STK682-010-E [ONSEMI]

Bipolar Ultra-micro Stepping Motor Driver;
STK682-010-E
型号: STK682-010-E
厂家: ONSEMI    ONSEMI
描述:

Bipolar Ultra-micro Stepping Motor Driver

电动机控制
文件: 总20页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENA2252A  
STK682-010-E  
Thick Film Hybrid IC  
2-phase Stepping Motor Driver  
http://onsemi.com  
Overview  
The STK682-010-E is a hybrid IC for use as a Bipolar, 2-phase stepping motor driver with PWM current control.  
Function  
Output on-resistance (High side 0.3 , Low side 0.25 , Total 0.55 ; Ta = 25C, I = 2.5A)  
O
VMmax=36V(DC), Iopmax=3.0A  
2, 1-2, W1-2, 2W1-2, 4W1-2, 8W1-2, 16W1-2, 32W1-2 phase excitation are selectable  
With built-in automatic half current maintenance energizing function  
Over current protection circuit  
Thermal shutdown circuit  
Input pull down resistance  
With reset pin and enable pin  
Specifications  
Absolute Maximum Ratings at Tc = 25C  
Parameter  
Supply voltage  
Symbol  
VMmax  
Conditions  
Ratings  
36.0  
Unit  
V
Peak output current  
Logic input voltage  
VREF input voltage  
Iopmax  
3.0  
6.0  
A
V
VINmax  
VREFmax  
6.0  
V
Operating substrate temperature Tc  
Storage temperature Tstg  
20 to +105  
40 to +125  
C  
C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating  
Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 20 of this data sheet.  
Semiconductor Components Industries, LLC, 2013  
December, 2013  
D1813HK 018-13-0030/D1113HK No.A2252-1/20  
STK682-010-E  
Recommended Operating Conditions at Tc = 25C  
Parameter  
Supply voltage range  
Logic input voltage range  
Symbol  
VM  
Conditions  
Ratings  
Unit  
V
9.0 to 32.0  
VIN  
V
CC  
0 to 5.0  
0 to 5.0  
0 to 3.0  
3.0  
V
V
V
A
A
A
V
CC  
input voltage range  
VREF input voltage range  
Output current1  
VREF  
Io1  
1-2 Phase-ex, Tc 90C  
1-2 Phase-ex, Tc=105C  
2 Phase-ex, Tc=105C  
Output current2  
Io2  
2.5  
Output current3  
Io3  
1.8  
Electrical Characteristics at Tc 25C, V  
= 5V  
CC  
Ratings  
typ  
Parameter  
Standby mode current drain  
Current drain  
Symbol  
IMstn  
IM  
Conditions  
Unit  
min  
150  
max  
100  
70  
VCC=”L”  
μA  
VCC=”H”, ENABLE="H"  
No Load  
3.3  
4.6  
mA  
Design guarantee  
Design guarantee  
180  
40  
8
210  
C  
C  
μA  
μA  
Thermal shutdown temperature  
Thermal hysteresis width  
TSD  
TSD  
IinL1  
IinH1  
3
15  
VIN=0.8V  
Logic pin input current  
30  
50  
83  
70  
VIN=5V  
V
CC  
51  
115  
V
CC  
pin input current  
15pin=5V  
μA  
V
Vinh  
Vinl  
2.0  
Logic input high-level voltage  
Logic input low-level voltage  
FDT pin high-level voltage  
FDT pin middle-level voltage  
FDT pin low-level voltage  
Pins 2,3,16,17,18,19  
Pins 2,3,16,17,18,19  
Pin 6  
0.8  
V
Vfdth  
Vfdtm  
Vfdtl  
3.5  
1.1  
V
3.1  
0.8  
Pin 6  
V
Pin 6  
V
Fch  
58  
83  
10  
1
108  
kHz  
μA  
V
Chopping frequency  
C1=100pF  
Iosc1  
Vtup1  
Vtdown1  
Iref  
Chopping frequency  
Chopping oscillator circuit  
0.5  
threshold voltage  
V
0.5  
μA  
mV  
Hz  
μs  
VREF pin input voltage  
DOWN output residual voltage  
Hold current switching frequency  
Blanking time  
VREF=1.5V, CLK=10kHz  
Idown=1mA, CLK=Low  
VolDO  
Falert  
Tb1  
40  
1.6  
1
Output block  
Ronu  
Rond  
0.30  
0.25  
0.42  
0.35  
I =2.0A, high-side ON resistance  
O
I =2.0A, low-side ON resistance  
O
Output on-resistance  
Output leakage current  
Diode forward voltage  
Ioleak  
VD  
50  
