TEA1062A).  
(2) Ip = 1.7 mA. Is valid when MUTE = LOW (TEA1062), MUTE = HIGH (TEA1062A) and the receiving amplifier is driven; Vo(rms) = 150 mV,  
RL = 150 Ω.  
Fig.10 Typical current Ip available from VCC for peripheral circuitry.  
1997 Sep 03  
14  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
a
13  
V
7
CC  
MIC  
6
7
7
MIC  
MIC  
(1)  
6
MIC  
6
MIC  
MIC  
V
EE  
9
MSA505  
(a)  
(b)  
(c)  
(a) Magnetic or dynamic microphone.  
(b) Electret microphone.  
(c) Piezoelectric microphone.  
(1) Resistor may be connected to reduce the terminating impedance.  
Fig.11 Alternative microphone arrangements.  
h
(1)  
4
(2)  
4
4
9
QR  
EE  
QR  
QR  
9
9
V
V
V
EE  
EE  
MSA506  
(a)  
(b)  
(c)  
(a) Dynamic earpiece.  
(b) Magnetic earpiece.  
(c) Piezoelectric earpiece.  
(1) Resistor may be connected to prevent distortion (inductive load).  
(2) Resistor is required to increase the phase margin (capacitive load).  
Fig.12 Alternative receiver arrangements.  
15  
1997 Sep 03  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
0
MSA507 - 1  
R6 =  
G  
v
(dB)  
2
4
78.7 k110 k140 kΩ  
6
0
20  
40  
60  
80  
100  
120  
140  
(mA)  
I
line  
R9 = 20 Ω.  
Fig.13 Variation of gain as a function of line current with R6 as a parameter.  
Table 1 Values of resistor R6 for optimum line-loss compensation at various values of exchange supply voltage  
(Vexch) and exchange feeding bridge resistance (Rexch); R9 = 20 .  
R6 (k)  
Vexch (V)  
Rexch = 400 Ω  
Rexch = 600 Ω  
Rexch = 800 Ω  
Rexch = 1000 Ω  
36  
48  
60  
100  
140  
78.7  
110  
93.1  
120  
82  
102  
1997 Sep 03  
16  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
I
R1  
line  
620 Ω  
13  
1
LN  
10  
7
V
CC  
100 µF  
IR  
V
R
600 Ω  
o
L
MIC  
4
QR  
V
i
C4  
100 pF  
6
R4  
100 kΩ  
MIC  
5
2
GAR  
11  
12  
TEA1062  
100 µF  
DTMF  
MUTE  
C7 1 nF  
C1  
GAS1  
10 to 140 mA  
C8  
1 nF  
R7  
68 kΩ  
10 µF  
3
C6  
GAS2  
V
i
100 pF  
V
EE REG AGC STAB SLPE  
9
14  
15  
8
16  
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MSA508  
Voltage gain is defined as Gv = 20 log Vo/Vi .  
For measuring gain from MIC+ and MICthe MUTE input should be LOW or open-circuit.  
For measuring the DTMF input, the MUTE input should be HIGH.  
Inputs not being tested should be open-circuit.  
Fig.14 Test circuit for defining TEA1062 voltage gain of MIC+, MICand DTMF inputs.  
1997 Sep 03  
17  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
I
R1  
line  
620 Ω  
13  
1
LN  
10  
7
V
CC  
100 µF  
IR  
V
R
600 Ω  
o
L
MIC  
4
QR  
V
i
C4  
100 pF  
6
R4  
100 kΩ  
MIC  
5
2
GAR  
TEA1062A  
11  
12  
100 µF  
DTMF  
MUTE  
C7 1 nF  
C1  
GAS1  
10 to 140 mA  
C8  
1 nF  
R7  
68 kΩ  
10 µF  
3
C6  
100 pF  
GAS2  
V
i
V
EE REG AGC STAB SLPE  
9
16  
14  
15  
8
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MBA355  
Voltage gain is defined as Gv = 20 log Vo/Vi .  
