PI6C39911-2 [PERICOM]

Clock IC | 250ps Accuracy. 3.3V. LVTTL. 3.75 to 110 MHz ; 时钟IC | 250PS精度。 3.3V 。 LVTTL 。 3.75至110 MHz的
PI6C39911-2
型号: PI6C39911-2
厂家: PERICOM SEMICONDUCTOR CORPORATION    PERICOM SEMICONDUCTOR CORPORATION
描述:

Clock IC | 250ps Accuracy. 3.3V. LVTTL. 3.75 to 110 MHz
时钟IC | 250PS精度。 3.3V 。 LVTTL 。 3.75至110 MHz的

逻辑集成电路 驱动 时钟
文件: 总11页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PI6C39911  
3.3V High Speed LVTTL or Balanced Output  
Programmable Skew Clock Buffer - SuperClock®  
Features  
Description  
• All output pair skew <100ps typical (250 Max.)  
• 12.5 MHz to 133 MHz output operation  
The PI6C39911 offers selectable control over system clock func-  
tions. These multiple-output clock drivers provide the system  
integrator with functions necessary to optimize the timing  
• 3.125 MHz to 133 MHz input operation (input as low as 3.125  
of high-performance computer systems. Eight individual drivers,  
arranged as four pairs of user-controllable outputs, can each drive  
terminated transmission lines with impedances as low as 50-Ohms  
whiledeliveringminimalandspecifiedoutputskewsandfull-swing  
logiclevels.  
MHzfor4xoperation,or6.25MHzfor2xoperation)  
• User-selectable output functions  
— Selectable skew to 18ns  
— Inverted and non-inverted  
— Operation at ½ and ¼ input frequency  
— Operation at 2X and 4X input frequency  
• Zero input-to-output delay  
• 50% duty-cycle outputs  
• Inputs are 5V Tolerant  
• LVTTLoutputsdrive50-Ohmterminatedlines  
• Operates from a single 3.3V supply  
• Low operating current  
• 32-pinPLCCpackage  
• Jitter < 200ps peak-to-peak (< 25ps RMS)  
Each output can be hardwired to one of nine skews or function  
configurations. Delay increments of 0.7ns to 1.5ns are determined  
by the operating frequency with outputs able to skew up to ±6 time  
units from their nominal “zero” skew position. The completely  
integrated PLL allows external load and transmission line delay  
effects to be canceled. The user can create output-to-output skew  
of up to ±12 time units.  
Divide-by-two and divide-by-four output functions are provided  
foradditionalflexibilityindesigningcomplexclocksystems.When  
combinedwiththeinternalPLL,thesedividefunctionsallowdistri-  
butionofalow-frequencyclockthatcanbemultipliedbytwoorfour  
attheclockdestination.This feature allows flexibility and simpli-  
fies system timing distribution design for complex high-speed  
systems.  
PinConfiguration  
LogicBlockDiagram  
Test  
Phase  
Freq.  
DET  
VCO and  
Time Unit  
Generator  
FB  
Filter  
REF  
FS  
4
3
2
1
32 31 30  
5
29  
28  
27  
26  
25  
24  
23  
22  
21  
3F1  
4F0  
4F1  
2F0  
GND  
1F1  
1F0  
6
7
4Q0  
4Q1  
4F0  
4F1  
32 Pin  
J
8
V
CCQ  
Select Inputs  
(three level)  
9
V
V
CCN  
4Q1  
CCN  
Skew  
10  
11  
12  
13  
1Q0  
1Q1  
GND  
GND  
3Q0  
3Q1  
3F0  
3F1  
4Q0  
Select  
GND  
GND  
2Q0  
2Q1  
2F0  
2F1  
14 15 16 17 18 19 20  
Matrix  
1Q0  
1Q1  
1F0  
1F1  
PS8497E  
09/13/02  
1
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
PinDescriptions  
Signal  
I/O  
Description  
Name  
REF  
I
I
Reference frequency input supplies the frequency and timing against which all functional variation is measured.  
PLL feedback input (typically connected to one of the eight outputs)  
Three-level frequency range select. see Table 1.  
FB  
FS  
I
1F0, 1F1  
2F0, 2F1  
3F0, 3F1  
4F0, 4F1  
TEST  
I
Three-level function select inputs for output pair 1 (1Q0, 1Q1). see Table 2.  
Three-level function select inputs for output pair 2 (2Q0, 2Q1). see Table 2.  
Three-level function select inputs for output pair 3 (3Q0, 3Q1). see Table 2.  
Three-level function select inputs for output pair 4 (4Q0, 4Q1). see Table 2.  
Three-level select. See test mode section under the block diagram descriptions  