μA  
V
VM=36V  
1.1  
1.4  
ID=2.0A  
VRF  
300  
mV  
Current setting reference voltage  
VREF=1.5V, Current ratio 100%  
Output short-circuit protection block  
Timer latch time  
Tscp  
256  
μs  
No.A2252-2/20  
STK682-010-E  
Package Dimensions  
unit : mm  
SIP19 29.2x14.4  
CASE 127CF  
ISSUE O  
19  
1
No.A2252-3/20  
STK682-010-E  
Block diagram  
OUT1A  
12  
OUT2B  
NFA  
OUT2A  
NFB  
OUT1B  
1
9
11  
8
7
VM  
VREG2  
14  
Regulator 2  
PGNDA  
PGNDB  
VREG1  
1.2k  
Regulator 1  
Output control logic  
VREF  
DOWN  
Current select  
circuit  
Current select  
circuit  
5
Oscillator  
Decay Mode  
setting circuit  
OSC2  
6
4
10  
18  
3
19  
1
15  
16 17  
2
GND  
CLK  
PGND  
VCC  
M1 M2 M3  
FDT OSC1  
ENABLE  
CW/CCW  
Application Circuit Example  
VM  
CW/CCW  
CLK  
14  
7
2
VM=24V  
3
OUT2B  
OUT1B  
STK682-010-E  
VREF  
5V  
5
9
R1  
VCC  
M1  
15  
16  
OUT2A  
OUT1A  
11  
13  
M2  
17  
18  
19  
M3  
ENABLE  
6
4
1
FDT  
OSC1  
GND  
C3  
C2  
10  
PGND  
12  
8
NFB  
NFA  
RFA  
R2  
RFB  
C1  
GND  
No.A2252-4/20  
STK682-010-E  
Pin Functions  
Pin No.  
1
Pin symbol  
GND  
Pin Functions  
Circuit GND  
2
3
CW/CCW  
CLK  
Forward / Reverse signal input  
Clock pulse signal input  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
OSC1  
VREF  
FDT  
OUT2B  
NFB  
OUT1B  
PGND  
OUT2A  
NFA  
OUT1A  
VM  
Chopping frequency setting capacitor connection  
Constant-current control reference voltage input  
Decay mode select voltage input  
B phase OUTB output  
B phase current sense resistance connection  
B phase OUTA output  
Power GND  
A phase OUTB output  
A phase current sense resistance connection  
A phase OUTA output  
Motor supply connection  
VCC  
M1  
M2  
M3  
Chip enable input  
Excitation-mode switching pin  
Output enable signal input  
ENABLE  
No.A2252-5/20  
STK682-010-E  
Equivalent circuit diagram  
Pin No.  
Pin type  
CLK  
Equivalent Circuit Diagram  
3
2
CW/CCW  
ENABLE  
M3  
M2  
M1  
19  
18  
17  
16  
15  
VCC  
Internal reset  
Input pin  
13  
10  
14  
12  
11  
9
OUT1A  
PGND  
VM  
NFA  
OUT2A  
OUT1B  
NFB  
8
7
OUT2B  
5
VREF  
4
OSC1  
6
FDT  
No.A2252-6/20  
STK682-010-E  
Description of functions  
(1) Excitation setting method  
Set the excitation setting as shown in the following table by setting M1 pin, M2 pin and M3 pin  
Input signal  
M2  
Initial position  
A phase  
M3  
M1  
MODE (Excitation)  
current  
100%  
100%  
100%  
100%  
100%  
100%  
100%  
100%  
B phase current  
L
L
L
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
2 Phase  
1-2 Phase  
100%  
0%  
0%  
0%  
0%  
0%  
0%  
0%  
W1-2 Phase  
2W1-2 Phase  
4W1-2 Phase  
8W1-2 Phase  
16W1-2 Phase  
32W1-2 Phase  
L
H
H
H
H
The initial position is also the default state at start-up and excitation position at counter-reset in each excitation  
mode  
(2) Output current setting  
Output current is set as shown below by the VREF pin (applied voltage) and a resistance value between  
NFA (B) pin and GND.  
I
= (VREF / 5) / NFA (B) resistance  
OUT  
* The setting value above is a 100% output current in each excitation mode.  
(Example) When VREF=1.5V and NFA (B) resistance is 0.3 , the setting current is shown below.  
I
= (1.5 V / 5) / 0.3 = 1.0 A  
OUT  
(3) Chip enable terminal/ VCC function  
When Chip enable terminal/ V  
turned OFF.  
pin is at low levels, the IC enters stand-by mode, all logic is reset and output is  
pin is at high levels, the stand-by mode is released  
CC  
When Chip enable terminal/ V  
CC  
(4) Step pin function  
CLK pin step signal input allows advancing excitation step  
Input  
Operation  
V
CC  
L
CLK  
*
Stand-by mode  
H
H
Excitation step feed  
Excitation step hold  
No.A2252-7/20  
STK682-010-E  
(5) Forward / reverse switching function  
CW/CCW  
Operation  
CW  
L
H
CCW  
CCW mode  
CW / CCW  
CLK  
CW mode  
CW mode  
Excitation  
position  
(1) (2) (3) (4) (5) (6) (5) (4) (3) (4) (5)  
A phase output  
B phase output  
The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the CLK pin. In addition,  
CW and CCW mode are switched by CW and CCW pin setting.  
In CW mode, the B phase current is delayed by 90relative to the A phase current. In CCW mode, the B phase  
current is advanced by 90relative to the A phase current.  
(6) Output enable function  
When the ENABLE pin is set Low, the output is forced OFF and goes to high impedance. However, the internal logic  
circuits are operating, so the excitation position proceeds when the CLK is input. Therefore, when ENABLE pin is  
returned to High, the output level conforms to the excitation position proceeded by the CLK input.  
ENABLE  
CLK  
A phase output  
0%  
B phase output  
High impedance output  
No.A2252-8/20  
STK682-010-E  
(7) DECAY mode  
The DECAY mode of the output current becomes only MIXED DECAY.  
DECAY method  
SLOW DECAY  
MIXED DECAY  
FAST DECAY  
FDT voltage  
3.5V to  
1.1V to 3.1V or OPEN  
to 0.8V  
(8) Chopping frequency setting function  
Chopping frequency is set as shown below by a capacitor between OSC1 pin and GND.  
-6  
Fch = 1 / (C1+20pF / 10×10 ) (Hz)  
(Example) When Cosc1=100pF, the chopping frequency is shown below.  
-12  
-6  
Fch = 1 / ((20+ 100)×10  
/ 10×10 ) (Hz) = 83.3 (kHz)  
Note  
The 20pF is a stray capacitance which is involved by the package of STK682-010-E.  
(9) Output short-circuit protection circuit  
Build-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC  
from damaging when the output shorts circuit by a voltage short or a ground short, etc. When output short state is  
detected, short-circuit detection circuit starts the operating and output is once turned OFF. After the timer latch time  
(typ : 256μs), output is turned ON again. Still the output is at short state, the output is turned OFF and fixed in  
stand-by mode.  
When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting Chip  
enable terminal/ V ="L"  
CC  
(10) Internal DOWN pin  
The DOWN pin is an open drain connection.  
This pin is turned ON when no rising edge of CLK between the input signals while a period determined by a  
capacitor between OSC2 and GND, and outputs at low levels.  
The DOWN pin output in once turned ON, is turned OFF at the next rising edge of CLK.  
Holding current switching time (0.6sectyp) is set by an internal capacitor between OSC2 pin and GND.  
(11) Output current tolerance  
STK682-010-E Output current tolerance Io Tc  
3.5  
3
2.5  
2
1-2 phase excitation  
and more  
1.5  
2 phase excitation  
1
0.5  
0
0
10 20  
30  
40  
50 60  
70  
80  
90 100 110  
Operating substrate temperature Tc C  
No.A2252-9/20  
STK682-010-E  
(12) When mounting multiple drivers on a single PC board  
When mounting multiple drivers on a single PC board, the GND design should mount a VCC  