For measuring gain from MIC+ and MICthe MUTE input should be HIGH.  
For measuring the DTMF input, the MUTE input should be LOW or open-circuit.  
Inputs not being tested should be open-circuit.  
Fig.15 Test circuit for defining TEA1062A voltage gain of MIC+, MICand DTMF inputs.  
1997 Sep 03  
18  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
I
R1  
line  
620 Ω  
13  
1
100 µF  
600 Ω  
LN  
10  
7
V
CC  
IR  
C2  
Z
L
4
QR  
MIC  
V
o
10 µF  
V
6
i
R4  
100  
C4  
100 pF  
MIC  
kΩ  
5
2
TEA1062  
11  
12  
GAR  
DTMF  
MUTE  
C7 1 nF  
C1  
100 µF  
GAS1  
10 to 140 mA  
C8  
1 nF  
R7  
3
C6  
100 pF  
GAS2  
V
EE REG AGC STAB SLPE  
9
14  
15  
8
16  
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MSA509  
Voltage gain is defined as Gv = 20 log Vo/Vi .  
Fig.16 Test circuit for defining TEA1062 voltage gain of the receiving amplifier.  
I
R1  
line  
620 Ω  
13  
1
100 µF  
LN  
10  
7
V
CC  
IR  
600 Ω  
C2  
Z
L
4
QR  
MIC  
V
o
10 µF  
V
6
i
C4  
100 pF  
R4  
100  
MIC  
kΩ  
5
2
TEA1062A  
11  
12  
GAR  
DTMF  
MUTE  
C7 1 nF  
C1  
100 µF  
GAS1  
10 to 140 mA  
C8  
1 nF  
R7  
3
C6  
100 pF  
GAS2  
V
EE REG AGC STAB SLPE  
9
14  
15  
8
16  
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MBA356  
Voltage gain is defined as Gv = 20 log Vo/Vi .  
Fig.17 Test circuit for defining TEA1062A voltage gain of the receiving amplifier.  
19  
1997 Sep 03  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
APPLICATION INFORMATION  
BMA35-81  
a n f u l l p a g e w i d t h  
A“paHnkWfirdcolety,smI3C0b”  
1997 Sep 03  
20  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
R1  
620 Ω  
V
LN  
V
CC  
DD  
DTMF  
TONE  
cradle  
contact  
TEA1062  
M1  
PCD3310  
MUTE  
DP/FLO  
V
V
EE  
SS  
telephone  
line  
BSN254A  
MLC203  
(a) DTMF pulse set with CMOS bilingual dialling circuit PCD3310. The dashed line shows an optional flash (register recall by timed loop break).  
Fig.19 Typical simplified application of the TEA1062.  
R1  
620 Ω  
V
LN  
V
CC  
DD  
DTMF  
TONE  
cradle  
contact  
TEA1062A  
M1  
PCD3310T  
DP/FLO  
MUTE  
V
V
EE  
SS  
telephone  
line  
BSN254A  
MLC204  
(a) DTMF pulse set with CMOS bilingual dialling circuit PCD3310T. The dashed line shows an optional flash (register recall by timed loop break).  
Fig.20 Typical simplified application of the TEA1062A.  
1997 Sep 03  
21  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
PACKAGE OUTLINES  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-10-02  
95-01-19  
SOT38-1  
050G09  
MO-001AE  
1997 Sep 03  
22  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
b
2
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.30  
0.53  
0.38  
1.25  
0.85  
0.36  
0.23  
19.50  
18.55  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
0.76  
0.068 0.021 0.049 0.014  
0.051 0.015 0.033 0.009  
0.77  
0.73  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.030  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-14  
SOT38-4  
1997 Sep 03  
23  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-9  
M
E
D
A
2
A
A
L
1
c
e
b
1
w M  
Z
(e )  
1
M
H
b
b
2
16  
9
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (mm dimensions are derived from the original inch dimensions)  
(1)  
Z
A
min.  
