T494D686K010AS [ONSEMI]

200 mA, PFM Step-Up Micropower Switching Regulator; 200毫安, PFM升压型微功率开关稳压器
T494D686K010AS
型号: T494D686K010AS
厂家: ONSEMI    ONSEMI
描述:

200 mA, PFM Step-Up Micropower Switching Regulator
200毫安, PFM升压型微功率开关稳压器

稳压器 开关 电容器 PC
文件: 总18页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1402  
200 mA, PFM Step−Up  
Micropower Switching  
Regulator  
The NCP1402 series are monolithic micropower step−up DC to DC  
converter that are specially designed for powering portable equipment  
from one or two cell battery packs.These devices are designed to  
start−up with a cell voltage of 0.8 V and operate down to less than  
0.3 V. With only three external components, this series allow a simple  
means to implement highly efficient converters that are capable of up  
http://onsemi.com  
5
to 200 mA of output current at V = 2.0 V, V  
= 3.0 V.  
in  
OUT  
1
Each device consists of an on−chip PFM (Pulse Frequency  
Modulation) oscillator, PFM controller, PFM comparator, soft−start,  
voltage reference, feedback resistors, driver, and power MOSFET  
switch with current limit protection. Additionally, a chip enable  
feature is provided to power down the converter for extended battery  
life.  
SOT23−5  
(TSOP−5, SC59−5)  
SN SUFFIX  
CASE 483  
The NCP1402 device series are available in the Thin SOT−23−5  
package with five standard regulated output voltages. Additional  
voltages that range from 1.8 V to 5.0 V in 100 mV steps can be  
manufactured.  
PIN CONNECTIONS AND  
MARKING DIAGRAM  
1
2
3
5
CE  
OUT  
NC  
LX  
Features  
Extremely Low Start−Up Voltage of 0.8 V  
Operation Down to Less than 0.3 V  
GND  
4
High Efficiency 85% (V = 2.0 V, V  
= 3.0 V, 70 mA)  
in  
OUT  
xxx = Marking  
Low Operating Current of 30 m A (V  
= 1.9 V)  
OUT  
Y
= Year  
Output Voltage Accuracy ± 2.5%  
W
= Work Week  
Low Converter Ripple with Typical 30 mV  
(Top View)  
Only Three External Components Are Required  
Chip Enable Power Down Capability for Extended Battery Life  
Micro Miniature Thin SOT−23−5 Packages  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 3 of this data sheet.  
Typical Applications  
Cellular Telephones  
Pagers  
Personal Digital Assistants (PDA)  
Electronic Games  
Portable Audio (MP3)  
Camcorders  
Digital Cameras  
Handheld Instruments  
Semiconductor Components Industries, LLC, 2003  
1
Publication Order Number:  
November, 2003 − Rev. 5  
NCP1402/D  
NCP1402  
V
in  
V
OUT  
CE  
1
LX  
5
NCP1402  
OUT  
2
NC  
3
GND  
4
Figure 1. Typical Step−Up Converter Application  
LX  
5
OUT  
2
V
LX  
LIMITER  
DRIVER  
PFM  
COMPARATOR  
POWER  
SWITCH  
+
NC  
3
PFM  
CONTROLLER  
VOLTAGE  
REFERENCE  
SOFT−START  
PFM  
OSCILLATOR  
GND  
4
1 CE  
Figure 2. Representative Block Diagram  
PIN FUNCTION DESCRIPTIONS  
Pin #  
Symbol  
Pin Description  
1
CE  
Chip Enable pin  
(1) The chip is enabled if a voltage which is equal to or greater than 0.9 V is applied  
(2) The chip is disabled if a voltage which is less than 0.3 V is applied  
(3) The chip will be enabled if it is left floating  
2
3
4
5
OUT  
NC  
Output voltage monitor pin, also the power supply pin of the device  
No internal connection to this pin  
GND  
LX  
Ground pin  
External inductor connection pin to power switch drain  
http://onsemi.com  
2
 
NCP1402  
ORDERING INFORMATION  
Device  
NCP1402SN19T1  
NCP1402SN27T1  
NCP1402SN30T1  
NCP1402SN33T1  
NCP1402SN40T1  
NCP1402SN50T1  
Output Voltage  
1.9 V  
Device Marking  
DAU  
Package  
Shipping  
2.7 V  
DAE  
3.0 V  
DAF  
SOT23−5  
3000 Units Per Reel  
3.3 V  
DAG  
4.0 V  
DCR  
5.0 V  
DAH  
NOTE: The ordering information lists five standard output voltage device options. Additional device with output voltage ranging from 1.8 V to  
5.0 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply Voltage (Pin 2)  
V
OUT  
6.0  
V
Input/Output Pins  
LX (Pin 5)  
LX Peak Sink Current  
V
I
−0.3 to 6.0  
400  
V
mA  
LX  
LX  
CE (Pin 1)  
Input Voltage Range  
Input Current Range  
V
I
−0.3 to 6.0  
−150 to 150  
V
mA  
CE  
CE  
Thermal Resistance Junction to Air  
Operating Ambient Temperature Range (Note 2)  
Operating Junction Temperature Range  
Storage Temperature Range  
R
250  
°C/W  
°C  
θ
JA  
T
−40 to +85  
−40 to +125  
−55 to +150  
A
T
°C  
J
T
°C  
stg  
NOTES:  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22−A114.  
Machine Model (MM) ±200 V per JEDEC standard: JESD22−A115.  
2. The maximum package power dissipation limit must not be exceeded.  
T
* T  
J(max)  
A
P
D
+
R
q
J
A
3. Latch−up Current Maximum Rating: ±150 mA per JEDEC standard: JESD78.  
4. Moisture Sensitivity Level: MSL 1 per IPC/JEDEC standard: J−STD−020A.  
http://onsemi.com  
3
 
NCP1402  
ELECTRICAL CHARACTERISTICS (For all values T = 25°C, unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Switch On Time (current limit not asserted)  
Switch Minimum Off Time  
t
t
3.6  
1.0  
70  
5.5  
1.45  
78  
7.6  
1.9  
85  
0.95  
m s  
m s  
on  
off  
Maximum Duty Cycle  
D
%
MAX  
Minimum Start−up Voltage (I = 0 mA)  
V
start  
0.8  
−1.6  
V
O
Minimum Start−up Voltage Temperature Coefficient (T = −40°C to 85°C)  
D
V
mV/°C  
V
A
start  
hold  
Minimum Operation Hold Voltage (I = 0 mA)  
V
0.3  
0.3  
O
Soft−Start Time (V  
u 0.8 V)  
t
SS  
2.0  
ms  
OUT  
LX (PIN 5)  
Internal Switching N−Channel FET Drain Voltage  
V
LX  
6.0  
V
LX Pin On−State Sink Current (V = 0.4 V)  
I
LX  
mA  
LX  
Device Suffix:  
19T1  
27T1  
30T1  
33T1  
110  
130  
130  
130  
130  
130  
145  
180  
190  
200  
210  
215  
40T1  
50T1  
Voltage Limit  
V
0.45  
0.65  
0.5  
0.9  
1.0  
V
LXLIM  
Off−State Leakage Current (V = 6.0 V, T = −40°C to 85°C)  
I
LKG  
µA  
LX  
A
CE (PIN 1)  
CE Input Voltage (V  
= V  
x 0.96)  
V
OUT  
SET  
High State, Device Enabled  
Low State, Device Disabled  
V
V
0.9  
0.3  
CE(high)  
CE(low)  
CE Input Current (Note 6)  
µA  
High State, Device Enabled (V  
Low State, Device Disabled (V  
= V = 6.0 V)  
I
I
−0.5  
−0.5  
0
0.15  
0.5  
0.5  
OUT  
OUT  
CE  
CE(high)  
= 6.0 V, V = 0 V)  
CE  
CE(low)  
TOTAL DEVICE  
Output Voltage  
Device Suffix:  
19T1  
V
OUT  
V
1.853  
2.632  
2.925  
3.218  
3.900  
4.875  
1.9  
2.7  
3.0  
3.3  
4.0  
5.0  
1.948  
2.768  
3.075  
3.383  
4.100  
5.125  
27T1  
30T1  
33T1  
40T1  
50T1  
Output Voltage Temperature Coefficient (T = −40°C to +85°C)  
D
V
ppm/°C  
A
OUT  
Device Suffix:  
19T1  
27T1  
30T1  
33T1  
150  
150  
150  
150  
150  
150  
40T1  
50T1  
Operating Current 2 (V  
= V = V  
+0.5 V, Note 5)  
I
I
I
13  
15  
µA  
µA  
µA  
OUT  
CE  
SET  
DD2  
Off−State Current (V  
= 5.0 V, V = 0 V, T = −40°C to +85°C, Note 6)  
0.6  
1.0  
OUT  
CE  
A
OFF  
DD1  
Operating Current 1 (V  
= V = V x 0.96)  
SET  
OUT  
CE  
Device Suffix:  
19T1  
27T1  
30T1  
33T1  
30  
39  
42  
45  
55  
70  
50  
60  
60  
60  
100  
100  
40T1  
50T1  
5. V  
means setting of output voltage.  
SET  
6. CE pin is integrated with an internal 10 Mpull−up resistor.  
http://onsemi.com  
4
 
NCP1402  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
NCP1402SN19T1  
L = 47 µH  
T = 25°C  
A
NCP1402SN30T1  
L = 47 µH  
T = 25°C  
A
V
= 2.5 V  
in  
V
= 2.0 V  
in  
V
in  
= 0.9 V  
V = 1.5 V  
in  
V
= 1.5 V  
in  
V
= 0.9 V  
in  
V
in  
= 1.2 V  
V
= 1.2 V  
in  
0
0
0
20  
40 60  
80 100 120 140 160 180 200  
0
0
0
20  
40 60  
80 100 120 140 160 180 200  
I , OUTPUT CURRENT (mA)  
I , OUTPUT CURRENT (mA)  
O
O
Figure 3. NCP1402SN19T1 Output Voltage vs.  
Output Current  
Figure 4. NCP1402SN30T1 Output Voltage vs.  
Output Current  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
100  
80  
60  
40  
20  
0
V
in  
= 4.0 V  
V
in  
= 1.5 V  
V
in  
= 1.5 V  
V
V
= 2.0 V  
= 3.0 V  
in  
V
in  
= 1.2 V  
V
in  
= 0.9 V  
V = 1.2 V  
in  
in  
V
= 0.9 V  
in  
NCP1402SN50T1  
L = 47 µH  
T = 25°C  
NCP1402SN19T1  
L = 47 µH  
T = 25°C  
A
A
20  
40 60  
80 100 120 140 160 180 200  
20  
40 60  
80 100 120 140 160 180 200  
I , OUTPUT CURRENT (mA)  
I , OUTPUT CURRENT (mA)  
O
O
Figure 5. NCP1402SN50T1 Output Voltage vs.  
Output Current  
Figure 6. NCP1402SN19T1 Efficiency vs.  
Output Current  
100  
80  
60  
40  
20  
0
100  
80  
V
V
= 4.0 V  
= 3.0 V  
in  
V
in  
V
in  
= 2.5 V  
= 2.0 V  
in  
V
in  
= 1.2 V  
V
in  
= 1.5 V  
V
= 2.0 V  
in  
60  
V
in  
= 0.9 V  
V
in  
= 1.2 V  
V = 1.5 V  
in  
V
in  
= 0.9 V  
40  
NCP1402SN30T1  
L = 47 µH  
T = 25°C  
NCP1402SN50T1  
L = 47 µH  
T = 25°C  
A
20  
0
A
20  
40 60  
80 100 120 140 160 180 200  
20  
40 60  
80 100 120 140 160 180 200  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 7. NCP1402SN30T1 Efficiency vs.  
Output Current  
Figure 8. NCP1402SN50T1 Efficiency vs.  
Output Current  
http://onsemi.com  
5
NCP1402  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
NCP1402SN19T1  
= 1.9 V x 0.96  
Open−Loop Test  
NCP1402SN30T1  
V = 3.0 V x 0.96  
OUT  
Open−Loop Test  
V
OUT  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. NCP1402SN19T1 Output Voltage vs.  
Temperature  
Figure 10. NCP1402SN30T1 Output Voltage vs.  
Temperature  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
100  
80  
60  
40  
20  
0
NCP1402SN50T1  
NCP1402SN19T1  
V
OUT  
= 5.0 V x 0.96  
V
OUT  
= 1.9 V x 0.96  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. NCP1402SN50T1 Output Voltage vs.  
Temperature  
Figure 12. NCP1402SN19T1 Operating  
Current 1 vs. Temperature  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
NCP1402SN30T1  
NCP1402SN50T1  
V
OUT  
= 3.0 V x 0.96  
V
OUT  
= 5.0 V x 0.96  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. NCP1402SN30T1 Operating  
Current 1 vs. Temperature  
Figure 14. NCP1402SN50T1 Operating  
Current 1 vs. Temperature  
http://onsemi.com  
6
NCP1402  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
NCP1402SN19T1  
= 1.9 V x 0.96  
Open−Loop Test  
NCP1402SN30T1  
V = 3.0 V x 0.96  
OUT  
Open−Loop Test  
V
OUT  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. NCP1402SN19T1 Switch On Time  
vs. Temperature  
Figure 16. NCP1402SN30T1 Switch On Time  
vs. Temperature  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
1.9  
1.8  
1.7  
1.6  
NCP1402SN50T1  
NCP1402SN19T1  
1.5  
1.4  
V
OUT  
= 5.0 V x 0.96  
V
OUT  
= 1.9 V x 0.96  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. NCP1402SN50T1 Switch On Time  
vs. Temperature  
Figure 18. NCP1402SN19T1 Minimum Switch  
Off Time vs. Temperature  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
NCP1402SN30T1  
NCP1402SN50T1  
V
OUT  
= 3.0 V x 0.96  
V
OUT  
= 5.0 V x 0.96  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. NCP1402SN30T1 Minimum Switch  
Off Time vs. Temperature  
Figure 20. NCP1402SN50T1 Minimum Switch  
Off Time vs. Temperature  
http://onsemi.com  
7
NCP1402  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
NCP1402SN19T1  
= 1.9 V x 0.96  
Open−Loop Test  
NCP1402SN30T1  
V = 3.0 V x 0.96  
OUT  
Open−Loop Test  
50  
40  
V
OUT  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. NCP1402SN19T1 Maximum Duty  
Cycle vs. Temperature  
Figure 22. NCP1402SN30T1 Maximum Duty  
Cycle vs. Temperature  
100  
90  
80  
70  
60  
200  
180  
160  
140  
120  
100  
NCP1402SN19T1  
V
V
= 1.9 V x 0.96  
= 0.4 V  
OUT  
NCP1402SN50T1  
50  
40  
LX  
V
OUT  
= 5.0 V x 0.96  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. NCP1402SN50T1 Maximum Duty  
Cycle vs. Temperature  
Figure 24. NCP1402SN19T1 LX Pin On−State  
Current vs. Temperature  
250  
230  
210  
190  
170  
150  
300  
275  
250  
225  
200  
175  
NCP1402SN30T1  
NCP1402SN50T1  
V
V
= 3.0 V x 0.96  
= 0.4 V  
V = 5.0 V x 0.96  
OUT  
OUT  
V = 0.4 V  
LX  
LX  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. NCP1402SN30T1 LX Pin On−State  
Current vs. Temperature  
Figure 26. NCP1402SN50T1 LX Pin On−State  
Current vs. Temperature  
http://onsemi.com  
8
NCP1402  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
NCP1402SN19T1  
Open−Loop Test  
NCP1402SN30T1  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. NCP1402SN19T1 VLX Voltage Limit  
vs. Temperature  
Figure 28. NCP1402SN30T1 VLX Voltage Limit  
vs. Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
NCP1402SN19T1  
V
V
= 1.9 V x 0.96  
= 0.4 V  
OUT  
NCP1402SN50T1  
Open−Loop Test  
LX  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. NCP1402SN50T1 VLX Voltage Limit  
vs. Temperature  
Figure 30. NCP1402SN19T1 Switch−on  
Resistance vs. Temperature  
3.0  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
NCP1402SN30T1  
NCP1402SN50T1  
V
V
= 3.0 V x 0.96  
= 0.4 V  
V = 5.0 V x 0.96  
OUT  
OUT  
V = 0.4 V  
LX  
LX  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 31. NCP1402SN30T1 Switch−on  
Resistance vs. Temperature  
Figure 32. NCP1402SN50T1 Switch−on  
Resistance vs. Temperature  
http://onsemi.com  
9
NCP1402  
1.0  
0.8  
1.0  
0.8  
V
start  
V
start  
NCP1402SN19T1  
L = 22 µH  
NCP1402SN30T1  
L = 22 µH  
0.6  
0.4  
0.2  
0.0  
0.6  
0.4  
0.2  
0.0  
C
I
= 10 µF  
= 0 mA  
C
I
= 10 µF  
= 0 mA  
OUT  
OUT  
O
O
V
hold  
V
hold  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 33. NCP1402SN19T1 Startup/Hold  
Voltage vs. Temperature  
Figure 34. NCP1402SN30T1 Startup/Hold  
Voltage vs. Temperature  
1.0  
0.8  
2.0  
1.5  
1.0  
V
start  
V
start  
NCP1402SN50T1  
L = 22 µH  
0.6  
0.4  
0.2  
0.0  
V
hold  
C
= 10 µF  
OUT  
I
O
= 0 mA  
NCP1402SN19T1  
L = 47 µH  
0.5  
0.0  
V
hold  
C
= 68 µF  
OUT  
T = 25°C  
A
0
10  
20 30 40 50 60 70  
I , OUTPUT CURRENT (mA)  
80 90 100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
O
Figure 35. NCP1402SN50T1 Startup/Hold  
Voltage vs. Temperature  
Figure 36. NCP1402SN19T1 Startup/Hold  
Voltage vs. Output Current  
2.0  
1.5  
1.0  
2.0  
1.5  
1.0  
V
start  
V
start  
V
hold  
NCP1402SN30T1  
L = 47 µH  
NCP1402SN50T1  
L = 47 µH  
0.5  
0.0  
0.5  
0.0  
V
hold  
C
= 68 µF  
C
= 68 µF  
OUT  
OUT  
T = 25°C  
A
T = 25°C  
A
0
10  
20 30 40 50 60 70  
I , OUTPUT CURRENT (mA)  
80 90 100  
0
10  
20 30 40 50 60 70  
I , OUTPUT CURRENT (mA)  
80 90 100  
O
O
Figure 37. NCP1402SN30T1 Startup/Hold  
Voltage vs. Output Current  
Figure 38. NCP1402SN50T1 Startup/Hold  
Voltage vs. Output Current  
http://onsemi.com  
10  
NCP1402  
5 m s/div  
= 1.9 V, V = 1.2 V, I = 30 mA, L = 47 mH, C  
5 m s/div  
= 1.9 V, V = 1.2 V, I = 70 mA, L = 47 mH, C  
V
OUT  
= 68 mF  
V
OUT  
= 68 mF  
OUT  
in  
O
OUT  
in  
O
1. V , 1.0 V/div  
1. V , 1.0 V/div  
LX  
LX  
2. V , 20 mV/div, AC coupled  
OUT  
2. V , 20 mV/div, AC coupled  
OUT  
3. I , 100 mA/div  
3. I , 100 mA/div  
L
L
Figure 39. NCP1402SN19T1 Operating  
Waveforms (Medium Load)  
Figure 40. NCP1402SN19T1 Operating  
Waveforms (Heavy Load)  
2 m s/div  
2 m s/div  
V
OUT  
= 3.0 V, V = 1.2 V, I = 30 mA, L = 47 mH, C  
= 68 mF  
V
OUT  
= 3.0 V, V = 1.2 V, I = 70 mA, L = 47 mH, C  
= 68 mF  
in  
O
OUT  
in  
O
OUT  
1. V , 2.0 V/div  
1. V , 2.0 V/div  
LX  
LX  
2. V , 20 mV/div, AC coupled  
OUT  
2. V , 20 mV/div, AC coupled  
OUT  
3. I , 100 mA/div  
3. I , 100 mA/div  
L
L
Figure 41. NCP1402SN30T1 Operating  
Waveforms (Medium Load)  
Figure 42. NCP1402SN30T1 Operating  
Waveforms (Heavy Load)  
2 m s/div  
2 m s/div  
V
OUT  
= 5.0 V, V = 1.5 V, I = 30 mA, L = 47 mH, C  
= 68 mF  
V
OUT  
= 5.0 V, V = 1.5 V, I = 60 mA, L = 47 mH, C  
= 68 mF  
in  
O
OUT  
in  
O
OUT  
1. V , 2.0 V/div  
1. V , 2.0 V/div  
LX  
LX  
2. V , 20 mV/div, AC coupled  
OUT  
2. V , 20 mV/div, AC coupled  
OUT  
3. I , 100 mA/div  
3. I , 100 mA/div  
L
L
Figure 43. NCP1402SN50T1 Operating  
Waveforms (Medium Load)  
Figure 44. NCP1402SN50T1 Operating  
Waveforms (Heavy Load)  
http://onsemi.com  
11  
NCP1402  
V
in  
= 1.2 V, L = 47 mH, C  
= 68 mF  
V
in  
= 1.2 V, L = 47 mH, C  
= 68 mF  
OUT  
OUT  
1. V  
= 1.9 V (AC coupled), 100 mV/div  
1. V  
= 1.9 V (AC coupled), 100 mV/div  
OUT  
OUT  
2. I = 0.1 mA to 80 mA  
2. I = 80 mA to 0.1 mA  
O
O
Figure 45. NCP1402SN19T1 Load Transient  
Response  
Figure 46. NCP1402SN19T1 Load Transient  
Response  
V
in  
= 1.5 V, L = 47 mH, C  
= 68 mF  
V
in  
= 1.5 V, L = 47 mH, C  
= 68 mF  
OUT  
OUT  
1. V  
= 3.0 V (AC coupled), 100 mV/div  
1. V  
= 3.0 V (AC coupled), 100 mV/div  
OUT  
OUT  
2. I = 0.1 mA to 80 mA  
2. I = 80 mA to 0.1 mA  
O
O
Figure 47. NCP1402SN30T1 Load Transient  
Response  
Figure 48. NCP1402SN30T1 Load Transient  
Response  
V
in  
= 2.4 V, L = 47 mH, C  
= 68 mF  
V
in  
= 2.4 V, L = 47 mH, C  
= 68 mF  
OUT  
OUT  
1. V  
= 5.0 V (AC coupled), 100 mV/div  
1. V  
= 5.0 V (AC coupled), 100 mV/div  
OUT  
OUT  
2. I = 0.1 mA to 80 mA  
2. I = 80 mA to 0.1 mA  
O
O
Figure 49. NCP1402SN50T1 Load Transient  
Response  
Figure 50. NCP1402SN50T1 Load Transient  
Response  
http://onsemi.com  
12  
NCP1402  
100  
80  
100  
80  
NCP1402SN19T1  
L = 47 µH  
NCP1402SN30T1  
L = 47 µH  
C
= 68 m F  
C
= 68 m F  
OUT  
OUT  
T = 25°C  
A
T = 25°C  
A
V
= 2.0 V  
= 2.5 V  
in  
60  
60  
V
in  
= 1.5 V  
V
in  
= 0.9 V  
V
in  
= 1.2 V  
V
= 1.5 V  
in  
40  
20  
0
40  
20  
0
V
V
in  
= 1.2 V  
in  
V
= 0.9 V  
in  
0
20  
40 60  
80 100 120 140 160 180 200  
0
1
1
20  
40 60  
80 100 120 140 160 180 200  
I , OUTPUT CURRENT (mA)  
I , OUTPUT CURRENT (mA)  
O
O
Figure 51. NCP1402SN19T1 Ripple Voltage vs.  
Output Current  
Figure 52. NCP1402SN30T1 Ripple Voltage vs.  
Output Current  
100  
80  
100  
80  
V
in  
= 4.0 V  
V
in  
= 2.0 V  
85°C  
25°C  
V
in  
= 1.5 V  
60  
60  
V
= 3.0 V  
in  
−40°C  
V
= 1.2 V  
in  
40  
20  
0
40  
20  
0
NCP1402SN50T1  
L = 47 µH  
NCP1402SNXXT1  
= V x 0.96  
C
= 68 m F  
V
OUT  
OUT  
SET  
T = 25°C  
A
Open−loop Test  
V
= 0.9 V  
in  
0
20  
40 60  
80 100 120 140 160 180 200  
2
3
4
5
6
I , OUTPUT CURRENT (mA)  
O
V , OUTPUT VOLTAGE (V)  
OUT  
Figure 53. NCP1402SN50T1 Ripple Voltage vs.  
Output Current  
Figure 54. NCP1402SNXXT1 Operating  
Current 1 vs. Output Voltage  
300  
260  
220  
3.5  
3.0  
2.5  
NCP1402SNXXT1  
−40°C  
V
V
= V  
= 0.4 V  
x 0.96  
OUT  
SET  
LX  
Open−loop Test  
25°C  
85°C  
85°C  
25°C  
180  
140  
100  
2.0  
1.5  
1.0  
NCP1402SNXXT1  
V
V
= V  
= 0.4 V  
x 0.96  
OUT  
SET  
−40°C  
LX  
Open−loop Test  
1
2
3
4
5
6
2
3
4
5
6
V , OUTPUT VOLTAGE (V)  
OUT  
V , OUTPUT VOLTAGE (V)  
OUT  
Figure 55. NCP1402SNXXT1 Pin On−state  
Current vs. Output Voltage  
Figure 56. NCP1402SNXXT1 Switch−On  
Resistance vs. Output Voltage  
http://onsemi.com  
13  
NCP1402  
150  
125  
100  
75  
400  
NCP1402SNXXT1  
L = 47 µH  
= 0 mA  
3.3 V  
5.0 V  
5.0 V  
I
O
3.0 V  
2.7 V  
300  
T = 25°C  
A
3.3 V  
3.0 V  
200  
100  
0
1.9 V  
50  
25  
2.7 V  
NCP1402SNXXT1  
L = 47 µH  
T = 25°C  
A
1.9 V  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 57. NCP1402SNXXT1 No Load Input  
Current vs. Input Voltage  
Figure 58. NCP1402SNXXT1 Maximum Output  
Current vs. Input Voltage  
DETAILED OPERATING DESCRIPTION  
Operation  
Soft Start  
The NCP1402 series are monolithic power switching  
regulators optimized for applications where power drain  
must be minimized. These devices operate as variable  
frequency, voltage mode boost regulators and designed to  
operate in continuous conduction mode. Potential  
applications include low powered consumer products and  
battery powered portable products.  
The NCP1402 series are low noise variable frequency  
voltage−mode DC−DC converters, and consist of soft−start  
circuit, feedback resistor, reference voltage, oscillator, PFM  
comparator, PFM control circuit, current limit circuit and  
power switch. Due to the on−chip feedback resistor network,  
the system designer can get the regulated output voltage  
from 1.8 V to 5 V with a small number of external  
components. The operating current is typically 30 m A  
There is a soft start circuit in NCP1402. When power is  
applied to the device, the soft start circuit pumps up the output  
voltage to approximately 1.5 V at a fixed duty cycle, the level  
at which the converter can operate normally. What is more,  
the start−up capability with heavy loads is also improved.  
Regulated Converter Voltage (VOUT  
)
The V  
is set by an internal feedback resistor network.  
OUT  
This is trimmed to a selected voltage from 1.8 to 5.0 V range  
in 100 mV steps with an accuracy of $2.5%.  
Current Limit  
The NCP1402 series utilizes cycle−by−cycle current  
limiting as a means of protecting the output switch  
MOSFET from overstress and preventing the small value  
inductor from saturation. Current limiting is implemented  
by monitoring the output MOSFET current build−up during  
conduction, and upon sensing an overcurrent conduction  
immediately turning off the switch for the duration of the  
oscillator cycle.  
The voltage across the output MOSFET is monitored and  
compared against a reference by the VLX limiter. When the  
threshold is reached, a signal is sent to the PFM controller  
block to terminate the power switch conduction. The current  
limit threshold is typically set at 350 mA.  
(V  
= 1.9 V), and can be further reduced to about 0.6 m A  
OUT  
when the chip is disabled (V < 0.3 V).  
CE  
The NCP1402 operation can be best understood by  
examining the block diagram in Figure 2. PFM comparator  
monitors the output voltage via the feedback resistor. When  
the feedback voltage is higher than the reference voltage, the  
power switch is turned off. As the feedback voltage is lower  
than reference voltage and the power switch has been off for  
at least a period of minimum off−time decided by PFM  
oscillator, the power switch is then cycled on for a period of  
on−time also decided by PFM oscillator, or until current  
limit signal is asserted. When the power switch is on, current  
ramps up in the inductor, storing energy in the magnetic  
field. When the power switch is off, the energy in the  
magnetic field is transferred to output filter capacitor and the  
load. The output filter capacitor stores the charge while the  
inductor current is high, then holds up the output voltage  
until next switching cycle.  
Enable / Disable Operation  
The NCP1402 series offer IC shut−down mode by chip  
enable pin (CE pin) to reduce current consumption. An  
internal pull−up resistor tied the CE pin to OUT pin by  
default i.e. user can float the pin CE for permanent “On”.  
When voltage at pin CE is equal or greater than 0.9 V, the  
chip will be enabled, which means the regulator is in normal  
operation. When voltage at pin CE is less than 0.3 V, the chip  
is disabled, which means IC is shutdown.  
Important: DO NOT apply a voltage between 0.3 V and 0.9 V to pin CE as this is the CE pin’s hyteresis voltage  
range. Clearly defined output states can only be obtained by applying voltage out of this range.  
http://onsemi.com  
14  
NCP1402  
APPLICATIONS CIRCUIT INFORMATION  
L1  
D1  
V
V
in  
OUT  
47 m H  
C1  
10 m F  
C2  
68 m F  
CE  
1
LX  
5
NCP1402  
OUT  
2
NC  
3
GND  
4
Figure 59. Typical Application Circuit  
Step−up Converter Design Equations  
NCP1402 step−up DC−DC converter designed to operate  
in continuous conduction mode can be defined by:  
enough to maintain low ripple. Low inductance values  
supply higher output current, but also increase the ripple and  
reduce efficiency. Note that values below 27 m H is not  
recommended due to NCP1402 switch limitations. Higher  
inductor values reduce ripple and improve efficiency, but  
also limit output current.  
The inductor should have small DCR, usually less than 1  
W to minimize loss. It is necessary to choose an inductor with  
saturation current greater than the peak current which the  
inductor will encounter in the application.  
Calculation  
Equation  
2
V
in  
I
L
v Mǒ  
Ǔ
V
OUT Omax  
(V * V  
t
I
PK  
in  
s) on  
) I  
min  
L
(t ) t )I  
(V * V )t  
in S on  
on  
off O  
I
Diode  
min  
*
t
off  
2L  
The diode is the main source of loss in DC−DC converters.  
The most importance parameters which affect their  
(V * V  
t
s) on  
in  
t
off  
efficiency are the forward voltage drop, V , and the reverse  
(V  
) V * V )  
F
OUT  
F
in  
recovery time, t . The forward voltage drop creates a loss  
rr  
D
Q
(I * I )t  
L
O off  
just by having a voltage across the device while a current  
flowing through it. The reverse recovery time generates a  
loss when the diode is reverse biased, and the current appears  
to actually flow backwards through the diode due to the  
minority carriers being swept from the P−N junction. A  
Schottky diode with the following characteristics is  
recommended:  
D Q  
C
V
[
) (I * I )ESR  
ripple  
L
O
OUT  
*NOTES:  
I
I
I
I
I
V
V
V
V
Peak inductor current  
PK  
min  
O
Minimum inductor current  
Desired dc output current  
Desired maximum dc output current  
Average inductor current  
Nominal operating dc input voltage  
Omax  
L
Small forward voltage, V < 0.3 V  
F
in  
Small reverse leakage current  
Fast reverse recovery time/ switching speed  
Rated current larger than peak inductor current,  
Desired dc output voltage  
OUT  
F
Diode forward voltage  
Saturation voltage of the internal FET switch  
S
D Q  
V
Charge stores in the C  
Output ripple voltage  
during charging up  
OUT  
I
> I  
rated  
PK  
ripple  
Reverse voltage larger than output voltage,  
> V  
ESR  
M
Equivalent series resistance of the output capacitor  
An empirical factor, when V 3.0 V,  
V
reverse  
OUT  
OUT  
−6  
−6  
M = 8 x 10 , otherwise M = 5.3 x 10  
.
Input Capacitor  
EXTERNAL COMPONENT SELECTION  
The input capacitor can stabilize the input voltage and  
minimize peak current ripple from the source. The value of  
the capacitor depends on the impedance of the input source  
used. Small ESR (Equivalent Series Resistance) Tantalum or  
ceramic capacitor with value of 10 mF should be suitable.  
Inductor  
The NCP1402 is designed to work well with a 47 m H  
inductor in most applications. 47 m H is a sufficiently low  
value to allow the use of a small surface mount coil, but large  
http://onsemi.com  
15  
NCP1402  
Output Capacitor  
An evaluation board of NCP1402 has been made in the  
size of 23 mm x 20 mm only, as shown in Figures 60 and 61.  
Please contact your ON Semiconductor representative for  
availability. The evaluation board schematic diagram, the  
artwork and the silkscreen of the surface−mount PCB are  
shown below:  
The output capacitor is used for sustaining the output  
voltage when the internal MOSFET is switched on and  
smoothing the ripple voltage. Low ESR capacitor should be  
used to reduce output ripple voltage. In general, a 47 uF to  
68 uF low ESR (0.15 Wto 0.30 W) Tantalum capacitor  
should be appropriate. For applications where space is a  
critical factor, two parallel 22 uF low profile SMD ceramic  
capacitors can be used.  
20 mm  
23 mm  
Figure 60. NCP1402 PFM Step−Up DC−DC Converter Evaluation Board Silkscreen  
20 mm  
23 mm  
Figure 61. NCP1402 PFM Step−Up DC−DC Converter Evaluation Board Artwork (Component Side)  
http://onsemi.com  
16  
 
NCP1402  
Components Supplier  
Parts  
Supplier  
Part Number  
Description  
Inductor 47 m H / 0.72 A  
Schottky Power Rectifier  
Phone  
Inductor, L1  
Sumida Electric Co. Ltd.  
ON Semiconductor Corp.  
CD54−470L  
(852)−2880−6688  
(852)−2689−0088  
Schottky Diode, D1  
MBR0520LT1  
Low ESR Tantalum Capacitor  
68 m F / 10 V  
Output Capacitor, C2  
Input Capacitor, C1  
KEMET Electronics Corp. T494D686K010AS  
KEMET Electronics Corp. T491C106K016AS  
(852)−2305−1168  
(852)−2305−1168  
Low Profile Tantalum Capacitor  
10 m F / 16 V  
PCB Layout Hints  
Grounding  
efficiency (short and thick traces for connecting the inductor  
L can also reduce stray inductance), e.g. : short and thick  
traces listed below are used in the evaluation board:  
1. Trace from TP1 to L1  
One point grounding should be used for the output power  
return ground, the input power return ground, and the device  
switch ground to reduce noise as shown in Figure 62, e.g. :  
C2 GND, C1 GND, and U1 GND are connected at one point  
in the evaluation board. The input ground and output ground  
traces must be thick enough for current to flow through and  
for reducing ground bounce.  
2. Trace from L1 to Lx pin of U1  
3. Trace from L1 to anode pin of D1  
4. Trace from cathode pin of D1 to TP2  
Output Capacitor  
Power Signal Traces  
Low resistance conducting paths should be used for the  
power carrying traces to reduce power loss so as to improve  
The output capacitor should be placed close to the output  
terminals to obtain better smoothing effect on the output  
ripple.  
L1  
TP1  
TP2  
V
in  
V
out  
D1  
47 µH  
MBR0520LT1  
CE  
1
LX  
5
+
On  
Off  
+
JP1  
Enable  
C1  
10 µF/16 V  
C2  
68 µF/10 V  
NCP1402  
OUT  
2
NC  
3
GND  
6
TP4  
TP3  
GND  
GND  
Figure 62. NCP1402 Evaluation Board Schematic Diagram  
http://onsemi.com  
17  
 