decoupling capacitor,C2 and C3, for each driver to stabilize the GND potential of the other drivers.  
The key wiring points are as follows.  
VM=24V  
5V  
5V  
CW/CC  
CW/CC  
2
2
VM  
VM  
CLK  
FDT  
CLK  
FDT  
14  
R1  
14  
STK682-010-E  
7
R1  
3
6
3
6
STK682-010-E  
VREF  
VREF  
5
5
OUT2  
OUT1  
OUT2  
OUT1  
VCC  
VCC  
7
9
15  
16  
15  
16  
M1  
M2  
M1  
M2  
9
2phase  
stepping  
motor  
2phase  
17  
18  
19  
4
17  
18  
19  
4
stepping  
motor  
M3  
M3  
OUT  
2A  
OUT2A  
OUT  
ENABLE  
11  
13  
ENABLE  
11  
OSC1  
GND  
OSC1  
GND  
OUT  
13  
1
1
PGND  
PGND  
8
8
10 12  
10 12  
NFB  
RFB  
NFA  
RFA  
NFB  
RFB  
R2  
R2  
NFA  
RFA  
C3  
C2  
C3  
C2  
C1  
C1  
GND  
No.A2252-10/20  
STK682-010-E  
(13) Output current vector locus (1 step normalized 90)  
100.0  
66.7  
33.3  
0.0  
0.0  
33.3  
66.7  
100.0  
Channel 2 current ratio (%)  
No.A2252-11/20  
STK682-010-E  
(14) Current setting ratio in each excitation mode  
32W1-2 phase(%)16W1-2 phase(%) 8W1-2 phase(%) 4W1-2 phase(%) 2W1-2 phase(%) W1-2 phase(%) 1-2 phase(%) 2 phase(%)  
32W1-2 phase(%)16W1-2 phase(%)8W1-2 phase(%) 4W1-2 phase(%) 2W1-2 phase(%) W1-2 phase(%) 1-2 phase(%) 2 phase(%)  
Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch  
Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch Ach Bch  
70 72  
69 72 69 72  
68 73  
67 74 67 74 67 74  
66 75  
65 76 65 76  
64 77  
STEP  
θ0  
θ1  
θ2  
θ3  
θ4  
θ5  
θ6  
θ7  
STEP  
θ65  
θ66  
θ67  
θ68  
θ69  
θ70  
θ71  
θ72  
100  
100  
100  
100  
100  
100  
100  
100  
0
1
2
4
5
6
7
9
100  
100  
100  
100  
0
2
5
7
100  
0
100  
0
100  
0
100  
0
100  
0
100  
5
63 77 63 77 63 77 63 77  
θ8  
100 10 100 10 100 10 100 10  
θ73  
62 78  
θ9  
99 11  
θ74  
62 79 62 79  
θ10  
θ11  
θ12  
θ13  
θ14  
θ15  
θ16  
θ17  
θ18  
θ19  
θ20  
θ21  
θ22  
θ23  
θ24  
θ25  
θ26  
θ27  
θ28  
θ29  
θ30  
θ31  
θ32  
θ33  
θ34  
θ35  
θ36  
θ37  
θ38  
θ39  
θ40  
θ41  
θ42  
θ43  
θ44  
θ45  
θ46  
θ47  
θ48  
θ49  
θ50  
θ51  
θ52  
θ53  
θ54  
θ55  
θ56  
θ57  
θ58  
θ59  
θ60  
θ61  
θ62  
θ63  
θ64  
99 12 99 12  
99 13  
99 15 99 15 99 15  
99 16  
99 17 99 17  
98 18  
98 20 98 20 98 20 98 20 98 20  
98 21  
98 22 98 22  
97 23  
97 24 97 24 97 24  
97 25  
96 27 96 27  
96 28  
96 29 96 29 96 29 96 29  
95 30  
95 31 95 31  
95 33  
94 34 94 34 94 34  
94 35  
93 36 93 36  
93 37  
92 38 92 38 92 38 92 38 92 38 92 38  
92 39  
91 41 91 41  
91 42  
90 43 90 43 90 43  
90 44  
89 45 89 45  
89 46  
88 47 88 47 88 47 88 47  
88 48  
87 49 87 49  
86 50  
86 51 86 51 86 51  
85 52  
84 53 84 53  
84 55  
83 56 83 56 83 56 83 56 83 56  
82 57  
82 58 82 58  
81 59  
80 60 80 60 80 60  
80 61  
θ75  
θ76  
θ77  
θ78  
θ79  
θ80  
θ81  
θ82  
θ83  
θ84  
θ85  
θ86  
θ87  
θ88  
θ89  
θ90  
θ91  
θ92  
θ93  
θ94  
θ95  
θ96  
θ97  
θ98  
61 80  
60 80 60 80 60 80  
59 81  
58 82 58 82  
57 82  
56 83 56 83 56 83 56 83 56 83  
55 84  
53 84 53 84  
52 85  
51 86 51 86 51 86  
50 86  
49 87 49 87  
48 88  
47 88 47 88 47 88 47 88  
46 89  
45 89 45 89  
44 90  
43 90 43 90 43 90  
42 91  
41 91 41 91  
39 92  
38 92 38 92 38 92 38 92 38 92 38 92  
37 93  
36 93 36 93  
35 94  
34 94 34 94 34 94  
33 95  
31 95 31 95  
30 95  
29 96 29 96 29 96 29 96  
28 96  
27 96 27 96  
25 97  
24 97 24 97 24 97  
23 97  
22 98 22 98  
21 98  
θ99  
θ100  
θ101  
θ102  
θ103  
θ104  
θ105  
θ106  
θ107  
θ108  
θ109  
θ110  
θ111  
θ112  
θ113  
θ114  
θ115  
θ116  
θ117  
θ118  
θ119  
θ120  
θ121  
θ122  
θ123  
θ124  
θ125  
θ126  
θ127  
θ128  
20 98 20 98 20 98 20 98 20 98  
18 98  
17 99 17 99  
16 99  
15 99 15 99 15 99  
13 99  
12 99 12 99  
11 99  
10 100 10 100 10 100 10 100  
79 62 79 62  
78 62  
77 63 77 63 77 63 77 63  
77 64  
76 65 76 65  
75 66  
74 67 74 67 74 67  
73 68  
9
7
6
5
4
2
1
0
100  
100  
100  
100  
100  
100  
100  
100  
7
5
2
0
100  
100  
100  
100  
5
0
100  
100  
72 69 72 69  
72 70  
0
100  
0
100  
0
100  
0 100  
71 71 71 71 71 71 71 71 71 71 71 71 71 71 100 100  
No.A2252-12/20  
STK682-010-E  
(15) Current wave example in each excitation mode (2 phase, 1-2 phase, W1-2 phase, 4W1-2 phase)  
2 phase excitation (CW mode)  
CLK  
(%)  
100  
0
IA  
(%)  
-100  
100  
0
IB  
-100  
1-2 phase excitation (CW mode)  
CLK  
(%)  
100  
0
IA  
IB  
-100  
(%)  
100  
0
-100  
No.A2252-13/20  
STK682-010-E  
W1-2 phase excitation (CW mode)  
CLK  
(%)  
100  
IA  
IB  
0
-100  
(%)  
100  
0
-100  
4W1-2 phase excitation (CW mode)  
STP  
MO  
(%)  
100  
50  
I1  
0
-50  
-100  
(%)  
100  
50  
0
I2  
-50  
-100  
No.A2252-14/20  
STK682-010-E  
(16) Current control operation  
SLOW DECAY current control operation  
When FDT pin voltage is a voltage over 3.5 V, the constant-current control is operated in SLOW  
DECAY mode.  
(Sine-wave increasing direction)  
CLK  
Setting current  
Setting current  
Coil current  
Blanking Time  
fchop  
Current mode  
CHARGE  
SLOW  
CHARGE  
SLOW  
(Sine-wave decreasing direction)  
C LK  
Setting current  
C oil current  
Setting current  
B lanking Tim e  
fchop  
C urrent m ode  
C H AR GE  
B lanking Tim e  
B lanking Tim e  
SLO W  
SLO W  
SLO W  
Each of current modes operates with the follow sequence.  
The IC enters CHARGE mode at a rising edge of the chopping oscillation.  
(A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1 μs, regardless of the current  
value of the coil current (ICOIL) and set current (IREF) ).  
After the period of the blanking time, the IC operates in CHARGE mode until ICOIL IREF. After that,  
the mode switches to the SLOW DECAY mode and the coil current is attenuated until the end of a  
chopping period.  
At the constant-current control in SLOW DECAY mode, following to the setting current from the coil  
current may take time (or not follow) for the current delay attenuation.  
No.A2252-15/20  
STK682-010-E  
FAST DECAY current control operation  
When FDT pin voltage is a voltage under 0.8V, the constant-current control is operated in FAST DECAY mode.  
(Sine-wave increasing direction)  
CLK  
Setting current  
Setting current  
Coil current  
Blanking Time  
fchop  
Current mode  
CHARGE  
FAST  
CHARGE  
FAST  
(Sine-wave decreasing direction)  
CLK  
Setting current  
Coil current  
Setting current  
Blanking Time  
fchop  
Current mode  
CHARGE  
FAST  
Blanking Time  
FAST  
CHARGE  
FAST  
Each of current modes operates with the follow sequence.  
The IC enters CHARGE mode at a rising edge of the chopping oscillation.  
(A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1s, regardless of the current value  
of the coil current (ICOIL) and set current (IREF)).  
After the period of the blanking time, The IC operates in CHARGE mode until ICOIL IREF. After that,  
the mode switches to the FAST DECAY mode and the coil current is attenuated until the end of a chopping period.  
At the constant-current control in FAST DECAY mode, following to the setting current from the coil current takes  
short-time for the current fast attenuation, but, the current ripple value may be higher.  
MIXED DECAY current control operation  
No.A2252-16/20  
STK682-010-E  
(Sine-wave increasing direction)  
CLK  
Setting current  
Setting current  
Coil current  
Blanking Time  
fchop  
Current mode  
CHARGE  
SLOW  
FAST  
CHARGE  
SLOW  
FAST  
(Sine-wave decreasing direction)  
CLK  
Setting current  
Coil current  
Setting current  
Blanking Time  
fchop  
Current mode  
CHARGE  
SLOW  
FAST  
Blanking Time  
FAST  
CHARGE  
SLOW  
Each of current modes operates with the follow sequence.  
The IC enters CHARGE mode at a rising edge of the chopping oscillation.  
(A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1 μs, regardless of the current  
value of the coil current (ICOIL) and set current (IREF)).  
In a period of Blanking Time, the coil current (ICOIL) and the setting current (IREF) are compared.  
If an ICOIL = IREF state exists during the charge period:  
The IC operates in CHAGE mode until ICOIL IREF. After that, it switches to SLOW DECAY mode and then  
switches to FAST DECAY mode in the last approximately 1 μs of the period.  
If no ICOIL = IREF state exists during the charge period:  
The IC switches to FAST DECAY mode and the coil current is attenuated with the FAST DECAY operation until the  
end of a chopping period.  
The above operation is repeated.  
Normally, in the sine wave increasing direction the IC operates in SLOW (+FAST) DECAY mode, and in the sine  
wave decreasing direction the IC operates in FAST DECAY mode until the current is attenuated and reaches the set  
value and the IC operates in SLOW (+FAST) DECAY mode.  
No.A2252-17/20  
STK682-010-E  
Power Dissipation  
Power dissipation calculation of STK682-010-E following becomes.  
2-phase excitation  
Pd=IOH×(Ronu + Rond)2  
1-2-phase excitation  
Pd=0.71×IOH×(Ronu + Rond)2  
Please by substituting from electrical characteristic table value of Rond and Ronu.  
Thermal design  
[Operating range in which a heat sink is not used]  
Use of a heat sink to lower the operating substrate temperature of the HIC (Hybrid IC) is effective in increasing the  
quality of the HIC.  
The size of heat sink for the HIC varies depending on the magnitude of the average power loss, PdAV, within the HIC.  
The value of PdAV increases as the output current increases. To calculate PdAV, refer to “Calculating Internal HIC  
Loss for the STK672-640C-E in the specification document.  
Calculate the internal HIC loss, PdAV, assuming repeat operation such as shown in Figure 1 below, since conduction  
during motor rotation and off time both exist during actual motor operations,  
I 1  
O
Motor phase current  
(sink side)  
I 2  
O
0A  
-I 1  
O
T1  
T3  
T2  
T0  
Figure 1 Motor Current Timing  
T1 : Motor rotation operation time  
T2 : Motor hold operation time  
T3 : Motor current off time  
T2 may be reduced, depending on the application.  
T0 : Single repeated motor operating cycle  
IO1 and IO2 : Motor current peak values  
Due to the structure of motor windings, the phase current is a positive and negative current with a pulse form.  
Note that figure 1 presents the concepts here, and that the on/off duty of the actual signals will differ.  
The hybrid IC internal average power dissipation PdAV can be calculated from the following formula.  