A
2
A
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
1
2
E
max.  
max.  
max.  
1.65  
1.40  
0.51  
0.41  
1.14  
0.76  
0.36  
0.20  
19.30  
18.80  
6.45  
6.24  
3.81  
2.92  
8.23  
7.62  
9.40  
8.38  
4.32  
0.17  
0.38  
3.56  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
0.76  
0.065 0.020 0.045 0.014  
0.055 0.016 0.030 0.008  
0.76  
0.74  
0.254  
0.246  
0.150 0.324  
0.115 0.300  
0.37  
0.33  
inches  
0.015  
0.14  
0.030  
Note  
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-07-24  
SOT38-9  
1997 Sep 03  
24  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
c
y
H
v
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-23  
97-05-22  
SOT109-1  
076E07S  
MS-012AC  
1997 Sep 03  
25  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
SOLDERING  
BY SOLDER PASTE REFLOW  
Reflow soldering requires the solder paste (a suspension  
of fine solder particles, flux and binding agent) to be  
applied to the substrate by screen printing, stencilling or  
pressure-syringe dispensing before device placement.  
Plastic dual in-line packages  
BY DIP OR WAVE  
The maximum permissible temperature of the solder is  
260 °C; this temperature must not be in contact with the  
joint for more than 5 s. The total contact time of successive  
solder waves must not exceed 5 s.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt, infrared, and  
vapour-phase reflow. Dwell times vary between 50 and  
300 s according to method. Typical reflow temperatures  
range from 215 to 250 °C.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified storage maximum. If the printed-circuit board has  
been pre-heated, forced cooling may be necessary  
immediately after soldering to keep the temperature within  
the permissible limit.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 min at 45 °C.  
REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING  
IRON OR PULSE-HEATED SOLDER TOOL)  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two, diagonally  
opposite, end pins. Apply the heating tool to the flat part of  
the pin only. Contact time must be limited to 10 s at up to  
300 °C. When using proper tools, all other pins can be  
soldered in one operation within 2 to 5 s at between 270  
and 320 °C. (Pulse-heated soldering is not recommended  
for SO packages.)  
Apply the soldering iron below the seating plane (or not  
more than 2 mm above it). If its temperature is below  
300 °C, it must not be in contact for more than 10 s; if  
between 300 and 400 °C, for not more than 5 s.  
Plastic small-outline packages  
BY WAVE  
For pulse-heated solder tool (resistance) soldering of VSO  
packages, solder is applied to the substrate by dipping or  
by an extra thick tin/lead plating before package  
placement.  
During placement and before soldering, the component  
must be fixed with a droplet of adhesive. After curing the  
adhesive, the component can be soldered. The adhesive  
can be applied by screen printing, pin transfer or syringe  
dispensing.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder bath is  
10 s, if allowed to cool to less than 150 °C within 6 s.  
Typical dwell time is 4 s at 250 °C.  
A modified wave soldering technique is recommended  
using two solder waves (dual-wave), in which a turbulent  
wave with high upward pressure is followed by a smooth  
laminar wave. Using a mildly-activated flux eliminates the  
need for removal of corrosive residues in most  
applications.  
1997 Sep 03  
26  
Philips Semiconductors  
Product specification  
Low voltage transmission circuits with  
dialler interface  
TEA1062; TEA1062A  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1997 Sep 03  
27  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 247 9145, Fax. +7 095 247 9144  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 1949  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580/xxx  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,  
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,  
TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1996  
SCA52  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
417027/1200/05/pp28  
Date of release: 1997 Sep 03  
Document order number: 9397 750 02819  
Go to Philips Semiconductors' home page  
Select & Go...  