NCP1402  
PACKAGE DIMENSIONS  
SOT23−5  
(TSOP−5, SC59−5)  
SN SUFFIX  
CASE 483−02  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
D
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B
C
S
1
2
L
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
J
0.05 (0.002)  
0.013 0.100 0.0005 0.0040  
H
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
M
K
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP1402/D  

相关型号:

T494D686K016AS

SOLID TANTALUM CHIP CAPACITORS
(T494 SERIES - Low ESR, Industrial Grade)
KEMET

T494D686K020AGAUTO7280

CAPACITOR, TANTALUM, SOLID
KEMET

T494D686K020AS

SOLID TANTALUM CHIP CAPACITORS
(T494 SERIES - Low ESR, Industrial Grade)
KEMET

T494D686K020ATAUTO

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 20V, 10% +Tol, 10% -Tol, 68uF, 2917
KEMET

T494D686K20AS

CAPACITOR, TANTALUM, SOLID, POLARIZED, 20V, 68uF, SURFACE MOUNT, 2917, CHIP
KEMET

T494D686M004AS

SOLID TANTALUM CHIP CAPACITORS
(T494 SERIES - Low ESR, Industrial Grade)
KEMET

T494D686M006AS

SOLID TANTALUM CHIP CAPACITORS
(T494 SERIES - Low ESR, Industrial Grade)
KEMET

T494D686M006ATAUTO7280

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 6.3V, 20% +Tol, 20% -Tol, 68uF, 2917
KEMET

T494D686M010AS

SOLID TANTALUM CHIP CAPACITORS
(T494 SERIES - Low ESR, Industrial Grade)
KEMET

T494D686M016AG

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 16V, 20% +Tol, 20% -Tol, 68uF, Surface Mount, 2917, CHIP, HALOGEN FREE EPOXY
KEMET

T494D686M016AH7280

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 16V, 20% +Tol, 20% -Tol, 68uF, Surface Mount, 2917, CHIP
KEMET

T494D686M016AHAUTO

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 16V, 20% +Tol, 20% -Tol, 68uF, 2917
KEMET