PdAV= (T1P1+T2P2+T30) TO ---------------------------- (I)  
(Here, P1 is the PdAV for IO1 and P2 is the PdAV for IO2)  
If the value calculated using Equation (I) is 1.5W or less, and the ambient temperature, Ta, is 60C or less, there is no  
need to attach a heat sink. Refer to Figure 2 for operating substrate temperature data when no heat sink is used.  
[Operating range in which a heat sink is used]  
Although a heat sink is attached to lower Tc if PdAV increases, the resulting size can be found using the value of  
c-a in Equation (II) below and the graph depicted in Figure 3.  
c-a = (Tc max-Ta) PdAV ---------------------------- (II)  
Tc max : Maximum operating substrate temperature =105C  
Ta : HIC ambient temperature  
Although a heat sink can be designed based on equations (I) and (II) above, be sure to mount the HIC in a set and  
confirm that the substrate temperature, Tc, is 105C or less.  
No.A2252-18/20  
STK682-010-E  
Figure 2 Substrate temperature rise, Tc (no heat  
Figure 3 Heat sink area (Board thickness: 2mm) - c-a  
sink) - Internal average power dissipation, PdAV  
Tc - PdAV  
c-a - S  
80  
100  
7
5
70  
60  
50  
40  
30  
20  
3
2
10  
7
5
3
2
10  
0
1.0  
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
2
3
5
7
2
3
5
7
1000  
100  
Heat sink area, S - cm2  
Hybrid IC internal average power dissipation, PdAV - W  
ITF02553  
ITF02554  
Mitigated Curve of Package Power Loss, PdPK, vs. Ambient Temperature, Ta  
Package power loss, PdPK, refers to the average internal power loss, PdAV, allowable without a heat sink.  
The figure below represents the allowable power loss, PdPK, vs. fluctuations in the ambient temperature, Ta.  
Power loss of up to 3.1W is allowable at Ta=25C, and of up to 1.75W at Ta=60C.  
Allowable power dissipation, PdPK(no heat sink) - Ambient temperature, Ta  
PdPK - Ta  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
20  
40  
60  
80  
100  
120  
Ambient temperature,Ta - C  
ITF02511  
No.A2252-19/20  
STK682-010-E  
ORDERING INFORMATION  
Device  
Package  
Shipping (Qty / Packing)  
15 / Tube  
SIP-19  
(Pb-Free)  
STK682-010-E  
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at  
www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no  
warranty, representation or guarantee regarding the suitabilityof its products for any particular purpose, nor does SCILLC assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical  
experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use  
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in  
which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for  
any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or  
death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the  
part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PS No.A2252-20/20  

相关型号:

STK6822

Industrial Control IC
ETC

STK6855

Reversible Brush-Type DC Motor Driver (output current 5A)
SANYO

STK6865H

THICK FILM HYBRID IC BIDIRECTIONAL MOTOR DRIVER WITH BRAKE FUNCTION
SANYO

STK6875

Bidirectional DC Brush-Type Motor Driver (Io max = 5A)
SANYO

STK6877

Reversible Brush-Type DC Motor Driver (output current: 8A)
SANYO

STK6922

DC AMP AND OP AMP FOR DC,AC MOTOR DRIVE
SANYO

STK6932

DC AMP AND OP AMP FOR DC,AC MOTOR DRIVE
SANYO

STK6942

Industrial Control IC
ETC

STK6952

Industrial Control IC
ETC

STK6962

Industrial Control IC
ETC