Output pair 1. see Table 2  
I
I
I
I
1Q0, 1Q1  
2Q0, 2Q1  
3Q0, 3Q1  
4Q0, 4Q1  
O
O
O
O
Output pair 2. see Table 2  
Output pair 3. see Table 2  
Output pair 4. see Table 2  
V
PWR Power supply for output drivers  
PWR Power supply for internal circuitry  
PWR Ground  
CCN  
V
CCQ  
GND  
(1)  
(1)  
Table2.ProgrammableSkewConfigurations  
Function Selects Output Functions  
Table1.FrequencyRangeSelectandt Calculation  
U
1
tU  
=
Approximate  
Freq. (MHz) at  
which tU = 1.0ns  
FNOM (MHz)  
fNOM × N  
FS(1,2)  
1F1, 2F1,  
1F0, 2F0,  
3F0, 4F0  
LOW  
MID  
HIGH  
LOW  
MID  
1Q0, 1Q1,  
2Q0, 2Q1  
3Q0, 3Q1 4Q0, 4Q1  
3F1, 4F1  
LOW  
LOW  
LOW  
MID  
where N=  
Min.  
12.5  
25  
Max.  
30  
–4t  
–3t  
–2t  
–1t  
Divide by 2 Divide by 2  
U
U
U
U
LOW  
MID  
44  
26  
16  
22.7  
38.5  
62.5  
–6t  
–4t  
–2t  
–6t  
–4t  
–2t  
U
U
U
U
U
U
50  
HIGH  
40  
133  
MID  
0t  
U
0t  
U
0t  
U
MID  
HIGH  
LOW  
MID  
+1t  
+2t  
+3t  
+4t  
+2t  
+4t  
+6t  
+2t  
+4t  
+6t  
U
U
U
U
U
U
U
U
U
U
HIGH  
HIGH  
HIGH  
HIGH  
Divide by 4 Inverted  
Notes:  
1. For all three-state inputs, HIGH indicates a connection to V , LOW indicates a connection to GND, and MID indicates an open  
CC  
connection. Internal termination circuitry holds an unconnected input to V /2.  
CC  
NOM  
2.TheleveltobesetonFSisdeterminedbythenormaloperatingfrequency(f  
)andTimeUnitGenerator(seeLogicBlockDiagram).  
Nominal frequency (f  
) always appears at 1Q0 and the other outputs when they are operated in their undivided modes (see Table  
NOM  
2). The frequency appearing at the REF and FB inputs will be f  
when the output connected to FB is undivided. The frequency  
NOM  
oftheREFandFBinputswillbef  
as the FB input.  
/2orf  
/4whenthepartisconfiguredforafrequencymultiplicationbyusingadividedoutput  
NOM  
NOM  
PS8497E  
09/13/02  
2
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Test Mode  
MaximumRatings  
TheTESTinputisathree-levelinput. Innormalsystemoperation,  
thispinisconnectedtoground, allowingthePI6C39911 tooperate  
as explained briefly above (for testing purposes, any of the three  
levelinputscanhavearemovablejumpertoground,orbetiedLOW  
through a 100 Ohm resistor. This will allow an external tester to  
change the state of these pins.)  
IftheTESTinputisforcedtoitsMIDorHIGHstate,thedevicewill  
operatewithitsinternalphaselockedloopdisconnected,andinput  
levels supplied to REF will directly control all outputs. Relative  
output to output functions are the same as in normal mode.  
Storage Temperature ..................................... –65°Cto+150°C  
AmbientTemperaturewith  
Power Applied ............................................... –55°Cto+125°C  
Supply Voltage to Ground Potential ................ –0.5Vto+5.0V  
DC Input Voltage .............................................. –0.5Vto+5.0V  
Output Current into Outputs (LOW) .............................. 64mA  
StaticDischargeVoltage ............................................... >2001V  
(perMIL-STD-883,Method3015)  
In contrast with normal operation (TEST tied LOW). All outputs  
will function based only on the connection of their own function  
selectinputs(xF0andxF1)andthewaveformcharacteristicsofthe  
REFinput.  
Latch-UpCurrent .........................................................>200mA  
(2,3)  
MaximumPowerDissipationatT =85°C  
.............. 0.80watts  
A
OperatingRange  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
V
CC  
3.3V ±10%  
3.3V ±10%  
–40°C to +85°C  
FB Input  
REF Input  
1Fx  
3Fx  
4Fx  
2Fx  
(N/A)  
LL  
LM  
LH  
–6tU  
–4tU  
–3tU  
–2tU  
–1tU  
0tU  
LM (N/A)  
LH ML  
ML (N/A)  
MM MM  
MH  
HL  
(N/A) +1tU  
MH +2tU  
(N/A) +3tU  
HM  
HH  
HL  
+4tU  
+6tU  
(N/A)  
HM  
(N/A) LL/HH Divided  
(N/A) HH Invert  
(3)  
Figure1.TypicalOutputswithFBConnectedtoaZero-SkewOutput  
Note:  
3. FB connected to an output selected for “zero” skew (i.e., xF1 = xF0 = MID)  
PS8497E  
09/13/02  
3
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Capacitance(6)  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1MHz, V = 3.3V  
Max.  
Units  
C
Input Capacitance  
10  
pF  
IN  
A
CC  
ElectricalCharacteristics(OvertheOperatingRange)  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Units  
VOH  
Output HIGH Voltage  
Output LOW Voltage  
VCC = Min., IOH = –18mA  
VCC = Min., IOL = 35mA  
2.4  
VOL  
0.45  
VCC  
Input HIGH Voltage  
VIH  
VIL  
2.0  
(REF and FB inputs only)  
Input LOW Voltage  
(REF and FB inputs only)  
–0.5  
0.8  
V
Three-Level Input HIGH Voltage  
VIHH  
VIMM  
VILL  
IIH  
Min. VCC Max.  
0.87 VCC VCC  
(Test, FS, xFn)(4)  
Three-Level Input MID Voltage  
(Test, FS, xFn)(4)  
Min. VCC Max.  
0.47 VCC 0.53 VCC  
Three-Level Input LOW Voltage  
Min. VCC Max.  
0.0  
0.13 VCC  
20  
(Test, FS, xFn)(4)  
Input HIGH Leakage Current  
(REF and FB inputs only)  
VCC = Max., VIN = Max.  
VCC = Max., VIN = 0.4V  
Input LOW Leakage Current  
(REF and FB inputs only)  
IIL  
–20  
µA  
IIHH  
IIMM  
IILL  
IOS  
Input HIGH Current (Test, FS, xFn)  
Input MID Current (Test, FS, xFn)  
Input LOW Current (Test, FS, xFn)  
Short Circuit Current(5)  
VIN = VCC  
200  
50  
VIN = VCC/2  
–50  
VIN = GND  
–200  
VCC = Max., VOUT = GND (25°C only)  
–200  
95  
Com'l  
Operating Current Used by Internal  
Circuitry  
VCCN = VCCQ = Max.,  
All Input Selects Open  
ICCQ  
ICCN  
mA  
Mil/Ind  
100  
VCCN = VCCQ = Max., IOUT = 0mA  
All Input Selects Open, fMAX  
Output Buffer Current per Output Pair  
Power Dissipation per Output Pair  
19  
VCCN = VCCQ = Max., IOUT = 0mA  
All Input Selects Open, fMAX  
PD  
104  
mW  
Notes:  
4. These inputs are normally wired to V , GND, or left unconnected (actual threshold voltages vary as a percentage of V ).  
CC  
CC  
Internal termination resistors hold unconnected inputs at V /2. If these inputs are switched, the function and timing of the  
CC  
outputs may glitch and the PLL may require an additional t  
time before all data sheet limits are achieved.  
LOCK  
5. PI6C39911 should be tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
Roomtemperatureonly.  
6. Applies to REF and FB inputs only. Tested initially and after any design or process changes that may affect these parameters.  
7. Test measurement levels for the PI6C39911 are 1.5V to 1.5V. Test conditions assume signal transition times of 2ns or less and output  
loading as shown in the AC Test Loads and Waveforms unless otherwise specified.  
8. Guaranteed by statistical correlation.  
PS8497E  
09/13/02  
4
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
(2,7)  
Switching Characteristics(OvertheOperatingRange)  
PI6C39911-2  
PI6C39911-5  
PI6C39911  
Unit-  
s
Parameter  
Description  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
FS = LOW(1,2)  
FS = MID(1,2)  
FS = HIGH(1,2)  
12.5  
25  
30  
50  
12.5  
25  
30  
50  
12.5  
25  
30  
Operating  
Clock  
(1,2)  
fNOM  
50 MHz  
133  
Frequency  
40  
133  
40  
133  
40  
in MHz  
tRPWH  
tRPWL  
tU  
REF Pulse Width HIGH  
REF Pulse Width LOW  
Programmable Skew Unit  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
ns  
See Table 1  
See Table 1  
See Table 1  
0.1 0.25  
0.3 0.75  
Zero Output Matched  
tSKEWPR  
tSKEW0  
tSKEW1  
0.1 0.25  
0.20 0.25  
0.1  
0.25  
0.6  
0.25  
0.5  
-Pair Skew (XQ0, XQ1)(9,10)  
Zero Output Skew (All Outputs)(9,11)  
Output Skew (Rise-Rise, Fall-Fall,  
0.4  
0.6  
0.4  
0.5  
0.5  
0.8  
0.5  
0.7  
0.6  
1.0  
0.7  
1.2  
1.0  
1.5  
1.2  
Same Class Outputs)(9,13)  
Output Skew (Rise-Fall, Nominal-Inverted,  
Divided-Divided)(9,13)  
tSKEW2  
tSKEW3  
tSKEW4  
0.5  
0.5  
0.5  
1.0  
0.7  
Output Skew (Rise-Rise, Fall-Fall,  
Different Class Outputs)(9,13)  
ns  
Output Skew (Rise-Fall, Nominal-Divided,  
Divided-Inverted)(9,13)  
0.8  
1.0  
1.0  
1.7  
(8,14)  
tDEV  
tPD  
tODCV  
tPWH  
Device-to-Device Skew  
1.25  
1.65  
Propagation Delay, REF Rise to FB Rise  
Output Duty Cycle Variation (15)  
Output HIGH Time Deviation from 50%(16)  
Output LOW Time Deviation from 50%(16)  
Output Rise Time(16,17)  
–0.3 0.0 +0.3 –0.5  
–1.0 0.0 +1.0 –1.0  
0.0  
0.0  
+0.5 –0.7 0.0 +0.7  
+1.0 –1.2 0.0 +1.2  
2.5  
3.0  
1.5  
1.5  
0.5  
25  
2.5  
3.0  
1.5  
1.5  
0.5  
25  
3.0  
3.5  
1.5  
1.5  
0.5  
25  
tPWL  
tORISE  
tOFALL  
tLOCK  
0.15 1.0  
0.15 1.0  
0.15  
0.15  
1.0  
1.0  
0.15 1.0  
0.15 1.0  
Output Fall Time(16,17)  
PLL Lock Time(18)  
ms  
ps  
RMS(8)  
Cycle-to-cycle  
Output Jitter  
tJR  
Peak-to-peak(8)  
200  
200  
200  
Notes:  
9. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same t delay has been  
U
selected when all are loaded with 30pF and terminated with 50 ohms to V /2.  
CC  
10. t  
11. t  
is defined as the skew between a pair of outputs (XQ0 and XQ1) when all eight outputs are selected for 0t .  
U
SKEWPR  
is defined as the skew between outputs when they are selected for 0t . Other outputs are divided or inverted but not shifted.  
SKEW0  
U
12. C = 0pF. For C = 30pF, t  
= 0.35ns.  
L
L
SKEW0  
13. Therearethreeclassesofoutputs:Nominal(multipleoft delay),Inverted(4Q0and4Q1onlywith4F0=4F1=HIGH),andDivided(3Qx  
U
and4QxonlyinDivide-by-2orDivide-by-4mode).  
14. t  
15. t  
istheoutput-to-outputskewbetweenanytwodevicesoperatingunderthesameconditions(V ambienttemperature, airflow, etc.)  
CC  
DEV  
ODCV  
isthedeviationoftheoutputfroma50%dutycycle.Outputpulsewidthvariationsareincludedint  
andt  
specifications.  
SKEW2  
SKEW4  
16. Specified with outputs loaded with 30pF for the PI6C39911 devices. Devices are terminated through 50 Ohm to V /2. t  
is measured  
CC  
PWH  
at 2.0V. t  
is measured at 0.8V.  
PWL  
and t  
17. t  
measured between 0.8V and 2.0V.  
ORISE  
LOCK  
OFALL  
18. t  
is the time that is required before synchronization is achieved. This specification is valid only after V is stable and within normal  
CC  
operatinglimits.ThisparameterismeasuredfromtheapplicationofanewsignalorfrequencyatREForFBuntilt iswithinspecifiedlimits.  
PD  
PS8497E  
09/13/02  
5
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
AC Test Loads and Waveforms  
TTL AC Test Load  
TTL Input Test Waveform  
V
CC  
1ns  
1ns  
R1  
3.0V  
2.0V  
Vth =1.5V  
0.8V  
C
L
R2  
0V  
R1=100  
R2=100  
C =30pF (Includes fixture and probe capacitance)  
L
ACTimingDiagrams  
t
t
REF  
RPWL  
t
RPWH  
REF  
t
PD  
t
t
ODCV  
ODCV  
FB  
Q
t
JR  
t
SKEWPR  
t
SKEWPR  
t
SKEW0, 1  
t
SKEW0, 1  
Other Q  
t
t
SKEW2  
SKEW2  
Inverted Q  
t
t
SKEW3,4  
t
t
SKEW3,4  
SKEW3,4  
REF Divided by 2  
t
SKEW1,3,4  
SKEW2,4  
REF Divided by 4  
PS8497E  
09/13/02  
6
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
OperationalModeDescriptions  
REF  
FB  
LOAD  
System Clock  
REF  
FS  
L1  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
LOAD  
L2  
L3  
L4  
Z
Z
0
0
LENGTH: L1 = L2 = L3 = L4  
Figure2.Zero-Skewand/orZero-DelayClockDriver  
Figure2showstheSUPERCLOCKconfiguredasazero-skewclock  
buffer.InthismodethePI6C39911canbeusedasthebasisforalow-  
skew clock distribution tree. When all of the function select inputs  
(xF0, xF1) are left open, the outputs are aligned and may each drive  
aterminatedtransmissionlinetoanindependentload.TheFBinput  
can be tied to any output in this configuration and the operating  
frequency range is selected with the FS pin. The low-skew specifi-  
cation,coupledwiththeabilitytodriveterminatedtransmissionlines  
(withimpedancesaslowas50ohms),allowsefficientprintedcircuit  
board design.  
REF  
FB  
LOAD  
LOAD  
System Clock  
REF  
FS  
L1  
L2  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
L3  
L4  
LOAD  
LOAD  
Z
Z
0
0
LENGTH: L1 = L2, L3 < L2 by 6", L4 > L2 by 6"  
Figure3.ProgrammableSkewClockDriver  
PS8497E  
09/13/02  
7
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Figure 3 shows a configuration to equalize skew between metal Figure4showsanexampleoftheinvertfunctionoftheSuperClock.  
tracesofdifferentlengths.Inadditiontolowskewbetweenoutputs, In this example the 4Q0 output used as the FB input is programmed  
the SuperClock can be programmed to stagger the timing of its forinvert(4F0=4F1=HIGH)whiletheotherthreepairsofoutputs  
outputs. The four groups of output pairs can each be programmed areprogrammedforzeroskew.When4F0and4F1aretiedHIGH,4Q0  
to different output timing. Skew timing can be adjusted over a wide and 4Q1 become inverted zero phase outputs. The PLL aligns the  
range in small increments with the appropriate strapping of the rising edge of the FB input with the rising edge of the REF. This  
functionselectpins. Inthisconfigurationthe4Q0outputisfedback causesthe1Q,2Q,and3Qoutputstobecometheinvertedoutputs  
to FB and configured for zero skew.  
with respect to the REF input. By selecting which output is connect  
to FB, it is possible to have 2 inverted and 6 non-inverted outputs  
or 6 inverted and 2 non-inverted outputs. The correct configuration  
would be determined by the need for more (or fewer) inverted  
outputs. 1Q, 2Q, and 3Q outputs can also be skewed to compensate  
for varying trace delays independent of inver-sion on 4Q.  
The other three pairs of outputs are programmed to yield different  
skewsrelativetothefeedback.Byadvancingtheclocksignalonthe  
longertracesorretardingtheclocksignalonshortertraces,allloads  
can receive the clock pulse at the same time.  
In this illustration the FB input is connected to an output with 0ns  
skew(xF1,xF0=MID)selected.TheinternalPLLsynchronizesthe  
FB and REF inputs and aligns their rising edges to insure that all  
outputs have precise phase alignment.  
Clock skews can be advanced by ±6 time units (t ) when using an  
U
REF  
output selected for zero skew as the feedback. A wider range of  
delaysispossibleiftheoutputconnectedtoFBisalsoskewed.Since  
FB  
“ZeroSkew”,+t ,andt aredefinedrelativetooutputgroups,and  
20 MHz  
REF  
U
U
sincethePLLalignstherisingedgesofREFandFB, itispossibleto  
FS  
createwideroutputskewsbyproperselectionofthexFninputs. For  
40 MHz  
20 MHz  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
4Qx  
examplea+10t betweenREFand3Qxcanbeachievedbyconnect-  
U
ing 1Q0 to FB and setting 1F0 = 1F1 = GND, 3F0 = MID, and 3F1 =  
High.(SinceFBalignsat4t and3Qxskewsto+6t ,atotalof+10  
U
U
t skew is realized). Many other configurations can be realized by  
U
80 MHz  
skewing both the output used as the FB input and skewing the other  
outputs.  
REF  
Figure5.FrequencyMultiplierwithSkewConnections  
FB  
REF  
FS  
Figure5illustratestheSuperClockconfiguredasaclockmultiplier.  
The 3Q0 output is programmed to divide by four and is fed back to  
FB. This causes the PLL to increase its frequency until the 3Q0 and  
3Q1outputsarelockedat20MHzwhilethe1Qxand2Qxoutputsrun  
at 80 MHz. The 4Q0 and 4Q1 outputs are programmed to divide by  
two,whichresultsina40MHzwaveformattheseoutputs.Notethat  
therisingedgesof4Qxand3Qxoutputsarealigned. The2Q0, 2Q1,  
1Q0,and1Q1outputsrunat80MHzandareskewedbyprogramming  
their select inputs accordingly. Note that the FS pin is wired for 80  
MHz operation because that is the frequency of the fastest output.  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
Figure4.InvertedOutputConnections  
PS8497E  
09/13/02  
8
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
offerdivide-by-2anddivide-by-4timing.Aninvertedoutputallows  
the system designer to clock different sub-systems on opposite  
edges, without suffering from the pulse asymmetry typical of non-  
ideal loading. This function allows the two subsystems to each be  
clocked 180 degrees out of phase, but still to be aligned within the  
skew specification.  
REF  
FB  
20 MHz  
REF  
FS  
10 MHz  
The divided outputs offer a zero-delay divider for portions of the  
system that need the clock to be divided by either two or four, and  
still remain within a narrow skew of the “1X” clock. Without this  
feature, an external divider would need to be add-ed, and the  
propagation delay of the divider would add to the skew between the  
different clock signals.  
These divided outputs, coupled with the Phase Locked Loop, allow  
the SuperClock to multiply the clock rate at the REF input by either  
two or four. This mode will enable the designer to distribute a low-  
frequency clock between various portions of the system, and then  
locallymultiplytheclockratetoamoresuitablefrequency,whilestill  
maintaining the low-skew characteristics of the clock driver. The  
SuperClock can perform all of the functions described above at the  
sametime.Itcanmultiplybytwoandfourordividebytwo(andfour)  
at the same time that it is shifting its outputs over a wide range or  
maintaining zero skew between selected outputs.  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
5 MHz  
20 MHz  
Figure6.FrequencyDividerConnections  
Figure6demonstratestheSuperClock inaclockdividerapplication.  
2Q0 is fed back to the FB input and programmed for zero skew.  
3Qxisprogrammedtodividebyfour. 4Qxisprogrammedtodivide  
by two. Note that the rising edges of the 4Qx and 3Qx outputs are  
aligned. The 1Qx outputs are programmed to zero skew and are  
aligned with the 2Qx outputs. In this example, the FS input is  
groundedtoconfigurethedeviceinthe15to30MHzrangesincethe  
highest frequency output is running at 20 MHz.  
Figure 7 shows some of the functions that are selectable on the 3Qx  
and 4Qx outputs. These include inverted outputs and outputs that  
REF  
FB  
LOAD  
27.5 MHz  
REF  
Distribution  
Z
0
Clock  
FS  
110 MHz  
Inverted  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
Z
0
27.5 MHz  
LOAD  
LOAD  
110 MHz  
Zero Skew  
Z
0
110 MHz Skewed  
–2.273ns (–4t )  
Z
U
0
Figure7.Multi-FunctionClockDriver  
PS8497E  
09/13/02  
9
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
REF  
LOAD  
FB  
System  
Clock  
Z
Z
0
0
REF  
FS  
L1  
L2  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
L3  
Z
0
L4  
FB  
Z
REF  
FS  
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
Figure8.Board-to-BoardClockDistribution  
Figure8showsthePI6C39911 connectedinseriestoconstructazero delay clock tree. Cascaded clock buffers will accumulate low  
skew clock distribution tree between boards. Delays of the down frequency jitter because of the non-ideal filtering characteristics of  
streamclockbufferscanbeprogrammedtocompensateforthewire thePLLfilter.Itisrecommendedthatnotmorethantwoclockbuffers  
length (i.e., select negative skew equal to the wire delay) necessary be connected in series.  
to connect them to the master clock source, approximating a zero-  
PS8497E  
09/13/02  
10  
PI6C39911  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
PackagingMechanical:32-PinPLCC (J32)  
OrderingInformation  
Theta JA (in  
Package  
Name  
still air)  
(degrees  
C/Watt)  
Theta JC  
Accuracy (ps)  
Ordering Code  
Package Type  
Operating Range  
(degrees C/Watt)  
250  
500  
750  
PI6C39911-2J  
PI6C39911-5J  
PI6C39911J  
32-Pin Plastic  
Leaded Chip  
Carrier  
J32  
Commercial  
52  
23  
PericomSemiconductorCorporation  
2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com  
PS8497E  
09/13/02  
11  

相关型号:

PI6C39911-2E

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
PERICOM

PI6C39911-2J

3.3V High Speed LVTTL or Balanced Output Programmable Skew Clock Buffer - SuperClock
PERICOM

PI6C39911-2JE

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), BICMOS, PQCC32, GREEN, PLASTIC, MS-016A/AE, LCC-32
PERICOM

PI6C39911-2JEX

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), BICMOS, PQCC32, GREEN, PLASTIC, MS-016A/AE, LCC-32
PERICOM

PI6C39911-2JX

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
PERICOM

PI6C39911-5

Clock IC | 500ps Accuracy. 3.3V. LVTTL. 3.75 to 110 MHz
PERICOM

PI6C39911-5E

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
PERICOM

PI6C39911-5J

3.3V High Speed LVTTL or Balanced Output Programmable Skew Clock Buffer - SuperClock
PERICOM

PI6C39911-5JE

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, GREEN, PLASTIC, MS-016A/AE, LCC-32
PERICOM

PI6C39911-5JX

PLL Based Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
PERICOM

PI6C399111J

3.3V High Speed LVTTL or Balanced Output Programmable Skew Clock Buffer - SuperClock
PERICOM

PI6C39911A

Clock IC | 750ps Accuracy. 3.3V. LVTTL. 3.75 to 110 MHz
ETC