Catalog  
& Datasheets  
Information as of 2000-08-19  
Catalog by Function  
Discrete semiconductors  
Audio  
TEA1062; TEA1062A; Low voltage transmission circuits with dialler interface  
Clocks and Watches  
Data communications  
Microcontrollers  
Peripherals  
Standard analog  
Video  
Subscribe  
to eNews  
Description  
Features  
Datasheet  
Products, packages, availability and ordering  
Find similar products  
To be kept informed on TEA1062; TEA1062A,  
subscribe to eNews.  
Wired communications  
Wireless communications  
Description  
Catalog by System  
Automotive  
Consumer Multimedia  
Systems  
Communications  
The TEA1062 and TEA1062A are integrated circuits that perform all speech and line interface functions required in fully electronic  
telephone sets. They perform electronic switching between dialling and speech. The ICs operate at line voltage down to 1.6 V DC (with  
reduced performance) to facilitate the use of more telephone sets connected in parallel.  
PC/PC-peripherals  
Cross reference  
All statements and values refer to all versions unless otherwise specified.  
Models  
Packages  
Application notes  
Selection guides  
Other technical documentation  
End of Life information  
Datahandbook system  
Features  
l Low DC line voltage; operates down to 1.6 V (excluding polarity guard)  
l Voltage regulator with adjustable static resistance  
l Provides a supply for external circuits  
l Symmetrical high-impedance inputs (64 kW) for dynamic, magnetic or piezoelectric microphones  
l Asymmetrical high-impedance input (32 kW) for electret microphones  
l DTMF signal input with confidence tone  
l Mute input for pulse or DTMF dialling  
- TEA1062: active HIGH (MUTE)  
- TEA1062A: active LOW (MUTE)  
l Receiving amplifier for dynamic, magnetic or piezoelectric earpieces  
l Large gain setting ranges on microphone and earpiece amplifiers  
l Line loss compensation (line current dependent) for microphone and earpiece amplifiers  
l Gain control curve adaptable to exchange supply  
Relevant Links  
About catalog tree  
About search  
About this site  
Subscribe to eNews  
Catalog & Datasheets  
Search  
TEA1062; TEA1062A  
TEA1062; TEA1062A  
l DC line voltage adjustment facility.  
Datasheet  
File  
size  
(kB)  
Publication  
release date Datasheet status  
Page  
count  
Type nr.  
Title  
Datasheet  
Download  
TEA1062; TEA1062A Low voltage transmission circuits with 03-Sep-97  
dialler interface  
Product  
Specification  
28  
211  
Products, packages, availability and ordering  
North American  
Partnumber  
Order code  
(12nc)  
Partnumber  
marking/packing  
package device status buy online  
TEA1062/C4  
9350 787 40112 Standard Marking * Bulk Pack SOT38 Full production  
9351 512 50112 Standard Marking * Bulk Pack SOT38 Full production  
9350 792 30112 Standard Marking * Bulk Pack SOT38 Full production  
9352 301 90112 Standard Marking * Bulk Pack SOT38 Full production  
9350 832 20112 Standard Marking * Bulk Pack SOT109 Full production  
Standard Marking * Reel Pack,  
-
-
TEA1062/C4/M1  
TEA1062A/C4  
TEA1062A/C4/M1  
TEA1062AT/C4  
TEA1062AN  
-
TEA1062ATD  
TEA1062ATD-T  
TEA1062TD  
9350 832 20118  
SOT109 Full production  
SMD, 13"  
TEA1062T/C4  
9350 832 10112 Standard Marking * Bulk Pack SOT109 Full production  
Standard Marking * Reel Pack,  
SMD, 13"  
TEA1062TD-T  
9350 832 10118  
SOT109 Full production  
Please read information about some discontinued variants of this product.  
Find similar products:  
TEA1062; TEA1062A links to the similar products page containing an overview of products that are similar in function or related to  
the part number(s) as listed on this page. The similar products page includes products from the same catalog tree(s) , relevant selection  
guides and products from the same functional category.  
Copyright © 2000  
Royal Philips Electronics  
All rights reserved.  
Terms and conditions.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY