ECEA1A331 [PANASONIC]

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 330uF, THROUGH HOLE MOUNT, RADIAL LEADED;
ECEA1A331
型号: ECEA1A331
厂家: PANASONIC    PANASONIC
描述:

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 330uF, THROUGH HOLE MOUNT, RADIAL LEADED

电容器
文件: 总11页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Aluminum Electrolytic Capacitor/HFE  
Radial lead type  
Discontinued  
Type :  
Series:  
A
HFE  
Features Endurance :105°C 1000 to 2000h  
Specification  
Operating temp. range  
Rated W.V. range  
Nominal cap. range  
Capacitance  
-55 to + 105°C  
6.3 to 100 V .DC  
3.3 to 15000 µ F  
±20 % (120Hz/+20°C)  
I < 0.01 CV or 3 (µ A) after 2 min.(Whichever is the greater)  
DC leakage current  
W.V. 6.3  
10 16 25 35 50 63 100  
(120Hz /+20°C)  
tan δ 0.22 0.19 0.16 0.14 0.12 0.10 0.08 0.07 (max.)  
tan δ  
Add 0.02 per 1000µF for products of 1000µF or more.  
6.3  
3
6
10  
2
5
16  
2
3
25  
2
3
35  
2
3
50  
2
3
63  
2
3
100  
2
3
W.V  
Z(-25°C) / Z(+20°C)  
Z(-40°C) / Z(+20°C)  
Z(-55°C) / Z(+20°C)  
Temperature  
characteristics  
8
6
4
4
4
4
4
4
(Impedance ratio at 120Hz)  
After 2000 hours (1000 hours for < φ8mm) with DC voltage and specified ripple current value  
applied at +105±2°C (The sum of DC and ripple peak voltage shall not exceed the rated working  
voltage), the capacitor shall meet the following limits.  
Load life  
Capacitance chang <±20% of the initial measured value  
tan δ  
<200% of the initial specified value  
DC leakage current  
<the initial specified value  
After storage for 1000 hours at +105±2°C with no voltage applied and then being stabilized  
at +20°C, capacitor shall meet the limits specified in “Endurance”  
Shelf life  
Cleaning  
Can withstand circuit-board cleaning within 5 minutes in Freon TE, TES, or TP-35 at 40°C by  
dipping, steaming, or ultrasonic.  
Explanation of Part Number  
E
C
E
A
F
E
Shape  
W.V. code  
Series code  
Capacitance code  
Suffix  
Commom code  
Dimensions in mm (not to scale)  
Vinyl sleeve  
φ8>  
φ10<  
φ0.05  
(>6.3mmdia)  
Safety vent  
L
L <16:L+1.0max  
L >20:L+2.0 max  
14min  
min  
φD+0.5 max  
φD+0.5 max  
(mm)  
18  
Body Dia. φD  
Body LengthL  
Lead Dia. φd  
Lead space P  
4
5
6.3  
8
10  
12.5  
16  
15 to25 30 to 40  
0.45  
1.5  
0.5  
2
0.5  
2.5  
0.6  
3.5  
0.6  
5
0.6  
5
0.8  
5
0.8  
7.5  
0.8  
7.5  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
– EE17 –  
Aluminum Electrolytic Capacitor/HFE  
Discontinued  
Case size vs capacitance, ripple current table  
W.V.(V.DC)  
6.3 (0J)  
10 (1A)  
16(1C)  
Ripplr current  
Ripplr current  
Ripplr current  
Capacitance  
(µF)  
Capacitance  
Capacitance  
(mA) r.m.s.  
(mA) r.m.s.  
(mA) r.m.s.  
(φDxL)  
(µF)  
(µF)  
(100kHz/+105°C)  
(100kHz/+105°C)  
(100kHz/+105°C)  
33  
56  
82  
4
5
5
6.3  
6.3  
8
8
8
10  
10  
10  
10  
89  
121  
133  
148  
163  
303  
381  
496  
379  
453  
620  
723  
869  
707  
861  
1010  
1160  
1350  
1440  
984  
1250  
1470  
1700  
1940  
2220  
1170  
1460  
1690  
1920  
2130  
2390  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
68  
120  
150  
220  
330  
390  
560  
820  
470  
680  
1200(L)  
1500  
2200(L)  
1200  
2200  
2700  
3900(L)  
4700  
5600(L)  
2700(S)  
3900  
5600  
6800  
8200  
10000(L)  
3300  
5600(S)  
6800(S)  
10000  
12000  
15000  
47  
82  
89  
121  
133  
148  
163  
303  
381  
496  
379  
453  
620  
723  
869  
707  
861  
1010  
1160  
1350  
1440  
984  
1250  
1470  
1700  
1940  
2220  
1170  
1460  
1690  
1920  
2130  
2390  
11  
11  
15  
11.2  
15  
12.5  
15  
20  
12.5  
16  
20  
25  
30  
15  
20  
25  
30  
35  
40  
15  
20  
25  
31.5  
35.5  
40  
15  
20  
89  
121  
133  
148  
163  
303  
381  
496  
379  
453  
620  
723  
869  
707  
861  
1010  
1160  
1350  
1440  
984  
1250  
1470  
1700  
1940  
2220  
1170  
1460  
1690  
1920  
2130  
2390  
120  
180  
270  
330  
470  
560(L)  
390  
560  
820  
1200  
1500(L)  
1000  
1800  
2200  
120  
180  
220  
330(L)  
470  
270  
390  
680(L)  
820  
1000  
680  
1200  
1500  
2200(L)  
2700(L)  
3300(L)  
1200(S)  
2200  
2700  
3900  
4700(L)  
5600  
1500(S)  
3300  
10  
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
16  
16  
16  
16  
16  
16  
18  
18  
18  
18  
18  
18  
2700  
3300(L)  
3900(L)  
1500  
3300  
3900  
4700  
6800(L)  
8200(L)  
2200(S)  
3900(S)  
4700(S)  
6800  
25  
3900(S)  
4700  
6800  
31.5  
35.5  
40  
8200  
10000  
8200  
Case size vs capacitance, ripple current table  
W.V.(V.DC)  
25 (1E)  
35 (1V)  
50(1H)  
Ripplr current  
(mA) r.m.s.  
(100kHz/+105°C)  
Ripplr current  
(mA) r.m.s.  
(100kHz/+105°C)  
Ripplr current  
(mA) r.m.s.  
(100kHz/+105°C)  
Capacitance  
Capacitance  
(µF)  
Capacitance  
(µF)  
(µF)  
(φD×L)  
15  
27  
39  
56  
82  
100  
150  
220  
120  
180  
330(L)  
390  
470  
330  
560  
680  
1000(L)  
1200(L)  
1500(L)  
560(S)  
1000  
1200  
1800  
2200(L)  
2700(L)  
820  
1500  
1800(S)  
2200  
2700  
3300  
4
5
5
6.3  
6.3  
8
8
8
10  
10  
10  
10  
11  
11  
× 15  
× 11.2  
× 15  
× 12.5  
22  
39  
56  
82  
120  
150  
220  
270(L)  
180  
270  
470(L)  
560  
680  
470  
820  
1000  
1500(L)  
1800(L)  
2200(L)  
820(S)  
1500  
1800  
2700  
3300(L)  
3900(L)  
1200  
2200  
2700(S)  
3300  
3900  
4700  
89  
121  
133  
148  
163  
303  
381  
496  
379  
453  
620  
723  
869  
707  
861  
1010  
1160  
1350  
1440  
984  
1250  
1470  
1700  
1940  
2220  
1170  
1460  
1690  
1920  
2130  
2390  
10  
18  
27  
39  
56  
68  
82(L)  
120  
82  
100  
180(L)  
220  
330(L)  
180  
330  
470  
560  
680(L)  
820(L)  
330(S)  
680  
×
×
89  
121  
133  
148  
163  
303  
381  
496  
379  
453  
620  
723  
869  
707  
861  
1010  
1160  
1350  
1440  
984  
1250  
1470  
1700  
1940  
2220  
1170  
1460  
1690  
1920  
2130  
2390  
89  
121  
133  
148  
163  
303  
381  
496  
379  
453  
620  
723  
869  
707  
861  
1010  
1160  
1350  
1440  
984  
1250  
1470  
1700  
1940  
2220  
1170  
1460  
1690  
1920  
2130  
2390  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
15  
20  
12.5  
16  
20  
25  
30  
15  
20  
25  
30  
35  
40  
15  
20  
25  
10  
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
16  
16  
16  
16  
16  
16  
18  
18  
18  
18  
18  
18  
820  
1000  
1200  
1500(L)  
470(S)  
820(S)  
1000(S)  
1500  
1800  
2200  
31.5  
35.5  
40  
15  
20  
25  
31.5  
35.5  
40  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
– EE18 –  
Aluminum Electrolytic Capacitor/HFE  
Discontinued  
Case size vs capacitance, ripple current table  
W.V.(V.DC)  
63 (1J)  
100 (2A)  
Ripplr current  
Ripplr current  
Capacitance  
(µF)  
Capacitance  
(µF)  
(mA) r.m.s.  
(φDxL)  
(mA) r.m.s.  
(100kHz/+105°C)  
(100kHz/+105°C)  
58  
80  
90  
4
5
5
6.3  
6.3  
8
8
8
10  
10  
10  
10  
11  
11  
× 15  
× 11.2  
× 15  
× 12.5  
×
×
6.8  
12  
18  
27  
39  
47  
68(L)  
82  
56  
68  
120  
150(L)  
180  
150  
220  
3.3  
5.6  
8.2  
12  
18  
22  
33(L)  
39  
27  
33  
58  
80  
90  
99  
99  
102  
260  
340  
455  
306  
400  
463  
599  
698  
511  
671  
807  
937  
1040  
1090  
668  
865  
1080  
1360  
1460  
1650  
822  
1010  
1250  
1360  
1600  
1770  
102  
260  
340  
455  
306  
400  
463  
599  
698  
511  
671  
807  
937  
1040  
1090  
668  
865  
1080  
1360  
1460  
1650  
822  
1010  
1250  
1360  
1600  
1770  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
15  
20  
12.5  
16  
20  
25  
30  
15  
20  
25  
30  
35  
40  
15  
20  
25  
56  
68(L)  
100(L)  
68  
100  
120  
180(L)  
220(L)  
270(L)  
120(S)  
180  
220  
330  
390(L)  
470  
150  
270  
330(S)  
390  
10  
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
16  
16  
16  
16  
16  
16  
18  
18  
18  
18  
18  
18  
270  
390(L)  
470(L)  
560(L)  
220(S)  
390  
470  
680  
820(L)  
1000(L)  
330  
560  
680(S)  
820  
1000  
1200  
31.5  
35.5  
40  
15  
20  
25  
31.5  
35.5  
40  
560  
680  
Case size vs impedance table(at 100kHz)  
W.V.(V.DC)  
Temp.  
6.3 ~ 50V.DC  
63 ~ 100V.DC  
20°C  
-10°C  
20°C  
-10°C  
(φD×L)  
12.5  
6.8  
4.4  
3.1  
2.0  
4.0  
2.3  
1.5  
1.2  
0.76  
0.42  
0.35  
0.34  
0.22  
0.21  
0.16  
0.17  
0.13  
0.091  
0.11  
23.0  
11.0  
6.7  
4.7  
2.9  
1.7  
1.3  
0.75  
1.4  
0.93  
0.72  
0.52  
0.41  
0.65  
0.41  
0.37  
0.28  
0.24  
0.21  
0.39  
0.31  
0.24  
0.18  
0.15  
0.13  
0.34  
0.24  
0.21  
0.18  
0.16  
0.12  
4
5
5
6.3  
6.3  
8
8
8
10  
10  
10  
10  
11  
11  
15  
7.8  
4.4  
2.8  
2.1  
×
×
×
× 11.2  
× 15  
× 12.5  
1.3  
1.0  
0.8  
0.82  
0.61  
0.36  
0.64  
0.39  
0.27  
0.21  
0.16  
0.28  
0.18  
0.14  
0.11  
0.089  
0.077  
0.18  
0.12  
0.089  
0.064  
0.055  
0.048  
0.13  
0.089  
0.076  
0.064  
0.060  
0.045  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
15  
20  
12.5  
16  
20  
25  
30  
15  
20  
25  
30  
35  
40  
15  
20  
25  
0.77  
0.56  
0.48  
0.35  
0.35  
0.30  
0.24  
0.22  
0.25  
0.19  
0.20  
0.17  
0.19  
0.14  
0.16  
0.12  
0.16  
0.14  
0.14  
0.12  
0.12  
0.096  
0.10  
0.094  
10  
12.5  
12.5  
12.5  
12.5  
12.5  
12.5  
16  
16  
16  
16  
16  
16  
18  
18  
18  
18  
18  
18  
0.11  
0.086  
0.084  
0.068  
0.073  
0.057  
0.063  
0.049  
0.060  
0.053  
0.052  
0.045  
0.045  
0.037  
0.040  
0.036  
31.5  
35.5  
40  
15  
20  
25  
31.5  
35.5  
40  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
– EE19 –  
Aluminum Electrolytic Capacitor/HFE  
Discontinued  
Frequency correction factor for ripple current  
Frequency (Hz)  
W.V.  
(V.DC)  
Capacitance  
(µF)  
60  
120  
1 k  
10 k  
100k  
10 ~ 330  
390 ~ 1000  
1200 ~ 2200  
2700 ~  
4.7 ~ 56  
68 ~ 220  
0.55  
0.70  
0.75  
0.80  
0.40  
0.45  
0.55  
0.85  
0.90  
0.90  
0.95  
0.85  
0.85  
0.90  
0.90  
0.95  
0.95  
1.00  
0.90  
0.95  
0.95  
1
1
1
1
1
1
1
0.65  
0.75  
0.80  
0.85  
0.55  
0.60  
0.70  
6.3 ~ 50  
63 ~ 100  
330  
~
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
– EE20 –  
Aluminum Electrolytic Capacitor  
Application Guidelines  
1.2 Operating Temperature and Life Expectancy  
(1) Expected life is affected by operating temperature.  
Generally, each 10°C reduction in temperature  
will double the expected life. Use capacitors at  
the lowest possible temperature below the  
maximum guaranteed temperature.  
(2) If operating conditions exceed the maximum  
guaranteed limit, rapid eIectrical parameter  
deterioration will occur, and irreversible damage  
will result.  
1. Circuit Design  
Ensure that operational and mounting conditions  
follw the specified conditions detailed in the catalog  
and specification sheets.  
1.1 Operating Temperature and Frequency  
Electrolytic capacitor electrical parameters are  
normally specified at 20°C temperature and 120Hz  
frequency. These parameters vary with changes in  
temperature and frequency. Circuit designers  
should take these changes into consideration.  
(1) Effects of operating temperature on electrical  
parameters  
a)At higher temperatures, leakage current and  
capacitance increase while equivalent series  
resistance(ESR) decreases.  
b)At lower temperatures, leakage current and  
capacitance decrease while equivalent series  
resistance(ESR) increases.  
Check for maximum capacitor operating tempera-  
tures including ambient temperature, internal  
capacitor temperature rise caused by ripple current,  
and the effects of radiated heat from power  
transistors, IC?s or resistors.  
Avoid placing components which could conduct  
heat to the capacitor from the back side of the circuit  
board.  
(3)The formula for calculating expected Iife at lower  
operating temperatures is as fllows;  
L2 = L1 x 2T1-T2 where,  
(2) Effects of frequency on electrical parameters  
a)At higher frequencies, capacitance and  
impedance decrease while tan δ increases.  
b)At lower frequencies, ripple current generated  
heat will rise due to an increase in equivalent  
series resistance (ESR).  
10  
L1: Guaranteed life (h) at temperature, T1° C  
L2: Expected life (h) at temperature,T2°C  
T1: Maximum operating temperature (°C)  
T2: Actual operating temperature, ambient  
temperature + temperature rise due to  
ripple currentheating(°C)  
A quick eference capacitor guide for estimating  
exected life is included for your reference.  
Expected Life Estimate Quick Reference Guide  
Failure rate curve  
120  
110  
100  
90  
1. 85°C2000h  
2.105°C1000h  
3.105°C2000h  
4.105°C5000h  
3
4
2
Initial failure period  
Random failure period  
1
Wear failure period  
80  
70  
60  
Life Time  
Time  
50  
40  
2000  
5000 10,000 20,000  
50,000 100,000 200,000  
(h)  
24h  
operat-  
ion  
1
3
2
3
4
5
7
20  
Years  
6
10  
15 20 30  
Years  
8h/d  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
EE16 –  
Aluminum Electrolytic Capacitor  
Typical failure modes and their factors  
Faliure mode  
Faliure mechanism (internal phenomenon)  
Production factor  
Application factor  
Overvoltage applied  
Increase in inter-  
nal temperature  
Increase in  
Vent operates  
internal pressure  
Excessive ripple current  
Reverse voltage applied  
Severe charging-discharging  
Capacitance  
reduction  
Reduced anode foil  
capacitance  
Reduced cathode  
foil capacitance  
tan d increase  
AC voltage applied  
Defect of oxide film  
Used for a high temperature  
Deterioration of  
oxide film  
Insufficient  
electrolyte  
Leakage current  
increase  
Used for a long period of time  
Stress applied to leads  
Electrolyte evapora-  
tion  
Metal particles  
in capacitor  
Insulation breakdown of film  
or electrolytic paper  
Short circuit  
Burr(s) on foil leads  
Leads improperly  
connected  
Leads improperly connected  
Mechanical stress  
Open  
Use of Halogenated solvent  
Corrosion  
Infiltration of Cl  
Use of adhesive  
Use of coating material  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
EE17 –  
Aluminum Electrolytic Capacitor  
The vinyl sleeve of the capacitor can be damaged  
if solder passes through a lead hole for  
subsequently processed parts. Special care when  
locating hole positions in proximity to capacitors is  
recommended.  
1.3 Common Application Conditions to Avoid  
The following misapplication load conditions will  
cause rapid deterioration to capacitor electrical  
parameters. ln addition, rapid heating and gas  
generation within the capacitor can occur causing  
the pressure relief vent to operate and resuItant  
leakage of electrolyte. Under extreme conditions,  
explosion and fire could result. Leakinq electrolyte  
is combustible and electrically conductive.  
(1) Reverse Voltaqe  
(3) Circuit Board Hole Spacing  
The circuit board holes spacing should match the  
capacitor lead wire spacing within the specified  
tolerances. Incorrect spacing can cause excessive  
lead wire stress during the insertion process. This  
may resuIt in premature capacitor failure due to  
short or open circuit, increased leakage current,  
or electrolyte leakage.  
DC capacitors have polarity. Verify correct polarity  
before insertion. For circuits with changing or  
uncertain polarity,use DC bipolar capacitors. DC  
bipolar capacitors are not suitable for use in AC  
circuits.  
(4)Land/Pad Pattern  
The circuit board land/pad pattern size for chip  
capacitors is specified in the following table.  
(2) Charqe/Discharqe Applications  
Standard capacitors are not suitable for use in  
repeating charge/discharge applications. For  
charqe/discharqe applications consult us and advise  
actual conditions.  
[ Table of Board Land Size vs. Capacitor Size]  
(3) Overvoltage  
c
Do not appIy voltaqes exceeding the maximum  
specified rated voltages. Voltage up to the surge  
voltage rating are acceptable for short periods of  
time. Ensure that the sum of the DC voltage and  
the superimposed AC ripple voltage does not  
exceed the rated voltage.  
b
a
b
Board land part  
(mm)  
c
Size  
a
b
(4) Ripple Current  
A(φ3)  
B(φ4)  
C(φ5)  
D(φ6.3)  
E(φ8 x 6.2L)  
0.6  
1.0  
1.5  
1.8  
2.2  
3.1  
4.6  
1.5  
1.6  
1.6  
1.6  
1.6  
2.0  
2.0  
2.2  
2.5.  
2.8  
3.2  
4.0  
4.0  
4.1  
Do not apply ripple currents exceeding the maximum  
specified value. For high ripple current applications,  
use a capacitor designed for high rippIe currents  
or contact us with your requirements.  
Ensure that allowable ripple currents superimposed  
on low DC bias voltages do not cause reverse voltage  
conditions.  
F(φ8 x 10.2L)  
G(φ10 x 10.2L)  
Among others, when the size a is wide , back fillet can  
not be made, decreasing fitting strength.  
1.4 Using Two or More Capacitors in Series  
or Parallel  
(1) Capacitors Connected in Parallel  
The circuit resistance can closely approximate the  
series resistance of the capacitor causing an  
imbalance of ripple current loads within the  
capacitors. Careful design of wiring methods can  
minimize the possibility of excessive ripple currents  
applied to a capacitor.  
Decide considering mounting condition, solderability  
and fitting strength, etc. based on the design  
standards of your company.  
(2) Capacitors Connected in Series  
Normal DC leakage current differences among  
capacitors can cause voltage imbalances. The use  
of voltage divider shunt resistors with consideration  
to leakage currents, can prevent capacitor voltage  
imbaIances.  
1.5 Capacitor Mounting Considerations  
(1) DoubIe - Sided Circuit Boards  
Avoid wiring Pattern runs which pass between  
the mounted capacitor and the circuit board. When  
dipping into a solder bath, excess solder may collect  
under the capacitor by capillary action and  
shortcircuit the anode and cathode terminals.  
(2) Circuit Board Hole Positioning  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
EE18 –  
Aluminum Electrolytic Capacitor  
(5)Clearance for Case Mounted Pressure  
Relief Vents  
2.Capacitor Handling Techniques  
2.1Considerations Before Using  
Capacitors with case mounted pressure relief vents  
require sufficient clearance to allow for proper vent  
operation. The minimum clearances are dependent  
on capacitor diameters as follows.  
(1) Capacitors have a finite life. Do not reuse or  
recycle capacitors from used equipment.  
(2) Transient recovery voltage may be generated in  
the capacitor due to dielectric absorption. If  
required, this voltage can be discharged with a  
resistor with a value of about 1 k.  
(3) Capacitors stored for long periods of time may  
exhibit an increase in leakage current. This can  
be corrected by gradually applying rated voltage  
in series with a resistor of approximately 1 k.  
(4) If capacitors are dropped, they can be damaged  
mechanically or electrically. Avoid using dropped  
capacitors.  
f6.3 to f16 mm : 2 mm minimum,  
f18 to f35 mm : 3 mm minimum.  
f40 mm or greater: 5 mm minimum  
(6)Clearance for Seal Mounted Pressure  
Relief Vents  
A hole in the circuit board directly under the seal  
vent location is required to allow proper release  
of pressure.  
(7)Wiring Near the Pressure Relief Vent  
Avoid locating high voltage or high current wiring  
or circuit board paths above the pressure relief  
vent. Flammable, high temperature gas exceeding  
100°C may be released which could dissolve the  
wire insulation and ignite.  
(5) Dented or crushed capacitors should not be  
used. The seal integrity can be compromised  
and loss of electrolyte/shortened life can result.  
2.2Capacitor Insertion  
(8)Circuit Board Patterns Under the Capacitor  
Avoid circuit board runs under the capacitor as  
electrolyte leakage could cause an electrical short.  
(9)Screw Terminal Capacitor Mounting  
Do not orient the capacitor with the screw terminal  
side of the capacitor facing downwards.  
Tighten the terminal and mounting bracket screws  
within the torque range specified in the  
specification.  
(1) Verify the correct capacitance and rated voltage  
of the capacitor.  
(2) Verify the correct polarity of the capacitor before  
inserting.  
(3) Verify the correct hole spacing before insertion  
(land pattern size on chip type) to avoid stress  
on the terminals.  
(4) Ensure that the auto insertion equipment lead  
clinching operation does not stress the capacitor  
leads where they enter the seal of the capacitor.  
For chip type capacitors, excessive mounting  
pressure can cause high leakage current, short  
circuit, or disconnection.  
1.6Electrical Isolation of the Capacitor  
Completely isolate the capacitor as follows.  
Between the cathode and the case (except for  
axially leaded B types) and between the anode  
terminal and other circuit paths.  
Between the extra mounting terminals (on T types)  
and the anode terminal, cathode terminal, and  
other circuit paths.  
2.3Manual Soldering  
(1) Observe temperature and time soldering  
specifications or do not exceed temperatures of  
350°C for 3 seconds or less.  
(2) If lead wires must be formed to meet terminal  
board hole spacing, avoid stress on the leadwire  
where it enters the capacitor seal.  
(3) If a soldered capacitor must be removed and  
reinserted, avoid excessive stress to the capacitor  
leads.  
1.7Capacitor Sleeve  
The vinyl sleeve or laminate coating is intended for  
marking and identification purposes and is not meant  
to electrically insulate the capacitor.  
The sleeving may split or crack if immersed into  
solvents such as toluene or xylene, and then exposed  
to high temperatures.  
(4) Aviod touching the tip of the soldering iron to the  
capacitor, to prevent melting of the vinyl sleeve.  
Always consider safety when designing equipment  
and circuits. Plan for worst case failure modes such  
as short circuits and open circuits which could occur  
during use.  
(1)Provide protection circuits and protection devices  
to allow safe failure modes.  
(2)Design redundant or secondary circuits where  
possible to assure continued operation in case of  
main circuit failure.  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
EE19 –  
Aluminum Electrolytic Capacitor  
2.4 Flow Soldering  
2.6Other Soldering Considerations  
Rapid temperature rises during the preheat  
operation and resin bonding operation can cause  
cracking of the capacitor vinyl sleeve. For heat  
curing, do not exceed 150°C for a maximum time of  
2 minutes.  
(1) Don not immerse the capacitor body into the  
solder bath as excessive internal pressure could  
result.  
(2) Observe proper soldering conditions (temperature,  
time, etc.). Do not exceed the specified limits.  
(3) Do not allow other parts or components to touch  
the capacitor during soldering.  
2.7Capacitor Handling after Soldering  
(1) Avoid movement of the capacitor after soldering  
to prevent excessive stress on the leadwires  
where they enter the seal.  
(2) Do not use the capacitor as a handle when  
moving the circuit board assembly.  
2.5 Reflow Soldering for Chip Capacitors  
(1) For reflow, use a thermal conduction system such  
as infrared radiation (IR) or hot blast. Vapor heat  
transfer systems (VPS) are not recommended.  
(2) Observe proper soldering conditions (temperature,  
time, etc.). Do not exceed the specified limits.  
(3) Reflow should be performed one time. Consult us  
for additional reflow restrictions.  
(3) Avoid striking the capacitor after assembly to  
prevent failure due to excessive shock.  
5(s)  
250  
Peak  
temperature  
2.8 Circuit Board Cleaning  
(1) Circuit boards can be immersed or ultrasonically  
cleaned using suitable cleaning solvents for up  
to 5 minutes and up to 6 0 ° C m a x imum  
temperatures. The boards should be thoroughly  
rinsed and dried.  
200  
160°C  
150  
Time in  
200°C or more  
120(s)  
Time  
100  
50  
Recommended cleaning solvents include  
Pine Alpha ST-100S, Sunelec B-12, DK Beclear  
CW-5790, Aqua Cleaner 210SEP, Cold Cleaner  
P3-375, Telpen Cleaner EC-7R, Clean-thru 750H,  
Clean-thru 750L, Clean thru 710M, Techno  
Cleaner 219, Techno Care FRW-17, Techno  
Care FRW-1, Techno Care FRV-1, IPA (isopropyl  
alcohol)  
Chip capacitor reflow guaranteed condition  
240  
230  
220  
210  
The use of ozone depleting cleaning agents are  
not recommended in the interest of protecting  
the environment.  
0
10  
20  
30 40  
50  
60  
(2) Avoid using the following solvent groups unless  
specifically allowed for in the specification;  
Halogenated cleaning solvents: except for solvent  
resistant capacitor types, halogenated solvents  
can permeate the seal and cause internal  
capacitor corrosion and failure. For solvent  
resistant capacitors, carefully follow the  
temperature and time requirements of the  
specificaion. 1-1-1 trichloroe thane should never  
be used on any aluminium electrolytic capacitor.  
Alkali solvents: could attack and dissolve the  
aluminum case.  
Time in 200°C or more (s)  
(φ3 to 6.3φ)  
240  
230  
220  
210  
0
10  
20  
30  
40 50  
60  
Time in 200°C or more (s)  
(φ8 to φ10)  
Petroleum based solvents: deterioration of the  
rubber seal could result.  
Xylene: deterioration of the rubber seal could  
result.  
Acetone: removal of the ink markings on the  
vinyl sleeve could result.  
EB Series  
240  
230  
220  
210  
Temperature measuring method: Measure  
temperature in assuming quantitative production, by  
sticking the thermo-couple to the capacitor upper  
0
10 20 30 40 50 60  
Time in 200°C or more (s)  
(φ10 to φ18)  
part with epoxy adhesives.  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
EE20 –  
Aluminum Electrolytic Capacitor  
(3) A thorough drying after cleaning is required to  
remove residual cleaning solvents which may be  
trapped between the capacitor and the circuit  
board. Avoid drying temperatures which exceed  
the maximum rated temperature of the capacitor.  
(4) Monitor the contamination levels of the cleaning  
solvents during use by electrical conductivity, pH,  
specific gravity, or water content. Chlorine levels  
can rise with contamination and adversely affect  
the performance of the capacitor.  
3.2Electrical Precautions  
(1) Avoid touching the terminals of the capacitor as  
possible electric shock could result. The exposed  
aluminium case is not insulated and could also  
cause electric shock if touched.  
(2)Avoid short circuiting the area between the  
capacitor terminals with conductive materials  
including liquids such as acids or alkaline solutions.  
4.Emergency Procedures  
Please consult us for additonal information about  
acceptable cleaning solvents or cleaning methods.  
(1) If the pressure relief vent of the capacitor  
operates, immediately turn off the equipment and  
disconnect from the power source. This will  
minimize additional damage caused by the  
vaporizing electrolyte.  
Type  
Cleaning permitted  
Series  
Surface mount type  
V(Except EB  
Series)  
L
Bi-polar SU  
M
L
Lead type  
(2) Avoid contact with the escaping electrolyte gas  
which can exceed 100°C temperatures.  
L(~ 100V)  
KA  
L
If electrolyte or gas enters the eye, immediately  
flush the eye with large amounts of water.  
If electrolyte or gas is ingested by mouth, gargle  
with water. If electrolyte contacts the skin, wash  
with soap and water.  
Bi-polar KA  
FB  
L
L
FC  
L
GA  
L
NHG  
EB  
L(~ 100V)  
L(~ 100V)  
L
5. Long Term Storage  
TA  
Leakage current of a capacitor increases with long  
storage times. The aluminium oxide film deteriorates  
as a function of temperature and time. If used  
without reconditioning, an abnormally high current  
will be required to restore the oxide film. This current  
surge could cause the circuit or the capacitor to fail.  
Capacitor should be reconditioned by applying rated  
voltage in series with a 1000 , current limiting  
resistor for a time period of 30 minutes.  
Snap-in type  
TS UP  
TS HA  
L(~ 100V)  
L(~ 100V)  
2.9 Mounting Adhesives and Coating Agents  
When using mounting adhesives or coating agents to  
control humidity, avoid using materials containing  
halogenated solvents. Also, avoid the use of  
chloroprene based polymers.  
After applying adhesives or coatings, dry thoroughly  
to prevent residual solvents from being trapped  
between the capacitor and the circuit board.  
5.1Environmental Conditions (Storage)  
Capacitors should not be stored in the following  
environments.  
3.Precautions for using capacitors  
3.1Environmental Conditions  
(1) Temperature exposure above 35°C or below 15 °C.  
(2) Direct contact with water, salt water, or oil.  
(3) High humidity conditions where water could  
condense on the capacitor.  
(4) Exposure to toxic gases such as hydrogen  
sulfide,sulfuric acid, nitric acid, chlorine, or  
ammonia.  
(5) Exposure to ozone, radiation, or ultraviolet rays.  
(6) Vibration and shock conditions exceeding  
specified requirements.  
Capacitors should not be used in the following  
environments.  
(1) Temperature exposure above the maximum rated  
or below the minimum rated temperature of the  
capacitor.  
(2) Direct contact with water, salt water, or oil.  
(3) High humidity conditions where water could  
condense on the capacitor.  
(4) Exposure to toxic gases such as hydrogen sulfide,  
sulfuric acid, nitric acid, chlorine, or ammonia.  
(5) Exposure to ozone, radiation, or ultraviolet rays.  
(6) Vibration and shock conditions exceeding  
specified requirements.  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
EE21 –  
Aluminum Electrolytic Capacitor  
6.Capacitor Disposal  
When disposing of capacitors, use one of the  
following methods.  
Incinerate after crushing the capacitor or  
puncturing the can wall (to prevent explosion due  
to internal pressure rise). Capacitors should be  
incinerated at high temperatures to prevent the  
release of toxic gases such as chlorine from the  
polyvinyl chloride sleeve, etc.  
Dispose of as solid waste.  
Local laws may have specific disposal  
requirements which must be followed.  
The application guidelines above are taken from:  
Technical Report EIAJ RCR-2367 issued by the Japan  
Electronic Industry Association, Inc. -  
Guideline of notabilia for aluminium electrolytic  
capacitors with non-solid electrolytic for use in  
electronic equipment.  
Refer to this Technical Report for additional details.  
Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use.  
Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.  
EE22 –  

相关型号:

ECEA1A332L

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 3300uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1A391

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 390uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1A392L

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 3900uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1A472

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 4700uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1A472S

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 4700uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1A682

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 6800uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1AF222C

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 2200uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1AF471C

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 470uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1AFE103

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 10000uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1AFE222

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 2200uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1AFE222S

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 2200uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC

ECEA1AFE272

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 10V, 2700uF, THROUGH HOLE MOUNT, RADIAL LEADED
PANASONIC